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A note on Sombor indices of cacti
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Abstract. The Sombor index is a novel degree based topological index, based on geometrical considera-

tions. For a graph G, the Sombor index is defined as the sum over all edges uv of G of the terms +/d2 + d>
where d,, d, denote the degrees of the end vertices of uv. In this paper, we determine the first two graphs
with maximum Sombor and exponential Sombor indices among cacti of a fixed order and fixed number
of cycles. We also characterize such extremal cacti for reduced Sombor index, average Sombor index and

p-Sombor indeX, as well as for generalized Sombor index. By this we extend the results by Das [3] and Liu
[13].

1. Introduction

Topological indices are graph invariants which are used to predict structural properties of chemical
compounds. Among the large number of such invariants that nowadays are studied in mathematics
and mathematical chemistry [11, 23], a family of vertex-degree-based topological indices were recently
conceived, based on geometric considerations [8, 9]. This are the so-called Sombor index and its congeners.
Of their several noteworthy applications we mention here just a few [1, 10, 14, 19, 20]. Results of their
mathematical investigations are found in the review [15] and the recent papers [2, 3, 5, 6, 12, 16-18, 21, 22].

The different variants of Sombor indices can be defined in unison as follows

STIG) = ) ¢alf(d), f(do) )

uveE

where ¢,(x, y) = {/x* + y*. Similarly, the generalized Sombor index can be defined as

gTI(G) = Z Ha(f(du)/ f(dv))

uveE

where u,(x,y) = (x> + y?)* and d,, d, denote the degree of the vertices u, v respectively. The analogous
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exponential versions can be defined as,

esTI(G) = Z o Pa(F(@), ()

uveE

egTI(G) = Z oha(Fd).f(@)

uveE

In (1) if we put @ = 2 and f(x) = x, the we get the ordinary Sombor index SO(G), For « = 2 and f(x) = x—-1
we get the reduced Sombor index SO,.;(G), whereas for @ = 2 and f(x) = x — 27’” (where n, m are order and
size of the underlying graph) we get the average Sombor index SO,,(G). For a = p and f(x) = x, we get the
p-Sombor index SO,(G). The reduced p-Sombor index and average p-Sombor index can then be constructed
by taking a = pand f(x) =x - 1,and @ = p and f(x) = x — 22, respectively.

Cacti’s are connected graphs in which any two distinct cycles have at most one common vertex. Let C,, x
denote the collection of all cacti of order n having exactly k cycles. If all the k cycles in G € C,, . are triangles
(i.e., C3) then the cactus is called a triangular cactus. Cactus bundles are cactus graphs in which every cycle
and trees are attached at a common vertex. The cactus bundle consisting of k triangles along with n — 2k — 1
pendent edges attached at a common vertex is called triangular cactus bundle, and is denoted by Cg/k. Let
C!, denote the cactus of order n having k cycles C3 and n — 2k — 2 pendent edges attached at a common
vertex and one pendent edge attached at a different vertex of the cycle Cs. Let U, denote the collection of
all unicyclic graphs of order #n, and Us;,-_3 denote the unicyclic graph with a triangle C; along with n — 3
pendent edges attached at a vertex u of the cycle Cs.

For a vertex u of a graph G, let Ng(u) denote the collection of all vertices of G, adjacent to the vertex u.

Several works concerning bounds and extremal graphs for the Sombor indices of cacti can be found
in [7, 13, 24]. However, all these works consider different versions of the Sombor index individually. In
the present work, we propose a unified method to determine the extremal cactus graphs that attain the
maximum values of various versions of the Sombor and exponential Sombor indices. We also determine
the second maximal value for all classes of Sombor indices for cacti. By extending this approach, we can
determine higher-order extremal graphs for all classes of Sombor indices for cacti.

2. Main Results

In order to prove the main results, we first state a few auxiliary lemmas.
Lemma2l. Ifx>1,y>1,a > 1, then ¢po(x,y) = {/x* + y? is an increasing function with respect to x (resp. y).
Proof.

IPpa(x,y)
ox B

Since, ¢, (x, y) is a symmetric function with respect to x and y, we get the result. [

Lemma22. Ifx>1,y>1,a>1k>0,then ¢, (x,y) = {x% + y* — \/x* + (y — k)* is a decreasing function with

respect to x.

X+ y?)E > 0.

Proof.

P, (%, y)
ox

since, x>1,y>1,a>1,k>0. O

Lemma23. Ifx > 1,y > 1,a > 1,k > 0, then ¢, (x,y) = {x¥+y* — /x* + (y — k)* is an increasing function
with respect to y.

=7+ ) T+ (- BT <0
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Proof.

1 1
x 3—1

Il (x, ) . o [ YT e
o Lo (y = (@ + (y — K)%)7 1‘(%”) —(—(y_k)a+1) >0

— 01 ay a}y
oy y et YY)
since, x>1,y>1,a>1k>0 O

Lemma24. Ifx>1,y>1,a > 1, then ¢pn(x,n —x) = /x* + (n — x)* is an is an increasing function with respect
to x when x > 5 and is a decreasing function when x < 3.

Proof.

IPa(x, (n—x))
ox B

(T = (1= + (=2
Then, (x*! — ((n —x)*')) > 0whenx > % and (x*™! — (n - x)*')) <Owhenx < 4. O
As a consequence, we have a following
Corollary 2.5.
Gali=1,1) > Galn-2,2)> > 6u (| 5], 5])
Lemma2.6. Ifx>1,y>1,a > 1, then u,(x,y) = (x> + y?)* is an increasing function with respect to x (resp. y).

Proof.

a#a(x/ Y)

- 2xa(x* + yH)* 1 > 0.

Now, p,(x,y) is a symmetric function with respect to x and y, we get the result. [J

Lemma27. Ifx > 1,y > 1,a > 1, then ul,(x,y) = (x> + y»)* — (x? + (y — k)*)* is an increasing function with
respect to x.

Proof. By direct computation,

dua(x, )

- 2xa(x® + ) = 2xa(x® + (y - k)*)* ! > 0.

O

Lemma28. Ifx > 1,y > 1,a > 1, then ul(x,y) = (x> + y»)* — (x? + (y — k)*)* is an increasing function with
respect to y.

Proof. By direct computation,

dua(x,y)

oy = ij/a(x2 + ]/Z)a_l -2(y— k)a(x2 +(y - k)z)"“1 >0.

O

Lemma29. Ifx>1,y>1,a > 1, then p,(x,n — x) = (x> + (n — x)%)* is an increasing function with respect to x
when x > 5 and is a decreasing function when x < 5.
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Ipta(x, (n — x))

— (A 2 _ aa2ya-1
Ee = (dx - 2ma(x"+(n—x))*" >0,

As a consequence, we have a following

now, (4x — 2n)a(x* + (n — x)?)*~! > 0 when x > % and (4x — 2n)a(x* + (n — x)*)*' <Owhenx < 4. O
Corollary 2.10.

Bt =11 > ol =2,2) > > | 5] 3 ])

Let G € C,, i be a cactus and u be a vertex in a cycle. By T(u) denote the tree attached at the vertex u.

Transformation 2.11. Let G € C,,x be a cactus, u a vertex belonging to a cycle, and T(u) the tree attached at the

vertex u, such that |E(T(u))| = m. Let G’ be the graph obtained from G by deleting all the edges of T(u) and connecting
all the vertices of T(u) other than u to u (i.e., attaching m pendent edges to u), see Figure 1. Then

G=G—-E(T)+{uv:veT(u),v+ul.

?
1
1 T(u
e o ( j’
.- . - QP N
'I' \\ N \
¢ ¢ ]
N u K

Figure 1: The graphs G and G’ of Transformation 2.11

Lemma 2.12. Let G € C,x and G’ be the graph obtained as in Tranfromation 2.11 where T(u) % Sy41. Then
(a.) sTI(G) < sTI(G’).
(b.) gTI(G) < gTI(G').

Proof. All the vertices except x € T(u) have same degree in G and G’. Let d;, denote the degree contribution
of all the edges to u other than the edges of T(u). Then,

STIG) = sTIG) = Y Guldedy)+ Y| Galdid) = Y duldy+m1) = Y duld, +m,de) <0
xy€eT(u) ux(;]’i w xy€eT(u) ux

ux¢T (1)
since T(u) % Sy+1,dy < d;,+m. Therefore, by Lemma 2.1, ¢o(dy, dx) < Qu(d;, +m,d,). Also, for every xy € T(u),
Paldy,dy) < Paldy +dy —1,1) < Pa(d;, + m, 1) by Lemmas 2.1, 2.4, and as dy + d, — 1 < d;, + m. Similarly,

ux
ux¢T(u)

gTIG) — gTIG) = Y paldedy) + Y| palduyde) = Y paldy+m, )= Y ol +m,dy) <0
xy€T (u) xy€T (1)

uxg%(u)
since T(u) % Sy4+1, du < d;,+m. Therefore, by Lemma 2.4, p1,(dy, dx) < pa(dy, +m,d,). Also, for every xy € T(u)
pa(dr, dy) < pa(dy +dy —1,1) < po(d;, + m,1) by Lemmas 2.4,2.9,and as d, +d, -1 <d;, + m. O

7442
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Figure 2: The graphs G and G’ of Transformation 2.13

Transformation 2.13. Let G € C,x be a cactus and C, = ujuy...uu1,v > 3 be a cycle in G. Assume that
dy; > dy,,, 1 <i<r—1. Let G’ be the graph obtained from G by deleting all the edges adjacent to u;.1 and adding
edges connecting all the neighbors of u;.1 to u;, see Figure 2. That is,

G =G- U {tip1x} + U {uix}.

Y€NG(Ui+1) Y€NG(Ui+1)

Lemma 2.14. Let G € C,.x and G’ be the graph obtained as in Tranfromation 2.13. Then
(a.) sTI(G) < sTI(G’).
(b.) gTI(G) < gTI(G).

Proof. All the vertices other than u;, u;,1 have the same degree in G and G’. Therefore, all the edges other
than those incident on u;, 1,1 will contribute the same value to the topological index in G and G’. Therefore,

sTI(G) —sTI(G") = Z (Pa(duwdx) + Z ¢a(duf+lrdx) + ﬂba(dui/dum)

Ui1Xx
X#EUjip XFU;
= Y Galdu + dur = 1) = Y Paldy, +dur = 1,dy) = Pald, +duy, —1,1) <0,

since by Lemma 2.1, for the edge u;x, ¢,(dy,, dx) < Pul(dy; +du+1 —1,dy) and for the edge u;y1x, Po(di+1,dx) <
Gu(dy; + du+1 — 1,dy). Also, by Corollary 2.5, ¢pu(dy,, du,,,) < Pa(dy; + du,, —1,1). Similarly,

gTIG) = gTHG) = Y palduyd) + Y pald1,de) + ol i)

uix Ujp1X
XFUj1 XFU;
= Y el + i =1, d) = Y (i, + s = 1,d0) = pra(dy + iy —1,1) <0
*Hii T

since by Lemma 2.4, for the edge u;x, p,(dy,, dx) < po(dy, + dys1 —1,dx) and for the edge u; 1%, po(dy+1,dx) <
pa(@y; + dy1 —1,dy). Also, by Corollary 2.10, ua(dy,, du,,,) < pa(@y; + duy —1,1). O

Transformation 2.15. Let G € C, be a triangular cacti and C3 = ujupuzu; be a cycle in G. Assume that
Ay, > dy, > dy, > 3. Let G’ be the graph obtained from G by deleting all the edges adjacent to uz other than uyus, uyuz
and adding edges connecting all the neighbors of us other than ui, us to uy, see Figure 3. That is,

G =G- U {usx} + U {ugx}.

x€Ng(u3) x€Ng(us)
X#EU XFEUY XFEUXFEUY
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Figure 3: The graphs G and G’ of Transformation 2.15.

Lemma 2.16. Let G € Cy,x and G’ be the graph obtained as in Transformation 2.15. Then
(a.) sTI(G) < sTI(G’).
(b.) gTI(G) < gTI(G").

Proof. All vertices other than 1, u3 have the same degree in G and G’. Therefore, all the edges other than
those incident on u1, u3 will contribute the same value to the topological index in G and G’. Therefore,

STIG) = STHG') = ) Galduy, de) + ) Paldus, d) + DA, i) + $lddus, i) + Py, )

ux usx
XFUp X#Up
X#U3 XFU3

= Y Oalduy + iy = 2,d) = Y Paldu, + iy —2,d)
ux uzx
X#1p XFUy
XFU3 XFUp

- ¢a(du1 + du3 - 2/ 2) - ¢a(du1 + du3 - 2/ duz) - Qba(z/ duz)
= Z(Qba(dul/dx) - Qba(dul + du3 - 2/ dx)) + Z(qba(dug,/ dx) - (Pa(dul + du3 - 2/ dx))

ux usx
X#Up XFUq
XFU3 XFU3

+ ¢/(du3/ duz) - <]5'(du1 + du3 - 2//duz) + (Poc(duy dul) - (Pa(dul + du3 - 2/ 2) <0

since by Lemma 2.1, for the edge u1x, ¢a(dy,, dx) < ¢Poldy, + du; — 2,dx) and for the edge uzx, Pu(dy,, dy) <
Oua(dy, +du, —2,dy). Also, by Lemma 2.2, ¢'(dy,, du,) < ¢'(dy, + du, — 2,,d4,) as du, < dyy, +dy, — 2. Also by
Lemma 2.1, ¢po(dyy, du,) < Goldyy, + dy, — 2,d,,,). Similarly,

9TIG) = TIG) = Y prald, d) + Y| paldduy, ) + paldy, ) + oy, duy) + ol i)

ux usx
XFUy X#Uq
XFU3 XFU3

- E [Ja(du] + du3 -2, dx) + E [Ja(du] + du3 -2, dx)
ux uzx
XFUp XFUq
XFU3 XFUp

- Ha(dul + dug -2, 2) - [Ja(dul + du3 -2, duz) - Hzx(duzr 2)
= Y (o, d) = ol +duy = 2,d0) + Y (el ) = pralduy +du, = 2, )

mx usx
XFUp X#Uq
XFU3 X#U3

+ [vll(dug,/ duz) - "l,(dlh + du3 - 2//du2) + Ha(dug/ dm) - [Ja(dm + du3 - 2/ 2) < 0

since by Lemma 2.4, for the edge u1x, un(dy,, dx) < pa(dy, + dy, — 2,dy) and for the edge usx, po(dy,, dy) <
ta(dy, +dy, — 2,dy). Also, by Lemma 2.6, y'(dy,, du,) < p'(dy, +du, —2,,d4,) as dy, < d,, +d,, —2. Also, by
Lemma 2.4, po(dyy, du,) < ta(@uy +dus —2,d4,). O
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Using these results we arrive at the following upper bounds on Sombor indices of cacti.
Theorem 2.17. Let G € Cp,n > 8,k = 1. Then
(a.) sTI(G) < (n =2k = 1)(p(n — 1,1)) + 2k(¢p(n — 1, 2)) + kp(2, 2) and the equality holds if and only if G = Cg,k'
(b.) gTI(G) < (n =2k = 1)(u(n — 1,1)) + 2k(u(n — 1,2)) + ku(2, 2) and the equality holds if and only if G = Cg,k'

Proof. Let G be the graph that attains the maximum value of the topological index among the graphs in
Cyx. Then by the repeated application of Transformation 2.11 and by Lemma 2.12, all the bridges of G must
be pendent edges and by repeated application of Transformation 2.13 and by Lemma 2.14, G must be of
the form of a triangular cactus whose all bridges are pendent edges. Now, by the repeated application of
Transformation 2.15 and by Lemma 2.16, G = Cg,k. Then, by direct computation,

sTI(C?l’k) =(n—-2k-1)(p(n—1,1)) + 2k(¢p(n — 1,2)) + kd(2,2)
gTI(CS/k) =m-2k-1)(un-1,1)) + 2k(u@n - 1,2)) + ku(2,2).
O

Using the same Transformations 2.11-2.15 we can establish upper bounds of exponential Sombor index
for cacti of order n having fixed number of cycles k.

Corollary 2.18. Let G € Cp, 1 > 8,k = 1. Then
(a.) esTI(G) < el 2=DOE=L2KQO=12DHOCD) and the equality holds if and only if G = C3 .

(b.) egTI(G) < e DW= and the equality holds if and only if G = C) .

We now determine the cacti in C, x with second greatest Sombor indices.

Figure 4: The graphs mentioned in Theorem 2.19.

Theorem 2.19. Let G € C, i \CY ), n > 12,k > 1. Then

(a.) sSTI(G) < (n =2k = 2)¢po(n —2,1) + 2k = 1) (n — 2,2) + (k = 1)$pa(2,2) + pa(n — 2,3) + $4(3,1) + $4(3,2)
and the equality holds if and only if G = C111,k'

(b.) gTI(G) < (n — 2k = 2)ptaln = 2,1) + 2k = Dptan = 2,2) + (k = Dpsa(2,2) + ol = 2,3) + a3, 1) + 1a(3,2)
and the equality holds if and only if G = C .
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Proof. Let G be the graph that attains the maximum value of topological index among graphs in C,,;\{C? }.
Then using Transformation 2.11 to Transformation 2.15 and Lemmas 2.12-Lemma 2.16, G must be a cactus
bundle having the following properties.

Case I: All the pendent edges are not attached at a common vertex. Then G has exactly one pendent edge
attached at a different vertex of the cycle Cs, that is, G = G4, see Figure 4. Then by direct computation

STI(G1) =(n — 2k = 2)p,(n — 2,1) + (2k = 1)pa(n — 2,2) + (k — 1)da(2,2)
+ (Pa(n - 2/ 3) + (Pf't(sr 1) + ¢0((31 2) .
Case II: All except one cycle must be an end block: Then G has one cycle C3 which is not attached at a

common vertex. Then either it must be attached at the end of a pendent vertex or some other vertex of the
cycle, ie., G = G, or G = G, see Figure 4. Then,

STI(Gy) — sTI(Gy) = (n — 2k = 2)pa(n — 2,1) + 2k — 1)pa(n — 2,2) + (k — 1)a(2,2)
+ ¢a(n = 2,3) + Pa(3,1) + Pa(3,2) — (n — 2k — 1)pa(n — 3,1)
= (2k = 3)Pa(n = 3,2) = (k = 1)Pa(2,2) — Pa(n — 3,4) — 3¢a(4,2)
= (1 =2k = 2)(¢Pa(n = 2,1) = Pa(n = 3,1)) + (2k = 3)(Pa(n = 2,2) = Pa(1 = 3,2))
+ (Paln —2,3) — Pa(n — 3,4)) + Pa(n — 2,2) — pa(n — 2,1) + Pa(n — 2,2) — 24 (4,2)
+¢0a(3,2) + a(3,1) — Pa(4,2) > 0

in view of Lemmas 2.1-Lemma 2.4 and Corollary 2.5. Also, note that ¢,(3,2) + ¢o(3,1) > ¢.(4,2) and
Qo —2,2) > 2¢,(4,2) when n > 12. Now,

STI(Gy) — sTI(G3) = (n — 2k = 2)pa(n — 2,1) + 2k — 1)pa(n — 2,2) + (k — 1)a(2,2)
+ ¢a(n = 2,3) + Pa(3,1) + Pa(3,2) — (1 — 2k — 2)pa(n — 3,1)
— (2k = 2)Ppa(n = 3,2) — kpa(2,2) = Pa(n — 3,3) — 2¢4(3,2)
= (1 =2k = 2)(¢pa(n = 2,1) = Pa(n = 3,1)) + (2k = 2)(Pa(n = 2,2) = pa(1 = 3,2))
+ (Pa(n —2,3) = ¢a(n = 3,3)) + Pa( — 2,2) + Pa(3,2) + Pa(3,1) — $a(2,2) > 0

by Lemma 2.2, Lemma 2.4, and Corollary 2.5.
Case III: All bridges are not pendent edges. Then G must be of the form of G = G, or G = Gy4. Then,

sTI(G1) = sTI(Gy4) = (n =2k = 2)po(n —2,1) + 2k — D)Ppa(n — 2,2) + (k — 1)Pa(2,2)
+ Pa(n—2,3) + ¢a(3,1) + $a(3,2) — (n — 2k = 3)Ppa(n — 2,1)
- 2k)pa(n —2,2) —kpa(2,2) = pa(n —2,2) — Ppa(2,1)
= ¢Pa(n—2,3) = pa(n —2,2) = (pa(n — 2,2) — pa(n - 2,1))
+ 0a(3,2) = Pal(2,2) + Pu(3,1) — Pu(2,1) >0
by Lemma 2.2, Lemma 2.3, and Corollary 2.5.

Case IV: No cycle is C3. If G has at least one cycle which is not C3 then it must be C4. Thus G has the form
G = Gs. Now,

STI(G1) - STI(Gs) = (1 — 2k = 2)paln = 2,1) + 2k = Dl = 2,2) + (k = Va2, 2)
+ Pa(n—2,3) + $a(3,1) + Pu(3,2)
= (n =2k = 2)pa(n —2,1) = (2k)pa(n = 2,2) = (k + 1)$a(2,2)
= ((;ba(n - 2/ 3) - (;[)“(Vl - 2/ 2)) + (Pa(?’r 2) - ¢a(21 2) + ¢a(3, 1) - (Pa(zr 2) >0
where each quantity is positive by Lemma 2.1 and Corollary 2.5. Replacing ¢, by p, and applying

Lemma 2.6, Lemma 2.7, Lemma 2.9, and Corollary 2.10 we get gTI(G1) > gTI(G;),i = 2,3,4,5. Therefore,
the maximum value is obtained when, G = Gy = Ci v O
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As a consequence of Theorem 2.21, we have the following corollary:

Corollary 2.20. Let G € C,;y\{C? },n =12,k > 1. Then
(Ll.) €STI(G) < e(n—Zk—Z)tf)a(n—2,1)+(2k—,1)(})a(n—2,2)+(k—1)(j)a(2,2)
s pPa(1=2,3)+0a(3,1)+¢a(32)
and the equality holds if and only if G = C::,k'
(b) egTI(G) < e(n—Zk—Z)ya(n—2,1)+(2k—1)‘ua(n—2,2)+(k—1)ya(2,2)
Xe#“(”_2'3)+#"(3'1)"'““(3’2)

and the equality holds if and only if G = C, .

As a direct consequence of Theorem 2.17, we also obtain the upper bound of these topological indices
for unicyclic graphs of a given order and characterize the graph attaining the bounds by considering the
particular case of k = 1in C,; .

Theorem 2.21. Let G € U,,,n > 8. Then
(a.) sSTI(G) £ (n = 3)(p(n —1,1)) + 2(¢p(n — 1,2)) + $(2,2) and the equality holds if and only if G = Us ,_3.
(b.) gTI(G) < (n = 3)(u(n —1,1)) + 2(u(n — 1,2)) + u(2,2) and the equality holds if and only if G = Us ,_3.
The corresponding exponential version is:
Corollary 2.22. Let G € Uy, n > 8. Then
(a.) esTI(G) < = @=L+29=12)+¢22) gd the equality holds if and only if G = Us ,_3.
(b.) egTI(G) < el =Bwr=LD))+2u(=12)+122) g the equality holds if and only if G = Us 3.

In a similar manner, the second upper bound of Sombor indices of unicyclic graphs of a fixed order can
be directly obtained using Theorem 2.19. This results in the graph U}, 5, which is the graph consisting
of the cycle C; along with n — 4 pendent edges attached at a vertex, and one pendent edge attached at a
different vertex of Cs.

3. Applications

Several different versions of the Sombor index can be expressed via the symmetric function ¢,(x, y) as

SO(G) = ) palf(@u), f(d)).

uveE

Now, taking the respective values in Theorem 2.17, we straightforwardly get the following results:

Corollary 3.1. Let G € Cpy, n > 8,k > 1, then

(a.) SO(G) < (n— 2k — 1)(+J(n =12 + 1) + 2k((+/(n — 1)2 + 4)) + 2 V2k and the equality holds if and only if
G=C0.

(b.) SOya(G) < (n — 2k — 1)(n — 2) + 2k((\/(n = 2)2 + 1)) + 2k and the equality holds if and only if G = Cg,k.

() SOuy(G) < (1 — 2k = D(((n - 1 - 2Dy 4 ( _ 2nthoy)

+2k(( \/(n —1 - 2Dy (o - 20Dy 4 k22— 22D and the equality holds if and only if G = C° .

(d.) SOu(G) < (n =2k — 1)(/(n = 1)P + 1) + 2k(({/(n — 1)V +27)) + 2kA/2 and the equality holds if and only if
G=(CY..
nk
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Similarly, the upper bounds on the exponential Sombor indices are as follows:

Corollary 3.2. Let G € Cy, then

(a.) eSO(G) < el=2-DN =V +D+2K(N-02+0)+2V20 4117 the equality holds if and only if G = c

(b.) €50,4(G) < e 2D=21+2K(N =224+ N2 g the equality holds if and only if G = C0,.

(.) €SO4y(G) < " H1 =2y 4 g 20D )
L 2ntk-1) _ 2(ntk-1) _ 2(ntk-1) ) ) ’
x 2 \/(n -SRIV EEE) g the equality holds if and only if G = Cglk,

(d) eSO,(G) < et 2 DN -1+ s 2KNn-17+20)282% g the equality holds if and only if G = C°,.
The analogous result for the generalized Sombor index is:
Corollary 3.3. Let G € Cyy, then
gSO(G) < (n — 2k — 1)((n = 1)* + 1)% + 2k((n — 1)* + 4)* + k(8)*
and the equality holds if and only if G = Cg,k‘
Using Theorem 2.19, we get the characterizations of the second-maximal indices.

Corollary 3.4. Let G € C;\{C° } n>8k=>1,then

(1.) SO(G) < (n—2k—=2)(\/(n —2)2 + 1)+ (k= 1)((\/(n — 2)2 + 4)) + (k—1)2 V2 + (/(n — 2)2 + 9) + V10+ V13

and the equality holds if and only if G = C111,k'

(b.) SOyea(G) < (n =2k =2)(n = 3) + 2k = (A =32+ 1)) + (k= 1) V2 + (1 =3)2 + 4 + 2 + V5 and the
equality holds if and only if G = C} .

(c.)
S04 (G) = (1 -2k =2)(y (-2 LD g 20 kD
c@k- (2= 2Ry 2tEo Dy

+ (k- 1)«/'(2-%)

+(\/( 2(ﬂ+k 1)) (3_2(}14_—]{_1))2)

n
+(\/(3_ 2(n+nk—1))2+(1_ 2(n+nk—1))2)
+(\/(3_ 2(n +nk—1))2+(2_ 2(n +nk—1))2)

and the equality holds if and only if G = C}q,k.

(d.) SO,(G) < (1 — 2k - )({f(n =2 + 1) + @k — V(1 =27 + 27) + (k = )X 2 + (=2 + ) +
(V3P +27)) + (V3P + 17)) and the equality holds if and only if G = Ch

The analogous bounds for the exponential Sombor indices can also be found by applying Theorem 2.19,
in which case the second-maximal cactus is also C} , .
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