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Description of the (≤ 3)-hypomorphic multiposets;
application to the (≤ 3)-reconstruction
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Abstract. Consider a multiposetR := (V, (Pi)i∈I) made of a family (Pi)i∈I (the components of R) of strict orders
on a possibly infinite set V (the vertex set of R). R is linear if at least one of its components is a chain and
its other components which are not anti-chains are equal up to duality to this chain. For i ∈ I, a subset M
of V is a module of Pi if for every x ∈ V \M, all the elements of M share the same comparability with x in
Pi. A module of R is a common module of its components. A linear-module of R is a module M of R such
that the restriction R ↾ M of R to M is linear. R is prime if |V| ≥ 3 and its only modules are the empty set,
the singletons of its vertex set, and its own vertex set. Let k be a positive integer. Two multiposets R and
R′ on a same vertex set are (≤ k)-hypomorphic if for every set K of at most k vertices, the two restrictions
R ↾ K andR′ ↾ K are isomorphic. A multiposetR is (≤ k)-reconstructible if every multiposetR′ that is (≤ k)-
hypomorphic to R is isomorphic to R. In this paper, we begin by obtaining a morphological description of
the difference classes, introduced by Lopez in 1972, of the pairs of (≤ 3)-hypomorphic multiposets. Then
we use this result to describe the pairs of (≤ 3)-hypomorphic multiposets. As a first corollary, we obtain that
a multiposet is (≤ 3)-reconstructible if and only if its linear-modules are finite. As a second corollary, we obtain
that given two (≤ 3)-hypomorphic multiposets R and R′ with at least four vertices, if R is prime, then R′ = R.

1. Introduction

In this paper, all binary relations are assumed to be irreflexive. Given a positive integer k, two binary
relations R1 and R2 are said to be (≤ k)-hypomorphic if they have the same vertex set and their restrictions
R1 ↾ K and R2 ↾ K on each set K of at most k vertices are isomorphic. A binary relation R is (≤ k)-
reconstructible if every binary relation R′ that is (≤ k)-hypomorphic to R is isomorphic to R. In [15–
17], Lopez showed that finite binary relations are (≤ 6)-reconstructible. This work was extended to the
infinite case by Hagendorf in [13]. These works make an essential use of difference classes introduced by
Lopez [15–17]. Based on the description by Lopez and Rauzy [18] of the difference classes of finite (≤ 4)-
hypomorphic binary relations, Boudabbous [3] provided a characterization of the (≤ 5)-reconstructible
finite binary relations, that generalizes to (≤ 4)-reconstructibility. On the other hand, in [5] Boudabbous
and Delhommé characterized the (≤ k)-reconstructible binary relations (finite or not), for each k ≥ 4. For
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the (≤ 3)-reconstruction, Boudabbous and Lopez [7] characterized the finite binary relations that are (≤ 3)-
reconstructible. Hagendorf [13] proved that every finite poset is (≤ 3)-reconstructible. In [2], we studied
the (≤ 3)-reconstruction of posets and bichains. Boudabbous and Delhommé suggested the question about
the morphological description of the difference classes of the pairs of (≤ 3)-hypomorphic multiposets and
the characterization of the (≤ 3)-reconstructible multiposets (finite or not). In this paper, we give an answer
to this question. In order to present our results that we obtained, we need to recall and introduce some
useful notions for which we refer essentially to [6] and [9] for the terminology.

A multiposet is a pairR := (V, (Pi)i∈I) made of a set V and a family (Pi)i∈I of strict orders on V which we call
sometimes the components of R. A strict order P (or simply an order) on V is an irreflexive, antisymmetric
and transitive binary relation on V. Occasionally, (V,P) is called a partially ordered set or simply a poset. For
X ⊆ V, the restriction of the poset (V,P) to X, denoted by P ↾ X, is the poset (X,P∩ (X ×X)). The restriction
of the multiposet R to X, denoted by R ↾ X, is the multiposet (X, (Pi ↾ X)i∈I). The dual P∗ of P is the poset
(V,P∗), where for x, y ∈ V, (x, y) ∈ P∗ if and only if (y, x) ∈ P. The dual multiposet R∗ of R is made of the set
V and the family (P∗i )i∈I of the dual components of R.

Consider a multiposet R = (V, (Pi)i∈I). The multiposet R is a linear-ordering (or linear) if there exists i ∈ I
such that Pi is a chain on V and for all j ∈ I \ {i}, we have: P j = Pi, or P j = P∗i or P j is an anti-chain on
V. Consider now a linear-ordering R = (V, (Pi)i∈I), where |V| ≥ 3, with at least one component which is an
anti-chain and all the components which are chains have the same ends vertices a and c of V. For such
a linear-ordering, by adding a comparability between a and c in at least one component of R which is an
anti-chain, we obtain what we call a proper pot multiposet (or simply a proper pot or an SDC). A pot is a
linear-ordering multiposet or a proper pot. In particular, a 3-consecutivity is a proper pot with exactly three
vertices. Note that, this notion of pots that we have just developed is a generalization of that introduced in
[4] for binary relations.

Given a poset (V,P), consider x , y ∈ V. By x <P y we denote the fact that (x, y) ∈ P. If (x, y) < P and
(y, x) < P, we set x ∥P y. A subset M of V is a module [8, 19] (is an interval [11], is an autonomous set [12] or a
clan [10]) of P whenever for every y ∈ V \M, either for all x ∈ M, x <P y, or for all x ∈ M, y <P x, or for all
x ∈ M, x ∥P y. Given a multiposet R = (V, (Pi)i∈I), consider a subset M of V. The subset M is a module of
R if M is a module of Pi, for all i ∈ I. In other words, M is a module of R if M is a common module of all
of its components. The module M is a pot-module of R if R ↾ M is a pot. If in addition R ↾ M is linear we
talk about linear-module. The empty set, the singletons {x}where x ∈ V, and the set V are modules of R and
said to be trivial. The multiposet R is indecomposable if all its modules are trivial; otherwise R is said to be
decomposable. The multiposet R is prime if it is indecomposable with at least 3 vertices.

For our first contribution, we introduce the notion of pot multiposets and obtain the following result on
the decomposition of multiposets.

Proposition 1.1. The maximal pot-modules of each multiposet R, form a modular partition of R.

Our second main result, which is the key in the proofs of all our below results, gives a morphological
description of the difference classes, introduced by Lopez in [16], of two (≤ 3)-hypomorphic multiposets
finite or not.

Theorem 1.2. Consider two (≤ 3)-hypomorphic multiposets R and R′ on a same vertex set. For each difference class
C of R and R′, R ↾ C is a pot.

Our third main result gives a description of the pairs of (≤ 3)-hypomorphic multiposets.

Theorem 1.3. Two multiposets on a same vertex set are (≤ 3)-hypomorphic if and only if they have the same
partition into maximal pot-modules, the two corresponding quotients are equal, and their restrictions to each maximal
pot-module are (≤ 3)-hypomorphic.

For prime multiposets, we obtain the following immediate consequence of Theorem 1.3.
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Corollary 1.4. Consider two (≤ 3)-hypomorphic multiposets R and R′ on a same vertex set such that R is prime.
Then either R′ = R, or R′ = R∗ and R is a 3-consecutivity.

Finally, as a second consequence of Theorem 1.3, we obtain the following characterization of the (≤ 3)-
reconstructible multiposets which improves the result obtained by Hagendorf in [13].

Corollary 1.5. A multiposet is (≤ 3)-reconstructible if and only if its linear-modules are finite.

2. Preliminaries

For the terminology and definitions used in this section and in Section 3, we refer essentially to [6]
and [9].

A binary structure or 2-structure is a pair R := (V, (Ri)i∈I) made of a set V and a family (Ri)i∈I of binary
relations on V called the components of R. The binary structure is a multiposet when, for all i ∈ I, (V,Ri)
is a partially ordered set or simply a poset. In other words, a multiposet is a binary structure where all its
components are strict orders on V.

2.1. Labelled 2-structure or ℓ2-structure

Convention 2.1. For a set V, the set of ordered pairs of distinct elements of V is denoted by V2
∗ (or E2(V)). For each

(a, b) ∈ V2
∗ , we denote by (a, b)∗ the reversed ordered pair (b, a).

The 2-structures considered below correspond to the reversible labelled 2-structures of Ehrenfeucht et al.
[9].

Definition 2.2. [6] Given a set of labels Λ endowed with an involution λ ∈ Λ 7→ λ∗ ∈ Λ (i.e. (λ∗)∗ = λ), a
Λ-2-structure (or a ℓ2-structure for short), of vertex set V, is a mapping R : V2

∗ −→ Λ satisfying:

∀(a, b) ∈ V2
∗ : R(b, a) = (R(a, b))∗.

We may write a λ
−→ b, to mean R(a, b) = λ. Thus a λ

−→ b⇔ b λ∗
−→ a.

Given a Λ-2-structure R of vertex set V, consider a subset X of V. The Λ-2-structure induced by R on X
is the Λ-2-structure R ↾ X, of vertex set X, restriction of R to X2

∗ : (R ↾ X)(a, b) = R(a, b) for any (a, b) ∈ X2
∗ .

2.2. Isomorphism and (≤ k)-hypomorphy of 2-structures

An isomorphism of a Λ-2-structure R onto a Λ-2-structure R′, of respective vertex sets V and V′, is any
bijection f : V −→ V′ satisfying:

∀(a, b) ∈ V2
∗ : R′( f (a), f (b)) = R(a, b).

Two ℓ2-structures R and R′ are isomorphic if there exists an isomorphism between them, which is denoted
by R ≃ R′. Otherwise, we denote R ; R′.

Consider a Λ-2-structure R of vertex set V. The dual of R is the Λ-2-structure R∗ on the same vertex set
V defined byR∗(a, b) = R(b, a) = (R(a, b))∗, for all (a, b) ∈ V2

∗ . TheΛ-2-structureR is selfdual if it is isomorphic
to its dual i.e. R ≃ R∗.

We recall the basic notions of the reconstruction problems in the theory of relations that we apply to
the case of ℓ2-structures. Let R and R′ be two ℓ2-structures on a same vertex set V and let k be a positive
integer. The ℓ2-structure R′ is (≤ k)-hypomorphic to R if for each subset K of V with at most k vertices, the
induced ℓ2-structures R′ ↾ K and R ↾ K are isomorphic. The ℓ2-structure R is (≤ k)-reconstructible, if each
ℓ2-structure (≤ k)-hypomorphic to R is isomorphic to R.
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2.3. Color and pair
Given a Λ-2-structure R, consider a label λ ∈ Λ. Say that λ is selfdual (or neutral, or symmetric) if λ∗ = λ;

otherwise speak of an asymmetric label. The color of λ is λ̂ := {λ, λ∗}: this is a singleton if and only if λ is
selfdual, and otherwise this is an unordered pair of dual labels. In the sequel, we use the notations below.

• Λ̂ := {̂λ : λ ∈ Λ} is the set of colors.

•
−→
Λ := {λ ∈ Λ : λ∗ , λ} is the set of non selfdual (or asymmetric) labels.

•

↔

Λ := {λ ∈ Λ : λ∗ = λ} is the set of selfdual (or symmetric or neutral) labels.

Clearly, Λ is the disjoint union of
−→
Λ and

↔

Λ.
Now, consider two distinct vertices a and b of R, and let λ := R(a, b). The unordered pair {a, b} is called

an asymmetric pair, if R(a, b) , R(b, a), equivalently if λ is not selfdual. If R(a, b) = R(b, a) (i.e. λ is selfdual),
the unordered pair {a, b} is a neutral or a symmetric pair. The color of (a, b) (resp. of {a, b}) is the color λ̂ of λ.

Given two distinct vertices a and b of a Λ-2-structure R, by reversing the ordered pair (a, b), or the
unordered pair {a, b}, we mean considering the structure R′ obtained from R by modifying its values just
on {(a, b), (b, a)} so that R′(a, b) = R(b, a) = (R(a, b))∗ (thus likewise R′(b, a) = (R′(a, b))∗ = R(a, b) = (R(b, a))∗).

2.4. Reversed and unreversed pair
Consider two (≤ 2)-hypomorphicΛ-2-structuresR andR′ on a same vertex set V. Say that an asymmetric

pair {a, b} is reversed if R′(a, b) = R(b, a); otherwise say that it is unreversed.

2.5. Modular partition, Quotient, Dilatation
Consider a Λ-2-structure R of vertex set V.

Definition 2.3. A module of R is any set M of vertices such that:

∀x ∈ V \M, ∃ λ ∈ Λ such that ∀ y ∈M : R(x, y) = λ.

The empty set, the singletons {x} where x ∈ V, and the set V are modules of R and said to be trivial.
The Λ-2-structure is indecomposable if all its modules are trivial; otherwise, R is said to be decomposable. The
Λ-2-structure R is prime if it is indecomposable with at least 3 vertices.

Definition 2.4. A modular partition ofR is any partition of its vertex set of which the members are modules. Given a
modular partitionP ofR, note that for all M , N ∈ P, there exists λ ∈ Λ such thatR(x, y) = λ for all (x, y) ∈M×N.
The quotient Λ-2-structure R/P of R by P, is defined on P as follows:

∀M , N ∈ P, (R/P)(M,N) = R(x, y), where (x, y) ∈M ×N.

Definition 2.5. Given two labelled-2-structures R and R′ with disjoint vertex sets V and V′ respectively, consider
a vertex d of R. The dilated labelled-2-structure R′′ of R by R′ at the vertex d is defined on the vertex set
V′′ = (V \ {d}) ∪ V′ as follows. For x , y ∈ V′′:

• R′′(x, y) = R(x, y) when x, y ∈ V \ {d},

• R′′(x, y) = R′(x, y) when x, y ∈ V′,

• R′′(x, y) = R(x, d) when x ∈ V \ {d} and y ∈ V′.

Clearly, V′ is a module of the labelled-2-structure R′′.

The following is easy to check.
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Lemma 2.6. [4] The collectionM of modules of aΛ-2-structureRwith vertex set V satisfies the following properties.

1. It contains the empty set, the singletons and the vertex set (trivial modules).
2. It is closed under arbitrary intersection, i.e. ∀N ⊆ M: ∩N ∈ M(with the convention that ∩∅ = V).
3. It contains the union of any subcollection with a non-empty intersection, i.e. ∀N ⊆ M(∩N , ∅⇒ ∪N ∈M).
4. It is closed under balanced difference, i.e. ∀M,N ∈ M(M \N , ∅⇒ N \M ∈ M).
5. Given a module M of R and a vertex subset W, M ∩W is a module of the restriction R ↾W.

Lemma 2.7. [6] Consider two Λ-2-structures R and R′ with the same vertex set and a common modular partition
M such that R/M = R′/M. Then the following assertions hold.

1. If the restrictions R ↾M and R′ ↾M are isomorphic for each member M ofM, then R and R′ are isomorphic.
2. For k ≥ 1, ifR ↾M andR′ ↾M are (≤ k)-hypomorphic for each M ∈ M, thenR andR′ are (≤ k)-hypomorphic.

2.6. Difference graph of two (≤ 2)-hypomorphic 2-structures

Definition 2.8. Consider two Λ-2-structures R and R′ on a same vertex set V. Let DiffGr(R,R′) denote their
difference graph on V: two distinct vertices a and b are adjacent in the difference graph if and only if R′(a, b) =
R(b, a) , R(a, b). The difference classes of R and R′ are the connected components of their difference graph. The set
of difference classes is denoted by DiffCl(R,R′).

Given two (≤ 2)-hypomorphic Λ-2-structures R and R′ on a same vertex set V, a difference path is a path
in their difference graph. Thus, a difference path of length n is a finite sequence x0, . . . , xn of vertices such
that R(xi−1, xi) , R′(xi−1, xi), for 1 ≤ i ≤ n. A minimal difference path between two vertices is a difference
path of minimum length between them.

Remark 2.9. Given two (≤ 2)-hypomorphic Λ-2-structures R and R′ on a same vertex set V, consider a , b ∈ V:

1. The vertices a and b are not adjacent in DiffGr(R,R′) if and only if R(a, b) is a symmetric label or R(a, b) =
R′(a, b) with R(a, b) is an asymmetric label.

2. If a, b ∈ C ∈ DiffCl(R,R′) such that a and b are not adjacent in DiffGr(R,R′), then there exists a difference
path between them.

3. Multiposets

3.1. Labelled 2-structures and multiposets

Given a multiposet R = (V, (Pi)i∈I), consider x , y ∈ V. For i ∈ I, write: Pi(x, y) = + (resp. Pi(x, y) = −) if
x <Pi y (resp. y <Pi x ) and Pi(x, y) = 0 if x ∥Pi y (i.e. x ≮Pi y and y ≮Pi x). In another words, the comparability
of x and y in Pi can be labelled by −, 0 and +. Using these notations, we can consider the multiposet R as
a Λ-labelled 2-structure where Λ := {(αi)i∈I | αi ∈ {−, 0,+} f or all i ∈ I} and α∗ = ((αi)i∈I)∗ := (α∗i )i∈I, for α ∈ Λ,
with +∗ := −,−∗ := + and 0∗ := 0. For example, consider the multiposet R = (V = {a, b, c, d}, (Pi)i∈{1,2,3}) with
P1 := a <P1 b <P1 c <P1 d, P2 := a <P2 d, a ∥P2 b, a ∥P2 c, b ∥P2 c, b ∥P2 d, c ∥P2 d and P3 := d <P3 c <P3 b <P3 a. The
multiposet R is a Λ-labelled 2-structure with range {(+,+,−), (−,−,+), (+, 0,−), (−, 0,+)}.

Remark 3.1. Consider a multiposet R = (V, (Pi)i∈I). If there exists i ∈ I and a , b ∈ V such that Pi(a, b) , 0, then
R(a, b) , R(b, a), and thus R(a, b) is an asymmetric label. More precisely, the unique possible symmetric label of R
(if it exists) is 0 = (0, 0, . . . ). In other words, R has a symmetric label if there exist x , y ∈ V such that Pi(x, y) = 0,
for all i ∈ I.

Remark 3.2. In the sequel, each multiposet R = (V, (Pi)i∈I) is considered as a Λ-labelled 2-structure, with
Λ := {(αi)i∈I | αi ∈ {−, 0,+} f or all i ∈ I}.
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3.2. Particular Multiposets
In this subsection, we describe all 3-vertex multiposets that are usefull for the sequel.
Consider a multiposet R = (V, (Pi)i∈I) with the set of labels Λ.

Definition 3.3. The multiposet R is said to be empty if all its components are anti-chains i.e. for all i ∈ I,Pi is an
anti-chain on V.

Using the labelling concept already mentioned in the above subsection, we can obviously remark the
following.

Remark 3.4.

1. The multiposet R is said to be empty if it is a monochromatic symmetric multiposet i.e. R(a, b) = 0, for all
(a, b) ∈ V2

∗ . We denote by En the class of n-vertex empty multiposets.
2. The multiposetR is a linear-ordering (or linear) if it is a monochromatic asymmetric multiposet i.e. there exists
λ ∈
−→
Λ , such that R̂(a, b) = λ̂, for all (a, b) ∈ V2

∗ . For this, we say that the linear-ordering R is a λ-chain (or
simply λ-linear). We denote by λ-Ln the class of n-vertex λ-chains. In particular, for n = 3, the class λ-L3 (for
λ ∈
−→
Λ), of linear 3-vertex structures is of the form presented in Figure 1.

Fig. 1 a λ-L3, for λ ∈
−→

Λ .

3. The multiposet R is a 3-consecutivity if it is a 3-vertex multiposet of the form

µ
−−−−−−−−−−−→

a α
−→ b α

−→ c for two labels

α ∈
−→

Λ and µ ∈ Λ \ α̂. Such a 3-consecutivity is called an (α, µ)-3-consecutivity (see Figure 2).

Fig. 2 an (α, µ)-3-consecutivity, for α ∈
−→

Λ and µ ∈ Λ \ α̂.

We talk also about a 3-consecutivity at b. The 3-consecutivities are prime and selfdual.

Finally, it remains two 3-vertex multiposets to be defined: the one-module 3-vertex multiposets and the
flags.

Definition 3.5.

1. A 3-vertex multiposetR is said to be a one-module 3-vertex multiposet ifR has exactelly one non trivial module.
The one-module 3-vertex multiposets are of the form b α

−→ (a
µ
−→ c) for two labels α and µ of different colors:

µ̂ , α̂ (see Figure 3). Among them are distinguished the peaks at b, corresponding to α ∈
−→

Λ . Such a peak is
said to be asymmetric if µ is not selfdual.

2. A 3-vertex multiposet is a flag if its three unordered pairs have different colors. The flags are prime and not
selfdual.
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Fig. 3 One-module 3-vertex multiposet, for µ, α ∈ Λ and µ̂ , α̂.

By the above description presented in this subsection, we can partitioned the classes of 3-vertex multi-
posets as follows by the following easily checked lemma.

Lemma 3.6. A 3-vertex mutliposet is one of the following non isomorphic multiposets: an element of E3, a flag, a
one-module 3-vertex multiposet, a 3-consecutivity or an element of L3.

Notation 3.7. Consider a multiposet R = (V, (Pi)i∈I). For λ = (λi)i∈I ∈
−→
Λ , write:

λ
,0

:= {i ∈ I : λi , 0}.

Lemma 3.8. Consider a 3-consecutivity R = ({a, b, c}, (Pi)i∈I) at b, where R(a, b) = R(b, c) = α = (αi)i∈I and
R(a, c) = µ = (µi)i∈I. Then α

,0
, I, and µ is an asymmetric label such that α

,0
is a proper subset of µ

,0
and µi = αi, for

each element i of α
,0

.

Proof. Since α = (αi)i∈I ∈
−→
Λ , by Remark 3.1 there exists i ∈ I such that Pi(a, b) , 0 and Pi(b, c) , 0. It ensues

that, by transitivity of Pi, Pi(a, c) = µi , 0. Thus, by Remark 3.1, R(a, c) = µ is an asymmetric label. For i ∈ I,
clearly if αi = Pi(a, b) = Pi(b, c) , 0, then, by transitivity of Pi, µi = Pi(a, c) = Pi(a, b) = αi , 0. It follows that,
α
,0
⊆ µ
,0

. Besides, since µ ∈ Λ\ α̂, there exists j ∈ I\{i} such that α j = P j(a, b) = P j(b, c) = 0 and µ j = P j(a, c) , 0.

Thus, α
,0
, I and α

,0
⊊ µ
,0

.

At the end of this section, we will make the link between the 3-consecutivity as a labelled 2-structure
and the SDC using the dilation concept.

Observation and notation 3.9. Consider a 3-consecutivity R at b on a 3-element set {a, b, c} with α = R(a, b) =
R(b, c) and R(a, c) = µ. An SDC can be defined as the dilated multiposet R′ of R at b by an α-linear multiposet with
a vertex set V (see Figure 4). Note that the vertex set of R′ is the set V′ = V ∪ {a, c}, and for all x ∈ V, R′ ↾ {a, x, c}
is a 3-consecutivity at x with α = R(a, x) = R(x, c) and R(a, c) = µ. The vertices a and c are called the end vertices of
the SDC, and we say that R′ is an SDC (or simply an (λ, µ)-SDC) with ends a and c. For this, an SDC is considered
as a special dilated consecutivity.

Fig. 4 An SDC
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3.3. Pot-modules

In this subsection, we study some useful properties of pot-modules.

Observation 3.10. Let R be an SDC on a vertex set V. Then:

1. For all X ⊆ V, R ↾ X is a pot.
2. There is no modular partition of R into two non-empty modules.

Lemma 3.11. Given a multiposet R on a vertex set V, consider two pot-modules M and N of R such that M is a
proper pot and M ∩N , ∅. Then the following assertions hold:

1. If N is a proper pot, then N =M.
2. If N is a linear-module, then N ⊊ M.

Proof. Assume that M is an (λ, µ)-SDC with ends a and c such that R(a, c) = µ, R(a, x) = R(x, c) = λ, for all
x ∈ M \ {a, c}. If M and N overlap, then Lemma 2.6 implies that {M ∩ N,M \ N} is a modular partition of
R ↾M into two modules; which is in contradiction with Assertion two of Observation 3.10. Hence, N ⊆M
or M ⊆ N. First, assume that N is linear. Since M has two different colors and N has a unique color or N is a
singleton, necessarily N ⊊ M. Second, assume that N is an SDC and let us prove that N = M. Without loss
of generalities, we may assume that N ⊆ M. Thus by Lemma 2.6, N is a module of R ↾ M. Clearly, a and c
must be the ends of N. Moreover, if M\N , ∅, then for each element x of M\N we haveR(a, x) = R(x, c) = λ.
Thus, R(a, x) , R(c, x), which contradicts the fact that N is a module of R ↾M. Hence N =M.

The following result will be useful for the description of a modular partition of a given multiposet into
maximal pot-modules.

Lemma 3.12. Given a multiposet R, the union of any collection of linear-modules containing a given vertex is a
linear-module. Every non-empty linear-module of R is included in a unique maximal one. In particular, the maximal
linear-modules of R form a modular partition of R.

Proof. Consider a multiposet R. We start by the following two claims.

Claim 3.13. If M and N are two linear-modules such that M ∩N , ∅, then there exists λ ∈
−→
Λ such that M and N

are λ-linear.

Indeed: The result is immediate when M ⊆ N or N ⊆ M. Now, assume that M and N overlap. In this case,
|M| ≥ 2 and |N| ≥ 2. By Lemma 2.6, N \M and M \ N are modules of R. To the contrary, suppose that M
is λ-linear and N is α-linear, for λ̂ , α̂. It follows that, |M ∩ N| = 1. Let denote by x the unique element
of M ∩ N. Observe that, x must be the smallest element or the largest one of the linear multiposet R ↾ N
because N \M is a module of R. By interchanging R and R∗, we may assume that x is the smallest element
of the linear multiposet R ↾ N, i.e. x α

−→ N \M. Therefore, the fact that x α
−→ N \M and M is a module

implies that M\N α
−→ N \M. Since N is a module, M\N α

−→ x. Consequently, M\N
β
−→ x and M\N α

−→ x,
for β ∈ λ̂, which contradicts the fact that M is λ-linear. □

Claim 3.14. If M and N are twoλ-linear-modules, forλ ∈
−→
Λ , such that M∩N , ∅, then M∪N is aλ-linear-module.

Indeed: We may assume that M and N overlap. Lemma 2.6 implies that M ∪ N, M ∩ N, M \ N and N \M
are modules of R. Thus, N \M

µ
−→M∩N, where µ ∈ λ̂. Since M is a module of R, N \M

µ
−→M \N. Hence,

R ↾ (M ∪N) has a unique color λ̂. Consequently, M ∪N is a linear-module of R. □
Now, let us prove the first assertion. Let denote byU the union of some collection Cx of linear-modules

containing a given vertex x. We will prove that U is also a linear-module. Clearly, by Lemma 2.6, U is
a module of R. By Claim 3.13, all the members of Cx are linear with the same color. Assume that all the

members of Cx are λ-linear, for λ ∈
−→

Λ . We will prove that U is λ-linear. Let a , b ∈ U. There exist two
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members A and B of Cx such that a ∈ A and b ∈ B. By Claim 3.14, A ∪ B is λ-linear and hence R(a, b) ∈ λ̂. It
follows that, R ↾U is λ-linear.

Since each singleton of the vertex set of R is a non-empty linear-module of R, the last assertion is an
immediate consequence of the second one. Finally, let us prove the second assertion. Consider a non-empty
linear-module M of R and let x ∈ M. By the first assertion, the union of the collection of all linear-modules
containing the vertex x is a linear-module including M, and hence it is the unique maximal one including
it.

The following is deduced immediately from Lemma 3.11.

Lemma 3.15. Given a multiposet R, consider a maximal linear-module M of R. Then, there is at most one SDC
module including M.

Proof of Proposition 1.1

Clearly, each singleton of the vertex set of R is a pot-module of R. By Lemma 3.12, the maximal
linear-modules of R form a modular partition of R and hence each singleton is included in a maxi-
mal linear-module of R. Moreover, by Lemma 3.15, each maximal linear-module is either a maximal
pot-module or is included in a proper pot which is unique and then it is maximal. Consider two
maximal pot-modules M and N of R such that M ∩ N , ∅. Using Lemma 3.11 and Lemma 3.12, we
can obviously deduce that M = N. Hence the maximal pot-modules form a modular partition of R.

□

3.4. (≤ 3)-hypomorphic multiposets

In this subsection, we make an essential use of the difference classes to describe the pairs of
(≤ 3)-hypomorphic multiposets.

Lemma 3.16. Given two (≤ 2)-hypomorphic multiposetsR andR′ on a same vertex set, considerΛ andΛ′ their sets
of labels respectively. If R is λ-linear for λ ∈

−→
Λ , then R′ is λ-linear.

Proof. Since R and R′ are (≤ 2)-hypomorphic, Λ̂′ = Λ̂ = {̂λ}. Moreover, since R′ is a multiposet with one
asymmetric color λ̂, R′ is a λ-linear multiposet.

Lemma 3.17. Consider two (≤ 3)-hypomorphic multiposets R and R′ on a same 3-element set V = {a, b, c}.

1. If R is a 3-consecutivity, then R′ = R or R′ = R∗.
2. If R is a peak at b, then R′ = R or R is an asymmetric peak at b and R′ is the peak at b obtained from R by

reversing only the ordered pair (a, c).
3. If R is a flag, then R′ = R.

Proof.

1. Assume for instance that R is a 3-consecutivity at b with α = R(a, b) = R(b, c) and µ = R(a, c). Since R
and R′ are (≤ 2)-hypomorphic, R′ is a multiposet with R̂(a, b) = R̂′(a, b) = α̂, R̂(b, c) = R̂′(b, c) = α̂ and
R̂(a, c) = R̂′(a, c) = µ̂. Besides, since R and R′ are (≤ 3)-hypomorphic, there is an isomorphism f from
R onto R′. Hence, by Lemma 3.6, R′ must be a 3-consecutivity. Clearly, R̂(a, c) = ̂R′( f (a), f (c)) = µ̂.
Moreover, the fact that {a, c} is the unique pair having µ̂ as color in the multiposet R′ implies that
( f (a), f (c)) = (a, c) or ( f (a), f (c)) = (c, a) and hence f (b) = b. In the first case, R′ = R and in the second
one R′ = R∗.
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2. Assume for instance that R is a peak at b with two labels α = R(b, a) = R(b, c) and µ = R(a, c), where
α is an asymmetric label and µ̂ , α̂. Since R and R′ are (≤ 2)-hypomorphic, R′ is a multiposet with
R̂(a, b) = R̂′(a, b) = α̂, R̂(b, c) = R̂′(b, c) = α̂ and R̂(a, c) = R̂′(a, c) = µ̂. Since R and R′ are (≤ 3)-
hypomorphic, there is an isomorphism f from R onto R′. Thus, by Lemma 3.6, R′ must be a peak.
Clearly, R̂(a, c) = ̂R′( f (a), f (c)) = µ̂. Moreover, the fact that {a, c} is the unique pair having µ̂ as color
in the multiposet R′ implies that ( f (a), f (c)) = (a, c) or ( f (a), f (c)) = (c, a) and hence f (b) = b. It ensues
that, R′ is a peak at b. It follows that if R , R′, then ( f (a), f (c)) = (c, a) and the peak R is asymmetric;
which implies that R′ is the peak at b obtained from R by reversing only the ordered pair (a, c).

3. Assume for instance thatR is a flag with R̂(a, b) = α̂, R̂(a, c) = λ̂ and R̂(b, c) = µ̂. SinceR andR′ are (≤ 2)-
hypomorphic, R′ is a multiposet with three different colors: R̂′(a, b) = α̂, R̂′(a, c) = λ̂ and R̂′(b, c) = µ̂.
By Lemma 3.6, R′ must be a flag. Since R and R′ are (≤ 3)-hypomorphic, there is an isomorphism
f from R onto R′. Clearly, R̂(a, b) = ̂R′( f (a), f (b)) = α̂ = R̂′(a, b), R̂(a, c) = ̂R′( f (a), f (c)) = λ̂ = R̂′(a, c)
and R̂(b, c) = ̂R′( f (b), f (c)) = µ̂ = R̂′(b, c). It follows that, { f (a), f (b)} = {a, b}, { f (a), f (c)} = {a, c} and
{ f (b), f (c)} = {b, c}. The fact that { f (a), f (b)} = {a, b} and { f (a), f (c)} = {a, c}, implies that f (a) = a and
f (b) = b and hence f (c) = c. Consequently, R′ = R.

The following remark is an immediate consequence of the second assertion of Lemma 3.17.

Remark 3.18. Consider two (≤ 3)-hypomorphic multiposets R and R′ on a same vertex set. If R is a symmetric
peak, then R′ = R.

By the following lemma, we will prove that the unique symmetric label does not appear in the difference
classes of two (≤ 3)-hypomorphic multiposets.

Lemma 3.19. Consider two (≤ 3)-hypomorphic multiposets R and R′ on a same vertex set. Then, for each class C ∈
DiffCl(R,R′), the multiposet R ↾ C does not contain the unique symmetric label.

Proof. Consider C ∈DiffCl(R,R′) such that |C| ≥ 2. To the contrary, suppose that C contains a symmetric pair.
Consider a symmetric pair {a, b} of C such that there is a difference pathP := x0 = a

α1
−→ x1 . . . xn−1

αn
−→ xn = b

between a and b which is with minimum length among all the lengths of all the difference paths connecting
the two vertices of any symmetric pair of C. If {x1, b} is a symmetric pair, thenP′ := x1 . . . xn−1

αn
−→ xn = b is a

difference path between the vertices x1 and b with length (n−1); which is in contradiction with the minimality
hypothesis assumed for P. Now, consider the restrictions of R and R′ on the 3-element set {a, x1, b}. By
Lemmas 3.6 and 3.8, sinceR ↾ {a, x1, b} has a symmetric pair {a, b} and two asymmetric pairs {x1, b} and {a, x1},
R ↾ {a, x1, b} must be a flag or a peak at x1. By Lemma 3.17 and Remark 3.18, R ↾ {a, x1, b} = R′ ↾ {a, x1, b}.
Therefore, {a, x1} is an unreversed pair which contradicts the fact that the vertices a and x1 are adjacent in
DiffGr(R,R′). Consequently, the multiposet R ↾ C does not contain the unique symmetric label.

In [6], the authors proved that the difference classes form a common modular partition of two
(≤ 3)-hypomorphic Λ-2-structures and they studied the quotient Λ-2-structures by this partition. This
generalizes the study carried out in [14, 16] for binary relations. Thus the following lemmas are immediate
consequences of the study done in [6].

Lemma 3.20. Consider two (≤ 3)-hypomorphic multiposets R and R′ on a same vertex set.

1. For each C ∈ DiffCl(R,R′), C is a module of both R and R′.
2. R/DiffCl(R,R′) = R′/DiffCl(R,R′).

Lemma 3.21. Consider two (≤ 3)-hypomorphic multiposets R and R′ on a same vertex set. Inside a difference class:

1. There is no peak.
2. Every 3-consecutivity is reversed.
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For our contribution in this study of difference classes, we are managed to show that inside a difference
class of two (≤ 3)-hypomorphic multiposets there is no flags. What we obtained is based on Lemma 3.17,
Lemma 3.19, Lemma 3.21 and the following lemma.

Lemma 3.22. [6] Consider two (≤ 3)-hypomorphic multiposets R and R′ on a same vertex set, and two adjacent
asymmetric pairs {a, b} and {b, b′} of different colors. If {a, b} is unreversed and {b, b′} is reversed, thenR(a, b′) = R(a, b).
In particular R ↾ {a, b, b′} is a peak at a.

Corollary 3.23. Consider two (≤ 3)-hypomorphic multiposets R and R′ on a same vertex set. Inside a difference
class, there is no flag.

Proof. Let C be an element of DiffCl(R,R′) such that |C| ≥ 3. To the contrary, suppose that there exists
X := {a, b, c} ⊆ C such that R ↾ X is a flag and, for instance, R(a, b) = λ1, R(b, c) = λ2 and R(a, c) = λ3. By
Lemma 3.19, λ1, λ2 and λ3 are asymmetric labels. By Lemma 3.17,R ↾ X = R′ ↾ X and hence {a, b}, {b, c} and
{a, c} are unreversed pairs. Since C is a connected component of DiffGr(R,R′), there exists a difference path
P := x0 = a

α1
−→ x1 . . . xn−1

αn
−→ xn = b between a and b with n ≥ 2. By definition of the difference path {a, x1}

is a reversed pair, and hence x1 , c. Moreover, since R ↾ X is a flag, λ̂1 , λ̂3. Therefore, there exists a label
λ ∈ {λ1, λ3} such that λ̂ , R̂(a, x1). It ensues that, the reversed pair {a, x1} is adjacent to an unreversed pair
with a label λ such that λ̂ , R̂(a, x1), where λ = R(a, c) = λ3 or λ = R(a, b) = λ1. Consequently, by Lemma
3.22, R ↾ {a, x1, c} is a peak at c or R ↾ {a, x1, b} is a peak at b; which contradicts Assertion one of Lemma
3.21.

The following result is an immediate consequence of Lemma 3.6, Lemma 3.19, Lemma 3.21 and
Corollary 3.23.

Corollary 3.24. Given two (≤ 3)-hypomorphic multiposets R and R′ on a same vertex set, consider an element C of
DiffCl(R,R′). Then, for every 3-element set X ⊆ C, either R ↾ X is an element of L3 or a 3-consecutivity.

4. Proof of Theorem 1.2

Theorem 1.2 is an immediate consequence of the following two lemmas.

Lemma 4.1. Given two (≤ 3)-hypomorphic multiposets R and R′ on a same vertex set, consider C ∈ DiffCl(R,R′)
such that |C| ≥ 4 and R ↾ C contains a 3-consecutivity. Then R ↾ C is an SDC.

Proof. Consider X := {a, b, c} ⊂ C such that R ↾ X is an (λ, µ)-3-consecutivity at b with R(a, b) = R(b, c) = λ
andR(a, c) = µ. Let d be an element of C\X. By Corollary 3.24,R ↾ {a, c, d}must be aµ-L3 or a 3-consecutivity.
In a first step, we are managed to prove that R ↾ {a, c, d} is a 3-consecutivity. To the contrary, suppose that
R ↾ {a, c, d} is a µ-L3. Observe that,R ↾ {b, c, d} has two different colors µ̂ and λ̂. By Corollary 3.24,R ↾ {b, c, d}
must be a 3-consecutivity. By Lemma 3.8, λ

,0
⊊ µ
,0

and hence R ↾ {b, c, d} must be a 3-consecutivity at b and

R(d, b) = R(b, c) = λ. Thus, R ↾ {a, b, d} is a peak at b; which contradicts the fact that inside C there is no
peak by Lemma 3.21. Consequently, R ↾ {a, c, d} must be a 3-consecutivity. In a second step, we will show
that R(a, d) = λ. To the contrary, suppose that R(a, d) , λ. First, assume that R̂(a, d) = α̂ , λ̂ and without
loss of generality we may assume that R(a, d) = α. Since R ↾ {a, b, d} has two different colors α̂ and λ̂, by
Corollary 3.24 R ↾ {a, b, d} must be a 3-consecutivity and hence λ

,0
⊊ α
,0

or α
,0
⊊ λ
,0

by Lemma 3.8. If λ
,0
⊊ α
,0

,

then R ↾ {a, b, d} is a 3-consecutivity at b, by Lemma 3.8, and R(b, d) = λ. Moreover, since R ↾ {a, c, d} is a
3-consecutivity with R̂(a, d) = α̂ , λ̂ and R̂(a, c) = µ̂ , λ̂, R̂(c, d) , λ̂. Thus, R ↾ {b, c, d} must be a peak at
b; which contradicts the fact that inside C there is no peak by Lemma 3.21. If α

,0
⊊ λ
,0

, then R ↾ {a, b, d} is

a 3-consecutivity at d and R(d, b) = α. Since α
,0
⊊ λ
,0

and λ
,0
⊊ µ
,0

, α
,0
⊊ µ
,0

and hence R ↾ {a, c, d} must be a

3-consecutivity at d with R(d, c) = α. Thus R ↾ {b, c, d} must be a peak at d; which contradicts the fact that
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inside C there is no peak by Lemma 3.21. Second, assume that R(a, d) = λ∗. Since λ
,0
⊊ µ
,0

, λ∗
,0
⊊ µ
,0

and hence

R ↾ {a, c, d} must be a 3-consecutivity at d with R(a, d) = R(d, c) = λ∗ and R(a, c) = µ; which contradicts the
fact that µ is an asymmetric label by Lemma 3.8. Consequently, R(a, d) = λ. Since λ

,0
⊊ µ
,0

and R(a, d) = λ,

R ↾ {a, c, d} is a 3-consecutivity at d withR(a, d) = R(d, c) = λ andR(a, c) = µ. Finally, observe thatR(b, d) ∈ λ̂
because otherwise R ↾ {a, b, d} will be a peak at a. Now, for a vertex d′ ∈ C \ {a, b, c, d}, it is easily checked
that R(d, d′) ∈ λ̂. Indeed, it suffices to apply the above reasoning by considering the extension of the
3-consecutivity R ↾ {a, c, d} (witch is isomorphic to R ↾ {a, b, c}) by d′. Consequently, R ↾ (C \ {a, c}) is a
λ-linear multiposet and hence R ↾ C is an (λ, µ)-SDC with ends a and c.

Lemma 4.2. Given two (≤ 3)-hypomorphic multiposets R and R′ on a same vertex set, consider an element C of
DiffCl(R,R′). If R ↾ C doest not contain a 3-consecutivity, then R ↾ C is a linear-ordering.

Proof. Let C be an element of DiffCl(R,R′) such thatR ↾ C doest not contain a 3-consecutivity. By Corollary
3.24, for each 3-element set X ⊆ C, R ↾ X is an element of L3. Clearly, we can assume that |C| ≥ 4. Consider

a 3-element set X = {a, b, c} ⊊ C. By the hypothesis, there exits λ ∈
−→

Λ such that R ↾ X is λ-linear. Let
x , y ∈ C, we have to prove that R̂(x, y) = λ̂. Clearly, we may assume that |X ∩ {x, y}| = 0 or 1. In the first
case, since R̂(a, b) = λ̂, R ↾ {a, b, x} and R ↾ {a, b, y} are λ-linear and hence R̂(x, y) = λ̂. In the second case,
without loss of generalities assume that x = a and y < X. Since R̂(b, x) = λ̂, R ↾ {b, x, y} is λ-linear. Hence,
R̂(x, y) = λ̂.

5. Proof of Theorem 1.3

The proof of Theorem 1.3 is based essentially on Lemma 2.7 and the following lemmas.

The following lemma is deduced immediately from Lemma 3.16 and Lemma 3.17.

Lemma 5.1. Consider two (≤ 3)-hypomorphic multiposets R and R′ on a same vertex set. If R is an SDC, then R′

is an SDC with the same ends as R and with the same ordered pair of labels likewise R.

Lemma 5.2. Consider two (≤ 3)-hypomorphic multiposets R and R′ on a same vertex set V. If M is a maximal
pot-module of R, then M is a union of some difference classes of DiffCl(R,R′), and M is a maximal pot-module of
R′. More precisely, the collection of maximal pot-modules is a common modular partition of both R and R′, and the
corresponding quotient structures are equal.

Proof. Let M ⊆ V be a maximal pot-module of R. By Lemma 3.20 and Theorem 1.2, DiffCl(R,R′) is a
modular partition of V into pot-modules. Thus, to prove that M is a union of some difference classes it
suffices to show that: for all C ∈ DiffCl(R,R′) such that C ∩M , ∅, C ⊆M. Consider C ∈ DiffCl(R,R′) such
that C ∩M , ∅. We distinguish the following two cases.
Case 1: M is a linear-ordering. If C is a proper pot, then by Lemma 3.11 M ⊊ C; which contradicts the fact
that M is a maximal pot-module. Hence, C must be a linear-module. Moreover, since M ∩ C , ∅, M ∪ C
must be a linear-module of R by Lemma 3.12. By the maximality of M, C ⊆M.
Case 2: M is a proper pot. By Lemma 3.11, since M ∩ C , ∅, C ⊆M.
In the sequel, let us prove that M is a maximal pot-module ofR′. Clearly, by Lemma 3.16 and Lemma 5.1, M
is a pot ofR′. It remains to prove that M is a maximal module ofR′. First, let x ∈ V \M. Since M is a module
of R, there exists λ ∈ Λ such that R(x, y) = λ for all y ∈ M. Since M is a union of some difference classes of
DiffCl(R,R′) and R/ DiffCl(R,R′) = R′/ DiffCl(R,R′), R′(x, y) = λ for all y ∈M. Thus M is a pot-module of
R′. Second, let us prove the maximality of the module M in R′. If M is an SDC, then by Lemma 3.11 M is a
maximal module in R′. If M is linear, then by Proposition 1.1 there is a maximal pot-module M′ including
M. By interchanging R and R′, it follows that M′ is pot-module including M. Thus M′ = M and hence the
collection of maximal pot-modules is a common modular partition of both R and R′. Finally, since
R/ DiffCl(R,R′) = R′/ DiffCl(R,R′), the corresponding quotient structures are equal.
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6. (≤ 3)-reconstructibility of multiposets

In this section we give a characterization of the (≤ 3)-reconstructible multiposets based on a description
of the maximal pot-modules. We use essentially the following lemma which is an immediate consequence
of Lemma 2 of [1] deduced from the study of Boudabbous and Delhommé [5].

Lemma 6.1. [1] If X is an infinite set, then there are at least two nonhemimorphic linear-orders on X: i.e. there exist
two linear-orders C0 and C1 on X such that C0 ; C1 and C0 ; C∗1.

6.1. Proof of Corollary 1.5

First, assume that a multiposet R := (V, (Pi)i∈I) has an infinite linear-module. By Proposition 1.1, the
familyM of maximal pot-modules of R forms a modular partition of R and then R has at least one infinite
maximal pot-module. For λ ∈

−→
Λ , consider the family Fλ of such maximal pot-modules M such that M

is λ-linear with infinite cardinality K , or M is an SDC including a maximal λ-linear-module with infinite
cardinality K . By Lemma 6.1, there are two nonhemimorphic linear-orders C0 and C1 with cardinality
K . Under this assumption and using the deformation technic presented in [5] we will construct two
(≤ 3)-hypomorphic multiposets which are nonisomorphic. Consider the following multiposets R0 and R1
obtained by deforming each element M of Fλ in R as follows. If R ↾ M is a λ-linear multiposet, where
λ = (λi)i∈I ∈

−→
Λ , then the multiposet R0 ↾ M (respectively, R1 ↾ M) is obtained by replacing R ↾ M by the

multiposet (M, (P′i )i∈I) (respectively, (M, (P′′i )i∈I)) such that, for i ∈ I,

P′i =


C0,M if λi = +;
C∗0,M if λi = −;
anti-chain if λi = 0.

(
respectively, P′′i =


C1,M if λi = +;
C∗1,M if λi = −;
anti-chain if λi = 0.

)
, where C0,M (respectively,

C1,M) is a linear-order on M isomorphic to C0 (respectively, to C1). If M is an (λ, µ)-SDC with ends a and
c, then the multiposet R0 ↾ M (resp. R1 ↾ M) is obtained by replacing R ↾ (M \ {a, c}) by the multiposet
(M \ {a, c}, (P′i )i∈I) (respectively, (M \ {a, c}, (P′′i )i∈I)) such that, for i ∈ I,

P′i =


C0,M if λi = +;
C∗0,M if λi = −;
anti-chain if λi = 0.

(
resp. P′′i =


C1,M if λi = +;
C∗1,M if λi = −;
anti-chain if λi = 0.

)
and R0 ↾ M (respectively, R1 ↾ M) is

an (λ, µ)-SDC with ends a and c. Clearly, for each M ∈ Fλ, either R ↾M, R0 ↾M and R1 ↾M are λ-linear or
each of them is an (λ, µ)-SDC with ends a and c. Now, let us prove that R0 and R1 are (≤ 3)-hypomorphic
to R. Clearly,M is a common modular partition of R, R0 and R1 with R/M = R0/M = R1/M. Moreover,
for each M ∈ M \ Fλ, R ↾ M = R0 ↾ M = R1 ↾ M and hence they are (≤ 3)-hypomorphic. Now, let M ∈ Fλ.
By our construction, each of the multiposets R ↾ M, R0 ↾ M and R1 ↾ M is λ-linear or is an (λ, µ)-SDC
with ends a and c. It follows that, R ↾ M, R0 ↾ M and R1 ↾ M are (≤ 3)-hypomorphic. It ensues that the
multiposets R ↾ M, R0 ↾ M and R1 ↾ M are (≤ 3)-hypomorphic for each M ∈ M. Thus, Lemma 2.7 implies
that the multiposets R, R0 and R1 are (≤ 3)-hypomorphic. Consequently, by Theorem 1.3,M is a common
partition into maximal pot-modules of the multiposets R, R0 and R1. Since the linear-orderings C0 and C1
are not hemimomorphic, R0 and R1 are not isomorphic. Therefore, at least one of the multiposets R0 and
R1 is not isomorphic to R, and hence R is not (≤ 3)-reconstructible.

Second, let R be a multiposet with a vertex set V, and assume that all its linear-modules are finite. It
ensues that all its maximal pot-modules are finite. Consider a multiposet R′ which is (≤ 3)-hypomorphic
to R. We shall prove that R and R′ are isomorphic. By Theorem 1.3, R and R′ share the same maximal pot-
modules, and they have the same corresponding quotient multiposet and their restrictions to each maximal
pot-module are (≤ 3)-hypomorphic. Since the maximal pot-modules ofR are finite,R ↾M ≃ R′ ↾M for each
maximal pot-module M ofR. Finally, by Lemma 2.7, R andR′ are isomorphic. □
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[6] Y. Boudabbous, C. Delhommé, F3-Reconstruction and Bi-Founded 2-Structures, Order 41 (1) (2024), 135-182.
https://doi.org/10.1007/s11083-022-09610-w

[7] Y. Boudabbous, G. Lopez, The minimal non-(≤ k)-reconstructible relations, Discrete Math. 291 (1-3) (2005), 19-40.
https://doi.org/10.1016/j.disc.2004.08.016
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