

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Loose 6-cycle decompositions of complete 3-uniform hypergraphs

T. Sivakaran^{a,*}, R. Sampathkumar^b

^aDepartment of Mathematics, Sri Sai Ram Engineering College, Sai Leo Nagar, Chennai 600 044, India
^bDepartment of Mathematics, Annamalai University, Annamalainagar 608 002, India

Abstract. The complete 3-uniform hypergraph $K_n^{(3)}$ of order n has a set V of cardinality n as its vertex set and the set of all 3-element subsets of V as its edge set. For $n \ge 2$, let \mathbb{Z}_n denote the set of integers modulo n. For m > 3, let $LC_m^{(3)}$ denote the 3-uniform hypergraph with vertex set \mathbb{Z}_{2m} and edge set $\{\{2i, 2i+1, 2i+2\}: i \in \{0, 1, 2, \dots, m-1\}\}$. Any hypergraph isomorphic to $LC_m^{(3)}$ is a 3-uniform loose m-cycle. Given hypergraphs \mathscr{K} and \mathscr{H} , a decomposition of \mathscr{K} into \mathscr{H} is a partition $\{\mathscr{E}_1, \mathscr{E}_2, \dots, \mathscr{E}_b\}$ of the edge set of \mathscr{K} such that, for each $i \in \{1, 2, \dots, b\}$, the subhypergraph induced by \mathscr{E}_i is isomorphic to \mathscr{H} . We show that there exists a decomposition of $K_n^{(3)}$ into $LC_0^{(3)}$ if and only if $n \ge 12$ and $n \equiv 0, 1, 2, 9, 10, 18, 20, 28$ or 29 (mod 36).

1. Introduction

A hypergraph \mathscr{F} consists of a finite nonempty set V of *vertices* and a set \mathscr{E} of nonempty subsets of V called *hyperedges* or simply *edges*.

A *decomposition* of a hypergraph \mathcal{K} is a set $\Delta = \{\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_b\}$ of subhypergraphs of \mathcal{K} such that $\mathcal{E}(\mathcal{H}_1) \cup \mathcal{E}(\mathcal{H}_2) \cup \dots \cup \mathcal{E}(\mathcal{H}_b) = \mathcal{E}(\mathcal{K})$ and $\mathcal{E}(\mathcal{H}_i) \cap \mathcal{E}(\mathcal{H}_j) = \emptyset$ for all i and j with $1 \leq i < j \leq b$. We denote this fact by $\mathcal{K} = \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \dots \oplus \mathcal{H}_b$. It follows from the definition that

$$|\mathcal{E}(\mathcal{H}_1)| + |\mathcal{E}(\mathcal{H}_2)| + \dots + |\mathcal{E}(\mathcal{H}_b)| = |\mathcal{E}(\mathcal{K})|.$$

If each element \mathscr{H}_i of Δ is isomorphic to a fixed hypergraph \mathscr{H} , then \mathscr{H}_i is called an \mathscr{H} -block, and Δ is called an \mathscr{H} -decomposition of \mathscr{K} . In this case, we say that \mathscr{H} decomposes \mathscr{K} , and we write $\mathscr{H} \mid \mathscr{K}$. Also, in this case, we have

$$b|\mathcal{E}(\mathcal{H})| = |\mathcal{E}(\mathcal{K})|.$$

Hence, a necessary condition for the existence of an \mathscr{H} -decomposition of \mathscr{K} is that

 $|\mathcal{E}(\mathcal{H})|$ divides $|\mathcal{E}(\mathcal{K})|$.

The *degree* of a vertex x in a hypergraph \mathscr{F} is the number of edges of \mathscr{F} containing x. Another necessary condition for the existence of an \mathscr{H} -decomposition of \mathscr{K} is that

the g.c.d. of the degrees of vertices in $\mathcal H$ divides the g.c.d. of the degrees of vertices in $\mathcal K$.

If each vertex x in a hypergraph \mathscr{F} has the same degree, then we say that the hypergraph \mathscr{F} is regular, or \mathscr{F} is k-regular if the degree of x is k.

2020 Mathematics Subject Classification. Primary 05C65; Secondary 05C85.

Keywords. complete 3-uniform hypergraph, loose cycle decomposition.

Received: 30 January 2025; Accepted: 12 April 2025

Communicated by Paola Bonacini

* Corresponding author: T. Sivakaran

 $\textit{Email addresses:} \textbf{ shivaganesh1431991@gmail.com} \ (T.\ Sivakaran), \textbf{ sampathmath@gmail.com} \ (R.\ Sampathkumar)$

ORCID iDs: https://orcid.org/0000-0003-1282-6750 (T. Sivakaran), https://orcid.org/0000-0002-4910-7074 (R. Sampathkumar)

If for each edge e in a hypergraph \mathscr{F} , we have |e| = t, then \mathscr{F} is said to be t-uniform. Thus simple graphs are 2-uniform hypergraphs.

A cycle of length m, in a hypergraph \mathscr{F} is a sequence of the form $v_1, e_1, v_2, e_2, \ldots, v_m, e_m, v_1$ where v_1, v_2, \ldots, v_m are distinct vertices and e_1, e_2, \ldots, e_m are distinct edges satisfying $v_i, v_{i+1} \in e_i$ for $i \in \{1, 2, \ldots, m-1\}$ 1} and $v_m, v_1 \in e_m$. This cycle is known as a Berge cycle having been introduced by Berge in [1]. For $i \in \{1, 2, ..., m\}$, if $|e_i| = t$, then we denote this Berge cycle by $BC_m^{(t)}$.

For $n \ge 2$, let \mathbb{Z}_n denote the set of integers modulo n.

For $m > t \ge 2$, let $LC_m^{(t)}$ denote the t-uniform hypergraph with vertex set $\mathbb{Z}_{(t-1)m}$ and edge set $\{\{it-i, it-i\}\}$ i + 1, it - i + 2, ..., it - i + (t - 1) : $i \in \{0, 1, ..., m - 1\}$. Any hypergraph isomorphic to $LC_m^{(t)}$ is a *t-uniform loose m-cycle*. In particular, for t = 3, a 3-uniform loose *m*-cycle $LC_m^{(3)}$ is a 3-uniform hypergraph with vertex set \mathbb{Z}_{2m} and edge set $\{\{2i, 2i+1, 2i+2\}: i \in \{0, 1, ..., m-1\}\}.$

Let \mathscr{F} be a t-uniform hypergraph. It follows from the definitions that every loose cycle of \mathscr{F} is a Berge cycle of \mathscr{F} . Observe that, for t=2, $BC_m^{(2)}\cong LC_m^{(2)}$

Let \mathcal{K} be a *t*-uniform hypergraph, $t \ge 3$. The necessary conditions for the existence of:

 $BC_m^{(t)}$ -decomposition of \mathscr{K} are $|V(\mathscr{K})| \geq m$ and m divides $|\mathscr{E}(\mathscr{K})|$;

 $LC_m^{(t)}$ -decomposition of \mathcal{K} are $|V(\mathcal{K})| \geq (t-1)m$ and m divides $|\mathcal{E}(\mathcal{K})|$.

As every loose cycle of \mathcal{K} is a Berge cycle of \mathcal{K} , we have: every $LC_m^{(t)}$ -decomposition of \mathcal{K} is a $BC_m^{(t)}$ -decomposition of \mathcal{K} .

A *t*-uniform hypergraph $\mathscr{F} = (V, \mathscr{E})$ is said to be *complete* if every *t*-element subset of *V* is in \mathscr{E} . We denote such a hypergraph by $K_V^{(t)}$ or by $K_n^{(t)}$ if |V| = n. $K_n^{(t)}$ is $\binom{n-1}{t-1}$ -regular and it has $\binom{n}{t}$ edges. An \mathcal{H} -decomposition of $K_n^{(t)}$ is also known as an \mathcal{H} -design of order n. Given a t-uniform hypergraph \mathcal{H} , the problem of determining all values of n for which there exists an \mathcal{H} -design of order n is known as the spectrum problem for \mathcal{H} .

If $\mathcal{K} = K_n^{(t)}$, then the above necessary conditions for the existence of: $BC_m^{(t)}$ -decomposition of $K_n^{(t)}$ are $n \ge m$ and $m \mid \binom{n}{t}$;

 $LC_m^{(t)}$ -decomposition of $K_n^{(t)}$ are $n \geq (t-1)m$ and $m \mid {n \choose t}$.

Assume $3 \le t < n$. A $BC_n^{(t)}$ of $K_n^{(t)}$ is called a *Hamilton cycle* of $K_n^{(t)}$ and a $BC_n^{(t)}$ -decomposition of $K_n^{(t)}$ is called a *Hamilton cycle decomposition* of $K_n^{(t)}$. The necessary condition for the existence of $BC_n^{(t)} \mid K_n^{(t)}$ is $n \mid \binom{n}{t}$. In [3], Bermond et al. conjectured that this necessary condition is sufficient and proved this conjecture for n a prime. In [9], Kühn and Osthus, proved that for $t \ge 4$ and $n \ge 30$, if $n \mid {n \choose t}$, then $BC_n^{(t)} \mid K_n^{(t)}$. For t = 3, the necessary condition $n \mid \binom{n}{3}$ is: $n \equiv 1, 2, 4 \text{ or } 5 \pmod{6}$; in [2], Bermond proved that: if $n \equiv 2, 4 \text{ or } 5$ (mod 6), then $BC_n^{(3)} | K_n^{(3)}$, and in [16], Verrall proved that: if $n \equiv 1 \pmod{6}$, then $BC_n^{(3)} | K_n^{(3)}$.

Let $\mathscr{E}_n^{(t)}$ be the set of all t-element subsets of \mathbb{Z}_n , where 1 < t < n. If $E \in \mathscr{E}_n^{(t)}$ and $r \in \mathbb{Z}_n$, let E + r be formed by replacing each element $x \in E$ with x + r; so $(r, E) \mapsto E + r$ maps $\mathbb{Z}_n \times \mathscr{E}_n^{(t)}$ into $\mathscr{E}_n^{(t)}$. It can be seen that the group \mathbb{Z}_n acts on the set $\mathscr{E}_n^{(t)}$ partitioning it into \mathbb{Z}_n -orbits, where $E_1, E_2 \in \mathscr{E}_n^{(t)}$ are in the same orbit if and only if $E_1 + r = E_2$ for some $r \in \mathbb{Z}_n$. We define [E] to be $\{E + r : r \in \mathbb{Z}_n\}$, which we refer to as the \mathbb{Z}_n -orbit of E. If $\mathscr{S} \subseteq \mathscr{E}_n^{(t)}$ and $r \in \mathbb{Z}_n$, let $\mathscr{S} + r = \{E + r : E \in \mathscr{S}\}$. By clicking \mathscr{S} , we shall mean replacing \mathscr{S} with \mathscr{S} + 1.

Let \mathcal{H} be a subhypergraph of $K_n^{(t)}$, where $V(K_n^{(t)}) = \mathbb{Z}_n$ and let Γ be a \mathcal{H} -decomposition of $K_n^{(t)}$. Then Γ is said to be *cyclic* if Γ is closed under clicking. Thus if $\mathcal{H}_i \in \Gamma$, then $\mathcal{H}_i + 1 \in \Gamma$. If we partition $\mathcal{E}_n^{(t)}$ into k distinct \mathbb{Z}_n -orbits each of size n and if \mathcal{H} is a subhypergraph of $K_n^{(t)}$ consisting of one edge from each kdistinct \mathbb{Z}_n -orbits, then $\Gamma = \{\mathcal{H} + i : i \in \mathbb{Z}_n\}$ is a *cyclic* \mathcal{H} -decomposition of $K_n^{(t)}$.

Petecki [12], showed that $K_n^{(t)}$ admits a cyclic Hamilton cycle decomposition if and only if q.c.d.(n,t) = 1and $\lambda = \min\{d > 1 : d \mid n\} > \frac{n}{t}$.

Jordon et al. [8] proved that the necessary conditions are sufficient for the existence of a $BC_4^{(3)}$ decomposition of $K_n^{(3)}$. In [10, 11], Lakshmi and Poovaragavan proved that the necessary conditions are sufficient for the existence of a $BC_6^{(3)}$ -decomposition of $K_n^{(3)}$ and for the existence of a $BC_p^{(3)}$ -decomposition of $K_n^{(3)}$, for $p \ge 5$ is prime.

In [4], Bryant et al. proved that there exists an $LC_3^{(3)}$ -decomposition of $K_n^{(3)}$ if and only if $n \equiv 0$, 1 or 2 (mod 9). Bunge et al. [5] shown that there exists an $LC_4^{(3)}$ -decomposition of $K_n^{(3)}$ if and only if $n \equiv 0$, 1, 2, 4 or 6 (mod 8) and $n \notin \{4,6\}$. In [6], Bunge et al. studied $LC_5^{(3)}$ decompositions of $K_n^{(3)}$. In [14], we have shown that $LC_7^{(3)}|K_n^{(3)}$ if and only if $n \geq 14$ and $n \equiv 0$, 1 or 2 (mod 7).

In this paper, we prove:

Theorem 1.1. $LC_6^{(3)}|K_n^{(3)}$ if and only if $n \ge 12$ and $n \equiv 0, 1, 2, 9, 10, 18, 20, 28, or 29 \pmod{36}$.

For convenience, in $K_n^{(3)}$, we denote the loose 6-cycle $[(i, i+j_1, i+j_2), (i+j_2, i+j_3, i+j_4), (i+j_4, i+j_5, i+j_6), (i+j_6, i+j_7, i+j_8), (i+j_8, i+j_9, i+j_{10}), (i+j_{10}, i+j_{11}, i)]$ by

 $i + [(0, j_1, j_2), (j_2, j_3, j_4), (j_4, j_5, j_6), (j_6, j_7, j_8), (j_8, j_9, j_{10}), (j_{10}, j_{11}, 0)].$

Graphs K_n , C_n , P_n and $K_{m,n}$, respectively, denote the complete graph with n vertices, the cycle with n ($n \ge 3$) vertices, the path with n vertices and the complete bipartite graph with partite sizes m and n.

2. Loose 6-cycle decompositions of complete 3-uniform hypergraphs of small order

2.1. Difference technique

Following 'difference technique' method was introduced by Gionfriddo et al. [7]. Assume that the vertices of $K_n^{(3)}$ are 0, 1, ..., n-1 and that they are arranged in a cyclic order. The distance between vertices i and j is defined to be

$$||i - j|| = min\{|i - j|, n - |i - j|\}.$$

Using this, define a difference triplet

$$t_{i,i,k} = (||i-j||, ||j-k||, ||k-i||)$$

to any three vertices i, j, k with $0 \le i < j < k \le n - 1$.

Note that the ordering condition i < j < k is important in the definition. By taking $t_{j,k,i} = (||j-k||, ||k-i||, ||i-j||)$ and $t_{k,i,j} = (||k-i||, ||i-j||, ||j-k||)$, we assume that $t_{i,j,k} = t_{j,k,i} = t_{k,i,j}$ for all choices of $\{i, j, k\}$. Moreover, difference triplets are rotation-invariant, i.e. $t_{i,j,k} = t_{i+1,j+1,k+1}$ holds for all $\{i, j, k\}$.

From [7], we have: if n is not a multiple of 3, then there can occur two kinds of difference triplets:

- *symmetric triplets*: of the form (a, a, b), where 2a = b or 2a + b = n, and
- reflected triplets: of the form (a, b, c) or (a, c, b), where a + b = c or a + b + c = n, and $a \neq b \neq c \neq a$. If n is a multiple of 3, then we have an additional triplet $(\frac{n}{3}, \frac{n}{3}, \frac{n}{3})$.

In what follows, the decompositions are obtained by using the method of difference triplets; in particular, when 6^2 divides (n-1)(n-2), the decompositions are cyclic.

2.2.
$$6^2$$
 divides $(n-1)(n-2)$

Lemma 2.1. $LC_6^{(3)} | K_{29}^{(3)}$.

Proof. Let $V(K_{29}^{(3)}) = \mathbb{Z}_{29}$. Following $LC_6^{(3)}$'s decompose $K_{29}^{(3)}$: i + [(13, 12, 11), (11, 9, 8), (8, 5, 4), (4, 28, 0), (0, 1, 6), (6, 7, 13)] (edges having difference triplets (1, 1, 2), (1, 2, 3), (1, 3, 4), (1, 4, 5), (1, 5, 6), (1, 6, 7), respectively), i + [(2, 1, 9), (9, 10, 18), (18, 17, 27), (27, 8, 26), (26, 14, 15), (15, 3, 2)] (edges having difference triplets (1, 7, 8), (1, 8, 9), (1, 9, 10), (1, 10, 11), (1, 11, 12), (1, 12, 13), respectively), i + [(15, 1, 2), (2, 17, 3), (3, 4, 19), (19, 18, 6), (6, 23, 5), (5, 16, 15)]

```
(edges having difference triplets (1, 13, 14), (14, 14, 1), (13, 1, 14), (12, 1, 13), (11, 1, 12), (10, 1, 11), respectively),
i + [(12, 11, 2), (2, 23, 3), (3, 4, 25), (25, 26, 19), (19, 18, 13), (13, 8, 12)]
(edges having difference triplets (9, 1, 10), (8, 1, 9), (7, 1, 8), (6, 1, 7), (5, 1, 6), (4, 1, 5), respectively),
i + [(1, 2, 27), (27, 26, 24), (24, 20, 22), (22, 17, 19), (19, 21, 25), (25, 23, 1)]
(edges having difference triplets (3, 1, 4), (2, 1, 3), (2, 2, 4), (2, 3, 5), (2, 4, 6), (2, 5, 7), respectively),
i + [(1,3,9), (9,7,16), (16,6,8), (8,19,10), (10,22,12), (12,28,1)]
(edges having difference triplets (2,6,8), (2,7,9), (2,8,10), (2,9,11), (2,10,12), (2,11,13), respectively),
i + [(22, 20, 5), (5, 3, 18), (18, 2, 4), (4, 21, 6), (6, 8, 24), (24, 12, 22)]
(edges having difference triplets (2, 12, 14), (2, 13, 14), (2, 14, 13), (12, 2, 14), (11, 2, 13), (10, 2, 12), respectively),
i + [(13, 11, 2), (2, 4, 23), (23, 1, 3), (3, 5, 26), (26, 24, 19), (19, 17, 13)]
(edges having difference triplets (9, 2, 11), (8, 2, 10), (7, 2, 9), (6, 2, 8), (5, 2, 7), (4, 2, 6), respectively),
i + [(28, 25, 1), (1, 4, 7), (7, 0, 3), (3, 6, 11), (11, 5, 2), (2, 9, 28)]
(edges having difference triplets (3, 2, 5), (3, 3, 6), (3, 4, 7), (3, 5, 8), (3, 6, 9), (3, 7, 10), respectively),
i + [(15,7,4), (4,1,13), (13,0,3), (3,6,17), (17,5,2), (2,28,15)]
(edges having difference triplets (3, 8, 11), (3, 9, 12), (3, 10, 13), (3, 11, 14), (3, 12, 14), (13, 13, 3), respectively),
i + [(17,0,3),(3,21,6),(6,9,25),(25,16,28),(28,2,20),(20,10,17)]
(edges having difference triplets (3, 14, 12), (11, 3, 14), (10, 3, 13), (9, 3, 12), (8, 3, 11), (7, 3, 10), respectively),
i + [(0,3,23),(23,26,18),(18,14,21),(21,17,13),(13,8,4),(4,10,0)]
(edges having difference triplets (6, 3, 9), (5, 3, 8), (4, 3, 7), (4, 4, 8), (4, 5, 9), (4, 6, 10), respectively),
i + [(0,4,11),(11,7,19),(19,10,6),(6,2,16),(16,27,12),(12,25,0)]
(edges having difference triplets (4,7,11), (4,8,12), (4,9,13), (4,10,14), (4,11,14), (4,12,13), respectively),
i + [(17, 0, 4), (4, 8, 22), (22, 7, 3), (3, 16, 12), (12, 20, 24), (24, 28, 17)]
(edges having difference triplets (4, 13, 12), (4, 14, 11), (10, 4, 14), (9, 4, 13), (8, 4, 12), (7, 4, 11), respectively),
i + [(15, 11, 5), (5, 0, 9), (9, 4, 14), (14, 25, 19), (19, 12, 7), (7, 2, 15)]
(edges having difference triplets (6, 4, 10), (5, 4, 9), (5, 5, 10), (5, 6, 11), (5, 7, 12), (5, 8, 13), respectively),
i + [(26, 2, 11), (11, 6, 21), (21, 10, 5), (5, 0, 17), (17, 1, 12), (12, 7, 26)]
(edges having difference triplets (5, 9, 14), (5, 10, 14), (5, 11, 13), (12, 12, 5), (5, 13, 11), (5, 14, 10), respectively),
i + [(14, 28, 23), (23, 18, 10), (10, 17, 22), (22, 16, 27), (27, 15, 21), (21, 8, 14)]
(edges having difference triplets (9, 5, 14), (8, 5, 13), (7, 5, 12), (6, 5, 11), (6, 6, 12), (6, 7, 13), respectively),
i + [(1, 15, 7), (7, 22, 13), (13, 19, 0), (0, 17, 6), (6, 12, 24), (24, 14, 1)]
(edges having difference triplets (6, 8, 14), (6, 9, 14), (6, 10, 13), (6, 11, 12), (6, 12, 11), (6, 13, 10), respectively),
i + [(15, 21, 6), (6, 27, 12), (12, 5, 18), (18, 4, 11), (11, 3, 25), (25, 8, 15)]
(edges having difference triplets (6, 14, 9), (8, 6, 14), (7, 6, 13), (7, 7, 14), (7, 8, 14), (7, 10, 12), respectively),
i + [(21, 28, 8), (8, 15, 26), (26, 14, 7), (7, 0, 20), (20, 27, 12), (12, 4, 21)]
(edges having difference triplets (7, 9, 13), (7, 11, 11), (7, 12, 10), (7, 13, 9), (7, 14, 8), (8, 9, 12), respectively),
i + [(0, 8, 16), (16, 24, 5), (5, 15, 23), (23, 3, 11), (11, 2, 20), (20, 10, 0)]
(edges having difference triplets (8, 8, 13), (8, 10, 11), (8, 11, 10), (8, 12, 9), (9, 9, 11), (10, 10, 9), respectively),
where i \in \mathbb{Z}_{29}. \square
Lemma 2.2. LC_6^{(3)}|K_{37}^{(3)}.
Proof. Let V(K_{37}^{(3)}) = \mathbb{Z}_{37}. Following LC_6^{(3)}'s decompose K_{37}^{(3)}: i + [(11, 12, 13), (13, 14, 16), (16, 20, 17), (17, 22, 18), (18, 24, 19), (19, 10, 11)]
(edges having difference triplets (1, 1, 2), (1, 2, 3), (1, 3, 4), (1, 4, 5), (1, 5, 6), (1, 8, 9), respectively),
    i + [(18, 11, 12), (12, 4, 5), (5, 15, 6), (6, 17, 7), (7, 8, 19), (19, 31, 18)]
(edges having difference triplets (1, 6, 7), (1, 7, 8), (1, 9, 10), (1, 10, 11), (1, 11, 12), (1, 12, 13), respectively),
    i + [(11, 30, 12), (12, 32, 13), (13, 34, 14), (14, 15, 36), (36, 0, 23), (23, 24, 11)]
(edges having difference triplets (1, 18, 18), (17, 1, 18), (16, 1, 17), (15, 1, 16), (13, 1, 14), (12, 1, 13), respectively),
    i + [(11, 12, 0), (0, 27, 1), (1, 29, 2), (2, 31, 3), (3, 33, 4), (4, 10, 11)]
(edges having difference triplets (11, 1, 12), (10, 1, 11), (9, 1, 10), (8, 1, 9), (7, 1, 8), (6, 1, 7), respectively),
    i + [(0, 32, 1), (1, 34, 2), (2, 36, 3), (3, 5, 6), (6, 8, 4), (4, 35, 0)]
(edges having difference triplets (5, 1, 6), (4, 1, 5), (3, 1, 4), (2, 1, 3), (2, 2, 4), (2, 4, 6), respectively),
```

```
i + [(12, 10, 15), (15, 13, 20), (20, 28, 22), (22, 31, 24), (24, 16, 14), (14, 23, 12)]
(edges having difference triplets (2, 3, 5), (2, 5, 7), (2, 6, 8), (2, 7, 9), (2, 8, 10), (2, 9, 11), respectively),
    i + [(22, 10, 12), (12, 25, 14), (14, 28, 16), (16, 31, 18), (18, 34, 20), (20, 0, 22)]
(edges having difference triplets (2, 10, 12), (2, 11, 13), (2, 12, 14), (2, 13, 15), (2, 14, 16), (2, 15, 17), respectively),
    i + [(15, 13, 31), (31, 12, 14), (14, 34, 16), (16, 18, 0), (0, 22, 2), (2, 17, 15)]
(edges having difference triplets (2, 16, 18), (2, 17, 18), (2, 18, 17), (16, 2, 18), (15, 2, 17), (13, 2, 15), respectively),
    i + [(26, 28, 12), (12, 0, 14), (14, 3, 16), (16, 18, 6), (6, 15, 17), (17, 24, 26)]
(edges having difference triplets (14, 2, 16), (12, 2, 14), (11, 2, 13), (10, 2, 12), (9, 2, 11), (7, 2, 9), respectively),
    i + [(29, 0, 2), (2, 33, 4), (4, 6, 36), (36, 5, 3), (3, 1, 35), (35, 32, 29)]
(edges having difference triplets (8, 2, 10), (6, 2, 8), (5, 2, 7), (4, 2, 6), (3, 2, 5), (3, 3, 6), respectively),
    i + [(3,0,7), (7,10,15), (15,18,24), (24,27,34), (34,5,31), (31,28,3)]
(edges having difference triplets (3, 4, 7), (3, 5, 8), (3, 6, 9), (3, 7, 10), (3, 8, 11), (3, 9, 12), respectively),
    i + [(30, 27, 3), (3, 17, 6), (6, 21, 9), (9, 12, 25), (25, 8, 11), (11, 33, 30)]
(edges having difference triplets (3, 10, 13), (3, 11, 14), (3, 12, 15), (3, 13, 16), (3, 14, 17), (3, 15, 18), respectively),
    i + [(2, 20, 23), (23, 3, 6), (6, 27, 9), (9, 31, 12), (12, 29, 26), (26, 5, 2)]
(edges having difference triplets (3, 16, 18), (3, 17, 17), (3, 18, 16), (15, 3, 18), (14, 3, 17), (13, 3, 16), respectively),
    i + [(25,0,3),(3,29,6),(6,9,33),(33,36,24),(24,27,16),(16,22,25)]
(edges having difference triplets (12, 3, 15), (11, 3, 14), (10, 3, 13), (9, 3, 12), (8, 3, 11), (6, 3, 9), respectively),
    i + [(27, 20, 30), (30, 35, 1), (1, 34, 4), (4, 8, 12), (12, 16, 21), (21, 17, 27)]
(edges having difference triplets (7, 3, 10), (5, 3, 8), (4, 3, 7), (4, 4, 8), (4, 5, 9), (4, 6, 10), respectively),
    i + [(18,7,11), (11,15,23), (23,27,36), (36,3,13), (13,35,2), (2,6,18)]
(edges having difference triplets (4,7,11), (4,8,12), (4,9,13), (4,10,14), (4,11,15), (4,12,16), respectively),
    i + [(17,0,4),(4,8,22),(22,3,7),(7,27,11),(11,15,32),(32,36,17)]
(edges having difference triplets (4, 13, 17), (4, 14, 18), (4, 15, 18), (4, 16, 17), (4, 17, 16), (4, 18, 15), respectively),
    i + [(5, 19, 23), (23, 36, 3), (3, 7, 28), (28, 2, 6), (6, 10, 33), (33, 9, 5)]
(edges having difference triplets (14, 4, 18), (13, 4, 17), (12, 4, 16), (11, 4, 15), (10, 4, 14), (9, 4, 13), respectively),
    i + [(0,4,29),(29,36,3),(3,34,7),(7,2,11),(11,16,6),(6,32,0)]
(edges having difference triplets (8, 4, 12), (7, 4, 11), (6, 4, 10), (5, 4, 9), (5, 5, 10), (5, 6, 11), respectively),
   i + [(19,7,12), (12,17,25), (25,30,2), (2,24,29), (29,3,24), (24,36,19)]
(edges having difference triplets (5, 7, 12), (5, 8, 13), (5, 9, 14), (5, 10, 15), (5, 11, 16), (5, 12, 17), respectively),
    i + [(26, 8, 13), (13, 18, 32), (32, 12, 17), (17, 22, 1), (1, 16, 21), (21, 7, 26)]
(edges having difference triplets (5, 13, 18), (5, 14, 18), (5, 15, 17), (5, 16, 16), (5, 17, 15), (5, 18, 14), respectively),
    i + [(24,0,5),(5,30,10),(10,15,36),(36,31,21),(21,7,16),(16,29,24)]
(edges having difference triplets (13, 5, 18), (12, 5, 17), (11, 5, 16), (10, 5, 15), (9, 5, 14), (8, 5, 13), respectively),
    i + [(0,30,5), (5,36,10), (10,4,16), (16,3,9), (9,23,15), (15,6,0)]
(edges having difference triplets (7, 5, 12), (6, 5, 11), (6, 6, 12), (6, 7, 13), (6, 8, 14), (6, 9, 15), respectively),
    i + [(7, 13, 23), (23, 6, 12), (12, 30, 18), (18, 36, 5), (5, 28, 22), (22, 1, 7)]
(edges having difference triplets (6, 10, 16), (6, 11, 17), (6, 12, 18), (6, 13, 18), (6, 14, 17), (6, 15, 16), respectively),
    i + [(21, 27, 6), (6, 12, 29), (29, 23, 10), (10, 16, 35), (35, 9, 15), (15, 5, 21)]
(edges having difference triplets (6, 16, 15), (6, 17, 14), (6, 18, 13), (12, 6, 18), (11, 6, 17), (10, 6, 16), respectively),
    i + [(14, 23, 29), (29, 0, 6), (6, 19, 13), (13, 20, 27), (27, 34, 5), (5, 35, 14)]
(edges having difference triplets (9, 6, 15), (8, 6, 14), (7, 6, 13), (7, 7, 14), (7, 8, 15), (7, 9, 16), respectively),
    i + [(3, 10, 20), (20, 27, 1), (1, 19, 26), (26, 33, 9), (9, 25, 32), (25, 18, 3)]
(edges having difference triplets (7, 10, 17), (7, 11, 18), (7, 12, 18), (7, 13, 17), (7, 14, 16), (7, 15, 15), respectively),
    i + [(17, 10, 33), (33, 3, 20), (20, 8, 27), (27, 34, 16), (16, 36, 9), (9, 25, 17)]
(edges having difference triplets (7, 16, 14), (7, 17, 13), (7, 18, 12), (11, 7, 18), (10, 7, 17), (8, 8, 16), respectively),
    i + [(7, 35, 14), (14, 29, 22), (22, 30, 2), (2, 20, 10), (10, 28, 36), (36, 19, 7)]
(edges having difference triplets (9,7,16), (8,7,15), (8,9,17), (8,10,18), (8,11,18), (8,12,17), respectively),
    i + [(18, 10, 31), (31, 9, 17), (17, 25, 3), (3, 11, 27), (27, 19, 7), (7, 26, 18)]
(edges having difference triplets (8, 13, 16), (8, 14, 15), (8, 15, 14), (8, 16, 13), (8, 17, 12), (8, 18, 11), respectively),
    i + [(1,30,20),(20,29,0),(0,9,18),(18,36,8),(8,28,17),(17,26,1)]
```

(edges having difference triplets (10, 8, 18), (9, 8, 17), (9, 9, 18), (9, 10, 18), (9, 11, 17), (9, 12, 16), respectively),

```
i + [(14, 36, 23), (23, 32, 9), (9, 18, 33), (33, 5, 21), (21, 32, 4), (4, 24, 14)]
(edges having difference triplets (9, 13, 15), (9, 14, 14), (9, 15, 13), (9, 16, 12), (9, 17, 11), (17, 10, 10),
respectively),
    i + [(10, 19, 0), (0, 27, 11), (11, 1, 23), (23, 13, 36), (36, 12, 22), (22, 32, 10)]
(edges having difference triplets (10, 9, 18), (10, 11, 16), (10, 12, 15), (10, 13, 14), (10, 14, 13), (12, 10, 15),
respectively),
    i + [(0, 10, 26), (26, 4, 15), (15, 29, 3), (3, 27, 14), (14, 2, 25), (25, 13, 0)]
(edges having difference triplets (10, 16, 11), (15, 11, 11), (11, 12, 14), (11, 13, 13), (12, 11, 14), (13, 12, 12),
respectively),
    i + [(0, 23, 24), (24, 25, 2), (2, 3, 18), (18, 17, 34), (34, 33, 14), (14, 15, 0)]
(edges having difference triplets (1, 13, 14), (1, 14, 15), (1, 15, 16), (1, 16, 17), (1, 17, 18), (14, 1, 15), respectively),
where i \in \mathbb{Z}_{37}. \square
2.3. 6^2 does not divide (n-1)(n-2)
Lemma 2.3. LC_6^{(3)}|K_{18}^{(3)}.
Proof. Let V(K_{18}^{(3)}) = \mathbb{Z}_{18}. Following LC_6^{(3)}'s decompose K_{18}^{(3)}:
    For each i \in \mathbb{Z}_{18}, consider
    i + [(0, 1, 2), (2, 3, 5), (5, 6, 9), (9, 14, 10), (10, 16, 11), (11, 12, 0)]
(edges having difference triplets (1, 1, 2), (1, 2, 3), (1, 3, 4), (1, 4, 5), (1, 5, 6), (1, 6, 7), respectively),
    i + [(1,3,5), (5,7,10), (10,6,4), (4,2,9), (9,11,17), (17,8,1)]
(edges having difference triplets (2, 2, 4), (2, 3, 5), (2, 4, 6), (2, 5, 7), (2, 6, 8), (2, 7, 9), respectively),
    i + [(10,0,2), (2,4,13), (13,3,1), (1,6,8), (8,14,12), (12,7,10)]
(edges having difference triplets (8, 8, 2), (7, 2, 9), (6, 2, 8), (5, 2, 7), (4, 2, 6), (3, 2, 5), respectively),
    i + [(15, 12, 9), (9, 6, 13), (13, 8, 5), (5, 2, 11), (11, 1, 4), (4, 7, 15)],
(edges having difference triplets (3, 3, 6), (3, 4, 7), (3, 5, 8), (3, 6, 9), (3, 7, 8), (3, 8, 7), respectively),
    i + [(0, 12, 3), (3, 6, 16), (16, 2, 5), (5, 9, 1), (1, 14, 10), (10, 4, 0)]
(edges having difference triplets (3,9,6), (5,3,8), (4,3,7), (4,4,8), (4,5,9), (4,6,8), respectively),
    i + [(1, 15, 8), (8, 4, 16), (16, 3, 7), (7, 12, 17), (17, 11, 6), (6, 13, 1)]
(edges having difference triplets (7,7,4), (4,8,6), (4,9,5), (5,5,8), (5,6,7), (5,7,6), respectively).
    Remaining triplets are: (6, 6, 6), (1, 7, 8), (1, 8, 9), (1, 9, 8), (2, 1, 3), (3, 1, 4), (4, 1, 5), (5, 1, 6),
(6,1,7) and (7,1,8).
    For each j \in \mathbb{Z}_{18} \setminus \{17\}, consider
    j + [(14, 4, 5), (5, 16, 6), (6, 7, 0), (0, 17, 12), (12, 8, 11), (11, 13, 14)]
(edges having difference triplets (1,9,8), (7,1,8), (6,1,7), (5,1,6), (3,1,4), (2,1,3), respectively).
    Finally, consider the following LC_6^{(3)}'s: [(0,8,1),(1,9,2),(2,10,3),(3,11,4),(4,5,12),(12,6,0)]
(edge (12,6,0) is of triplet (6,6,6) and the remaining 5 edges are (1,7,8)),
    [(13,5,6),(6,14,7),(7,15,8),(8,4,9),(9,10,0),(0,17,13)]
(edge (9, 10, 0) is of triplet (1, 8, 9), two edges (8, 4, 9) and (0, 17, 13) are (4, 1, 5) and the remaining
3 \text{ edges are } (1,7,8)),
    [(3,9,15),(15,5,16),(16,6,17),(17,0,7),(7,1,13),(13,14,3)]
(edges (3,9,15) and (7,1,13) are of triplet (6,6,6) and the remaining 4 edges are (1,7,8)),
    [(2,6,7),(7,16,8),(8,17,9),(9,5,10),(10,1,11),(11,12,2)]
(edges (2, 6, 7) and (9, 5, 10) are of triplet (4, 1, 5) and the remaining 4 edges are (1, 8, 9)),
    [(9, 13, 14), (14, 10, 15), (15, 11, 16), (16, 12, 17), (17, 8, 0), (0, 1, 9)]
(edges (17, 8, 0)) and (0, 1, 9) are of triplet (1, 8, 9) and the remaining 4 edges are (4, 1, 5)),
    [(3, 12, 13), (13, 4, 14), (14, 5, 15), (15, 6, 16), (16, 17, 7), (7, 8, 3)]
(edge (7, 8, 3) is of triplet (4, 1, 5) and the remaining 5 edges are (1, 8, 9)),
    [(7,6,15),(15,1,2),(2,16,3),(3,4,17),(17,5,11),(11,12,7)]
(edge (17, 5, 11) is of triplet (6, 6, 6) and the remaining 5 edges are (4, 1, 5)),
```

```
[(13, 12, 8), (8, 16, 9), (9, 17, 10), (10, 11, 6), (6, 1, 5), (5, 4, 13)]
(edge (5, 4, 13) is of triplet (1, 8, 9), two edges (8, 16, 9) and (9, 17, 10) are (1, 7, 8) and the remaining
3 \text{ edges are } (4, 1, 5)),
    [(14,0,1),(1,10,2),(2,11,3),(3,12,4),(4,15,5),(5,6,14)]
(edge (14, 0, 1) is of triplet (4, 1, 5), edge (4, 15, 5) is (7, 1, 8) and the remaining 4 edges are (1, 8, 9)),
    [(13,3,4),(4,0,5),(5,6,17),(17,16,11),(11,7,10),(10,12,13)]
(edges having difference triplets (1,9,8), (4,1,5), (6,1,7), (5,1,6), (3,1,4), (2,1,3), respectively),
    [(10,0,11),(11,1,12),(12,13,2),(2,8,14),(14,15,4),(4,16,10)]
(edges (2, 8, 14) and (4, 16, 10) are of triplet (6, 6, 6) and the remaining 4 edges are (1, 7, 8)). \square
Lemma 2.4. LC_6^{(3)}|K_{20}^{(3)}
Proof. Let V(K_{20}^{(3)}) = \mathbb{Z}_{20}. Following LC_6^{(3)}'s decompose K_{20}^{(3)}:
    For each i \in \mathbb{Z}_{20}, consider
    i + [(0, 1, 2), (2, 3, 5), (5, 6, 9), (9, 10, 14), (14, 8, 7), (7, 19, 0)]
(edges having difference triplets (1, 1, 2), (1, 2, 3), (1, 3, 4), (1, 4, 5), (1, 6, 7), (1, 7, 8), respectively),
    i + [(1,0,9), (9,8,19), (19,18,10), (10,11,3), (3,16,2), (2,17,1)]
(edges having difference triplets (1,8,9), (1,10,9), (8,1,9), (7,1,8), (6,1,7), (4,1,5), respectively),
    i + [(17,0,1), (1,3,4), (4,6,8), (8,10,13), (13,19,15), (15,2,17)]
(edges having difference triplets (3, 1, 4), (2, 1, 3), (2, 2, 4), (2, 3, 5), (2, 4, 6), (2, 5, 7), respectively),
    i + [(2,0,8),(8,10,17),(17,9,7),(7,18,16),(16,6,4),(4,15,2)]
(edges having difference triplets (2, 6, 8), (2, 7, 9), (2, 8, 10), (2, 9, 9), (2, 10, 8), (7, 2, 9) respectively),
    i + [(15, 9, 17), (17, 2, 4), (4, 10, 8), (8, 11, 13), (13, 16, 19), (19, 12, 15)]
(edges having difference triplets (6, 2, 8), (5, 2, 7), (4, 2, 6), (3, 2, 5), (3, 3, 6), (3, 4, 7), respectively),
    i + [(0,3,8), (8,5,14), (14,7,4), (4,16,13), (13,2,10), (10,17,0)]
(edges having difference triplets (3,5,8), (3,6,9), (3,7,10), (3,8,9), (3,9,8), (3,10,7), respectively),
    i + [(0, 14, 3), (3, 18, 6), (6, 2, 9), (9, 13, 5), (5, 1, 10), (10, 4, 0)]
(edges having difference triplets (6, 3, 9), (5, 3, 8), (4, 3, 7), (4, 4, 8), (4, 5, 9), (4, 6, 10), respectively),
    i + [(11, 0, 4), (4, 8, 16), (16, 3, 7), (7, 13, 17), (17, 2, 6), (6, 1, 11)]
(edges having difference triplets (4,7,9), (4,8,8), (4,9,7), (4,10,6), (5,4,9), (5,5,10), respectively),
    i + [(0, 11, 5), (5, 10, 17), (17, 9, 4), (4, 19, 13), (13, 1, 7), (7, 14, 0)]
(edges having difference triplets (5, 6, 9), (5, 7, 8), (5, 8, 7), (5, 9, 6), (6, 6, 8), (6, 7, 7), respectively).
    Remaining triplets are: (1,5,6), (1,9,10) and (5,1,6). We decompose 60 edges of these 3
triplets into 10 LC_6^{(3)}'s.
    [(8,2,3),(3,9,4),(4,10,5),(5,11,6),(6,12,7),(7,13,8)]
(edges having difference triplet (1, 5, 6)),
    [(0, 14, 15), (15, 1, 16), (16, 2, 17), (17, 3, 18), (18, 4, 19), (19, 5, 0)]
(edges having difference triplet (1, 5, 6)),
    [(6,1,7),(7,2,8),(8,3,9),(9,4,10),(10,5,11),(11,12,6)]
(edges having difference triplet (5, 1, 6)),
    [(14,8,9),(9,19,10),(10,16,11),(11,17,12),(12,18,13),(13,3,14)]
(edges having difference triplets (1,5,6), (1,9,10)),
    [(15, 9, 10), (10, 0, 11), (11, 1, 12), (12, 2, 13), (13, 19, 14), (14, 4, 15)]
(edges having difference triplets (1,5,6), (1,9,10)),
    [(0, 15, 1), (1, 11, 2), (2, 17, 3), (3, 18, 4), (4, 19, 5), (5, 6, 0)]
(edges having difference triplets (1, 9, 10), (5, 1, 6)),
    [(12,7,13),(13,8,14),(14,9,15),(15,5,16),(16,11,17),(17,18,12)]
(edges having difference triplets (1, 9, 10), (5, 1, 6)),
    [(16,1,2),(2,12,3),(3,13,4),(4,14,5),(5,15,6),(6,7,16)]
(edges having difference triplets (1, 9, 10), (5, 1, 6)),
    [(10, 15, 16), (16, 6, 17), (17, 7, 18), (18, 8, 19), (19, 9, 0), (0, 1, 10)]
(edges having difference triplets (1, 9, 10), (5, 1, 6)),
```

```
[(18, 13, 19), (19, 14, 0), (0, 6, 1), (1, 2, 7), (7, 17, 8), (8, 9, 18)]
(edges having difference triplets (1,5,6), (1,9,10), (5,1,6)). \square
Lemma 2.5. LC_6^{(3)}|K_{28}^{(3)}.
Proof. Let V(K_{28}^{(3)})=\mathbb{Z}_{28}. Following LC_6^{(3)}'s decompose K_{28}^{(3)}: For each i\in\mathbb{Z}_{28}, consider
    i + [(1,0,2), (2,3,5), (5,6,9), (9,10,14), (14,15,21), (21,22,1)]
(edges having difference triplets (1, 1, 2), (1, 2, 3), (1, 3, 4), (1, 4, 5), (1, 6, 7), (1, 7, 8), respectively),
    i + [(1,0,9), (9,18,8), (8,26,25), (25,12,13), (13,27,14), (14,15,1)]
(edges having difference triplets (1, 8, 9), (1, 9, 10), (1, 10, 11), (1, 12, 13), (1, 13, 14), (1, 14, 13), respectively),
    i + [(6, 19, 18), (18, 1, 2), (2, 20, 3), (3, 4, 22), (22, 21, 13), (13, 14, 6)]
(edges having difference triplets (12, 1, 13), (11, 1, 12), (10, 1, 11), (9, 1, 10), (8, 1, 9), (7, 1, 8), respectively),
    i + [(7,0,6),(6,5,1),(1,2,26),(26,25,23),(23,21,19),(19,9,7)]
(edges having difference triplets (6, 1, 7), (4, 1, 5), (3, 1, 4), (2, 1, 3), (2, 2, 4), (2, 10, 12), respectively),
    i + [(4, 2, 7), (7, 5, 11), (11, 13, 18), (18, 24, 16), (16, 23, 14), (14, 6, 4)]
(edges having difference triplets (2, 3, 5), (2, 4, 6), (2, 5, 7), (2, 6, 8), (2, 7, 9), (2, 8, 10), respectively),
    i + [(23, 21, 4), (4, 2, 15), (15, 3, 1), (1, 16, 14), (14, 0, 12), (12, 25, 23)]
(edges having difference triplets (2,9,11), (2,11,13), (2,12,14), (13,13,2), (2,14,12), (11,2,13), respectively),
    i + [(11, 13, 1), (1, 20, 3), (3, 23, 5), (5, 7, 26), (26, 6, 4), (4, 9, 11)]
(edges having difference triplets (10, 2, 12), (9, 2, 11), (8, 2, 10), (7, 2, 9), (6, 2, 8), (5, 2, 7), respectively),
    i + [(0, 24, 2), (2, 27, 4), (4, 7, 10), (10, 13, 17), (17, 20, 25), (25, 6, 0)]
(edges having difference triplets (4, 2, 6), (3, 2, 5), (3, 3, 6), (3, 4, 7), (3, 5, 8), (3, 6, 9), respectively),
    i + [(10,0,3),(3,14,6),(6,18,9),(9,22,12),(12,15,26),(26,23,10)]
(edges having difference triplets (3,7,10), (3,8,11), (3,9,12), (3,10,13), (3,11,14), (3,12,13), respectively),
    i + [(16,0,3),(3,20,6),(6,24,9),(9,21,18),(18,1,26),(26,23,16)]
(edges having difference triplets (3, 13, 12), (3, 14, 11), (10, 3, 13), (9, 3, 12), (8, 3, 11), (7, 3, 10), respectively),
    i + [(7, 4, 26), (26, 3, 6), (6, 10, 13), (13, 17, 21), (21, 2, 25), (25, 1, 7)]
(edges having difference triplets (6, 3, 9), (5, 3, 8), (4, 3, 7), (4, 4, 8), (4, 5, 9), (4, 6, 10), respectively),
    i + [(5, 9, 16), (16, 4, 8), (8, 21, 12), (12, 26, 2), (2, 6, 17), (17, 1, 5)]
(edges having difference triplets (4,7,11), (4,8,12), (4,9,13), (4,10,14), (4,11,13), (12,12,4), respectively),
    i + [(7,3,20),(20,2,6),(6,10,25),(25,9,5),(5,22,1),(1,11,7)]
(edges having difference triplets (4, 13, 11), (4, 14, 10), (9, 4, 13), (8, 4, 12), (7, 4, 11), (6, 4, 10), respectively),
    i + [(11, 15, 6), (6, 1, 24), (24, 18, 13), (13, 8, 20), (20, 5, 25), (25, 16, 11)]
(edges having difference triplets (5, 4, 9), (5, 5, 10), (5, 6, 11), (5, 7, 12), (5, 8, 13), (5, 9, 14), respectively),
    i + [(0, 23, 10), (10, 5, 21), (21, 4, 9), (9, 14, 27), (27, 22, 13), (13, 8, 0)]
(edges having difference triplets (5, 10, 13), (5, 11, 12), (5, 12, 11), (5, 13, 10), (5, 14, 9), (8, 5, 13), respectively),
    i + [(20, 15, 8), (8, 3, 25), (25, 13, 19), (19, 6, 12), (12, 18, 26), (26, 7, 20)]
(edges having difference triplets (7, 5, 12), (6, 5, 11), (6, 6, 12), (6, 7, 13), (6, 8, 14), (6, 9, 13), respectively),
    i + [(0, 16, 6), (6, 23, 12), (12, 18, 2), (2, 8, 21), (21, 27, 13), (13, 7, 0)]
(edges having difference triplets (6, 10, 12), (6, 11, 11), (6, 12, 10), (6, 13, 9), (6, 14, 8), (7, 6, 13), respectively),
    i + [(14, 0, 7), (7, 27, 20), (20, 4, 11), (11, 1, 22), (22, 5, 15), (5, 21, 14)]
(edges having difference triplets (7,7,14), (7,8,13), (7,9,12), (7,10,11), (7,11,10), (7,12,9), respectively),
    i + [(15, 23, 2), (2, 10, 18), (18, 1, 9), (9, 27, 17), (17, 26, 6), (6, 24, 15)]
(edges having difference triplets (7, 13, 8), (8, 8, 12), (8, 9, 11), (10, 10, 8), (8, 11, 9), (9, 9, 10), respectively).
    Remaining triplets are: (1, 5, 6), (1, 11, 12) and (5, 1, 6). We decompose 84 edges of these 3 triplets into 14
LC_6^{(3)}'s.
Let j \in \{0, 6, 12, 18\}.
    j + [(2, 14, 3), (3, 9, 4), (4, 26, 27), (27, 5, 0), (0, 6, 1), (1, 7, 2)]
(first edge is of triplet (1, 11, 12) and the remaining are (1, 5, 6)),
    j + [(0, 23, 1), (1, 24, 2), (2, 25, 3), (3, 26, 4), (4, 27, 5), (5, 6, 0)]
(edges having difference triplet (5, 1, 6)),
```

```
i + [(8,2,3), (3,15,4), (4,16,5), (5,17,6), (6,18,7), (7,19,8)]
(first edge is of triplet (1, 5, 6) and the remaining are (1, 11, 12)).
    Remaining two LC_6^{(3)}'s are:
    [(24, 19, 25), (25, 20, 26), (26, 21, 27), (27, 11, 0), (0, 22, 23), (23, 1, 24)]
(first three edges are of triplet (5, 1, 6), (27, 11, 0) is of (1, 11, 12) and the latter two are (1, 5, 6))
    [(2, 24, 25), (25, 3, 26), (26, 10, 27), (27, 22, 0), (0, 12, 1), (1, 13, 2)]
(first two edges are of triplet (1,5,6), (27,22,0) is of (5,1,6) and the remaining three are (1,11,12)). \square
Lemma 2.6. LC_6^{(3)}|K_{45}^{(3)}.
Proof. Let V(K_{45}^{(3)}) = \mathbb{Z}_{45}.
    Following LC_6^{(3)}'s decompose K_{45}^{(3)}:
    For each i \in \mathbb{Z}_{45}, consider
    i + [(20, 37, 21), (21, 22, 23), (23, 24, 26), (26, 27, 30), (30, 34, 29), (29, 19, 20)]
(edges having difference triplets (1, 16, 17), (1, 1, 2), (1, 2, 3), (1, 3, 4), (1, 4, 5), (1, 9, 10), respectively),
    i + [(6, 13, 7), (7, 8, 15), (15, 16, 24), (24, 25, 36), (36, 4, 37), (37, 38, 6)]
(edges having difference triplets (1, 6, 7), (1, 7, 8), (1, 8, 9), (1, 11, 12), (1, 12, 13), (1, 13, 14), respectively),
    i + [(41, 36, 40), (40, 19, 20), (20, 5, 6), (6, 31, 32), (32, 13, 14), (14, 42, 41)]
(edges having difference triplets (4, 1, 5), (1, 20, 21), (1, 14, 15), (1, 19, 20), (1, 18, 19), (1, 17, 18), respectively),
    i + [(18, 17, 44), (44, 22, 23), (23, 1, 24), (24, 25, 3), (3, 4, 28), (28, 29, 18)]
(edges having difference triplets (18, 1, 19), (1, 21, 22), (22, 22, 1), (21, 1, 22), (20, 1, 21), (10, 1, 11), respectively),
    i + [(20, 19, 2), (2, 3, 31), (31, 30, 15), (15, 14, 0), (0, 1, 32), (32, 33, 20)]
(edges having difference triplets (17, 1, 18), (16, 1, 17), (15, 1, 16), (14, 1, 15), (13, 1, 14), (12, 1, 13), respectively),
    i + [(0, 2, 7), (7, 9, 15), (15, 17, 24), (24, 26, 34), (34, 32, 43), (43, 10, 0)]
(edges having difference triplets (2,5,7), (2,6,8), (2,7,9), (2,8,10), (2,9,11), (2,10,12), respectively),
    i + [(3, 9, 8), (8, 7, 4), (4, 5, 2), (2, 43, 0), (0, 40, 42), (42, 44, 3)]
(edges having difference triplets (5, 1, 6), (3, 1, 4), (2, 1, 3), (2, 2, 4), (2, 3, 5), (2, 4, 6), respectively),
    i + [(2, 4, 15), (15, 13, 27), (27, 29, 42), (42, 26, 28), (28, 30, 0), (0, 18, 2)]
(edges having difference triplets (2, 11, 13), (2, 12, 14), (2, 13, 15), (2, 14, 16), (2, 15, 17), (2, 16, 18), respectively),
    i + [(9, 35, 37), (37, 19, 17), (17, 15, 36), (36, 11, 34), (34, 10, 32), (32, 30, 9)]
(edges having difference triplets (2, 17, 19), (2, 18, 20), (2, 19, 21), (2, 20, 22), (2, 21, 22), (2, 22, 21), respectively),
    i + [(34, 9, 11), (11, 13, 37), (37, 39, 19), (19, 21, 2), (2, 31, 4), (4, 6, 34)]
(edges having difference triplets (20, 2, 22), (19, 2, 21), (18, 2, 20), (17, 2, 19), (16, 2, 18), (15, 2, 17), respectively),
    i + [(40, 9, 11), (11, 13, 43), (43, 41, 29), (29, 27, 16), (16, 18, 6), (6, 4, 40)]
(edges having difference triplets (14, 2, 16), (13, 2, 15), (12, 2, 14), (11, 2, 13), (10, 2, 12), (9, 2, 11), respectively),
    i + [(43, 6, 8), (8, 10, 1), (1, 3, 40), (40, 42, 35), (35, 39, 41), (41, 38, 43)]
(edges having difference triplets (8, 2, 10), (7, 2, 9), (6, 2, 8), (5, 2, 7), (4, 2, 6), (3, 2, 5), respectively),
    i + [(3,0,6),(6,9,13),(13,16,21),(21,24,30),(30,33,40),(40,37,3)]
(edges having difference triplets (3, 3, 6), (3, 4, 7), (3, 5, 8), (3, 6, 9), (3, 7, 10), (3, 8, 11), respectively),
    i + [(3,0,12),(12,15,25),(25,28,39),(39,42,9),(9,22,6),(6,20,3)]
(edges having difference triplets (3, 9, 12), (3, 10, 13), (3, 11, 14), (3, 12, 15), (3, 13, 16), (3, 14, 17), respectively),
    i + [(21, 36, 18), (18, 15, 34), (34, 31, 6), (6, 9, 27), (27, 24, 1), (1, 43, 21)]
(edges having difference triplets (3, 15, 18), (3, 16, 19), (3, 17, 20), (3, 18, 21), (3, 19, 22), (3, 20, 22), respectively),
    i + [(18, 42, 21), (21, 24, 1), (1, 4, 27), (27, 30, 9), (9, 12, 37), (37, 34, 18)]
(edges having difference triplets (21, 21, 3) (3, 22, 20), (19, 3, 22), (18, 3, 21), (17, 3, 20), (16, 3, 19), respectively),
    i + [(12, 27, 30), (30, 33, 16), (16, 29, 32), (32, 35, 20), (20, 23, 9), (9, 44, 12)]
(edges having difference triplets (15, 3, 18), (14, 3, 17), (13, 3, 16), (12, 3, 15), (11, 3, 14), (10, 3, 13), respectively),
    i + [(12, 9, 0), (0, 3, 37), (37, 40, 30), (30, 33, 24), (24, 27, 19), (19, 16, 12)]
(edges having difference triplets (9, 3, 12), (8, 3, 11), (7, 3, 10), (6, 3, 9), (5, 3, 8), (4, 3, 7), respectively),
    i + [(22, 18, 14), (14, 10, 19), (19, 23, 29), (29, 33, 40), (40, 3, 36), (36, 26, 22)]
(edges having difference triplets (4, 4, 8), (4, 5, 9), (4, 6, 10), (4, 7, 11), (4, 8, 12), (4, 10, 14), respectively),
    i + [(4,0,13),(13,17,28),(28,32,44),(44,3,16),(16,12,30),(30,34,4)]
```

```
(edges having difference triplets (4, 9, 13), (4, 11, 15), (4, 12, 16), (4, 13, 17), (4, 14, 18), (4, 15, 19), respectively),
    i + [(24, 40, 20), (20, 16, 37), (37, 10, 33), (33, 29, 7), (7, 32, 28), (28, 4, 24)]
(edges having difference triplets (4, 16, 20), (4, 17, 21), (4, 18, 22), (4, 19, 22), (4, 20, 21), (4, 21, 20), respectively),
    i + [(4, 0, 26), (26, 30, 8), (8, 36, 12), (12, 16, 41), (41, 37, 22), (22, 18, 4)]
(edges having difference triplets (4, 22, 19), (18, 4, 22), (17, 4, 21), (16, 4, 20), (15, 4, 19), (14, 4, 18), respectively),
    i + [(41, 24, 37), (37, 4, 8), (8, 42, 12), (12, 16, 2), (2, 43, 34), (34, 0, 41)]
(edges having difference triplets (13, 4, 17), (12, 4, 16), (11, 4, 15), (10, 4, 14), (9, 4, 13), (7, 4, 11), respectively),
    i + [(4, 0, 37), (37, 41, 31), (31, 35, 26), (26, 21, 16), (16, 22, 11), (11, 44, 4)]
(edges having difference triplets (8, 4, 12), (6, 4, 10), (5, 4, 9), (5, 5, 10), (5, 6, 11), (5, 7, 12), respectively),
    i + [(8, 21, 13), (13, 18, 27), (27, 32, 42), (42, 26, 31), (31, 36, 3), (3, 22, 8)]
(edges having difference triplets (5, 8, 13), (5, 9, 14), (5, 10, 15), (5, 11, 16), (5, 12, 17), (5, 14, 19), respectively),
    i + [(5,0,18), (18,23,38), (38,17,22), (22,27,44), (44,21,26), (26,31,5)]
(edges having difference triplets (5, 13, 18), (5, 15, 20), (5, 16, 21), (5, 17, 22), (5, 18, 22), (5, 19, 21), respectively),
    i + [(20, 0, 25), (25, 30, 6), (6, 1, 28), (28, 33, 11), (11, 16, 40), (40, 35, 20)]
(edges having difference triplets (20, 20, 5), (5, 21, 19), (5, 22, 18), (17, 5, 22), (16, 5, 21), (15, 5, 20), respectively),
    i + [(12, 26, 31), (31, 36, 18), (18, 13, 1), (1, 6, 35), (35, 40, 25), (25, 20, 12)]
(edges having difference triplets (14, 5, 19), (13, 5, 18), (12, 5, 17), (11, 5, 16), (10, 5, 15), (8, 5, 13), respectively),
    i + [(21, 26, 12), (12, 5, 17), (17, 23, 28), (28, 16, 22), (22, 9, 15), (15, 29, 21)]
(edges having difference triplets (9, 5, 14), (7, 5, 12), (6, 5, 11), (6, 6, 12), (6, 7, 13), (6, 8, 14), respectively),
    i + [(24, 9, 15), (15, 21, 31), (31, 37, 3), (3, 30, 36), (36, 42, 10), (10, 4, 24)]
(edges having difference triplets (6, 9, 15), (6, 10, 16), (6, 11, 17), (6, 12, 18), (6, 13, 19), (6, 14, 20), respectively),
    i + [(6, 0, 21), (21, 15, 37), (37, 14, 20), (20, 26, 44), (44, 19, 25), (25, 31, 6)]
(edges having difference triplets (6, 15, 21), (6, 16, 22), (6, 17, 22), (6, 18, 21), (6, 19, 20), (6, 20, 19), respectively),
    i + [(22, 16, 43), (43, 15, 21), (21, 5, 27), (27, 42, 3), (3, 9, 34), (34, 40, 22)]
(edges having difference triplets (6, 21, 18), (6, 22, 17), (16, 6, 22), (15, 6, 21), (14, 6, 20), (12, 6, 18), respectively),
    i + [(20,7,26), (26,32,15), (15,9,44), (44,5,35), (35,41,27), (27,33,20)]
(edges having difference triplets (13, 6, 19), (11, 6, 17), (10, 6, 16), (9, 6, 15), (8, 6, 14), (7, 6, 13), respectively),
    i + [(35, 28, 21), (21, 14, 29), (29, 22, 38), (38, 3, 31), (31, 24, 42), (42, 9, 35)]
(edges having difference triplets (7,7,14), (7,8,15), (7,9,16), (7,10,17), (7,11,18), (7,12,19), respectively),
    i + [(21, 28, 41), (41, 20, 27), (27, 34, 4), (4, 26, 33), (33, 12, 40), (40, 2, 21)]
(edges having difference triplets (7, 13, 20), (7, 14, 21), (7, 15, 22), (7, 16, 22), (7, 17, 21), (19, 19, 7), respectively),
    i + [(25, 0, 7), (7, 34, 14), (14, 42, 21), (21, 28, 5), (5, 35, 12), (12, 32, 25)]
(edges having difference triplets (7, 18, 20), (7, 20, 18), (7, 21, 17), (7, 22, 16), (15, 7, 22), (13, 7, 20), respectively),
    i + [(31, 0, 7), (7, 14, 40), (40, 6, 13), (13, 20, 3), (3, 10, 39), (39, 1, 31)]
(edges having difference triplets (14,7,21), (12,7,19), (11,7,18), (10,7,17), (9,7,16), (8,7,15), respectively),
    i + [(40, 32, 24), (24, 16, 33), (33, 25, 43), (43, 35, 9), (9, 29, 17), (17, 3, 40)]
(edges having difference triplets (8, 8, 16), (8, 9, 17), (8, 10, 18), (8, 11, 19), (8, 12, 20), (8, 14, 22), respectively),
    i + [(8, 0, 21), (21, 36, 13), (13, 5, 29), (29, 37, 9), (9, 17, 35), (35, 16, 8)]
(edges having difference triplets (8, 13, 21), (8, 15, 22), (8, 16, 21), (8, 17, 20), (8, 18, 19), (8, 19, 18), respectively),
    i + [(28,0,8), (8,37,16), (16,24,1), (1,9,32), (32,19,40), (40,3,28)]
(edges having difference triplets (8, 20, 17), (8, 21, 16), (8, 22, 15), (14, 8, 22), (13, 8, 21), (12, 8, 20), respectively),
    i + [(17, 9, 43), (43, 8, 16), (16, 7, 24), (24, 15, 6), (6, 32, 41), (41, 5, 17)]
(edges having difference triplets (11, 8, 19), (10, 8, 18), (9, 8, 17), (9, 9, 18), (9, 10, 19), (9, 12, 21), respectively),
    i + [(38, 27, 18), (18, 9, 31), (31, 22, 0), (0, 21, 30), (30, 39, 10), (10, 29, 38)]
(edges having difference triplets (9, 11, 20), (9, 13, 22), (9, 14, 22), (9, 15, 21), (9, 16, 20), (9, 17, 19), respectively),
    i + [(19, 1, 37), (37, 9, 18), (18, 34, 43), (43, 7, 28), (28, 6, 42), (42, 10, 19)]
(edges having difference triplets (18, 18, 9), (9, 19, 17), (9, 20, 16), (9, 21, 15), (9, 22, 14), (13, 9, 22), respectively),
    i + [(6,30,42),(42,33,22),(22,31,12),(12,2,37),(37,26,16),(16,28,6)]
(edges having difference triplets (12, 9, 21), (11, 9, 20), (10, 9, 19), (10, 10, 20), (10, 11, 21), (10, 12, 22),
respectively),
```

i + [(26,3,13), (13,23,37), (37,27,7), (7,17,33), (33,6,16), (16,44,26)] (edges having difference triplets (10,13,22), (10,14,21), (10,15,20), (10,16,19), (10,17,18), (10,18,17),

```
respectively),
    i + [(29, 0, 10), (10, 40, 20), (20, 30, 6), (6, 28, 41), (41, 31, 19), (19, 8, 29)]
(edges having difference triplets (10, 19, 16), (10, 20, 15), (10, 21, 14), (10, 22, 13), (12, 10, 22), (11, 10, 21),
    i + [(20, 9, 31), (31, 8, 19), (19, 30, 43), (43, 32, 12), (12, 23, 38), (38, 4, 20)]
(edges having difference triplets (11, 11, 22), (11, 12, 22), (11, 13, 21), (11, 14, 20), (11, 15, 19), (11, 16, 18),
respectively),
    i + [(28, 0, 11), (11, 22, 40), (40, 21, 10), (10, 44, 30), (30, 41, 17), (17, 5, 28)]
(edges having difference triplets (17, 17, 11), (11, 18, 16), (11, 19, 15), (11, 20, 14), (11, 21, 13), (11, 22, 12),
respectively),
    i + [(12, 0, 24), (24, 36, 4), (4, 16, 30), (30, 3, 15), (15, 43, 27), (27, 39, 12)]
(edges having difference triplets (12, 12, 21), (12, 13, 20), (12, 14, 19), (12, 15, 18), (12, 16, 17), (12, 18, 15),
respectively),
    i + [(7, 40, 24), (24, 12, 43), (43, 10, 30), (30, 4, 17), (17, 3, 35), (35, 21, 7)]
(edges having difference triplets (12, 17, 16), (12, 19, 14), (12, 20, 13), (13, 13, 19), (13, 14, 18), (14, 14, 17),
respectively),
    i + [(43, 11, 26), (26, 39, 10), (10, 23, 40), (40, 27, 13), (13, 44, 28), (28, 12, 43)]
(edges having difference triplets (13, 15, 17), (16, 16, 13), (13, 17, 15), (13, 18, 14), (14, 15, 16), (16, 15, 14),
respectively).
    Remaining triplets are: (1,5,6), (1,10,11), (1,15,16), (6,1,7), (7,1,8), (8,1,9), (9,1,10), (11,1,12), (19,1,20)
and (15, 15, 15).
    For each j \in \mathbb{Z}_{45} \setminus \{44\}, consider
    i + [(39, 33, 40), (40, 2, 3), (3, 37, 4), (4, 13, 14), (14, 22, 23), (23, 24, 39)]
(edges having difference triplets (6, 1, 7), (7, 1, 8), (11, 1, 12), (9, 1, 10), (8, 1, 9), (1, 15, 16), respectively).
    Remaining edges are: {38,32,39}, {39,1,2}, {2,36,3}, {3,12,13}, {13,21,22} and {22,23,38} and edges of
the triplets: (1, 5, 6), (1, 10, 11), (19, 1, 20) and (15, 15, 15).
   Finally, consider the following 26 LC_6^{(3)}'s containing these 156 edges. [(0,11,1),(1,27,2),(2,13,3),(3,14,4),(4,5,15),(15,30,0)],
    [(5, 16, 6), (6, 17, 7), (7, 18, 8), (8, 19, 9), (9, 10, 20), (20, 35, 5)],
    [(21, 10, 11), (11, 17, 12), (12, 23, 13), (13, 24, 14), (14, 25, 15), (15, 16, 21)],
    [(16, 27, 17), (17, 28, 18), (18, 29, 19), (19, 0, 20), (20, 21, 31), (31, 1, 16)],
    [(21, 32, 22), (22, 33, 23), (23, 34, 24), (24, 35, 25), (25, 26, 36), (36, 6, 21)],
    [(26,37,27),(27,38,28),(28,39,29),(29,35,30),(30,31,41),(41,11,26)],
    [(32,43,33),(33,44,34),(34,15,35),(35,1,36),(36,37,2),(2,17,32)],
    [(43,4,44),(44,0,5),(5,39,40),(40,6,41),(41,7,42),(42,3,43)],
    [(3, 29, 4), (4, 30, 5), (5, 31, 6), (6, 32, 7), (7, 8, 33), (33, 18, 3)],
    [(8,34,9),(9,35,10),(10,36,11),(11,37,12),(12,13,38),(38,23,8)],
    [(13, 39, 14), (14, 40, 15), (15, 26, 16), (16, 42, 17), (17, 18, 43), (43, 28, 13)],
    [(30, 19, 20), (20, 1, 21), (21, 2, 22), (22, 3, 23), (23, 4, 24), (24, 25, 30)],
    [(24, 5, 25), (25, 6, 26), (26, 7, 27), (27, 8, 28), (28, 29, 9), (9, 39, 24)],
    [(14, 44, 29), (29, 10, 30), (30, 11, 31), (31, 37, 32), (32, 13, 33), (33, 34, 14)],
    [(0,6,1),(1,7,2),(2,28,3),(3,9,4),(4,5,10),(10,44,0)],
    [(6, 12, 7), (7, 13, 8), (8, 14, 9), (9, 15, 10), (10, 16, 11), (11, 5, 6)],
    [(18, 12, 13), (13, 19, 14), (14, 20, 15), (15, 41, 16), (16, 22, 17), (17, 23, 18)],
    [(24, 18, 19), (19, 25, 20), (20, 26, 21), (21, 27, 22), (22, 28, 23), (23, 29, 24)],
    [(40, 10, 25), (25, 31, 26), (26, 32, 27), (27, 33, 28), (28, 34, 29), (29, 30, 40)],
    [(36,30,31),(31,12,32),(32,38,33),(33,39,34),(34,40,35),(35,41,36)],
    [(42, 36, 37), (37, 3, 38), (38, 4, 39), (39, 0, 40), (40, 1, 41), (41, 2, 42)],
    [(39, 20, 40), (40, 21, 41), (41, 22, 42), (42, 23, 43), (43, 24, 44), (44, 38, 39)],
    [(34,0,35),(35,16,36),(36,17,37),(37,38,18),(18,44,19),(19,4,34)],
```

[(1, 12, 2), (2, 3, 8), (8, 42, 43), (43, 9, 44), (44, 25, 0), (0, 26, 1)],

```
[(32,39,38),(38,43,37),(37,7,22),(22,11,12),(12,27,42),(42,31,32)],
[(38,19,39),(39,1,2),(2,36,3),(3,12,13),(13,21,22),(22,23,38)].
```

3. Loose 6-cycle decompositions of complete bipartite 3-uniform hypergraphs

For disjoint sets X and Y, the hypergraph with vertex set $X \cup Y$ and edge set consisting of all 3-sets having at most 2 vertices in each of X and Y is denoted either by $K_{X,Y}^{(3)}$ or by $K_{|X|,|Y|}^{(3)}$. We partition the edge set of $K_{X,Y}^{(3)}$ into two sets one consisting of all 3-sets having exactly 2 vertices in X and the other consisting of all 3-sets having exactly 2 vertices in Y. We denote the subhypergraph induced by the former edge set by $K_{X,\overline{Y}}^{(3)}$ or by $K_{|X|,|\overline{Y}|}^{(3)}$ and the latter by $K_{\overline{X},Y}^{(3)}$ or $K_{\overline{X},Y}^{(3)}$. Clearly, $K_{X,Y}^{(3)} = K_{\overline{X},\overline{Y}}^{(3)} \oplus K_{\overline{X},Y}^{(3)}$.

Lemma 3.1. $LC_6^{(3)} \mid K_{6.6}^{(3)}$.

Proof. Consider the complete graph K_6 with vertex set \mathbb{Z}_6 . Decompose K_6 into two copies of C_6 : (0,2,1,5,3,4,0), (0,3,1,4,2,5,0) and a 1-factor: $\{01,23,45\}$.

Now, consider $K_{6,6}^{(3)} = K_{X,Y}^{(3)}$ with $X = \{x_0, x_1, \dots, x_5\}$ and $Y = \{y_0, y_1, \dots, y_5\}$. By above, decompose each of the complete graphs K_X and K_Y into two copies of C_6 and a 1-factor:

```
K_X = (x_0, x_2, x_1, x_5, x_3, x_4, x_0) \oplus (x_0, x_3, x_1, x_4, x_2, x_5, x_0) \oplus \{x_0x_1, x_2x_3, x_4x_5\},
K_Y = (y_0, y_2, y_1, y_5, y_3, y_4, y_0) \oplus (y_0, y_3, y_1, y_4, y_2, y_5, y_0) \oplus \{y_0y_1, y_2y_3, y_4y_5\}.
From each of the above C_6's, we produce \operatorname{six} LC_6^{(3)}'s \operatorname{in} K_{X,Y}^{(3)} as follows:
[(x_0, y_i, x_2), (x_2, y_{i+1}, x_1), (x_1, y_{i+2}, x_5), (x_5, y_{i+3}, x_3), (x_3, y_{i+4}, x_4), (x_4, y_{i+5}, x_0)],
[(x_0, y_i, x_3), (x_3, y_{i+1}, x_1), (x_1, y_{i+2}, x_4), (x_4, y_{i+3}, x_2), (x_2, y_{i+4}, x_5), (x_5, y_{i+5}, x_0)],
[(y_0, x_i, y_2), (y_2, x_{i+1}, y_1), (y_1, x_{i+2}, y_5), (y_5, x_{i+3}, y_3), (y_3, x_{i+4}, y_4), (y_4, x_{i+5}, y_0)],
[(y_0, x_i, y_3), (y_3, x_{i+1}, y_1), (y_1, x_{i+2}, y_4), (y_4, x_{i+3}, y_2), (y_2, x_{i+4}, y_5), (y_5, x_{i+5}, y_0)],
where i \in \mathbb{Z}_6.

From the two 1-factors, we produce \operatorname{six} LC_6^{(3)}'s \operatorname{in} K_{X,Y}^{(3)} as follows:
[(x_0, x_1, y_j), (y_j, y_{j+1}, x_2), (x_2, x_3, y_{j+2}), (y_{j+2}, y_{j+3}, x_4), (x_4, x_5, y_{j+4}), (y_{j+4}, y_{j+5}, x_0)],
where j \in \{0, 2, 4\};
[(x_1, x_0, y_k), (y_k, y_{k+5}, x_3), (x_3, x_2, y_{k+2}), (y_{k+2}, y_{k+1}, x_5), (x_5, x_4, y_{k+4}), (y_{k+4}, y_{k+3}, x_1)],
```

where $k \in \{1, 3, 5\}$. The collection of these loose 6-cycles yield the required decomposition of $K_{6.6}^{(3)}$. \square

Lemma 3.2. $LC_6^{(3)} \mid K_{10.18}^{(3)}$

```
Proof. Since K_{10,18}^{(3)} = K_{10,\overline{18}}^{(3)} \oplus K_{\overline{10},18}^{(3)}, it is enough to show that LC_6^{(3)} \mid K_{10,\overline{18}}^{(3)} and LC_6^{(3)} \mid K_{\overline{10},18}^{(3)}. Let X = \{x_i | i \in \mathbb{Z}_{10}\}. First, consider K_{10,\overline{18}}^{(3)} = K_{\overline{X,Y'}}^{(3)} with Y' = \{y_j | j \in \mathbb{Z}_{18}\}. We use the (Hamilton path) P_{10}-decomposition \{x_i x_{1+i} x_{9+i} x_{2+i} x_{8+i} x_{3+i} x_{7+i} x_{4+i} x_{6+i} x_{5+i} : i = 0, 1, 2, 3, 4\}
```

```
of the complete graph K_{10} = K_X. Following LC_6^{(3)}'s decompose K_{X,Y}^{(3)}: [(y_1, x_i, x_{1+i}), (x_{1+i}, y_2, x_{9+i}), (x_{9+i}, y_3, x_{2+i}), (x_{2+i}, y_4, x_{8+i}), (x_{8+i}, y_5, x_{3+i}), (x_{3+i}, x_{7+i}, y_1)], [(y_2, x_i, x_{1+i}), (x_{1+i}, y_3, x_{9+i}), (x_{9+i}, y_{12}, x_{2+i}), (x_{2+i}, y_0, x_{8+i}), (x_{8+i}, y_6, x_{3+i}), (x_{3+i}, x_{7+i}, y_2)], [(y_9, x_i, x_{1+i}), (x_{1+i}, y_4, x_{9+i}), (x_{9+i}, y_5, x_{2+i}), (x_{2+i}, y_{13}, x_{8+i}), (x_{8+i}, y_3, x_{3+i}), (x_{3+i}, x_{7+i}, y_9)], [(y_4, x_i, x_{1+i}), (x_{1+i}, y_5, x_{9+i}), (x_{9+i}, y_6, x_{2+i}), (x_{2+i}, y_7, x_{8+i}), (x_{8+i}, y_8, x_{3+i}), (x_{3+i}, x_{7+i}, y_4)], [(x_{7+i}, y_6, x_{4+i}), (x_{4+i}, y_{13}, x_{6+i}), (x_{6+i}, x_{5+i}, y_9), (y_9, x_{2+i}, x_{8+i}), (x_{8+i}, y_{10}, x_{3+i}), (x_{3+i}, y_{11}, x_{7+i})], [(x_{7+i}, y_8, x_{4+i}), (x_{4+i}, y_{13}, x_{6+i}), (x_{6+i}, x_{5+i}, y_{10}), (y_{10}, x_{2+i}, x_{8+i}), (x_{8+i}, y_{11}, x_{3+i}), (x_{3+i}, y_{12}, x_{7+i})], [(x_{7+i}, y_9, x_{4+i}), (x_{4+i}, y_{15}, x_{6+i}), (x_{6+i}, x_{5+i}, y_{10}), (y_{10}, x_{2+i}, x_{8+i}), (x_{8+i}, y_{11}, x_{3+i}), (x_{3+i}, y_{12}, x_{7+i})], [(x_{7+i}, y_9, x_{4+i}), (x_{4+i}, y_{15}, x_{6+i}), (x_{6+i}, x_{5+i}, y_{11}), (y_{11}, x_{2+i}, x_{8+i}), (x_{8+i}, y_{12}, x_{3+i}), (x_{3+i}, y_{13}, x_{7+i})], [(x_{7+i}, y_{16}, x_{4+i}), (x_{4+i}, y_{7}, x_{6+i}), (x_{6+i}, x_{5+i}, y_{11}), (y_{11}, x_{2+i}, x_{8+i}), (x_{8+i}, y_{13}, x_{3+i}), (x_{3+i}, y_{13}, x_{7+i})], [(x_{7+i}, y_{16}, x_{4+i}), (x_{4+i}, y_{7}, x_{6+i}), (x_{6+i}, x_{5+i}, y_{11}), (y_{11}, x_{2+i}, x_{8+i}), (x_{8+i}, y_{13}, x_{3+i}), (x_{3+i}, y_{13}, x_{7+i})], [(x_{7+i}, y_{16}, x_{4+i}), (x_{4+i}, y_{7}, x_{6+i}), (x_{6+i}, x_{5+i}, y_{12}), (y_{12}, x_{2+i}, x_{8+i}), (x_{8+i}, y_{13}, x_{3+i}), (x_{3+i}, y_{14}, x_{7+i})], [(x_{7+i}, y_{16}, x_{4+i}), (x_{4+i}, y_{7}, x_{6+i}), (x_{6+i}, x_{5+i}, y_{12}), (x_{12}, x_{2+i}, x_{8+i}), (x_{8+i}, y_{13}, x_{3+i}), (x_{3+i}, x_{7+i})], [(y_8, x_i, x_{1+i}), (x_{
```

```
[(y_{16}, x_i, x_{1+i}), (x_{1+i}, y_7, x_{9+i}), (x_{9+i}, y_8, x_{2+i}), (x_{2+i}, y_{14}, x_{8+i}), (x_{8+i}, y_{15}, x_{3+i}), (x_{3+i}, x_{7+i}, y_{16})],
[(y_{17}, x_i, x_{1+i}), (x_{1+i}, y_8, x_{9+i}), (x_{9+i}, y_9, x_{2+i}), (x_{2+i}, y_{15}, x_{8+i}), (x_{8+i}, y_{16}, x_{3+i}), (x_{3+i}, x_{7+i}, y_{17})],
[(y_5, x_i, x_{1+i}), (x_{1+i}, y_9, x_{9+i}), (x_{9+i}, y_{10}, x_{2+i}), (x_{2+i}, y_{16}, x_{8+i}), (x_{8+i}, y_{17}, x_{3+i}), (x_{3+i}, x_{7+i}, y_5)],
[(y_6, x_i, x_{1+i}), (x_{1+i}, y_{10}, x_{9+i}), (x_{9+i}, y_{11}, x_{2+i}), (x_{2+i}, y_{17}, x_{8+i}), (x_{8+i}, y_0, x_{3+i}), (x_{3+i}, x_{7+i}, y_6)],
[(y_{11}, x_{7+i}, x_{4+i}), (x_{4+i}, y_{16}, x_{6+i}), (x_{6+i}, x_{5+i}, y_{13}), (y_{13}, x_{2+i}, x_{9+i}), (x_{9+i}, y_{12}, x_{1+i}), (x_{1+i}, x_i, y_{11})],
[(y_{12}, x_{7+i}, x_{4+i}), (x_{4+i}, y_8, x_{6+i}), (x_{6+i}, x_{5+i}, y_{14}), (y_{14}, x_{2+i}, x_{9+i}), (x_{9+i}, y_{13}, x_{1+i}), (x_{1+i}, x_i, y_{12})],
[(y_{13}, x_{7+i}, x_{4+i}), (x_{4+i}, y_9, x_{6+i}), (x_{6+i}, x_{5+i}, y_{15}), (y_{15}, x_{2+i}, x_{9+i}), (x_{9+i}, y_{14}, x_{1+i}), (x_{1+i}, x_i, y_{13})],
[(y_{14}, x_{7+i}, x_{4+i}), (x_{4+i}, y_{10}, x_{6+i}), (x_{6+i}, x_{5+i}, y_{16}), (y_{16}, x_{2+i}, x_{9+i}), (x_{9+i}, y_{15}, x_{1+i}), (x_{1+i}, x_i, y_{14})],
[(y_{15}, x_{7+i}, x_{4+i}), (x_{4+i}, y_{11}, x_{6+i}), (x_{6+i}, x_{5+i}, y_{17}), (y_{17}, x_{2+i}, x_{9+i}), (x_{9+i}, y_{16}, x_{1+i}), (x_{1+i}, x_i, y_{15})],
[(y_5, x_{2+i}, x_{8+i}), (x_{8+i}, y_1, x_{3+i}), (x_{3+i}, y_7, x_{7+i}), (x_{7+i}, y_3, x_{4+i}), (x_{4+i}, y_4, x_{6+i}), (x_{6+i}, x_{5+i}, y_5)],
[(y_1, x_{2+i}, x_{8+i}), (x_{8+i}, y_2, x_{3+i}), (x_{3+i}, y_{15}, x_{7+i}), (x_{7+i}, y_4, x_{4+i}), (x_{4+i}, y_5, x_{6+i}), (x_{6+i}, x_{5+i}, y_1)],
[(y_2, x_{2+i}, x_{8+i}), (x_{8+i}, y_7, x_{3+i}), (x_{3+i}, y_3, x_{7+i}), (x_{7+i}, y_5, x_{4+i}), (x_{4+i}, y_6, x_{6+i}), (x_{6+i}, x_{5+i}, y_2)],
[(y_0, x_{7+i}, x_{4+i}), (x_{4+i}, y_1, x_{6+i}), (x_{6+i}, x_{5+i}, y_7), (y_7, x_i, x_{1+i}), (x_{1+i}, y_{17}, x_{9+i}), (x_{9+i}, x_{2+i}, y_0)],
[(y_1, x_{7+i}, x_{4+i}), (x_{4+i}, y_2, x_{6+i}), (x_{6+i}, x_{5+i}, y_3), (y_3, x_i, x_{1+i}), (x_{1+i}, y_0, x_{9+i}), (x_{9+i}, x_{2+i}, y_1)],
[(y_{10}, x_i, x_{1+i}), (x_{1+i}, y_{11}, x_{9+i}), (x_{9+i}, x_{2+i}, y_4), (y_4, x_{5+i}, x_{6+i}), (x_{6+i}, y_3, x_{4+i}), (x_{4+i}, x_{7+i}, y_{10})],
[(y_2, x_{7+i}, x_{4+i}), (x_{4+i}, y_{17}, x_{6+i}), (x_{6+i}, x_{5+i}, y_0), (y_0, x_i, x_{1+i}), (x_{1+i}, y_1, x_{9+i}), (x_{9+i}, x_{2+i}, y_2)],
[(y_6, x_{2+i}, x_{8+i}), (x_{8+i}, y_4, x_{3+i}), (x_{3+i}, y_0, x_{7+i}), (x_{7+i}, y_{17}, x_{4+i}), (x_{4+i}, y_{12}, x_{6+i}), (x_{6+i}, x_{5+i}, y_6)],
where i = 0, 1, 2, 3, 4.
```

Next, consider $K_{\overline{10,18}}^{(3)} = K_{\overline{X},Y''}^{(3)}$ with $Y'' = \{y_{\infty}\} \cup \{y_k | k \in \mathbb{Z}_{17}\}$. We use the P_{10} -decomposition

 $\{y_{\infty}y_ky_{1+k}y_{16+k}y_{2+k}y_{15+k}y_{3+k}y_{14+k}y_{4+k}y_{13+k}: k \in \mathbb{Z}_{17}\}$

```
of K_{18} = K_{Y''} (decomposition arise out of a \rho-valuation of P_9). Following LC_6^{(3)}'s decompose K_{\overline{X},Y''}^{(3)}:
[(x_0, y_\infty, y_k), (y_k, x_1, y_{1+k}), (y_{1+k}, x_2, y_{16+k}), (y_{16+k}, x_9, y_{2+k}), (y_{2+k}, x_4, y_{15+k}), (y_{15+k}, y_{3+k}, x_0)],
[(x_1, y_{\infty}, y_k), (y_k, x_2, y_{1+k}), (y_{1+k}, x_7, y_{16+k}), (y_{16+k}, x_0, y_{2+k}), (y_{2+k}, x_5, y_{15+k}), (y_{15+k}, y_{3+k}, x_1)],
[(x_2, y_{\infty}, y_k), (y_k, x_3, y_{1+k}), (y_{1+k}, x_8, y_{16+k}), (y_{16+k}, x_5, y_{2+k}), (y_{2+k}, x_6, y_{15+k}), (y_{15+k}, y_{3+k}, x_2)],
[(x_3, y_\infty, y_k), (y_k, x_4, y_{1+k}), (y_{1+k}, x_9, y_{16+k}), (y_{16+k}, x_6, y_{2+k}), (y_{2+k}, x_7, y_{15+k}), (y_{15+k}, y_{3+k}, x_3)],
[(x_4, y_{\infty}, y_k), (y_k, x_5, y_{1+k}), (y_{1+k}, x_6, y_{16+k}), (y_{16+k}, x_7, y_{2+k}), (y_{2+k}, x_8, y_{15+k}), (y_{15+k}, y_{3+k}, x_4)],
[(x_8, y_{16+k}, y_{2+k}), (y_{2+k}, x_9, y_{15+k}), (y_{15+k}, x_5, y_{3+k}), (y_{3+k}, x_6, y_{14+k}), (y_{14+k}, x_7, y_{4+k}), (y_{4+k}, y_{13+k}, x_8)],
[(x_3, y_{16+k}, y_{2+k}), (y_{2+k}, x_0, y_{15+k}), (y_{15+k}, x_6, y_{3+k}), (y_{3+k}, x_7, y_{14+k}), (y_{14+k}, x_8, y_{4+k}), (y_{4+k}, y_{13+k}, x_3)],
[(x_4, y_{16+k}, y_{2+k}), (y_{2+k}, x_1, y_{15+k}), (y_{15+k}, x_7, y_{3+k}), (y_{3+k}, x_2, y_{14+k}), (y_{14+k}, x_9, y_{4+k}), (y_{4+k}, y_{13+k}, x_4)],
[(x_1, y_{16+k}, y_{2+k}), (y_{2+k}, x_2, y_{15+k}), (y_{15+k}, x_8, y_{3+k}), (y_{3+k}, x_9, y_{14+k}), (y_{14+k}, x_0, y_{4+k}), (y_{4+k}, y_{13+k}, x_1)],
[(x_2, y_{16+k}, y_{2+k}), (y_{2+k}, x_3, y_{15+k}), (y_{15+k}, x_9, y_{3+k}), (y_{3+k}, x_0, y_{14+k}), (y_{14+k}, x_1, y_{4+k}), (y_{4+k}, y_{13+k}, x_2)],
[(x_3, y_{3+k}, y_{14+k}), (y_{14+k}, x_4, y_{4+k}), (y_{4+k}, y_{13+k}, x_5), (x_5, y_{\infty}, y_k), (y_k, x_6, y_{1+k}), (y_{1+k}, y_{16+k}, x_3)],
[(x_4, y_{3+k}, y_{14+k}), (y_{14+k}, x_5, y_{4+k}), (y_{4+k}, y_{13+k}, x_6), (x_6, y_\infty, y_k), (y_k, x_7, y_{1+k}), (y_{1+k}, y_{16+k}, x_4)],
[(x_9, y_\infty, y_k), (y_k, x_0, y_{1+k}), (y_{1+k}, y_{16+k}, x_1), (x_1, y_{3+k}, y_{14+k}), (y_{14+k}, x_2, y_{4+k}), (y_{4+k}, y_{13+k}, x_9)],
[(x_0,y_{13+k},y_{4+k}),(y_{4+k},x_3,y_{14+k}),(y_{14+k},y_{3+k},x_8),(x_8,y_\infty,y_k),(y_k,x_9,y_{1+k}),(y_{1+k},y_{16+k},x_0)],
[(x_7, y_{\infty}, y_k), (y_k, x_8, y_{1+k}), (y_{1+k}, y_{16+k}, x_5), (x_5, y_{3+k}, y_{14+k}), (y_{14+k}, x_6, y_{4+k}), (y_{4+k}, y_{13+k}, x_7)],
where k \in \mathbb{Z}_{17}. \square
```

Lemma 3.3. For an integer $\ell \geq 5$, we have $LC_6^{(3)} \mid K_{\overline{\ell},36}^{(3)}$.

```
Proof. Consider K_{\overline{\ell},36}^{(3)} = K_{\overline{X},Y}^{(3)} with X = \{x_i | i \in \mathbb{Z}_\ell\} and Y = \{y_\infty\} \cup \{y_j | j \in \mathbb{Z}_{35}\}. We use the P_{19}-decomposition \{y_\infty \ y_j \ y_{j+1} \ y_{j+34} \ y_{j+2} \ y_{j+33} \ y_{j+3} \ y_{j+3} \ y_{j+5} \ y_{j+30} \ y_{j+6} \ y_{j+29} \ y_{j+7} \ y_{j+28} \ y_{j+8} \ y_{j+27} \ y_{j+9} : j \in \mathbb{Z}_{35}\} of K_{36} = K_Y. For each j \in \mathbb{Z}_{35}, we produce 3\ell loose 6-cycles of K_{\overline{\ell},36}^{(3)} as follows: [(x_i, y_\infty, y_j), (y_j, x_{i+1}, y_{j+1}), (y_{j+1}, x_{i+2}, y_{j+34}), (y_{j+34}, x_{i+3}, y_{j+2}), (y_{j+2}, x_{i+4}, y_{j+33}), (y_{j+33}, y_{j+3}, x_i)], [(x_i, y_{j+3}, y_{j+32}), (y_{j+32}, x_{i+1}, y_{j+4}), (y_{j+4}, x_{i+2}, y_{j+31}), (y_{j+31}, x_{i+3}, y_{j+5}), (y_{j+5}, x_{i+4}, y_{j+30}), (y_{j+30}, y_{j+6}, x_i)], [(x_i, y_{j+6}, y_{j+29}), (y_{j+29}, x_{i+1}, y_{j+7}), (y_{j+7}, x_{i+2}, y_{j+28}), (y_{j+28}, x_{i+3}, y_{j+8}), (y_{j+8}, x_{i+4}, y_{j+27}), (y_{j+27}, y_{j+9}, x_i)], where i \in \mathbb{Z}_\ell.
```

The collection of these 105 ℓ loose 6-cycles yield the required decomposition of $K_{\bar{\ell},36}^{(3)}$.

Lemma 3.4. For an integer $\ell \geq 5$, we have $LC_6^{(3)} \mid K_{\overline{\ell},37}^{(3)}$.

Proof. Consider $K_{\ell,37}^{(3)} = K_{\overline{X},Y}^{(3)}$ with $X = \{x_i \mid i \in \mathbb{Z}_\ell\}$ and $Y = \{y_j \mid j \in \mathbb{Z}_{37}\}$. We use the P_{19} -decomposition $\{y_j y_{j+1} y_{j+36} y_{j+2} y_{j+35} y_{j+3} y_{j+34} y_{j+4} y_{j+33} y_{j+5} y_{j+32} y_{j+6} y_{j+31} y_{j+7} y_{j+30} y_{j+8} y_{j+29} y_{j+9} y_{j+28} : j \in \mathbb{Z}_{37}\}$ of $K_{37} = K_Y$. For each $j \in \mathbb{Z}_{37}$, we produce 3ℓ loose 6-cycles of $K_{\overline{\ell},37}^{(3)}$ as follows: $[(x_i, y_j, y_{j+1}), (y_{j+1}, x_{i+1}, y_{j+36}), (y_{j+36}, x_{i+2}, y_{j+2}), (y_{j+2}, x_{i+3}, y_{j+35}), (y_{j+35}, x_{i+4}, y_{j+3}), (y_{j+3}, y_{j+34}, x_i)], [(x_i, y_{j+34}, y_{j+4}), (y_{j+4}, x_{i+1}, y_{j+33}), (y_{j+33}, x_{i+2}, y_{j+5}), (y_{j+5}, x_{i+3}, y_{j+32}), (y_{j+32}, x_{i+4}, y_{j+6}), (y_{j+6}, y_{j+31}, x_i)], [(x_i, y_{j+31}, y_{j+7}), (y_{j+7}, x_{i+1}, y_{j+30}), (y_{j+30}, x_{i+2}, y_{j+8}), (y_{j+8}, x_{i+3}, y_{j+29}), (y_{j+29}, x_{i+4}, y_{j+9}), (y_{j+9}, y_{j+28}, x_i)],$ where $i \in \mathbb{Z}_\ell$.

The collection of these 111 ℓ loose 6-cycles yield the required decomposition of $K_{\ell,37}^{(3)}$.

Lemma 3.5. *If* $C_{11} \mid K_n$, then $LC_6^{(3)} \mid K_{n,\overline{18}}^{(3)}$.

Proof. Consider $K_{n,\overline{18}}^{(3)} = K_{x,\overline{Y}}^{(3)}$ with $X = \{x_i \mid i = 1, 2, ..., n\}$ and $Y = \{y_j \mid j = 1, 2, ..., 18\}$. Let \mathscr{D} be a C_{11} -decomposition of K_n . For each $C_{11} = x_{i_1}x_{i_2}x_{i_3}x_{i_4}x_{i_5}x_{i_6}x_{i_7}x_{i_8}$ $x_{i_9}x_{i_{10}}x_{i_{11}}x_{i_1}$ in \mathscr{D} , we consider the following $LC_6^{(3)}$'s in $K_{n,\overline{18}}^{(3)}$. $[(y_1,x_{i_1},x_{i_2}),(x_{i_2},y_4,x_{i_3}),(x_{i_3},y_7,x_{i_4}),(x_{i_4},y_{10},x_{i_5}),(x_{i_5},y_{13},x_{i_6}),(x_{i_6},x_{i_7},y_{16})]$,

```
[(y_2, x_{i_1}, x_{i_2}), (x_{i_2}, y_5, x_{i_3}), (x_{i_3}, y_8, x_{i_4}), (x_{i_4}, y_{11}, x_{i_5}), (x_{i_5}, y_{14}, x_{i_6}), (x_{i_6}, x_{i_7}, y_{17})],
[(y_3, x_{i_1}, x_{i_2}), (x_{i_2}, y_6, x_{i_3}), (x_{i_3}, y_9, x_{i_4}), (x_{i_4}, y_{12}, x_{i_5}), (x_{i_5}, y_{15}, x_{i_6}), (x_{i_6}, x_{i_7}, y_{18})],
[(y_1, x_{i_2}, x_{i_3}), (x_{i_3}, y_4, x_{i_4}), (x_{i_4}, y_7, x_{i_5}), (x_{i_5}, y_{10}, x_{i_6}), (x_{i_6}, y_{13}, x_{i_7}), (x_{i_7}, x_{i_8}, y_{16})],
[(y_2, x_{i_2}, x_{i_3}), (x_{i_3}, y_5, x_{i_4}), (x_{i_4}, y_8, x_{i_5}), (x_{i_5}, y_{11}, x_{i_6}), (x_{i_6}, y_{14}, x_{i_7}), (x_{i_7}, x_{i_8}, y_{17})],
[(y_3, x_{i_2}, x_{i_3}), (x_{i_3}, y_6, x_{i_4}), (x_{i_4}, y_9, x_{i_5}), (x_{i_5}, y_{12}, x_{i_6}), (x_{i_6}, y_{15}, x_{i_7}), (x_{i_7}, x_{i_8}, y_{18})],
[(y_1, x_{i_3}, x_{i_4}), (x_{i_4}, y_4, x_{i_5}), (x_{i_5}, y_7, x_{i_6}), (x_{i_6}, y_{10}, x_{i_7}), (x_{i_7}, y_{13}, x_{i_8}), (x_{i_8}, x_{i_9}, y_{16})],
[(y_2, x_{i_3}, x_{i_4}), (x_{i_4}, y_5, x_{i_5}), (x_{i_5}, y_8, x_{i_6}), (x_{i_6}, y_{11}, x_{i_7}), (x_{i_7}, y_{14}, x_{i_8}), (x_{i_8}, x_{i_9}, y_{17})],
[(y_3, x_{i_3}, x_{i_4}), (x_{i_4}, y_6, x_{i_5}), (x_{i_5}, y_9, x_{i_6}), (x_{i_6}, y_{12}, x_{i_7}), (x_{i_7}, y_{15}, x_{i_8}), (x_{i_8}, x_{i_9}, y_{18})],
[(y_1, x_{i_4}, x_{i_5}), (x_{i_5}, y_4, x_{i_6}), (x_{i_6}, y_7, x_{i_7}), (x_{i_7}, y_{10}, x_{i_8}), (x_{i_8}, y_{13}, x_{i_9}), (x_{i_9}, x_{i_{10}}, y_{16})],
[(y_2, x_{i_4}, x_{i_5}), (x_{i_5}, y_5, x_{i_6}), (x_{i_6}, y_8, x_{i_7}), (x_{i_7}, y_{11}, x_{i_8}), (x_{i_8}, y_{14}, x_{i_9}), (x_{i_9}, x_{i_{10}}, y_{17})],
[(y_3, x_{i_4}, x_{i_5}), (x_{i_5}, y_6, x_{i_6}), (x_{i_6}, y_9, x_{i_7}), (x_{i_7}, y_{12}, x_{i_8}), (x_{i_8}, y_{15}, x_{i_9}), (x_{i_9}, x_{i_{10}}, y_{18})],
[(y_1x_{i_5}, x_{i_6}), (x_{i_6}, y_4, x_{i_7}), (x_{i_7}, y_7, x_{i_8}), (x_{i_8}, y_{10}, x_{i_9}), (x_{i_9}, y_{13}, x_{i_{10}}), (x_{i_{10}}, x_{i_{11}}, y_{16})],
[(y_2, x_{i_5}, x_{i_6}), (x_{i_6}, y_5, x_{i_7}), (x_{i_7}, y_8, x_{i_8}), (x_{i_8}, y_{11}, x_{i_9}), (x_{i_9}, y_{14}, x_{i_{10}}), (x_{i_{10}}, x_{i_{11}}, y_{17})],
[(y_3, x_{i_5}, x_{i_6}), (x_{i_6}, y_6, x_{i_7}), (x_{i_7}, y_9, x_{i_8}), (x_{i_8}, y_{12}, x_{i_9}), (x_{i_9}, y_{15}, x_{i_{10}}), (x_{i_{10}}, x_{i_{11}}, y_{18})],
[(y_1, x_{i_6}, x_{i_7}), (x_{i_7}, y_4, x_{i_8}), (x_{i_8}, y_7, x_{i_9}), (x_{i_9}, y_{10}, x_{i_{10}}), (x_{i_{10}}, y_{13}, x_{i_{11}}), (x_{i_{11}}, x_{i_1}, y_{16})],
[(y_2, x_{i_6}, x_{i_7}), (x_{i_7}, y_5, x_{i_8}), (x_{i_8}, y_8, x_{i_9}), (x_{i_9}, y_{11}, x_{i_{10}}), (x_{i_{10}}, y_{14}, x_{i_{11}}), (x_{i_{11}}, x_{i_1}, y_{17})],
[(y_3, x_{i_6}, x_{i_7}), (x_{i_7}, y_6, x_{i_8}), (x_{i_8}, y_9, x_{i_9}), (x_{i_9}, y_{12}, x_{i_{10}}), (x_{i_{10}}, y_{15}, x_{i_{11}}), (x_{i_{11}}, x_{i_1}, y_{18})],
[(y_1,x_{i_7},x_{i_8}),(x_{i_8},y_4,x_{i_9}),(x_{i_9},y_7,x_{i_{10}}),(x_{i_{10}},y_{10},x_{i_{11}}),(x_{i_{11}},y_{13},x_{i_1}),(x_{i_1},x_{i_2},y_{16})],
[(y_2, x_{i_7}, x_{i_8}), (x_{i_8}, y_5, x_{i_9}), (x_{i_9}, y_8, x_{i_{10}}), (x_{i_{10}}, y_{11}, x_{i_{11}}), (x_{i_{11}}, y_{14}, x_{i_1}), (x_{i_1}, x_{i_2}, y_{17})],
[(y_3, x_{i_7}, x_{i_8}), (x_{i_8}, y_6, x_{i_9}), (x_{i_9}, y_9, x_{i_{10}}), (x_{i_{10}}, y_{12}, x_{i_{11}}), (x_{i_{11}}, y_{15}, x_{i_1}), (x_{i_1}, x_{i_2}, y_{18})],
[(y_1, x_{i_8}, x_{i_9}), (x_{i_9}, y_4, x_{i_{10}}), (x_{i_{10}}, y_7, x_{i_{11}}), (x_{i_{11}}, y_{10}, x_{i_1}), (x_{i_1}, y_{13}, x_{i_2}), (x_{i_2}, x_{i_3}, y_{16})],
[(y_2, x_{i_8}, x_{i_9}), (x_{i_9}, y_5, x_{i_{10}}), (x_{i_{10}}, y_8, x_{i_{11}}), (x_{i_{11}}, y_{11}, x_{i_1}), (x_{i_1}, y_{14}, x_{i_2}), (x_{i_2}, x_{i_3}, y_{17})],
[(y_3, x_{i_8}, x_{i_9}), (x_{i_9}, y_6, x_{i_{10}}), (x_{i_{10}}, y_9, x_{i_{11}}), (x_{i_{11}}, y_{12}, x_{i_1}), (x_{i_1}, y_{15}, x_{i_2}), (x_{i_2}, x_{i_3}, y_{18})],
[(y_1, x_{i_9}, x_{i_{10}}), (x_{i_{10}}, y_4, x_{i_{11}}), (x_{i_{11}}, y_7, x_{i_1}), (x_{i_1}, y_{10}, x_{i_2}), (x_{i_2}, y_{13}, x_{i_3}), (x_{i_3}, x_{i_4}, y_{16})],
[(y_2, x_{i_9}, x_{i_{10}}), (x_{i_{10}}, y_5, x_{i_{11}}), (x_{i_{11}}, y_8, x_{i_1}), (x_{i_1}, y_{11}, x_{i_2}), (x_{i_2}, y_{14}, x_{i_3}), (x_{i_3}, x_{i_4}, y_{17})],
[(y_3,x_{i_9},x_{i_{10}}),(x_{i_{10}},y_6,x_{i_{11}}),(x_{i_{11}},y_9,x_{i_1}),(x_{i_1},y_{12},x_{i_2}),(x_{i_2},y_{15},x_{i_3}),(x_{i_3},x_{i_4},y_{18})],
[(y_1, x_{i_{10}}, x_{i_{11}}), (x_{i_{11}}, y_4, x_{i_1}), (x_{i_1}, y_7, x_{i_2}), (x_{i_2}, y_{10}, x_{i_3}), (x_{i_3}, y_{13}, x_{i_4}), (x_{i_4}, x_{i_5}, y_{16})],
[(y_2, x_{i_{10}}, x_{i_{11}}), (x_{i_{11}}, y_5, x_{i_1}), (x_{i_1}, y_8, x_{i_2}), (x_{i_2}, y_{11}, x_{i_3}), (x_{i_3}, y_{14}, x_{i_4}), (x_{i_4}, x_{i_5}, y_{17})],
[(y_3, x_{i_{10}}, x_{i_{11}}), (x_{i_{11}}, y_6, x_{i_1}), (x_{i_1}, y_9, x_{i_2}), (x_{i_2}, y_{12}, x_{i_3}), (x_{i_3}, y_{15}, x_{i_4}), (x_{i_4}, x_{i_5}, y_{18})],
[(y_1, x_{i_1}, x_{i_1}), (x_{i_1}, y_4, x_{i_2}), (x_{i_2}, y_7, x_{i_3}), (x_{i_3}, y_{10}, x_{i_4}), (x_{i_4}, y_{13}, x_{i_5}), (x_{i_5}, x_{i_6}, y_{16})],
[(y_2, x_{i_{11}}, x_{i_1}), (x_{i_1}, y_5, x_{i_2}), (x_{i_2}, y_8, x_{i_3}), (x_{i_3}, y_{11}, x_{i_4}), (x_{i_4}, y_{14}, x_{i_5}), (x_{i_5}, x_{i_6}, y_{17})],
[(y_3,x_{i_{11}},x_{i_1}),(x_{i_1},y_6,x_{i_2}),(x_{i_2},y_9,x_{i_3}),(x_{i_3},y_{12},x_{i_4}),(x_{i_4},y_{15},x_{i_5}),(x_{i_5},x_{i_6},y_{18})].
```

The collection of these loose 6-cycles yield the required decomposition of $K_{n,\overline{18}}^{(3)}$.

Since $K_{n,\overline{36}}^{(3)} = K_{n,\overline{18}}^{(3)} \oplus K_{n,\overline{18}}^{(3)}$, we have, by above lemma,

Lemma 3.6. *If* $C_{11} \mid K_n$, then $LC_6^{(3)} \mid K_{n,\overline{36}}^{(3)}$

Lemma 3.7. $LC_6^{(3)}|K_{11,36}^{(3)}$.

Proof. Write $K_{11,36}^{(3)}$ as $K_{11,36}^{(3)} \oplus K_{\overline{11},36}^{(3)}$. By Lemma 3.3, $LC_6^{(3)} | K_{\overline{11},36}^{(3)}$. As $C_{11} | K_{11}$, by Lemma 3.6, $LC_6^{(3)} | K_{\overline{11},\overline{36}}^{(3)}$. Hence, $LC_6^{(3)} | K_{11,36}^{(3)}$.

Lemma 3.8. $LC_6^{(3)}|K_{36,37}^{(3)}$

Proof. Write $K_{36,37}^{(3)}$ as $K_{36,\overline{37}}^{(3)} \oplus K_{\overline{36},37}^{(3)}$. By Lemmas 3.3 and 3.4, we have, respectively, $LC_6^{(3)} \mid K_{36,\overline{37}}^{(3)}$ and $LC_6^{(3)} \mid K_{\overline{36},37}^{(3)}$. Hence, $LC_6^{(3)} \mid K_{36,37}^{(3)}$.

Lemma 3.9. $LC_6^{(3)}|K_{36.45}^{(3)}$.

Proof. Write $K_{36,45}^{(3)}$ as $K_{36,45}^{(3)} \oplus K_{\overline{36},45}^{(3)}$. By Lemma 3.3, $LC_6^{(3)} \mid K_{36,\overline{45}}^{(3)}$. By Lemma 3.6, $LC_6^{(3)} \mid K_{\overline{36},45}^{(3)}$, if $C_{11} \mid K_{45}$. The existence of the decomposition $C_{11} \mid K_{45}$ follows from the result of Sajna [13]: "Let n be an odd integer and m be an even integer with $3 \le m \le n$. The complete graph K_n can be decomposed into cycles of length m whenever m divides the number of edges in K_n ." Hence, $LC_6^{(3)} \mid K_{36,45}^{(3)}$. \square

4. Loose 6-cycle decompositions of complete tripartite 3-uniform hypergraphs

For pairwise disjoint sets X, Y and Z, the hypergraph with vertex set $X \cup Y \cup Z$ and edge set consisting of all 3-sets having exactly one vertex in each of X, Y and Z is denoted by $K_{X,Y,Z}^{(3)}$ or $K_{|X|,|Y|,|Z|}^{(3)}$.

Lemma 4.1. If $m, n \ge 6$ are even integers, $3 \mid mn$, and $\ell \ge 5$ is an integer, then $LC_6^{(3)} \mid K_{m,n,\ell}^{(3)}$.

To prove Lemma 4.1, we use the following:

Theorem 4.2. (Truszczyński [15]). If k, m, n are positive integers with m, n even and $m \ge n$, then $K_{m,n}$ has a P_{k+1} -decomposition if and only if $m \ge \lceil \frac{k+1}{2} \rceil$, $n \ge \lceil \frac{k}{2} \rceil$ and $mn \equiv 0 \pmod k$.

Proof of Lemma 4.1.

Let $K_{m,n,\ell}^{(3)} = K_{X,Y,Z}^{(3)}$, where $X = \{x_1, \dots, x_m\}$, $Y = \{y_1, \dots, y_n\}$ and $Z = \{z_i \mid i \in \mathbb{Z}_\ell\}$. Consider the complete bipartite graph $K_{m,n}$ with bipartition (X,Y). By Theorem 4.2, $P_7 \mid K_{m,n}$. Let \mathscr{D} be one such decomposition. For each $P_7 := v_1v_2v_3v_4v_5v_6v_7$ in \mathscr{D} , construct ℓ edge-disjoint loose 6-cycles $[(z_i, v_1, v_2), (v_2, z_{i+1}, v_3), (v_3, z_{i+2}, v_4), (v_4, z_{i+3}, v_5), (v_5, z_{i+4}, v_6), (v_6, v_7, z_i)]$ of $K_{m,n,\ell}^{(3)}$, where $i \in \mathbb{Z}_\ell$. Collection of these loose 6-cycles yield a decomposition of $K_{m,n,\ell}^{(3)}$. \square

5. More loose 6-cycle decompositions

Lemma 5.1. If $n \equiv 0 \pmod{6}$, then $LC_6^{(3)} | K_{n,n}^{(3)}$.

Proof. Then, n = 6s for some integer $s \ge 1$, and therefore $K_{n,n}^{(3)} = K_{X,Y}^{(3)}$, where $X = \bigcup_{i=1}^{s} X_i$ and $Y = \bigcup_{j=1}^{s} Y_j$ be disjoint union of sets X_1, \ldots, X_s and Y_1, \ldots, Y_s , respectively, with $|X_i| = |Y_j| = 6$, where $i, j \in \{1, \ldots, s\}$. Write $K_{X,Y}^{(3)}$ as an edge-disjoint union of $K_{X_i,Y_j}^{(3)} \cong K_{6,6}^{(3)}$, $i, j \in \{1, \ldots, s\}$; $K_{X_{i_1},X_{i_2},Y_j}^{(3)} \cong K_{6,6,6}^{(3)}$, $i_1, i_2, j \in \{1, \ldots, s\}$ and $i_1 \ne i_2$; and $K_{X_i,Y_{j_1},Y_{j_2}}^{(3)} \cong K_{6,6,6}^{(3)}$, $i, j_1, j_2 \in \{1, \ldots, s\}$ and $j_1 \ne j_2$. By Lemma 3.1, $LC_6^{(3)}|K_{6,6}^{(3)}$; and by Lemma 4.1, $LC_6^{(3)}|K_{6,6}^{(3)}$. Hence, $LC_6^{(3)}|K_{n,n}^{(3)}$. □

Lemma 5.2. $LC_6^{(3)} \mid K_{36}^{(3)}$

Proof. Write $K_{36}^{(3)} = 2K_{18}^{(3)} \oplus K_{18,18}^{(3)}$. By Lemmas 2.3 and 5.1, we have, respectively, $LC_6^{(3)} \mid K_{18}^{(3)}$ and $LC_6^{(3)} \mid K_{18,18}^{(3)}$. Hence, $LC_6^{(3)} | K_{36}^{(3)}$. \square

Lemma 5.3. $LC_6^{(3)}|K_{18,20}^{(3)}|$

Proof. Write $K_{18,20}^{(3)} \cong K_{20,18}^{(3)}$ as $K_{10,18}^{(3)} \oplus K_{10,18}^{(3)} \oplus K_{10,10,18}^{(3)}$. By Lemmas 3.2 and 4.1, we have, respectively, $LC_6^{(3)} \mid K_{10,18}^{(3)}$ and $LC_6^{(3)} \mid K_{18,10,10}^{(3)}$. Hence, $LC_6^{(3)} \mid K_{18,20}^{(3)}$.

Lemma 5.4. $LC_6^{(3)}|K_{18,28}^{(3)}$.

Proof. Write $K_{18,28}^{(3)} \cong K_{28,18}^{(3)}$ as $K_{10,18}^{(3)} \oplus K_{18,18}^{(3)} \oplus K_{10,18,18}^{(3)}$. By Lemmas 3.2, 5.1 and 4.1, we have, respectively, $LC_6^{(3)} \mid K_{10,18}^{(3)}, LC_6^{(3)} \mid K_{18,18}^{(3)}$ and $LC_6^{(3)} \mid K_{10,18,18}^{(3)}$. Hence, $LC_6^{(3)} \mid K_{18,28}^{(3)}$.

Lemma 5.5. $LC_6^{(3)}|K_{1836}^{(3)}$.

Proof. Write $K_{18,36}^{(3)}$ as $K_{18,18}^{(3)} \oplus K_{18,18}^{(3)} \oplus K_{18,18,18}^{(3)}$. By Lemmas 5.1 and 4.1, we have, respectively, $LC_6^{(3)} \mid K_{18,18}^{(3)}$ and $LC_6^{(3)} \mid K_{18,18,18}^{(3)}$. Hence, $LC_6^{(3)} \mid K_{18,36}^{(3)}$.

Lemma 5.6. $LC_6^{(3)}|K_{29,36}^{(3)}|$

Proof. Write $K_{29,36}^{(3)}$ as $K_{11,36}^{(3)} \oplus K_{18,36}^{(3)} \oplus K_{11,18,36}^{(3)}$. By Lemmas 3.7, 5.5 and 4.1, we have, respectively, $LC_6^{(3)} \mid K_{11,36}^{(3)} \cap LC_6^{(3)} \mid K_{18,36}^{(3)} \cap LC_6^{(3)} \mid K_{18,36,11}^{(3)}$. Hence, $LC_6^{(3)} \mid K_{29,36}^{(3)}$. □

6. Proof of Theorem 1.1

The proof of the necessity is obvious. The congruence in the necessary condition follows from the divisibility condition $6 \mid \binom{n}{3}$. Now, we prove the sufficiency. We consider three cases.

Case 1. $n = 18k + \ell$, where $\ell \in \{0, 2, 10\}$.

Then, $K_{10}^{(3)} = K_{18k+\ell}^{(3)} = K_{18k+\ell}^{(3)}$, where $X = X_0 \cup X_1 \cup X_2 \cup \cdots \cup X_{k-1}$ be pairwise disjoint union of sets $X_0, X_1, X_2, \ldots, X_{k-1}$ with $|X_0| = 18 + \ell$ and $|X_1| = |X_2| = \ldots = |X_{k-1}| = 18$. Write $K_X^{(3)}$ as an edge-disjoint union of $K_{X_0}^{(3)} \cong K_{18+\ell}^{(3)}, K_{X_i}^{(3)} \cong K_{18,18+\ell}^{(3)}, K_{X_{i_1}X_{i_2}}^{(3)} \cong K_{18,18,18+\ell}^{(3)}$ $K_{X_{i_1},X_{i_2},X_{i_3}}^{(3)} \cong K_{18,18,18}^{(3)}$, where $i, i_1, i_2, i_3 \in \{1,2,\ldots,k-1\}, i_1 \neq i_2, i_1 \neq i_3 \text{ and } i_2 \neq i_3$. By Lemmas 2.3, 2.4 and 2.5, we have, respectively, $LC_6^{(3)} \mid K_{18}^{(3)}, LC_6^{(3)} \mid K_{20}^{(3)}$ and $LC_6^{(3)} \mid K_{28}^{(3)}$. By Lemmas 5.1, 5.3 and 5.4, we have, respectively, $LC_6^{(3)} \mid K_{18,18}^{(3)}, LC_6^{(3)} \mid K_{18,20}^{(3)}$ and $LC_6^{(3)} \mid K_{18,28}^{(3)}$. By Lemma 4.1, $LC_6^{(3)} \mid K_{18,18,18+\ell}^{(3)}, \ell \in \{0, 2, 10\}$. Case 2. $n = 36k + \ell$, where $\ell \in \{1, 9\}$.

Then, $K_n^{(3)} = K_{36k+\ell}^{(3)} = K_X^{(3)}$, where $X = X_0 \cup X_1 \cup X_2 \cup \cdots \cup X_{k-1}$ be pairwise disjoint union of

sets X_0 , X_1 , X_2 , ..., X_{k-1} with $|X_0| = 36 + \ell$ and $|X_1| = |X_2| = ... = |X_{k-1}| = 36$. Write $K_X^{(3)}$ as an edge-disjoint union of $K_{X_0}^{(3)} \cong K_{36+\ell}^{(3)}$, $K_{X_i}^{(3)} \cong K_{36}^{(3)}$, $K_{X_i,X_0}^{(3)} \cong K_{36,36+\ell}^{(3)}$, $K_{X_{i_1},X_{i_2}}^{(3)} \cong K_{36,36,36}^{(3)}$, where i, i_1 , i_2 , $i_3 \in \{1,2,...,k-1\}$, $i_1 \neq i_2$, $i_1 \neq i_3$ and $i_2 \neq i_3$. By Lemmas 5.2, 2.2 and 2.6, we have, respectively, $LC_6^{(3)} \mid K_{36}^{(3)}, LC_6^{(3)} \mid K_{36}^{(3)}, LC_6^{(3)} \mid K_{36,45}^{(3)}$ and $LC_6^{(3)} \mid K_{45}^{(3)}$. By Lemmas 5.1, 3.8 and 3.9, we have, respectively, $LC_6^{(3)} \mid K_{36,36}^{(3)}, LC_6^{(3)} \mid K_{36,37}^{(3)}$ and $LC_6^{(3)} \mid K_{36,45}^{(3)}$. By Lemma 4.1, $LC_6^{(3)} \mid K_{36,36,36+\ell}^{(3)}, \ell \in \{0,1,9\}$. Case 3. n = 36k + 29.

Then, $K_n^{(3)} = K_{36k+29}^{(3)} = K_X^{(3)}$, where $X = X_0 \cup X_1 \cup X_2 \cup \cdots \cup X_k$ be pairwise disjoint union of sets

 $X_0, X_1, X_2, \dots, X_k$ with $|X_0| = 29$ and $|X_1| = |X_2| = \dots = |X_k| = 36$. Write $K_X^{(3)}$ as an edge-disjoint union

of $K_{X_0}^{(3)}\cong K_{29}^{(3)}$, $K_{X_i}^{(3)}\cong K_{36}^{(3)}$, $K_{X_i,X_0}^{(3)}\cong K_{36,29}^{(3)}$, $K_{X_{i_1},X_{i_2}}^{(3)}\cong K_{36,36}^{(3)}$, $K_{X_{i_1},X_{i_2},X_0}^{(3)}\cong K_{36,36,29}^{(3)}$, $K_{X_{i_1},X_{i_2},X_{i_3}}^{(3)}\cong K_{36,36,36}^{(3)}$, where $i,i_1,i_2,i_3\in\{1,2,\ldots,k\}, i_1\neq i_2, i_1\neq i_3$ and $i_2\neq i_3$. By Lemmas 2.1 and 5.2, we have, respectively, $LC_6^{(3)}\mid K_{36}^{(3)}\mid K_{36,36}^{(3)}$ and $LC_6^{(3)}\mid K_{36,36}^{(3)}$. By Lemmas 5.6 and 5.1, we have, respectively, $LC_6^{(3)}\mid K_{36,29}^{(3)}$ and $LC_6^{(3)}\mid K_{36,36}^{(3)}$. By Lemma 4.1, $LC_6^{(3)}\mid K_{36,36,36-\ell}^{(3)}$, $\ell\in\{0,7\}$.

In any case, $LC_m^{(3)} \mid K_n^{(3)}$. This completes the proof. \square

Declaration of competing interest

The authors declare that they have no conflict of interest.

Acknowledgment

The authors would like to thank the referee for suggestions which improved the presentation of the paper. For the first author, this research was supported by the University Grant Commission, Government of India, grant F.4-2/2006(BSR)/MA/19-20/0058 dated 23.06.2020. Also, the results were obtained when I was working as a Postdoctoral Fellow at the Department of Mathematics, Annamalai University.

References

- [1] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1979.
- [2] J.C. Bermond, Hamiltonian decompositions of graphs, directed graphs and hypergraphs, Ann. Discrete Math. 3 (1978), 21–28.
- [3] J.C. Bermond, A. Germa, M.C. Heydemann, D. Sotteau, Hypergraphes hamiltoniens, in Problémes combinatoires et théorie des graphes, (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), pp. 39–43, Colloq. Internat. CNRS, 260, CNRS, Paris, 1978.
- [4] D. Bryant, S. Herke, B. Maenhaut, W. Wannasit, Decompositions of complete 3-uniform hypergraphs into small 3-uniform hypergraphs, Australas. J. Combin. 60 (2014), 227–254.
- [5] R.C. Bunge, S.I. El-Zanati, L. Haman, C. Hatzer, K. Koe, K. Spornberger, On loose 4-cycle decompositions of complete 3-uniform hypergraphs, Bull. Inst. Combin. Appl. 87 (2019), 75–84.
- [6] R.C. Bunge, J. Jetton, M. Juarez, A. Netz, D. Roberts, P. Ward, On loose 5-cycle decompositions, packings, and coverings of λ-fold complete 3-uniform hypergraphs, Springer Proceedings in Mathematics and Statistics, to appear.
- [7] M. Gionfriddo, L. Milazzo, Z. Tuza, Hypercycle systems, Australas. J. Combin. 77 (2020), 336–354.
- [8] H. Jordon, G. Newkirk, 4-Cycle decompositions of complete 3-uniform hypergraphs, Australas. J. Combin. 71(2) (2018), 312–323.
- [9] D. Kühn, D. Osthus, Decompositions of complete uniform hypergraphs into Hamilton Berge cycles, J. Combin. Theory Ser. A 126 (2014), 128–135.
- [10] R. Lakshmi, T. Poovaragavan, Decompositions of complete 3-uniform hypergraphs into cycles of constant prime length, Opuscula Math. **40(4)** (2020), 509–516.
- [11] R. Lakshmi, T. Poovaragavan, 6-Cycle decompositions of complete 3-uniform hypergraphs, Australas. J. Combin. 80(1) (2021), 79–88.
- [12] P. Petecki, On cyclic hamiltonian decompositions of complete k-uniform hypergraphs, Discrete Math. 325 (2014), 74–76.
- [13] M. Šajna, Cycle decompositions III: Complete graphs and fixed length cycles, J. Combin. Des. 10(1) (2002), 27–78.
- [14] T. Sivakaran, R. Sampathkumar, On cycle decompositions of complete 3-uniform hypergraphs, Filomat, 39(5) (2025), 1683–1695.
- [15] M. Truszczyński, Note on the decomposition of $\lambda K_{m,n}$ ($\lambda K_{m,n}^*$) into paths, Discrete Math. 55 (1985), 89–96.
- [16] H. Verrall, Hamilton decompositions of complete 3-uniform hypergraphs, Discrete Math. 132 (1994), 333–348.