
Filomat 39:21 (2025), 7465–7481
https://doi.org/10.2298/FIL2521465S

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. The complete 3-uniform hypergraph K(3)
n of order n has a set V of cardinality n as its vertex set

and the set of all 3-element subsets of V as its edge set. For n ≥ 2, let Zn denote the set of integers modulo
n. For m > 3, let LC(3)

m denote the 3-uniform hypergraph with vertex setZ2m and edge set {{2i, 2i+ 1, 2i+ 2} :
i ∈ {0, 1, 2, . . . ,m − 1}}. Any hypergraph isomorphic to LC(3)

m is a 3-uniform loose m-cycle. Given hypergraphs
K and H , a decomposition of K into H is a partition {E1,E2, . . . ,Eb} of the edge set of K such that, for
each i ∈ {1, 2, . . . , b}, the subhypergraph induced by Ei is isomorphic to H . We show that there exists a
decomposition of K(3)

n into LC(3)
6 if and only if n ≥ 12 and n ≡ 0, 1, 2, 9, 10, 18, 20, 28 or 29 (mod 36).

1. Introduction

A hypergraph F consists of a finite nonempty set V of vertices and a set E of nonempty subsets of V
called hyperedges or simply edges.

A decomposition of a hypergraph K is a set ∆ = {H1,H2, . . . ,Hb} of subhypergraphs of K such that
E (H1) ∪ E (H2) ∪ . . . ∪ E (Hb) = E (K ) and E (Hi) ∩ E (H j) = ∅ for all i and j with 1 ≤ i < j ≤ b.We
denote this fact by K = H1 ⊕H2 ⊕ · · · ⊕Hb. It follows from the definition that

|E (H1)| + |E (H2)| + · · · + |E (Hb)| = |E (K )|.
If each element Hi of ∆ is isomorphic to a fixed hypergraph H , then Hi is called an H -block, and ∆ is called
an H -decomposition of K . In this case, we say that H decomposes K , and we write H |K . Also, in this
case, we have

b|E (H )| = |E (K )|.
Hence, a necessary condition for the existence of an H -decomposition of K is that

|E (H )| divides |E (K )|.
The degree of a vertex x in a hypergraph F is the number of edges of F containing x.
Another necessary condition for the existence of an H -decomposition of K is that

the g.c.d. of the degrees of vertices in H divides the g.c.d. of the degrees of vertices in K .
If each vertex x in a hypergraph F has the same degree, then we say that the hypergraph F is regular,

or F is k-regular if the degree of x is k.
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If for each edge e in a hypergraph F ,we have |e| = t, then F is said to be t-uniform. Thus simple graphs
are 2-uniform hypergraphs.

A cycle of length m, in a hypergraph F is a sequence of the form v1, e1, v2, e2, . . . , vm, em, v1 where
v1, v2, . . . , vm are distinct vertices and e1, e2, . . . , em are distinct edges satisfying vi, vi+1 ∈ ei for i ∈ {1, 2, . . . ,m−
1} and vm, v1 ∈ em. This cycle is known as a Berge cycle having been introduced by Berge in [1]. For
i ∈ {1, 2, . . . ,m}, if |ei| = t, then we denote this Berge cycle by BC(t)

m .
For n ≥ 2, let Zn denote the set of integers modulo n.
For m > t ≥ 2, let LC(t)

m denote the t-uniform hypergraph with vertex setZ(t−1)m and edge set {{it− i, it−
i + 1, it − i + 2, . . . , it − i + (t − 1)} : i ∈ {0, 1, . . . ,m − 1}}. Any hypergraph isomorphic to LC(t)

m is a t-uniform
loose m-cycle. In particular, for t = 3, a 3-uniform loose m-cycle LC(3)

m is a 3-uniform hypergraph with vertex
set Z2m and edge set {{2i, 2i + 1, 2i + 2} : i ∈ {0, 1, . . . ,m − 1}}.

Let F be a t-uniform hypergraph. It follows from the definitions that every loose cycle of F is a Berge
cycle of F . Observe that, for t = 2, BC(2)

m � LC(2)
m .

Let K be a t-uniform hypergraph, t ≥ 3. The necessary conditions for the existence of:
BC(t)

m -decomposition of K are |V(K )| ≥ m and m divides |E (K )|;
LC(t)

m -decomposition of K are |V(K )| ≥ (t − 1)m and m divides |E (K )|.
As every loose cycle of K is a Berge cycle of K , we have: every LC(t)

m -decomposition of K is a
BC(t)

m -decomposition of K .
A t-uniform hypergraph F = (V,E ) is said to be complete if every t-element subset of V is in E .

We denote such a hypergraph by K(t)
V or by K(t)

n if |V| = n. K(t)
n is

(n−1
t−1
)
-regular and it has

(n
t
)

edges. An
H -decomposition of K(t)

n is also known as an H -design of order n. Given a t-uniform hypergraph H , the
problem of determining all values of n for which there exists an H -design of order n is known as the
spectrum problem for H .

If K = K(t)
n , then the above necessary conditions for the existence of:

BC(t)
m -decomposition of K(t)

n are n ≥ m and m |
(n

t
)
;

LC(t)
m -decomposition of K(t)

n are n ≥ (t − 1)m and m |
(n

t
)
.

Assume 3 ≤ t < n. A BC(t)
n of K(t)

n is called a Hamilton cycle of K(t)
n and a BC(t)

n -decomposition of K(t)
n is

called a Hamilton cycle decomposition of K(t)
n . The necessary condition for the existence of BC(t)

n |K
(t)
n is n |

(n
t
)
.

In [3], Bermond et al. conjectured that this necessary condition is sufficient and proved this conjecture for
n a prime. In [9], Kühn and Osthus, proved that for t ≥ 4 and n ≥ 30, if n |

(n
t
)
, then BC(t)

n |K
(t)
n . For t = 3,

the necessary condition n |
(n

3
)

is: n ≡ 1, 2, 4 or 5 (mod 6); in [2], Bermond proved that: if n ≡ 2, 4 or 5
(mod 6), then BC(3)

n |K
(3)
n , and in [16], Verrall proved that: if n ≡ 1 (mod 6), then BC(3)

n |K
(3)
n .

Let E (t)
n be the set of all t-element subsets of Zn, where 1 < t < n. If E ∈ E (t)

n and r ∈ Zn, let E + r be
formed by replacing each element x ∈ E with x+ r; so (r,E) 7→ E+ r mapsZn × E (t)

n into E (t)
n . It can be seen

that the groupZn acts on the set E (t)
n partitioning it intoZn-orbits, where E1, E2 ∈ E (t)

n are in the same orbit
if and only if E1 + r = E2 for some r ∈ Zn.We define [E] to be {E + r : r ∈ Zn}, which we refer to as the
Zn-orbit of E. If S ⊆ E (t)

n and r ∈ Zn, let S + r = {E + r : E ∈ S }. By clicking S , we shall mean replacing
S with S + 1.

Let H be a subhypergraph of K(t)
n , where V(K(t)

n ) = Zn and let Γ be a H -decomposition of K(t)
n . Then Γ

is said to be cyclic if Γ is closed under clicking. Thus if Hi ∈ Γ, then Hi + 1 ∈ Γ. If we partition E (t)
n into

k distinct Zn-orbits each of size n and if H is a subhypergraph of K(t)
n consisting of one edge from each k

distinct Zn-orbits, then Γ = {H + i : i ∈ Zn} is a cyclic H -decomposition of K(t)
n .

Petecki [12], showed that K(t)
n admits a cyclic Hamilton cycle decomposition if and only if 1.c.d.(n, t) = 1

and λ = min {d > 1 : d |n} > n
t .

Jordon et al. [8] proved that the necessary conditions are sufficient for the existence of a BC(3)
4 -

decomposition of K(3)
n . In [10, 11], Lakshmi and Poovaragavan proved that the necessary conditions are
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sufficient for the existence of a BC(3)
6 -decomposition of K(3)

n and for the existence of a BC(3)
p -decomposition

of K(3)
n , for p ≥ 5 is prime.

In [4], Bryant et al. proved that there exists an LC(3)
3 -decomposition of K(3)

n if and only if n ≡ 0, 1 or 2
(mod 9). Bunge et al. [5] shown that there exists an LC(3)

4 -decomposition of K(3)
n if and only if n ≡ 0, 1, 2, 4

or 6 (mod 8) and n < {4, 6}. In [6], Bunge et al. studied LC(3)
5 decompositions of K(3)

n . In [14], we have shown
that LC(3)

7 |K
(3)
n if and only if n ≥ 14 and n ≡ 0, 1 or 2 (mod 7).

In this paper, we prove:

Theorem 1.1. LC(3)
6 |K

(3)
n if and only if n ≥ 12 and n ≡ 0, 1, 2, 9, 10, 18, 20, 28, or 29 (mod 36).

For convenience, in K(3)
n ,we denote the loose 6-cycle

[(i, i+ j1, i+ j2), (i+ j2, i+ j3, i+ j4), (i+ j4, i+ j5, i+ j6), (i+ j6, i+ j7, i+ j8), (i+ j8, i+ j9, i+ j10), (i+ j10, i+ j11, i)]
by
i + [(0, j1, j2), ( j2, j3, j4), ( j4, j5, j6), ( j6, j7, j8), ( j8, j9, j10), ( j10, j11, 0)].

Graphs Kn, Cn, Pn and Km,n, respectively, denote the complete graph with n vertices, the cycle with n
(n ≥ 3) vertices, the path with n vertices and the complete bipartite graph with partite sizes m and n.

2. Loose 6-cycle decompositions of complete 3-uniform hypergraphs of small order

2.1. Difference technique
Following ‘difference technique’ method was introduced by Gionfriddo et al. [7]. Assume that the

vertices of K(3)
n are 0, 1, . . . ,n − 1 and that they are arranged in a cyclic order. The distance between vertices

i and j is defined to be

||i − j|| = min{|i − j|,n − |i − j|}.

Using this, define a difference triplet

ti, j,k = (||i − j||, || j − k||, ||k − i||)

to any three vertices i, j, k with 0 ≤ i < j < k ≤ n − 1.
Note that the ordering condition i < j < k is important in the definition. By taking t j,k,i = (|| j − k||, ||k −

i||, ||i− j||) and tk,i, j = (||k− i||, ||i− j||, || j−k||),we assume that ti, j,k = t j,k,i = tk,i, j for all choices of {i, j, k}.Moreover,
difference triplets are rotation-invariant, i.e. ti, j,k = ti+1, j+1,k+1 holds for all {i, j, k}.

From [7], we have: if n is not a multiple of 3, then there can occur two kinds of difference triplets:
• symmetric triplets: of the form (a, a, b),where 2a = b or 2a + b = n, and
• reflected triplets: of the form (a, b, c) or (a, c, b),where a + b = c or a + b + c = n, and a , b , c , a.
If n is a multiple of 3, then we have an additional triplet ( n

3 ,
n
3 ,

n
3 ).

In what follows, the decompositions are obtained by using the method of difference triplets; in particular,
when 62 divides (n − 1)(n − 2), the decompositions are cyclic.

2.2. 62 divides (n − 1)(n − 2)

Lemma 2.1. LC(3)
6 |K

(3)
29 .

Proof. Let V(K(3)
29 ) = Z29. Following LC(3)

6 ’s decompose K(3)
29 :

i + [(13, 12, 11), (11, 9, 8), (8, 5, 4), (4, 28, 0), (0, 1, 6), (6, 7, 13)]
(edges having difference triplets (1, 1, 2), (1, 2, 3), (1, 3, 4), (1, 4, 5), (1, 5, 6), (1, 6, 7), respectively),
i + [(2, 1, 9), (9, 10, 18), (18, 17, 27), (27, 8, 26), (26, 14, 15), (15, 3, 2)]
(edges having difference triplets (1, 7, 8), (1, 8, 9), (1, 9, 10), (1, 10, 11), (1, 11, 12), (1, 12, 13), respectively),
i + [(15, 1, 2), (2, 17, 3), (3, 4, 19), (19, 18, 6), (6, 23, 5), (5, 16, 15)]
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(edges having difference triplets (1, 13, 14), (14, 14, 1), (13, 1, 14), (12, 1, 13), (11, 1, 12), (10, 1, 11), respectively),
i + [(12, 11, 2), (2, 23, 3), (3, 4, 25), (25, 26, 19), (19, 18, 13), (13, 8, 12)]
(edges having difference triplets (9, 1, 10), (8, 1, 9), (7, 1, 8), (6, 1, 7), (5, 1, 6), (4, 1, 5), respectively),
i + [(1, 2, 27), (27, 26, 24), (24, 20, 22), (22, 17, 19), (19, 21, 25), (25, 23, 1)]
(edges having difference triplets (3, 1, 4), (2, 1, 3), (2, 2, 4), (2, 3, 5), (2, 4, 6), (2, 5, 7), respectively),
i + [(1, 3, 9), (9, 7, 16), (16, 6, 8), (8, 19, 10), (10, 22, 12), (12, 28, 1)]
(edges having difference triplets (2, 6, 8), (2, 7, 9), (2, 8, 10), (2, 9, 11), (2, 10, 12), (2, 11, 13), respectively),
i + [(22, 20, 5), (5, 3, 18), (18, 2, 4), (4, 21, 6), (6, 8, 24), (24, 12, 22)]
(edges having difference triplets (2, 12, 14), (2, 13, 14), (2, 14, 13), (12, 2, 14), (11, 2, 13), (10, 2, 12), respectively),
i + [(13, 11, 2), (2, 4, 23), (23, 1, 3), (3, 5, 26), (26, 24, 19), (19, 17, 13)]
(edges having difference triplets (9, 2, 11), (8, 2, 10), (7, 2, 9), (6, 2, 8), (5, 2, 7), (4, 2, 6), respectively),
i + [(28, 25, 1), (1, 4, 7), (7, 0, 3), (3, 6, 11), (11, 5, 2), (2, 9, 28)]
(edges having difference triplets (3, 2, 5), (3, 3, 6), (3, 4, 7), (3, 5, 8), (3, 6, 9), (3, 7, 10), respectively),
i + [(15, 7, 4), (4, 1, 13), (13, 0, 3), (3, 6, 17), (17, 5, 2), (2, 28, 15)]
(edges having difference triplets (3, 8, 11), (3, 9, 12), (3, 10, 13), (3, 11, 14), (3, 12, 14), (13, 13, 3), respectively),
i + [(17, 0, 3), (3, 21, 6), (6, 9, 25), (25, 16, 28), (28, 2, 20), (20, 10, 17)]
(edges having difference triplets (3, 14, 12), (11, 3, 14), (10, 3, 13), (9, 3, 12), (8, 3, 11), (7, 3, 10), respectively),
i + [(0, 3, 23), (23, 26, 18), (18, 14, 21), (21, 17, 13), (13, 8, 4), (4, 10, 0)]
(edges having difference triplets (6, 3, 9), (5, 3, 8), (4, 3, 7), (4, 4, 8), (4, 5, 9), (4, 6, 10), respectively),
i + [(0, 4, 11), (11, 7, 19), (19, 10, 6), (6, 2, 16), (16, 27, 12), (12, 25, 0)]
(edges having difference triplets (4, 7, 11), (4, 8, 12), (4, 9, 13), (4, 10, 14), (4, 11, 14), (4, 12, 13), respectively),
i + [(17, 0, 4), (4, 8, 22), (22, 7, 3), (3, 16, 12), (12, 20, 24), (24, 28, 17)]
(edges having difference triplets (4, 13, 12), (4, 14, 11), (10, 4, 14), (9, 4, 13), (8, 4, 12), (7, 4, 11), respectively),
i + [(15, 11, 5), (5, 0, 9), (9, 4, 14), (14, 25, 19), (19, 12, 7), (7, 2, 15)]
(edges having difference triplets (6, 4, 10), (5, 4, 9), (5, 5, 10), (5, 6, 11), (5, 7, 12), (5, 8, 13), respectively),
i + [(26, 2, 11), (11, 6, 21), (21, 10, 5), (5, 0, 17), (17, 1, 12), (12, 7, 26)]
(edges having difference triplets (5, 9, 14), (5, 10, 14), (5, 11, 13), (12, 12, 5), (5, 13, 11), (5, 14, 10), respectively),
i + [(14, 28, 23), (23, 18, 10), (10, 17, 22), (22, 16, 27), (27, 15, 21), (21, 8, 14)]
(edges having difference triplets (9, 5, 14), (8, 5, 13), (7, 5, 12), (6, 5, 11), (6, 6, 12), (6, 7, 13), respectively),
i + [(1, 15, 7), (7, 22, 13), (13, 19, 0), (0, 17, 6), (6, 12, 24), (24, 14, 1)]
(edges having difference triplets (6, 8, 14), (6, 9, 14), (6, 10, 13), (6, 11, 12), (6, 12, 11), (6, 13, 10), respectively),
i + [(15, 21, 6), (6, 27, 12), (12, 5, 18), (18, 4, 11), (11, 3, 25), (25, 8, 15)]
(edges having difference triplets (6, 14, 9), (8, 6, 14), (7, 6, 13), (7, 7, 14), (7, 8, 14), (7, 10, 12), respectively),
i + [(21, 28, 8), (8, 15, 26), (26, 14, 7), (7, 0, 20), (20, 27, 12), (12, 4, 21)]
(edges having difference triplets (7, 9, 13), (7, 11, 11), (7, 12, 10), (7, 13, 9), (7, 14, 8), (8, 9, 12), respectively),
i + [(0, 8, 16), (16, 24, 5), (5, 15, 23), (23, 3, 11), (11, 2, 20), (20, 10, 0)]
(edges having difference triplets (8, 8, 13), (8, 10, 11), (8, 11, 10), (8, 12, 9), (9, 9, 11), (10, 10, 9), respectively),
where i ∈ Z29.

Lemma 2.2. LC(3)
6 |K

(3)
37 .

Proof. Let V(K(3)
37 ) = Z37. Following LC(3)

6 ’s decompose K(3)
37 :

i + [(11, 12, 13), (13, 14, 16), (16, 20, 17), (17, 22, 18), (18, 24, 19), (19, 10, 11)]
(edges having difference triplets (1, 1, 2), (1, 2, 3), (1, 3, 4), (1, 4, 5), (1, 5, 6), (1, 8, 9), respectively),

i + [(18, 11, 12), (12, 4, 5), (5, 15, 6), (6, 17, 7), (7, 8, 19), (19, 31, 18)]
(edges having difference triplets (1, 6, 7), (1, 7, 8), (1, 9, 10), (1, 10, 11), (1, 11, 12), (1, 12, 13), respectively),

i + [(11, 30, 12), (12, 32, 13), (13, 34, 14), (14, 15, 36), (36, 0, 23), (23, 24, 11)]
(edges having difference triplets (1, 18, 18), (17, 1, 18), (16, 1, 17), (15, 1, 16), (13, 1, 14), (12, 1, 13), respectively),

i + [(11, 12, 0), (0, 27, 1), (1, 29, 2), (2, 31, 3), (3, 33, 4), (4, 10, 11)]
(edges having difference triplets (11, 1, 12), (10, 1, 11), (9, 1, 10), (8, 1, 9), (7, 1, 8), (6, 1, 7), respectively),

i + [(0, 32, 1), (1, 34, 2), (2, 36, 3), (3, 5, 6), (6, 8, 4), (4, 35, 0)]
(edges having difference triplets (5, 1, 6), (4, 1, 5), (3, 1, 4), (2, 1, 3), (2, 2, 4), (2, 4, 6), respectively),
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i + [(12, 10, 15), (15, 13, 20), (20, 28, 22), (22, 31, 24), (24, 16, 14), (14, 23, 12)]
(edges having difference triplets (2, 3, 5), (2, 5, 7), (2, 6, 8), (2, 7, 9), (2, 8, 10), (2, 9, 11), respectively),

i + [(22, 10, 12), (12, 25, 14), (14, 28, 16), (16, 31, 18), (18, 34, 20), (20, 0, 22)]
(edges having difference triplets (2, 10, 12), (2, 11, 13), (2, 12, 14), (2, 13, 15), (2, 14, 16), (2, 15, 17), respectively),

i + [(15, 13, 31), (31, 12, 14), (14, 34, 16), (16, 18, 0), (0, 22, 2), (2, 17, 15)]
(edges having difference triplets (2, 16, 18), (2, 17, 18), (2, 18, 17), (16, 2, 18), (15, 2, 17), (13, 2, 15), respectively),

i + [(26, 28, 12), (12, 0, 14), (14, 3, 16), (16, 18, 6), (6, 15, 17), (17, 24, 26)]
(edges having difference triplets (14, 2, 16), (12, 2, 14), (11, 2, 13), (10, 2, 12), (9, 2, 11), (7, 2, 9), respectively),

i + [(29, 0, 2), (2, 33, 4), (4, 6, 36), (36, 5, 3), (3, 1, 35), (35, 32, 29)]
(edges having difference triplets (8, 2, 10), (6, 2, 8), (5, 2, 7), (4, 2, 6), (3, 2, 5), (3, 3, 6), respectively),

i + [(3, 0, 7), (7, 10, 15), (15, 18, 24), (24, 27, 34), (34, 5, 31), (31, 28, 3)]
(edges having difference triplets (3, 4, 7), (3, 5, 8), (3, 6, 9), (3, 7, 10), (3, 8, 11), (3, 9, 12), respectively),

i + [(30, 27, 3), (3, 17, 6), (6, 21, 9), (9, 12, 25), (25, 8, 11), (11, 33, 30)]
(edges having difference triplets (3, 10, 13), (3, 11, 14), (3, 12, 15), (3, 13, 16), (3, 14, 17), (3, 15, 18), respectively),

i + [(2, 20, 23), (23, 3, 6), (6, 27, 9), (9, 31, 12), (12, 29, 26), (26, 5, 2)]
(edges having difference triplets (3, 16, 18), (3, 17, 17), (3, 18, 16), (15, 3, 18), (14, 3, 17), (13, 3, 16), respectively),

i + [(25, 0, 3), (3, 29, 6), (6, 9, 33), (33, 36, 24), (24, 27, 16), (16, 22, 25)]
(edges having difference triplets (12, 3, 15), (11, 3, 14), (10, 3, 13), (9, 3, 12), (8, 3, 11), (6, 3, 9), respectively),

i + [(27, 20, 30), (30, 35, 1), (1, 34, 4), (4, 8, 12), (12, 16, 21), (21, 17, 27)]
(edges having difference triplets (7, 3, 10), (5, 3, 8), (4, 3, 7), (4, 4, 8), (4, 5, 9), (4, 6, 10), respectively),

i + [(18, 7, 11), (11, 15, 23), (23, 27, 36), (36, 3, 13), (13, 35, 2), (2, 6, 18)]
(edges having difference triplets (4, 7, 11), (4, 8, 12), (4, 9, 13), (4, 10, 14), (4, 11, 15), (4, 12, 16), respectively),

i + [(17, 0, 4), (4, 8, 22), (22, 3, 7), (7, 27, 11), (11, 15, 32), (32, 36, 17)]
(edges having difference triplets (4, 13, 17), (4, 14, 18), (4, 15, 18), (4, 16, 17), (4, 17, 16), (4, 18, 15), respectively),

i + [(5, 19, 23), (23, 36, 3), (3, 7, 28), (28, 2, 6), (6, 10, 33), (33, 9, 5)]
(edges having difference triplets (14, 4, 18), (13, 4, 17), (12, 4, 16), (11, 4, 15), (10, 4, 14), (9, 4, 13), respectively),

i + [(0, 4, 29), (29, 36, 3), (3, 34, 7), (7, 2, 11), (11, 16, 6), (6, 32, 0)]
(edges having difference triplets (8, 4, 12), (7, 4, 11), (6, 4, 10), (5, 4, 9), (5, 5, 10), (5, 6, 11), respectively),

i + [(19, 7, 12), (12, 17, 25), (25, 30, 2), (2, 24, 29), (29, 3, 24), (24, 36, 19)]
(edges having difference triplets (5, 7, 12), (5, 8, 13), (5, 9, 14), (5, 10, 15), (5, 11, 16), (5, 12, 17), respectively),

i + [(26, 8, 13), (13, 18, 32), (32, 12, 17), (17, 22, 1), (1, 16, 21), (21, 7, 26)]
(edges having difference triplets (5, 13, 18), (5, 14, 18), (5, 15, 17), (5, 16, 16), (5, 17, 15), (5, 18, 14), respectively),

i + [(24, 0, 5), (5, 30, 10), (10, 15, 36), (36, 31, 21), (21, 7, 16), (16, 29, 24)]
(edges having difference triplets (13, 5, 18), (12, 5, 17), (11, 5, 16), (10, 5, 15), (9, 5, 14), (8, 5, 13), respectively),

i + [(0, 30, 5), (5, 36, 10), (10, 4, 16), (16, 3, 9), (9, 23, 15), (15, 6, 0)]
(edges having difference triplets (7, 5, 12), (6, 5, 11), (6, 6, 12), (6, 7, 13), (6, 8, 14), (6, 9, 15), respectively),

i + [(7, 13, 23), (23, 6, 12), (12, 30, 18), (18, 36, 5), (5, 28, 22), (22, 1, 7)]
(edges having difference triplets (6, 10, 16), (6, 11, 17), (6, 12, 18), (6, 13, 18), (6, 14, 17), (6, 15, 16), respectively),

i + [(21, 27, 6), (6, 12, 29), (29, 23, 10), (10, 16, 35), (35, 9, 15), (15, 5, 21)]
(edges having difference triplets (6, 16, 15), (6, 17, 14), (6, 18, 13), (12, 6, 18), (11, 6, 17), (10, 6, 16), respectively),

i + [(14, 23, 29), (29, 0, 6), (6, 19, 13), (13, 20, 27), (27, 34, 5), (5, 35, 14)]
(edges having difference triplets (9, 6, 15), (8, 6, 14), (7, 6, 13), (7, 7, 14), (7, 8, 15), (7, 9, 16), respectively),

i + [(3, 10, 20), (20, 27, 1), (1, 19, 26), (26, 33, 9), (9, 25, 32), (25, 18, 3)]
(edges having difference triplets (7, 10, 17), (7, 11, 18), (7, 12, 18), (7, 13, 17), (7, 14, 16), (7, 15, 15), respectively),

i + [(17, 10, 33), (33, 3, 20), (20, 8, 27), (27, 34, 16), (16, 36, 9), (9, 25, 17)]
(edges having difference triplets (7, 16, 14), (7, 17, 13), (7, 18, 12), (11, 7, 18), (10, 7, 17), (8, 8, 16), respectively),

i + [(7, 35, 14), (14, 29, 22), (22, 30, 2), (2, 20, 10), (10, 28, 36), (36, 19, 7)]
(edges having difference triplets (9, 7, 16), (8, 7, 15), (8, 9, 17), (8, 10, 18), (8, 11, 18), (8, 12, 17), respectively),

i + [(18, 10, 31), (31, 9, 17), (17, 25, 3), (3, 11, 27), (27, 19, 7), (7, 26, 18)]
(edges having difference triplets (8, 13, 16), (8, 14, 15), (8, 15, 14), (8, 16, 13), (8, 17, 12), (8, 18, 11), respectively),

i + [(1, 30, 20), (20, 29, 0), (0, 9, 18), (18, 36, 8), (8, 28, 17), (17, 26, 1)]
(edges having difference triplets (10, 8, 18), (9, 8, 17), (9, 9, 18), (9, 10, 18), (9, 11, 17), (9, 12, 16), respectively),
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i + [(14, 36, 23), (23, 32, 9), (9, 18, 33), (33, 5, 21), (21, 32, 4), (4, 24, 14)]
(edges having difference triplets (9, 13, 15), (9, 14, 14), (9, 15, 13), (9, 16, 12), (9, 17, 11), (17, 10, 10),
respectively),

i + [(10, 19, 0), (0, 27, 11), (11, 1, 23), (23, 13, 36), (36, 12, 22), (22, 32, 10)]
(edges having difference triplets (10, 9, 18), (10, 11, 16), (10, 12, 15), (10, 13, 14), (10, 14, 13), (12, 10, 15),
respectively),

i + [(0, 10, 26), (26, 4, 15), (15, 29, 3), (3, 27, 14), (14, 2, 25), (25, 13, 0)]
(edges having difference triplets (10, 16, 11), (15, 11, 11), (11, 12, 14), (11, 13, 13), (12, 11, 14), (13, 12, 12),
respectively),

i + [(0, 23, 24), (24, 25, 2), (2, 3, 18), (18, 17, 34), (34, 33, 14), (14, 15, 0)]
(edges having difference triplets (1, 13, 14), (1, 14, 15), (1, 15, 16), (1, 16, 17), (1, 17, 18), (14, 1, 15), respectively),
where i ∈ Z37.

2.3. 62 does not divide (n − 1)(n − 2)

Lemma 2.3. LC(3)
6 |K

(3)
18 .

Proof. Let V(K(3)
18 ) = Z18. Following LC(3)

6 ’s decompose K(3)
18 :

For each i ∈ Z18, consider
i + [(0, 1, 2), (2, 3, 5), (5, 6, 9), (9, 14, 10), (10, 16, 11), (11, 12, 0)]

(edges having difference triplets (1, 1, 2), (1, 2, 3), (1, 3, 4), (1, 4, 5), (1, 5, 6), (1, 6, 7), respectively),
i + [(1, 3, 5), (5, 7, 10), (10, 6, 4), (4, 2, 9), (9, 11, 17), (17, 8, 1)]

(edges having difference triplets (2, 2, 4), (2, 3, 5), (2, 4, 6), (2, 5, 7), (2, 6, 8), (2, 7, 9), respectively),
i + [(10, 0, 2), (2, 4, 13), (13, 3, 1), (1, 6, 8), (8, 14, 12), (12, 7, 10)]

(edges having difference triplets (8, 8, 2), (7, 2, 9), (6, 2, 8), (5, 2, 7), (4, 2, 6), (3, 2, 5), respectively),
i + [(15, 12, 9), (9, 6, 13), (13, 8, 5), (5, 2, 11), (11, 1, 4), (4, 7, 15)],

(edges having difference triplets (3, 3, 6), (3, 4, 7), (3, 5, 8), (3, 6, 9), (3, 7, 8), (3, 8, 7), respectively),
i + [(0, 12, 3), (3, 6, 16), (16, 2, 5), (5, 9, 1), (1, 14, 10), (10, 4, 0)]

(edges having difference triplets (3, 9, 6), (5, 3, 8), (4, 3, 7), (4, 4, 8), (4, 5, 9), (4, 6, 8), respectively),
i + [(1, 15, 8), (8, 4, 16), (16, 3, 7), (7, 12, 17), (17, 11, 6), (6, 13, 1)]

(edges having difference triplets (7, 7, 4), (4, 8, 6), (4, 9, 5), (5, 5, 8), (5, 6, 7), (5, 7, 6), respectively).
Remaining triplets are: (6, 6, 6), (1, 7, 8), (1, 8, 9), (1, 9, 8), (2, 1, 3), (3, 1, 4), (4, 1, 5), (5, 1, 6),

(6, 1, 7) and (7, 1, 8).
For each j ∈ Z18 \ {17}, consider
j + [(14, 4, 5), (5, 16, 6), (6, 7, 0), (0, 17, 12), (12, 8, 11), (11, 13, 14)]

(edges having difference triplets (1, 9, 8), (7, 1, 8), (6, 1, 7), (5, 1, 6), (3, 1, 4), (2, 1, 3), respectively).
Finally, consider the following LC(3)

6 ’s:
[(0, 8, 1), (1, 9, 2), (2, 10, 3), (3, 11, 4), (4, 5, 12), (12, 6, 0)]

(edge (12, 6, 0) is of triplet (6, 6, 6) and the remaining 5 edges are (1, 7, 8)),
[(13, 5, 6), (6, 14, 7), (7, 15, 8), (8, 4, 9), (9, 10, 0), (0, 17, 13)]

(edge (9, 10, 0) is of triplet (1, 8, 9), two edges (8, 4, 9) and (0, 17, 13) are (4, 1, 5) and the remaining
3 edges are (1, 7, 8)),

[(3, 9, 15), (15, 5, 16), (16, 6, 17), (17, 0, 7), (7, 1, 13), (13, 14, 3)]
(edges (3, 9, 15) and (7, 1, 13) are of triplet (6, 6, 6) and the remaining 4 edges are (1, 7, 8)),

[(2, 6, 7), (7, 16, 8), (8, 17, 9), (9, 5, 10), (10, 1, 11), (11, 12, 2)]
(edges (2, 6, 7) and (9, 5, 10) are of triplet (4, 1, 5) and the remaining 4 edges are (1, 8, 9)),

[(9, 13, 14), (14, 10, 15), (15, 11, 16), (16, 12, 17), (17, 8, 0), (0, 1, 9)]
(edges (17, 8, 0) and (0, 1, 9) are of triplet (1, 8, 9) and the remaining 4 edges are (4, 1, 5)),

[(3, 12, 13), (13, 4, 14), (14, 5, 15), (15, 6, 16), (16, 17, 7), (7, 8, 3)]
(edge (7, 8, 3) is of triplet (4, 1, 5) and the remaining 5 edges are (1, 8, 9)),

[(7, 6, 15), (15, 1, 2), (2, 16, 3), (3, 4, 17), (17, 5, 11), (11, 12, 7)]
(edge (17, 5, 11) is of triplet (6, 6, 6) and the remaining 5 edges are (4, 1, 5)),
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[(13, 12, 8), (8, 16, 9), (9, 17, 10), (10, 11, 6), (6, 1, 5), (5, 4, 13)]
(edge (5, 4, 13) is of triplet (1, 8, 9), two edges (8, 16, 9) and (9, 17, 10) are (1, 7, 8) and the remaining
3 edges are (4, 1, 5)),

[(14, 0, 1), (1, 10, 2), (2, 11, 3), (3, 12, 4), (4, 15, 5), (5, 6, 14)]
(edge (14, 0, 1) is of triplet (4, 1, 5), edge (4, 15, 5) is (7, 1, 8) and the remaining 4 edges are (1, 8, 9)),

[(13, 3, 4), (4, 0, 5), (5, 6, 17), (17, 16, 11), (11, 7, 10), (10, 12, 13)]
(edges having difference triplets (1, 9, 8), (4, 1, 5), (6, 1, 7), (5, 1, 6), (3, 1, 4), (2, 1, 3), respectively),

[(10, 0, 11), (11, 1, 12), (12, 13, 2), (2, 8, 14), (14, 15, 4), (4, 16, 10)]
(edges (2, 8, 14) and (4, 16, 10) are of triplet (6, 6, 6) and the remaining 4 edges are (1, 7, 8)).

Lemma 2.4. LC(3)
6 |K

(3)
20 .

Proof. Let V(K(3)
20 ) = Z20. Following LC(3)

6 ’s decompose K(3)
20 :

For each i ∈ Z20, consider
i + [(0, 1, 2), (2, 3, 5), (5, 6, 9), (9, 10, 14), (14, 8, 7), (7, 19, 0)]

(edges having difference triplets (1, 1, 2), (1, 2, 3), (1, 3, 4), (1, 4, 5), (1, 6, 7), (1, 7, 8), respectively),
i + [(1, 0, 9), (9, 8, 19), (19, 18, 10), (10, 11, 3), (3, 16, 2), (2, 17, 1)]

(edges having difference triplets (1, 8, 9), (1, 10, 9), (8, 1, 9), (7, 1, 8), (6, 1, 7), (4, 1, 5), respectively),
i + [(17, 0, 1), (1, 3, 4), (4, 6, 8), (8, 10, 13), (13, 19, 15), (15, 2, 17)]

(edges having difference triplets (3, 1, 4), (2, 1, 3), (2, 2, 4), (2, 3, 5), (2, 4, 6), (2, 5, 7), respectively),
i + [(2, 0, 8), (8, 10, 17), (17, 9, 7), (7, 18, 16), (16, 6, 4), (4, 15, 2)]

(edges having difference triplets (2, 6, 8), (2, 7, 9), (2, 8, 10), (2, 9, 9), (2, 10, 8), (7, 2, 9) respectively),
i + [(15, 9, 17), (17, 2, 4), (4, 10, 8), (8, 11, 13), (13, 16, 19), (19, 12, 15)]

(edges having difference triplets (6, 2, 8), (5, 2, 7), (4, 2, 6), (3, 2, 5), (3, 3, 6), (3, 4, 7), respectively),
i + [(0, 3, 8), (8, 5, 14), (14, 7, 4), (4, 16, 13), (13, 2, 10), (10, 17, 0)]

(edges having difference triplets (3, 5, 8), (3, 6, 9), (3, 7, 10), (3, 8, 9), (3, 9, 8), (3, 10, 7), respectively),
i + [(0, 14, 3), (3, 18, 6), (6, 2, 9), (9, 13, 5), (5, 1, 10), (10, 4, 0)]

(edges having difference triplets (6, 3, 9), (5, 3, 8), (4, 3, 7), (4, 4, 8), (4, 5, 9), (4, 6, 10), respectively),
i + [(11, 0, 4), (4, 8, 16), (16, 3, 7), (7, 13, 17), (17, 2, 6), (6, 1, 11)]

(edges having difference triplets (4, 7, 9), (4, 8, 8), (4, 9, 7), (4, 10, 6), (5, 4, 9), (5, 5, 10), respectively),
i + [(0, 11, 5), (5, 10, 17), (17, 9, 4), (4, 19, 13), (13, 1, 7), (7, 14, 0)]

(edges having difference triplets (5, 6, 9), (5, 7, 8), (5, 8, 7), (5, 9, 6), (6, 6, 8), (6, 7, 7), respectively).
Remaining triplets are: (1, 5, 6), (1, 9, 10) and (5, 1, 6).We decompose 60 edges of these 3

triplets into 10 LC(3)
6 ’s.

[(8, 2, 3), (3, 9, 4), (4, 10, 5), (5, 11, 6), (6, 12, 7), (7, 13, 8)]
(edges having difference triplet (1, 5, 6)),

[(0, 14, 15), (15, 1, 16), (16, 2, 17), (17, 3, 18), (18, 4, 19), (19, 5, 0)]
(edges having difference triplet (1, 5, 6)),

[(6, 1, 7), (7, 2, 8), (8, 3, 9), (9, 4, 10), (10, 5, 11), (11, 12, 6)]
(edges having difference triplet (5, 1, 6)),

[(14, 8, 9), (9, 19, 10), (10, 16, 11), (11, 17, 12), (12, 18, 13), (13, 3, 14)]
(edges having difference triplets (1, 5, 6), (1, 9, 10)),

[(15, 9, 10), (10, 0, 11), (11, 1, 12), (12, 2, 13), (13, 19, 14), (14, 4, 15)]
(edges having difference triplets (1, 5, 6), (1, 9, 10)),

[(0, 15, 1), (1, 11, 2), (2, 17, 3), (3, 18, 4), (4, 19, 5), (5, 6, 0)]
(edges having difference triplets (1, 9, 10), (5, 1, 6)),

[(12, 7, 13), (13, 8, 14), (14, 9, 15), (15, 5, 16), (16, 11, 17), (17, 18, 12)]
(edges having difference triplets (1, 9, 10), (5, 1, 6)),

[(16, 1, 2), (2, 12, 3), (3, 13, 4), (4, 14, 5), (5, 15, 6), (6, 7, 16)]
(edges having difference triplets (1, 9, 10), (5, 1, 6)),

[(10, 15, 16), (16, 6, 17), (17, 7, 18), (18, 8, 19), (19, 9, 0), (0, 1, 10)]
(edges having difference triplets (1, 9, 10), (5, 1, 6)),
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[(18, 13, 19), (19, 14, 0), (0, 6, 1), (1, 2, 7), (7, 17, 8), (8, 9, 18)]
(edges having difference triplets (1, 5, 6), (1, 9, 10), (5, 1, 6)).

Lemma 2.5. LC(3)
6 |K

(3)
28 .

Proof. Let V(K(3)
28 ) = Z28. Following LC(3)

6 ’s decompose K(3)
28 :

For each i ∈ Z28, consider
i + [(1, 0, 2), (2, 3, 5), (5, 6, 9), (9, 10, 14), (14, 15, 21), (21, 22, 1)]

(edges having difference triplets (1, 1, 2), (1, 2, 3), (1, 3, 4), (1, 4, 5), (1, 6, 7), (1, 7, 8), respectively),
i + [(1, 0, 9), (9, 18, 8), (8, 26, 25), (25, 12, 13), (13, 27, 14), (14, 15, 1)]

(edges having difference triplets (1, 8, 9), (1, 9, 10), (1, 10, 11), (1, 12, 13), (1, 13, 14), (1, 14, 13), respectively),
i + [(6, 19, 18), (18, 1, 2), (2, 20, 3), (3, 4, 22), (22, 21, 13), (13, 14, 6)]

(edges having difference triplets (12, 1, 13), (11, 1, 12), (10, 1, 11), (9, 1, 10), (8, 1, 9), (7, 1, 8), respectively),
i + [(7, 0, 6), (6, 5, 1), (1, 2, 26), (26, 25, 23), (23, 21, 19), (19, 9, 7)]

(edges having difference triplets (6, 1, 7), (4, 1, 5), (3, 1, 4), (2, 1, 3), (2, 2, 4), (2, 10, 12), respectively),
i + [(4, 2, 7), (7, 5, 11), (11, 13, 18), (18, 24, 16), (16, 23, 14), (14, 6, 4)]

(edges having difference triplets (2, 3, 5), (2, 4, 6), (2, 5, 7), (2, 6, 8), (2, 7, 9), (2, 8, 10), respectively),
i + [(23, 21, 4), (4, 2, 15), (15, 3, 1), (1, 16, 14), (14, 0, 12), (12, 25, 23)]

(edges having difference triplets (2, 9, 11), (2, 11, 13), (2, 12, 14), (13, 13, 2), (2, 14, 12), (11, 2, 13), respectively),
i + [(11, 13, 1), (1, 20, 3), (3, 23, 5), (5, 7, 26), (26, 6, 4), (4, 9, 11)]

(edges having difference triplets (10, 2, 12), (9, 2, 11), (8, 2, 10), (7, 2, 9), (6, 2, 8), (5, 2, 7), respectively),
i + [(0, 24, 2), (2, 27, 4), (4, 7, 10), (10, 13, 17), (17, 20, 25), (25, 6, 0)]

(edges having difference triplets (4, 2, 6), (3, 2, 5), (3, 3, 6), (3, 4, 7), (3, 5, 8), (3, 6, 9), respectively),
i + [(10, 0, 3), (3, 14, 6), (6, 18, 9), (9, 22, 12), (12, 15, 26), (26, 23, 10)]

(edges having difference triplets (3, 7, 10), (3, 8, 11), (3, 9, 12), (3, 10, 13), (3, 11, 14), (3, 12, 13), respectively),
i + [(16, 0, 3), (3, 20, 6), (6, 24, 9), (9, 21, 18), (18, 1, 26), (26, 23, 16)]

(edges having difference triplets (3, 13, 12), (3, 14, 11), (10, 3, 13), (9, 3, 12), (8, 3, 11), (7, 3, 10), respectively),
i + [(7, 4, 26), (26, 3, 6), (6, 10, 13), (13, 17, 21), (21, 2, 25), (25, 1, 7)]

(edges having difference triplets (6, 3, 9), (5, 3, 8), (4, 3, 7), (4, 4, 8), (4, 5, 9), (4, 6, 10), respectively),
i + [(5, 9, 16), (16, 4, 8), (8, 21, 12), (12, 26, 2), (2, 6, 17), (17, 1, 5)]

(edges having difference triplets (4, 7, 11), (4, 8, 12), (4, 9, 13), (4, 10, 14), (4, 11, 13), (12, 12, 4), respectively),
i + [(7, 3, 20), (20, 2, 6), (6, 10, 25), (25, 9, 5), (5, 22, 1), (1, 11, 7)]

(edges having difference triplets (4, 13, 11), (4, 14, 10), (9, 4, 13), (8, 4, 12), (7, 4, 11), (6, 4, 10), respectively),
i + [(11, 15, 6), (6, 1, 24), (24, 18, 13), (13, 8, 20), (20, 5, 25), (25, 16, 11)]

(edges having difference triplets (5, 4, 9), (5, 5, 10), (5, 6, 11), (5, 7, 12), (5, 8, 13), (5, 9, 14), respectively),
i + [(0, 23, 10), (10, 5, 21), (21, 4, 9), (9, 14, 27), (27, 22, 13), (13, 8, 0)]

(edges having difference triplets (5, 10, 13), (5, 11, 12), (5, 12, 11), (5, 13, 10), (5, 14, 9), (8, 5, 13), respectively),
i + [(20, 15, 8), (8, 3, 25), (25, 13, 19), (19, 6, 12), (12, 18, 26), (26, 7, 20)]

(edges having difference triplets (7, 5, 12), (6, 5, 11), (6, 6, 12), (6, 7, 13), (6, 8, 14), (6, 9, 13), respectively),
i + [(0, 16, 6), (6, 23, 12), (12, 18, 2), (2, 8, 21), (21, 27, 13), (13, 7, 0)]

(edges having difference triplets (6, 10, 12), (6, 11, 11), (6, 12, 10), (6, 13, 9), (6, 14, 8), (7, 6, 13), respectively),
i + [(14, 0, 7), (7, 27, 20), (20, 4, 11), (11, 1, 22), (22, 5, 15), (5, 21, 14)]

(edges having difference triplets (7, 7, 14), (7, 8, 13), (7, 9, 12), (7, 10, 11), (7, 11, 10), (7, 12, 9), respectively),
i + [(15, 23, 2), (2, 10, 18), (18, 1, 9), (9, 27, 17), (17, 26, 6), (6, 24, 15)]

(edges having difference triplets (7, 13, 8), (8, 8, 12), (8, 9, 11), (10, 10, 8), (8, 11, 9), (9, 9, 10), respectively).
Remaining triplets are: (1, 5, 6), (1, 11, 12) and (5, 1, 6).We decompose 84 edges of these 3 triplets into 14

LC(3)
6 ’s.
Let j ∈ {0, 6, 12, 18}.
j + [(2, 14, 3), (3, 9, 4), (4, 26, 27), (27, 5, 0), (0, 6, 1), (1, 7, 2)]

(first edge is of triplet (1, 11, 12) and the remaining are (1, 5, 6)),
j + [(0, 23, 1), (1, 24, 2), (2, 25, 3), (3, 26, 4), (4, 27, 5), (5, 6, 0)]

(edges having difference triplet (5, 1, 6)),
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j + [(8, 2, 3), (3, 15, 4), (4, 16, 5), (5, 17, 6), (6, 18, 7), (7, 19, 8)]
(first edge is of triplet (1, 5, 6) and the remaining are (1, 11, 12)).

Remaining two LC(3)
6 ’s are:

[(24, 19, 25), (25, 20, 26), (26, 21, 27), (27, 11, 0), (0, 22, 23), (23, 1, 24)]
(first three edges are of triplet (5, 1, 6), (27, 11, 0) is of (1, 11, 12) and the latter two are (1, 5, 6))

[(2, 24, 25), (25, 3, 26), (26, 10, 27), (27, 22, 0), (0, 12, 1), (1, 13, 2)]
(first two edges are of triplet (1, 5, 6), (27, 22, 0) is of (5, 1, 6) and the remaining three are (1, 11, 12)).

Lemma 2.6. LC(3)
6 |K

(3)
45 .

Proof. Let V(K(3)
45 ) = Z45.

Following LC(3)
6 ’s decompose K(3)

45 :
For each i ∈ Z45, consider
i + [(20, 37, 21), (21, 22, 23), (23, 24, 26), (26, 27, 30), (30, 34, 29), (29, 19, 20)]

(edges having difference triplets (1, 16, 17), (1, 1, 2), (1, 2, 3), (1, 3, 4), (1, 4, 5), (1, 9, 10), respectively),
i + [(6, 13, 7), (7, 8, 15), (15, 16, 24), (24, 25, 36), (36, 4, 37), (37, 38, 6)]

(edges having difference triplets (1, 6, 7), (1, 7, 8), (1, 8, 9), (1, 11, 12), (1, 12, 13), (1, 13, 14), respectively),
i + [(41, 36, 40), (40, 19, 20), (20, 5, 6), (6, 31, 32), (32, 13, 14), (14, 42, 41)]

(edges having difference triplets (4, 1, 5), (1, 20, 21), (1, 14, 15), (1, 19, 20), (1, 18, 19), (1, 17, 18), respectively),
i + [(18, 17, 44), (44, 22, 23), (23, 1, 24), (24, 25, 3), (3, 4, 28), (28, 29, 18)]

(edges having difference triplets (18, 1, 19), (1, 21, 22), (22, 22, 1), (21, 1, 22), (20, 1, 21), (10, 1, 11), respectively),
i + [(20, 19, 2), (2, 3, 31), (31, 30, 15), (15, 14, 0), (0, 1, 32), (32, 33, 20)]

(edges having difference triplets (17, 1, 18), (16, 1, 17), (15, 1, 16), (14, 1, 15), (13, 1, 14), (12, 1, 13), respectively),
i + [(0, 2, 7), (7, 9, 15), (15, 17, 24), (24, 26, 34), (34, 32, 43), (43, 10, 0)]

(edges having difference triplets (2, 5, 7), (2, 6, 8), (2, 7, 9), (2, 8, 10), (2, 9, 11), (2, 10, 12), respectively),
i + [(3, 9, 8), (8, 7, 4), (4, 5, 2), (2, 43, 0), (0, 40, 42), (42, 44, 3)]

(edges having difference triplets (5, 1, 6), (3, 1, 4), (2, 1, 3), (2, 2, 4), (2, 3, 5), (2, 4, 6), respectively),
i + [(2, 4, 15), (15, 13, 27), (27, 29, 42), (42, 26, 28), (28, 30, 0), (0, 18, 2)]

(edges having difference triplets (2, 11, 13), (2, 12, 14), (2, 13, 15), (2, 14, 16), (2, 15, 17), (2, 16, 18), respectively),
i + [(9, 35, 37), (37, 19, 17), (17, 15, 36), (36, 11, 34), (34, 10, 32), (32, 30, 9)]

(edges having difference triplets (2, 17, 19), (2, 18, 20), (2, 19, 21), (2, 20, 22), (2, 21, 22), (2, 22, 21), respectively),
i + [(34, 9, 11), (11, 13, 37), (37, 39, 19), (19, 21, 2), (2, 31, 4), (4, 6, 34)]

(edges having difference triplets (20, 2, 22), (19, 2, 21), (18, 2, 20), (17, 2, 19), (16, 2, 18), (15, 2, 17), respectively),
i + [(40, 9, 11), (11, 13, 43), (43, 41, 29), (29, 27, 16), (16, 18, 6), (6, 4, 40)]

(edges having difference triplets (14, 2, 16), (13, 2, 15), (12, 2, 14), (11, 2, 13), (10, 2, 12), (9, 2, 11), respectively),
i + [(43, 6, 8), (8, 10, 1), (1, 3, 40), (40, 42, 35), (35, 39, 41), (41, 38, 43)]

(edges having difference triplets (8, 2, 10), (7, 2, 9), (6, 2, 8), (5, 2, 7), (4, 2, 6), (3, 2, 5), respectively),
i + [(3, 0, 6), (6, 9, 13), (13, 16, 21), (21, 24, 30), (30, 33, 40), (40, 37, 3)]

(edges having difference triplets (3, 3, 6), (3, 4, 7), (3, 5, 8), (3, 6, 9), (3, 7, 10), (3, 8, 11), respectively),
i + [(3, 0, 12), (12, 15, 25), (25, 28, 39), (39, 42, 9), (9, 22, 6), (6, 20, 3)]

(edges having difference triplets (3, 9, 12), (3, 10, 13), (3, 11, 14), (3, 12, 15), (3, 13, 16), (3, 14, 17), respectively),
i + [(21, 36, 18), (18, 15, 34), (34, 31, 6), (6, 9, 27), (27, 24, 1), (1, 43, 21)]

(edges having difference triplets (3, 15, 18), (3, 16, 19), (3, 17, 20), (3, 18, 21), (3, 19, 22), (3, 20, 22), respectively),
i + [(18, 42, 21), (21, 24, 1), (1, 4, 27), (27, 30, 9), (9, 12, 37), (37, 34, 18)]

(edges having difference triplets (21, 21, 3) (3, 22, 20), (19, 3, 22), (18, 3, 21), (17, 3, 20), (16, 3, 19), respectively),
i + [(12, 27, 30), (30, 33, 16), (16, 29, 32), (32, 35, 20), (20, 23, 9), (9, 44, 12)]

(edges having difference triplets (15, 3, 18), (14, 3, 17), (13, 3, 16), (12, 3, 15), (11, 3, 14), (10, 3, 13), respectively),
i + [(12, 9, 0), (0, 3, 37), (37, 40, 30), (30, 33, 24), (24, 27, 19), (19, 16, 12)]

(edges having difference triplets (9, 3, 12), (8, 3, 11), (7, 3, 10), (6, 3, 9), (5, 3, 8), (4, 3, 7), respectively),
i + [(22, 18, 14), (14, 10, 19), (19, 23, 29), (29, 33, 40), (40, 3, 36), (36, 26, 22)]

(edges having difference triplets (4, 4, 8), (4, 5, 9), (4, 6, 10), (4, 7, 11), (4, 8, 12), (4, 10, 14), respectively),
i + [(4, 0, 13), (13, 17, 28), (28, 32, 44), (44, 3, 16), (16, 12, 30), (30, 34, 4)]
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(edges having difference triplets (4, 9, 13), (4, 11, 15), (4, 12, 16), (4, 13, 17), (4, 14, 18), (4, 15, 19), respectively),
i + [(24, 40, 20), (20, 16, 37), (37, 10, 33), (33, 29, 7), (7, 32, 28), (28, 4, 24)]

(edges having difference triplets (4, 16, 20), (4, 17, 21), (4, 18, 22), (4, 19, 22), (4, 20, 21), (4, 21, 20), respectively),
i + [(4, 0, 26), (26, 30, 8), (8, 36, 12), (12, 16, 41), (41, 37, 22), (22, 18, 4)]

(edges having difference triplets (4, 22, 19), (18, 4, 22), (17, 4, 21), (16, 4, 20), (15, 4, 19), (14, 4, 18), respectively),
i + [(41, 24, 37), (37, 4, 8), (8, 42, 12), (12, 16, 2), (2, 43, 34), (34, 0, 41)]

(edges having difference triplets (13, 4, 17), (12, 4, 16), (11, 4, 15), (10, 4, 14), (9, 4, 13), (7, 4, 11), respectively),
i + [(4, 0, 37), (37, 41, 31), (31, 35, 26), (26, 21, 16), (16, 22, 11), (11, 44, 4)]

(edges having difference triplets (8, 4, 12), (6, 4, 10), (5, 4, 9), (5, 5, 10), (5, 6, 11), (5, 7, 12), respectively),
i + [(8, 21, 13), (13, 18, 27), (27, 32, 42), (42, 26, 31), (31, 36, 3), (3, 22, 8)]

(edges having difference triplets (5, 8, 13), (5, 9, 14), (5, 10, 15), (5, 11, 16), (5, 12, 17), (5, 14, 19), respectively),
i + [(5, 0, 18), (18, 23, 38), (38, 17, 22), (22, 27, 44), (44, 21, 26), (26, 31, 5)]

(edges having difference triplets (5, 13, 18), (5, 15, 20), (5, 16, 21), (5, 17, 22), (5, 18, 22), (5, 19, 21), respectively),
i + [(20, 0, 25), (25, 30, 6), (6, 1, 28), (28, 33, 11), (11, 16, 40), (40, 35, 20)]

(edges having difference triplets (20, 20, 5), (5, 21, 19), (5, 22, 18), (17, 5, 22), (16, 5, 21), (15, 5, 20), respectively),
i + [(12, 26, 31), (31, 36, 18), (18, 13, 1), (1, 6, 35), (35, 40, 25), (25, 20, 12)]

(edges having difference triplets (14, 5, 19), (13, 5, 18), (12, 5, 17), (11, 5, 16), (10, 5, 15), (8, 5, 13), respectively),
i + [(21, 26, 12), (12, 5, 17), (17, 23, 28), (28, 16, 22), (22, 9, 15), (15, 29, 21)]

(edges having difference triplets (9, 5, 14), (7, 5, 12), (6, 5, 11), (6, 6, 12), (6, 7, 13), (6, 8, 14), respectively),
i + [(24, 9, 15), (15, 21, 31), (31, 37, 3), (3, 30, 36), (36, 42, 10), (10, 4, 24)]

(edges having difference triplets (6, 9, 15), (6, 10, 16), (6, 11, 17), (6, 12, 18), (6, 13, 19), (6, 14, 20), respectively),
i + [(6, 0, 21), (21, 15, 37), (37, 14, 20), (20, 26, 44), (44, 19, 25), (25, 31, 6)]

(edges having difference triplets (6, 15, 21), (6, 16, 22), (6, 17, 22), (6, 18, 21), (6, 19, 20), (6, 20, 19), respectively),
i + [(22, 16, 43), (43, 15, 21), (21, 5, 27), (27, 42, 3), (3, 9, 34), (34, 40, 22)]

(edges having difference triplets (6, 21, 18), (6, 22, 17), (16, 6, 22), (15, 6, 21), (14, 6, 20), (12, 6, 18), respectively),
i + [(20, 7, 26), (26, 32, 15), (15, 9, 44), (44, 5, 35), (35, 41, 27), (27, 33, 20)]

(edges having difference triplets (13, 6, 19), (11, 6, 17), (10, 6, 16), (9, 6, 15), (8, 6, 14), (7, 6, 13), respectively),
i + [(35, 28, 21), (21, 14, 29), (29, 22, 38), (38, 3, 31), (31, 24, 42), (42, 9, 35)]

(edges having difference triplets (7, 7, 14), (7, 8, 15), (7, 9, 16), (7, 10, 17), (7, 11, 18), (7, 12, 19), respectively),
i + [(21, 28, 41), (41, 20, 27), (27, 34, 4), (4, 26, 33), (33, 12, 40), (40, 2, 21)]

(edges having difference triplets (7, 13, 20), (7, 14, 21), (7, 15, 22), (7, 16, 22), (7, 17, 21), (19, 19, 7), respectively),
i + [(25, 0, 7), (7, 34, 14), (14, 42, 21), (21, 28, 5), (5, 35, 12), (12, 32, 25)]

(edges having difference triplets (7, 18, 20), (7, 20, 18), (7, 21, 17), (7, 22, 16), (15, 7, 22), (13, 7, 20), respectively),
i + [(31, 0, 7), (7, 14, 40), (40, 6, 13), (13, 20, 3), (3, 10, 39), (39, 1, 31)]

(edges having difference triplets (14, 7, 21), (12, 7, 19), (11, 7, 18), (10, 7, 17), (9, 7, 16), (8, 7, 15), respectively),
i + [(40, 32, 24), (24, 16, 33), (33, 25, 43), (43, 35, 9), (9, 29, 17), (17, 3, 40)]

(edges having difference triplets (8, 8, 16), (8, 9, 17), (8, 10, 18), (8, 11, 19), (8, 12, 20), (8, 14, 22), respectively),
i + [(8, 0, 21), (21, 36, 13), (13, 5, 29), (29, 37, 9), (9, 17, 35), (35, 16, 8)]

(edges having difference triplets (8, 13, 21), (8, 15, 22), (8, 16, 21), (8, 17, 20), (8, 18, 19), (8, 19, 18), respectively),
i + [(28, 0, 8), (8, 37, 16), (16, 24, 1), (1, 9, 32), (32, 19, 40), (40, 3, 28)]

(edges having difference triplets (8, 20, 17), (8, 21, 16), (8, 22, 15), (14, 8, 22), (13, 8, 21), (12, 8, 20), respectively),
i + [(17, 9, 43), (43, 8, 16), (16, 7, 24), (24, 15, 6), (6, 32, 41), (41, 5, 17)]

(edges having difference triplets (11, 8, 19), (10, 8, 18), (9, 8, 17), (9, 9, 18), (9, 10, 19), (9, 12, 21), respectively),
i + [(38, 27, 18), (18, 9, 31), (31, 22, 0), (0, 21, 30), (30, 39, 10), (10, 29, 38)]

(edges having difference triplets (9, 11, 20), (9, 13, 22), (9, 14, 22), (9, 15, 21), (9, 16, 20), (9, 17, 19), respectively),
i + [(19, 1, 37), (37, 9, 18), (18, 34, 43), (43, 7, 28), (28, 6, 42), (42, 10, 19)]

(edges having difference triplets (18, 18, 9), (9, 19, 17), (9, 20, 16), (9, 21, 15), (9, 22, 14), (13, 9, 22), respectively),
i + [(6, 30, 42), (42, 33, 22), (22, 31, 12), (12, 2, 37), (37, 26, 16), (16, 28, 6)]

(edges having difference triplets (12, 9, 21), (11, 9, 20), (10, 9, 19), (10, 10, 20), (10, 11, 21), (10, 12, 22),
respectively),

i + [(26, 3, 13), (13, 23, 37), (37, 27, 7), (7, 17, 33), (33, 6, 16), (16, 44, 26)]
(edges having difference triplets (10, 13, 22), (10, 14, 21), (10, 15, 20), (10, 16, 19), (10, 17, 18), (10, 18, 17),
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respectively),
i + [(29, 0, 10), (10, 40, 20), (20, 30, 6), (6, 28, 41), (41, 31, 19), (19, 8, 29)]

(edges having difference triplets (10, 19, 16), (10, 20, 15), (10, 21, 14), (10, 22, 13), (12, 10, 22), (11, 10, 21),
respectively),

i + [(20, 9, 31), (31, 8, 19), (19, 30, 43), (43, 32, 12), (12, 23, 38), (38, 4, 20)]
(edges having difference triplets (11, 11, 22), (11, 12, 22), (11, 13, 21), (11, 14, 20), (11, 15, 19), (11, 16, 18),
respectively),

i + [(28, 0, 11), (11, 22, 40), (40, 21, 10), (10, 44, 30), (30, 41, 17), (17, 5, 28)]
(edges having difference triplets (17, 17, 11), (11, 18, 16), (11, 19, 15), (11, 20, 14), (11, 21, 13), (11, 22, 12),
respectively),

i + [(12, 0, 24), (24, 36, 4), (4, 16, 30), (30, 3, 15), (15, 43, 27), (27, 39, 12)]
(edges having difference triplets (12, 12, 21), (12, 13, 20), (12, 14, 19), (12, 15, 18), (12, 16, 17), (12, 18, 15),
respectively),

i + [(7, 40, 24), (24, 12, 43), (43, 10, 30), (30, 4, 17), (17, 3, 35), (35, 21, 7)]
(edges having difference triplets (12, 17, 16), (12, 19, 14), (12, 20, 13), (13, 13, 19), (13, 14, 18), (14, 14, 17),
respectively),

i + [(43, 11, 26), (26, 39, 10), (10, 23, 40), (40, 27, 13), (13, 44, 28), (28, 12, 43)]
(edges having difference triplets (13, 15, 17), (16, 16, 13), (13, 17, 15), (13, 18, 14), (14, 15, 16), (16, 15, 14),
respectively).

Remaining triplets are: (1, 5, 6), (1, 10, 11), (1, 15, 16), (6, 1, 7), (7, 1, 8), (8, 1, 9), (9, 1, 10), (11, 1, 12), (19, 1, 20)
and (15, 15, 15).

For each j ∈ Z45 \ {44}, consider
j + [(39, 33, 40), (40, 2, 3), (3, 37, 4), (4, 13, 14), (14, 22, 23), (23, 24, 39)]

(edges having difference triplets (6, 1, 7), (7, 1, 8), (11, 1, 12), (9, 1, 10), (8, 1, 9), (1, 15, 16), respectively).
Remaining edges are: {38, 32, 39}, {39, 1, 2}, {2, 36, 3}, {3, 12, 13}, {13, 21, 22} and {22, 23, 38} and edges of

the triplets: (1, 5, 6), (1, 10, 11), (19, 1, 20) and (15, 15, 15).
Finally, consider the following 26 LC(3)

6 ’s containing these 156 edges.
[(0, 11, 1), (1, 27, 2), (2, 13, 3), (3, 14, 4), (4, 5, 15), (15, 30, 0)],
[(5, 16, 6), (6, 17, 7), (7, 18, 8), (8, 19, 9), (9, 10, 20), (20, 35, 5)],
[(21, 10, 11), (11, 17, 12), (12, 23, 13), (13, 24, 14), (14, 25, 15), (15, 16, 21)],
[(16, 27, 17), (17, 28, 18), (18, 29, 19), (19, 0, 20), (20, 21, 31), (31, 1, 16)],
[(21, 32, 22), (22, 33, 23), (23, 34, 24), (24, 35, 25), (25, 26, 36), (36, 6, 21)],
[(26, 37, 27), (27, 38, 28), (28, 39, 29), (29, 35, 30), (30, 31, 41), (41, 11, 26)],
[(32, 43, 33), (33, 44, 34), (34, 15, 35), (35, 1, 36), (36, 37, 2), (2, 17, 32)],
[(43, 4, 44), (44, 0, 5), (5, 39, 40), (40, 6, 41), (41, 7, 42), (42, 3, 43)],
[(3, 29, 4), (4, 30, 5), (5, 31, 6), (6, 32, 7), (7, 8, 33), (33, 18, 3)],
[(8, 34, 9), (9, 35, 10), (10, 36, 11), (11, 37, 12), (12, 13, 38), (38, 23, 8)],
[(13, 39, 14), (14, 40, 15), (15, 26, 16), (16, 42, 17), (17, 18, 43), (43, 28, 13)],
[(30, 19, 20), (20, 1, 21), (21, 2, 22), (22, 3, 23), (23, 4, 24), (24, 25, 30)],
[(24, 5, 25), (25, 6, 26), (26, 7, 27), (27, 8, 28), (28, 29, 9), (9, 39, 24)],
[(14, 44, 29), (29, 10, 30), (30, 11, 31), (31, 37, 32), (32, 13, 33), (33, 34, 14)],
[(0, 6, 1), (1, 7, 2), (2, 28, 3), (3, 9, 4), (4, 5, 10), (10, 44, 0)],
[(6, 12, 7), (7, 13, 8), (8, 14, 9), (9, 15, 10), (10, 16, 11), (11, 5, 6)],
[(18, 12, 13), (13, 19, 14), (14, 20, 15), (15, 41, 16), (16, 22, 17), (17, 23, 18)],
[(24, 18, 19), (19, 25, 20), (20, 26, 21), (21, 27, 22), (22, 28, 23), (23, 29, 24)],
[(40, 10, 25), (25, 31, 26), (26, 32, 27), (27, 33, 28), (28, 34, 29), (29, 30, 40)],
[(36, 30, 31), (31, 12, 32), (32, 38, 33), (33, 39, 34), (34, 40, 35), (35, 41, 36)],
[(42, 36, 37), (37, 3, 38), (38, 4, 39), (39, 0, 40), (40, 1, 41), (41, 2, 42)],
[(39, 20, 40), (40, 21, 41), (41, 22, 42), (42, 23, 43), (43, 24, 44), (44, 38, 39)],
[(34, 0, 35), (35, 16, 36), (36, 17, 37), (37, 38, 18), (18, 44, 19), (19, 4, 34)],
[(1, 12, 2), (2, 3, 8), (8, 42, 43), (43, 9, 44), (44, 25, 0), (0, 26, 1)],
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[(32, 39, 38), (38, 43, 37), (37, 7, 22), (22, 11, 12), (12, 27, 42), (42, 31, 32)],
[(38, 19, 39), (39, 1, 2), (2, 36, 3), (3, 12, 13), (13, 21, 22), (22, 23, 38)].

3. Loose 6-cycle decompositions of complete bipartite 3-uniform hypergraphs

For disjoint sets X and Y, the hypergraph with vertex set X ∪ Y and edge set consisting of all 3-sets
having at most 2 vertices in each of X and Y is denoted either by K(3)

X,Y or by K(3)
|X|,|Y|.We partition the edge set

of K(3)
X,Y into two sets one consisting of all 3-sets having exactly 2 vertices in X and the other consisting of all

3-sets having exactly 2 vertices in Y.We denote the subhypergraph induced by the former edge set by K(3)

X,Y

or by K(3)

|X|,|Y|
and the latter by K(3)

X,Y
or K(3)

|X|,|Y|
. Clearly, K(3)

X,Y = K(3)

X,Y
⊕ K(3)

X,Y
.

Lemma 3.1. LC(3)
6 |K

(3)
6,6.

Proof. Consider the complete graph K6 with vertex setZ6.Decompose K6 into two copies of C6 : (0, 2, 1, 5, 3,
4, 0), (0, 3, 1, 4, 2, 5, 0) and a 1-factor: {01, 23, 45}.

Now, consider K(3)
6,6 = K(3)

X,Y with X = {x0, x1, . . . , x5} and Y = {y0, y1, . . . , y5}. By above, decompose each of
the complete graphs KX and KY into two copies of C6 and a 1-factor:

KX = (x0, x2, x1, x5, x3, x4, x0) ⊕ (x0, x3, x1, x4, x2, x5, x0) ⊕ {x0x1, x2x3, x4x5},
KY = (y0, y2, y1, y5, y3, y4, y0) ⊕ (y0, y3, y1, y4, y2, y5, y0) ⊕ {y0y1, y2y3, y4y5}.

From each of the above C6’s, we produce six LC(3)
6 ’s in K(3)

X,Y as follows:
[(x0, yi, x2), (x2, yi+1, x1), (x1, yi+2, x5), (x5, yi+3, x3), (x3, yi+4, x4), (x4, yi+5, x0)],
[(x0, , yi, x3), (x3, yi+1, x1), (x1, yi+2, x4), (x4, yi+3, x2), (x2, yi+4, x5), (x5, yi+5, x0)],
[(y0, xi, y2), (y2, xi+1, y1), (y1, xi+2, y5), (y5, xi+3, y3), (y3, xi+4, y4), (y4, xi+5, y0)],
[(y0, , xi, y3), (y3, xi+1, y1), (y1, xi+2, y4), (y4, xi+3, y2), (y2, xi+4, y5), (y5, xi+5, y0)],
where i ∈ Z6.
From the two 1-factors, we produce six LC(3)

6 ’s in K(3)
X,Y as follows:

[(x0, x1, y j), (y j, y j+1, x2), (x2, x3, y j+2), (y j+2, y j+3, x4), (x4, x5, y j+4), (y j+4, y j+5, x0)],
where j ∈ {0, 2, 4};
[(x1, x0, yk), (yk, yk+5, x3), (x3, x2, yk+2), (yk+2, yk+1, x5), (x5, x4, yk+4), (yk+4, yk+3, x1)],
where k ∈ {1, 3, 5}.

The collection of these loose 6-cycles yield the required decomposition of K(3)
6,6.

Lemma 3.2. LC(3)
6 |K

(3)
10,18.

Proof. Since K(3)
10,18 = K(3)

10,18
⊕K(3)

10,18
, it is enough to show that LC(3)

6 |K
(3)

10,18
and LC(3)

6 |K
(3)

10,18
.Let X = {xi|i ∈ Z10}.

First, consider K(3)

10,18
= K(3)

X,Y′
with Y′ = {y j| j ∈ Z18}.We use the (Hamilton path) P10-decomposition

{xix1+ix9+ix2+ix8+ix3+ix7+ix4+ix6+ix5+i : i = 0, 1, 2, 3, 4}

of the complete graph K10 = KX. Following LC(3)
6 ’s decompose K(3)

X,Y′
:

[(y1, xi, x1+i), (x1+i, y2, x9+i), (x9+i, y3, x2+i), (x2+i, y4, x8+i), (x8+i, y5, x3+i), (x3+i, x7+i, y1)],
[(y2, xi, x1+i), (x1+i, y3, x9+i), (x9+i, y12, x2+i), (x2+i, y0, x8+i), (x8+i, y6, x3+i), (x3+i, x7+i, y2)],
[(y9, xi, x1+i), (x1+i, y4, x9+i), (x9+i, y5, x2+i), (x2+i, y13, x8+i), (x8+i, y3, x3+i), (x3+i, x7+i, y9)],
[(y4, xi, x1+i), (x1+i, y5, x9+i), (x9+i, y6, x2+i), (x2+i, y7, x8+i), (x8+i, y8, x3+i), (x3+i, x7+i, y4)],
[(x7+i, y6, x4+i), (x4+i, y0, x6+i), (x6+i, x5+i, y8), (y8, x2+i, x8+i), (x8+i, y9, x3+i), (x3+i, y10, x7+i)],
[(x7+i, y7, x4+i), (x4+i, y13, x6+i), (x6+i, x5+i, y9), (y9, x2+i, x8+i), (x8+i, y10, x3+i), (x3+i, y11, x7+i)],
[(x7+i, y8, x4+i), (x4+i, y14, x6+i), (x6+i, x5+i, y10), (y10, x2+i, x8+i), (x8+i, y11, x3+i), (x3+i, y12, x7+i)],
[(x7+i, y9, x4+i), (x4+i, y15, x6+i), (x6+i, x5+i, y11), (y11, x2+i, x8+i), (x8+i, y12, x3+i), (x3+i, y13, x7+i)],
[(x7+i, y16, x4+i), (x4+i, y7, x6+i), (x6+i, x5+i, y12), (y12, x2+i, x8+i), (x8+i, y13, x3+i), (x3+i, y14, x7+i)],
[(y8, xi, x1+i), (x1+i, y6, x9+i), (x9+i, y7, x2+i), (x2+i, y3, x8+i), (x8+i, y14, x3+i), (x3+i, x7+i, y8)],
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[(y16, xi, x1+i), (x1+i, y7, x9+i), (x9+i, y8, x2+i), (x2+i, y14, x8+i), (x8+i, y15, x3+i), (x3+i, x7+i, y16)],
[(y17, xi, x1+i), (x1+i, y8, x9+i), (x9+i, y9, x2+i), (x2+i, y15, x8+i), (x8+i, y16, x3+i), (x3+i, x7+i, y17)],
[(y5, xi, x1+i), (x1+i, y9, x9+i), (x9+i, y10, x2+i), (x2+i, y16, x8+i), (x8+i, y17, x3+i), (x3+i, x7+i, y5)],
[(y6, xi, x1+i), (x1+i, y10, x9+i), (x9+i, y11, x2+i), (x2+i, y17, x8+i), (x8+i, y0, x3+i), (x3+i, x7+i, y6)],
[(y11, x7+i, x4+i), (x4+i, y16, x6+i), (x6+i, x5+i, y13), (y13, x2+i, x9+i), (x9+i, y12, x1+i), (x1+i, xi, y11)],
[(y12, x7+i, x4+i), (x4+i, y8, x6+i), (x6+i, x5+i, y14), (y14, x2+i, x9+i), (x9+i, y13, x1+i), (x1+i, xi, y12)],
[(y13, x7+i, x4+i), (x4+i, y9, x6+i), (x6+i, x5+i, y15), (y15, x2+i, x9+i), (x9+i, y14, x1+i), (x1+i, xi, y13)],
[(y14, x7+i, x4+i), (x4+i, y10, x6+i), (x6+i, x5+i, y16), (y16, x2+i, x9+i), (x9+i, y15, x1+i), (x1+i, xi, y14)],
[(y15, x7+i, x4+i), (x4+i, y11, x6+i), (x6+i, x5+i, y17), (y17, x2+i, x9+i), (x9+i, y16, x1+i), (x1+i, xi, y15)],
[(y5, x2+i, x8+i), (x8+i, y1, x3+i), (x3+i, y7, x7+i), (x7+i, y3, x4+i), (x4+i, y4, x6+i), (x6+i, x5+i, y5)],
[(y1, x2+i, x8+i), (x8+i, y2, x3+i), (x3+i, y15, x7+i), (x7+i, y4, x4+i), (x4+i, y5, x6+i), (x6+i, x5+i, y1)],
[(y2, x2+i, x8+i), (x8+i, y7, x3+i), (x3+i, y3, x7+i), (x7+i, y5, x4+i), (x4+i, y6, x6+i), (x6+i, x5+i, y2)],
[(y0, x7+i, x4+i), (x4+i, y1, x6+i), (x6+i, x5+i, y7), (y7, xi, x1+i), (x1+i, y17, x9+i), (x9+i, x2+i, y0)],
[(y1, x7+i, x4+i), (x4+i, y2, x6+i), (x6+i, x5+i, y3), (y3, xi, x1+i), (x1+i, y0, x9+i), (x9+i, x2+i, y1)],
[(y10, xi, x1+i), (x1+i, y11, x9+i), (x9+i, x2+i, y4), (y4, x5+i, x6+i), (x6+i, y3, x4+i), (x4+i, x7+i, y10)],
[(y2, x7+i, x4+i), (x4+i, y17, x6+i), (x6+i, x5+i, y0), (y0, xi, x1+i), (x1+i, y1, x9+i), (x9+i, x2+i, y2)],
[(y6, x2+i, x8+i), (x8+i, y4, x3+i), (x3+i, y0, x7+i), (x7+i, y17, x4+i), (x4+i, y12, x6+i), (x6+i, x5+i, y6)],
where i = 0, 1, 2, 3, 4.

Next, consider K(3)

10,18
= K(3)

X,Y′′
with Y′′ = {y∞} ∪ {yk|k ∈ Z17}.We use the P10-decomposition

{y∞yky1+ky16+ky2+ky15+ky3+ky14+ky4+ky13+k : k ∈ Z17}

of K18 = KY′′ (decomposition arise out of a ρ-valuation of P9). Following LC(3)
6 ’s decompose K(3)

X,Y′′
:

[(x0, y∞, yk), (yk, x1, y1+k), (y1+k, x2, y16+k), (y16+k, x9, y2+k), (y2+k, x4, y15+k), (y15+k, y3+k, x0)],
[(x1, y∞, yk), (yk, x2, y1+k), (y1+k, x7, y16+k), (y16+k, x0, y2+k), (y2+k, x5, y15+k), (y15+k, y3+k, x1)],
[(x2, y∞, yk), (yk, x3, y1+k), (y1+k, x8, y16+k), (y16+k, x5, y2+k), (y2+k, x6, y15+k), (y15+k, y3+k, x2)],
[(x3, y∞, yk), (yk, x4, y1+k), (y1+k, x9, y16+k), (y16+k, x6, y2+k), (y2+k, x7, y15+k), (y15+k, y3+k, x3)],
[(x4, y∞, yk), (yk, x5, y1+k), (y1+k, x6, y16+k), (y16+k, x7, y2+k), (y2+k, x8, y15+k), (y15+k, y3+k, x4)],
[(x8, y16+k, y2+k), (y2+k, x9, y15+k), (y15+k, x5, y3+k), (y3+k, x6, y14+k), (y14+k, x7, y4+k), (y4+k, y13+k, x8)],
[(x3, y16+k, y2+k), (y2+k, x0, y15+k), (y15+k, x6, y3+k), (y3+k, x7, y14+k), (y14+k, x8, y4+k), (y4+k, y13+k, x3)],
[(x4, y16+k, y2+k), (y2+k, x1, y15+k), (y15+k, x7, y3+k), (y3+k, x2, y14+k), (y14+k, x9, y4+k), (y4+k, y13+k, x4)],
[(x1, y16+k, y2+k), (y2+k, x2, y15+k), (y15+k, x8, y3+k), (y3+k, x9, y14+k), (y14+k, x0, y4+k), (y4+k, y13+k, x1)],
[(x2, y16+k, y2+k), (y2+k, x3, y15+k), (y15+k, x9, y3+k), (y3+k, x0, y14+k), (y14+k, x1, y4+k), (y4+k, y13+k, x2)],
[(x3, y3+k, y14+k), (y14+k, x4, y4+k), (y4+k, y13+k, x5), (x5, y∞, yk), (yk, x6, y1+k), (y1+k, y16+k, x3)],
[(x4, y3+k, y14+k), (y14+k, x5, y4+k), (y4+k, y13+k, x6), (x6, y∞, yk), (yk, x7, y1+k), (y1+k, y16+k, x4)],
[(x9, y∞, yk), (yk, x0, y1+k), (y1+k, y16+k, x1), (x1, y3+k, y14+k), (y14+k, x2, y4+k), (y4+k, y13+k, x9)],
[(x0, y13+k, y4+k), (y4+k, x3, y14+k), (y14+k, y3+k, x8), (x8, y∞, yk), (yk, x9, y1+k), (y1+k, y16+k, x0)],
[(x7, y∞, yk), (yk, x8, y1+k), (y1+k, y16+k, x5), (x5, y3+k, y14+k), (y14+k, x6, y4+k), (y4+k, y13+k, x7)],
where k ∈ Z17.

Lemma 3.3. For an integer ℓ ≥ 5, we have LC(3)
6 |K

(3)

ℓ,36
.

Proof. Consider K(3)

ℓ,36
= K(3)

X,Y
with X = {xi | i ∈ Zℓ} and Y = {y∞}∪{y j | j ∈ Z35}.We use the P19-decomposition

{y∞ y j y j+1 y j+34 y j+2 y j+33 y j+3 y j+32 y j+4 y j+31 y j+5 y j+30 y j+6 y j+29 y j+7 y j+28 y j+8 y j+27 y j+9 : j ∈ Z35}

of K36 = KY. For each j ∈ Z35,we produce 3ℓ loose 6-cycles of K(3)

ℓ,36
as follows:

[(xi, y∞, y j), (y j, xi+1, y j+1), (y j+1, xi+2, y j+34), (y j+34, xi+3, y j+2), (y j+2, xi+4, y j+33), (y j+33, y j+3, xi)],
[(xi, y j+3, y j+32), (y j+32, xi+1, y j+4), (y j+4, xi+2, y j+31), (y j+31, xi+3, y j+5), (y j+5, xi+4, y j+30), (y j+30, y j+6, xi)],
[(xi, y j+6, y j+29), (y j+29, xi+1, y j+7), (y j+7, xi+2, y j+28), (y j+28, xi+3, y j+8), (y j+8, xi+4, y j+27), (y j+27, y j+9, xi)],
where i ∈ Zℓ.

The collection of these 105 ℓ loose 6-cycles yield the required decomposition of K(3)

ℓ,36
.
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Lemma 3.4. For an integer ℓ ≥ 5, we have LC(3)
6 |K

(3)

ℓ,37
.

Proof. Consider K(3)

ℓ,37
= K(3)

X,Y
with X = {xi | i ∈ Zℓ} and Y = {y j | j ∈ Z37}.We use the P19-decomposition

{y j y j+1 y j+36 y j+2 y j+35 y j+3 y j+34 y j+4 y j+33 y j+5 y j+32 y j+6 y j+31 y j+7 y j+30 y j+8 y j+29y j+9 y j+28 : j ∈ Z37}

of K37 = KY. For each j ∈ Z37,we produce 3ℓ loose 6-cycles of K(3)

ℓ,37
as follows:

[(xi, y j, y j+1), (y j+1, xi+1, y j+36), (y j+36, xi+2, y j+2), (y j+2, xi+3, y j+35), (y j+35, xi+4, y j+3), (y j+3, y j+34, xi)],
[(xi, y j+34, y j+4), (y j+4, xi+1, y j+33), (y j+33, xi+2, y j+5), (y j+5, xi+3, y j+32), (y j+32, xi+4, y j+6), (y j+6, y j+31, xi)],
[(xi, y j+31, y j+7), (y j+7, xi+1, y j+30), (y j+30, xi+2, y j+8), (y j+8, xi+3, y j+29), (y j+29, xi+4, y j+9), (y j+9, y j+28, xi)],
where i ∈ Zℓ.

The collection of these 111 ℓ loose 6-cycles yield the required decomposition of K(3)

ℓ,37
.

Lemma 3.5. If C11 |Kn, then LC(3)
6 |K

(3)

n,18
.

Proof. Consider K(3)

n,18
= K(3)

X,Y
with X = {xi | i = 1, 2, . . . ,n} and Y = {y j | j = 1, 2, . . . , 18}. Let D be a

C11-decomposition of Kn. For each C11 = xi1 xi2 xi3 xi4 xi5 xi6 xi7 xi8 xi9 xi10 xi11 xi1 in D , we consider the following
LC(3)

6 ’s in K(3)

n,18
.

[(y1, xi1 , xi2 ), (xi2 , y4, xi3 ), (xi3 , y7, xi4 ), (xi4 , y10, xi5 ), (xi5 , y13, xi6 ), (xi6 , xi7 , y16)],
[(y2, xi1 , xi2 ), (xi2 , y5, xi3 ), (xi3 , y8, xi4 ), (xi4 , y11, xi5 ), (xi5 , y14, xi6 ), (xi6 , xi7 , y17)],
[(y3, xi1 , xi2 ), (xi2 , y6, xi3 ), (xi3 , y9, xi4 ), (xi4 , y12, xi5 ), (xi5 , y15, xi6 ), (xi6 , xi7 , y18)],
[(y1, xi2 , xi3 ), (xi3 , y4, xi4 ), (xi4 , y7, xi5 ), (xi5 , y10, xi6 ), (xi6 , y13, xi7 ), (xi7 , xi8 , y16)],
[(y2, xi2 , xi3 ), (xi3 , y5, xi4 ), (xi4 , y8, xi5 ), (xi5 , y11, xi6 ), (xi6 , y14, xi7 ), (xi7 , xi8 , y17)],
[(y3, xi2 , xi3 ), (xi3 , y6, xi4 ), (xi4 , y9, xi5 ), (xi5 , y12, xi6 ), (xi6 , y15, xi7 ), (xi7 , xi8 , y18)],
[(y1, xi3 , xi4 ), (xi4 , y4, xi5 ), (xi5 , y7, xi6 ), (xi6 , y10, xi7 ), (xi7 , y13, xi8 ), (xi8 , xi9 , y16)],
[(y2, xi3 , xi4 ), (xi4 , y5, xi5 ), (xi5 , y8, xi6 ), (xi6 , y11, xi7 ), (xi7 , y14, xi8 ), (xi8 , xi9 , y17)],
[(y3, xi3 , xi4 ), (xi4 , y6, xi5 ), (xi5 , y9, xi6 ), (xi6 , y12, xi7 ), (xi7 , y15, xi8 ), (xi8 , xi9 , y18)],
[(y1, xi4 , xi5 ), (xi5 , y4, xi6 ), (xi6 , y7, xi7 ), (xi7 , y10, xi8 ), (xi8 , y13, xi9 ), (xi9 , xi10 , y16)],
[(y2, xi4 , xi5 ), (xi5 , y5, xi6 ), (xi6 , y8, xi7 ), (xi7 , y11, xi8 ), (xi8 , y14, xi9 ), (xi9 , xi10 , y17)],
[(y3, xi4 , xi5 ), (xi5 , y6, xi6 ), (xi6 , y9, xi7 ), (xi7 , y12, xi8 ), (xi8 , y15, xi9 ), (xi9 , xi10 , y18)],
[(y1xi5 , xi6 ), (xi6 , y4, xi7 ), (xi7 , y7, xi8 ), (xi8 , y10, xi9 ), (xi9 , y13, xi10 ), (xi10 , xi11 , y16)],
[(y2, xi5 , xi6 ), (xi6 , y5, xi7 ), (xi7 , y8, xi8 ), (xi8 , y11, xi9 ), (xi9 , y14, xi10 ), (xi10 , xi11 , y17)],
[(y3, xi5 , xi6 ), (xi6 , y6, xi7 ), (xi7 , y9, xi8 ), (xi8 , y12, xi9 ), (xi9 , y15, xi10 ), (xi10 , xi11 , y18)],
[(y1, xi6 , xi7 ), (xi7 , y4, xi8 ), (xi8 , y7, xi9 ), (xi9 , y10, xi10 ), (xi10 , y13, xi11 ), (xi11 , xi1 , y16)],
[(y2, xi6 , xi7 ), (xi7 , y5, xi8 ), (xi8 , y8, xi9 ), (xi9 , y11, xi10 ), (xi10 , y14, xi11 ), (xi11 , xi1 , y17)],
[(y3, xi6 , xi7 ), (xi7 , y6, xi8 ), (xi8 , y9, xi9 ), (xi9 , y12, xi10 ), (xi10 , y15, xi11 ), (xi11 , xi1 , y18)],
[(y1, xi7 , xi8 ), (xi8 , y4, xi9 ), (xi9 , y7, xi10 ), (xi10 , y10, xi11 ), (xi11 , y13, xi1 ), (xi1 , xi2 , y16)],
[(y2, xi7 , xi8 ), (xi8 , y5, xi9 ), (xi9 , y8, xi10 ), (xi10 , y11, xi11 ), (xi11 , y14, xi1 ), (xi1 , xi2 , y17)],
[(y3, xi7 , xi8 ), (xi8 , y6, xi9 ), (xi9 , y9, xi10 ), (xi10 , y12, xi11 ), (xi11 , y15, xi1 ), (xi1 , xi2 , y18)],
[(y1, xi8 , xi9 ), (xi9 , y4, xi10 ), (xi10 , y7, xi11 ), (xi11 , y10, xi1 ), (xi1 , y13, xi2 ), (xi2 , xi3 , y16)],
[(y2, xi8 , xi9 ), (xi9 , y5, xi10 ), (xi10 , y8, xi11 ), (xi11 , y11, xi1 ), (xi1 , y14, xi2 ), (xi2 , xi3 , y17)],
[(y3, xi8 , xi9 ), (xi9 , y6, xi10 ), (xi10 , y9, xi11 ), (xi11 , y12, xi1 ), (xi1 , y15, xi2 ), (xi2 , xi3 , y18)],
[(y1, xi9 , xi10 ), (xi10 , y4, xi11 ), (xi11 , y7, xi1 ), (xi1 , y10, xi2 ), (xi2 , y13, xi3 ), (xi3 , xi4 , y16)],
[(y2, xi9 , xi10 ), (xi10 , y5, xi11 ), (xi11 , y8, xi1 ), (xi1 , y11, xi2 ), (xi2 , y14, xi3 ), (xi3 , xi4 , y17)],
[(y3, xi9 , xi10 ), (xi10 , y6, xi11 ), (xi11 , y9, xi1 ), (xi1 , y12, xi2 ), (xi2 , y15, xi3 ), (xi3 , xi4 , y18)],
[(y1, xi10 , xi11 ), (xi11 , y4, xi1 ), (xi1 , y7, xi2 ), (xi2 , y10, xi3 ), (xi3 , y13, xi4 ), (xi4 , xi5 , y16)],
[(y2, xi10 , xi11 ), (xi11 , y5, xi1 ), (xi1 , y8, xi2 ), (xi2 , y11, xi3 ), (xi3 , y14, xi4 ), (xi4 , xi5 , y17)],
[(y3, xi10 , xi11 ), (xi11 , y6, xi1 ), (xi1 , y9, xi2 ), (xi2 , y12, xi3 ), (xi3 , y15, xi4 ), (xi4 , xi5 , y18)],
[(y1, xi11 , xi1 ), (xi1 , y4, xi2 ), (xi2 , y7, xi3 ), (xi3 , y10, xi4 ), (xi4 , y13, xi5 ), (xi5 , xi6 , y16)],
[(y2, xi11 , xi1 ), (xi1 , y5, xi2 ), (xi2 , y8, xi3 ), (xi3 , y11, xi4 ), (xi4 , y14, xi5 ), (xi5 , xi6 , y17)],
[(y3, xi11 , xi1 ), (xi1 , y6, xi2 ), (xi2 , y9, xi3 ), (xi3 , y12, xi4 ), (xi4 , y15, xi5 ), (xi5 , xi6 , y18)].

The collection of these loose 6-cycles yield the required decomposition of K(3)

n,18
.
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Since K(3)

n,36
= K(3)

n,18
⊕ K(3)

n,18
,we have, by above lemma,

Lemma 3.6. If C11 |Kn, then LC(3)
6 |K

(3)

n,36
.

Lemma 3.7. LC(3)
6 |K

(3)
11,36.

Proof. Write K(3)
11,36 as K(3)

11,36
⊕ K(3)

11,36
. By Lemma 3.3, LC(3)

6 |K
(3)

11,36
. As C11 |K11, by Lemma 3.6, LC(3)

6 |K
(3)

11,36
.

Hence, LC(3)
6 |K

(3)
11,36.

Lemma 3.8. LC(3)
6 |K

(3)
36,37.

Proof. Write K(3)
36,37 as K(3)

36,37
⊕ K(3)

36,37
. By Lemmas 3.3 and 3.4, we have, respectively, LC(3)

6 |K
(3)

36,37
and

LC(3)
6 |K

(3)

36,37
. Hence, LC(3)

6 |K
(3)
36,37.

Lemma 3.9. LC(3)
6 |K

(3)
36,45.

Proof. Write K(3)
36,45 as K(3)

36,45
⊕ K(3)

36,45
. By Lemma 3.3, LC(3)

6 |K
(3)

36,45
. By Lemma 3.6, LC(3)

6 |K
(3)

36,45
, if C11|K45. The

existence of the decomposition C11|K45 follows from the result of Sajna [13]: “Let n be an odd integer and
m be an even integer with 3 ≤ m ≤ n. The complete graph Kn can be decomposed into cycles of length m
whenever m divides the number of edges in Kn.” Hence, LC(3)

6 |K
(3)
36,45.

4. Loose 6-cycle decompositions of complete tripartite 3-uniform hypergraphs

For pairwise disjoint sets X, Y and Z, the hypergraph with vertex set X ∪ Y ∪ Z and edge set consisting
of all 3-sets having exactly one vertex in each of X, Y and Z is denoted by K(3)

X,Y,Z or K(3)
|X|,|Y|,|Z|.

Lemma 4.1. If m,n ≥ 6 are even integers, 3 |mn, and ℓ ≥ 5 is an integer, then LC(3)
6 |K

(3)
m,n,ℓ.

To prove Lemma 4.1, we use the following:

Theorem 4.2. (Truszczyński [15]). If k,m,n are positive integers with m, n even and m ≥ n, then Km,n has a
Pk+1-decomposition if and only if m ≥ ⌈ k+1

2 ⌉, n ≥ ⌈
k
2 ⌉ and mn ≡ 0 (mod k).

Proof of Lemma 4.1.
Let K(3)

m,n,ℓ = K(3)
X,Y,Z, where X = {x1, . . . , xm}, Y = {y1, . . . , yn} and Z = {zi | i ∈ Zℓ}. Consider the complete

bipartite graph Km,n with bipartition (X,Y). By Theorem 4.2, P7 |Km,n. Let D be one such decomposition. For
each P7 := v1v2v3v4v5v6v7 in D , construct ℓ edge-disjoint loose 6-cycles [(zi, v1, v2), (v2, zi+1, v3), (v3, zi+2, v4),
(v4, zi+3, v5), (v5, zi+4, v6), (v6, v7, zi)] of K(3)

m,n,ℓ, where i ∈ Zℓ. Collection of these loose 6-cycles yield a decom-

position of K(3)
m,n,ℓ.

5. More loose 6-cycle decompositions

Lemma 5.1. If n ≡ 0 (mod 6), then LC(3)
6 |K

(3)
n,n.

Proof. Then, n = 6s for some integer s ≥ 1, and therefore K(3)
n,n = K(3)

X,Y, where X =
s⋃

i=1
Xi and Y =

s⋃
j=1

Y j

be disjoint union of sets X1, . . . ,Xs and Y1, . . . ,Ys, respectively, with |Xi| = |Y j| = 6, where i, j ∈ {1, . . . , s}.
Write K(3)

X,Y as an edge-disjoint union of K(3)
Xi,Y j
� K(3)

6,6, i, j ∈ {1, . . . , s}; K(3)
Xi1 ,Xi2 ,Y j

� K(3)
6,6,6, i1, i2, j ∈ {1, . . . , s} and

i1 , i2; and K(3)
Xi,Y j1 ,Y j2

� K(3)
6,6,6, i, j1, j2 ∈ {1, . . . , s} and j1 , j2. By Lemma 3.1, LC(3)

6 |K
(3)
6,6; and by Lemma 4.1,

LC(3)
6 |K

(3)
6,6,6. Hence, LC(3)

6 |K
(3)
n,n.
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Lemma 5.2. LC(3)
6 |K

(3)
36 .

Proof. Write K(3)
36 = 2K(3)

18 ⊕ K(3)
18,18. By Lemmas 2.3 and 5.1, we have, respectively, LC(3)

6 |K
(3)
18 and LC(3)

6 |K
(3)
18,18.

Hence, LC(3)
6 |K

(3)
36 .

Lemma 5.3. LC(3)
6 |K

(3)
18,20.

Proof. Write K(3)
18,20 � K(3)

20,18 as K(3)
10,18 ⊕ K(3)

10,18 ⊕ K(3)
10,10,18. By Lemmas 3.2 and 4.1, we have, respectively,

LC(3)
6 |K

(3)
10,18 and LC(3)

6 |K
(3)
18,10,10. Hence, LC(3)

6 |K
(3)
18,20.

Lemma 5.4. LC(3)
6 |K

(3)
18,28.

Proof. Write K(3)
18,28 � K(3)

28,18 as K(3)
10,18 ⊕ K(3)

18,18 ⊕ K(3)
10,18,18. By Lemmas 3.2, 5.1 and 4.1, we have, respectively,

LC(3)
6 |K

(3)
10,18, LC(3)

6 |K
(3)
18,18 and LC(3)

6 |K
(3)
10,18,18. Hence, LC(3)

6 |K
(3)
18,28.

Lemma 5.5. LC(3)
6 |K

(3)
18,36.

Proof. Write K(3)
18,36 as K(3)

18,18 ⊕ K(3)
18,18 ⊕ K(3)

18,18,18. By Lemmas 5.1 and 4.1, we have, respectively, LC(3)
6 |K

(3)
18,18

and LC(3)
6 |K

(3)
18,18,18. Hence, LC(3)

6 |K
(3)
18,36.

Lemma 5.6. LC(3)
6 |K

(3)
29,36.

Proof. Write K(3)
29,36 as K(3)

11,36 ⊕ K(3)
18,36 ⊕ K(3)

11,18,36. By Lemmas 3.7, 5.5 and 4.1, we have, respectively, LC(3)
6 |K

(3)
11,36,

LC(3)
6 |K

(3)
18,36 and LC(3)

6 |K
(3)
18,36,11. Hence, LC(3)

6 |K
(3)
29,36.

6. Proof of Theorem 1.1

The proof of the necessity is obvious. The congruence in the necessary condition follows from the
divisibility condition 6 |

(n
3
)
. Now, we prove the sufficiency. We consider three cases.

Case 1. n = 18k + ℓ,where ℓ ∈ {0, 2, 10}.
Then, K(3)

n = K(3)
18k+ℓ = K(3)

X , where X = X0 ∪ X1 ∪ X2 ∪ · · · ∪ Xk−1 be pairwise disjoint union of
sets X0, X1, X2, . . . , Xk−1 with |X0| = 18 + ℓ and |X1| = |X2| = . . . = |Xk−1| = 18. Write K(3)

X as
an edge-disjoint union of K(3)

X0
� K(3)

18+ℓ, K(3)
Xi
� K(3)

18 , K(3)
Xi,X0

� K(3)
18,18+ℓ, K(3)

Xi1 ,Xi2
� K(3)

18,18, K(3)
Xi1 ,Xi2 ,X0

� K(3)
18,18,18+ℓ,

K(3)
Xi1 ,Xi2 ,Xi3

� K(3)
18,18,18,where i, i1, i2, i3 ∈ {1, 2, . . . , k − 1}, i1 , i2, i1 , i3 and i2 , i3. By Lemmas 2.3, 2.4 and 2.5,

we have, respectively, LC(3)
6 |K

(3)
18 , LC(3)

6 |K
(3)
20 and LC(3)

6 |K
(3)
28 . By Lemmas 5.1, 5.3 and 5.4, we have, respectively,

LC(3)
6 |K

(3)
18,18, LC(3)

6 |K
(3)
18,20 and LC(3)

6 |K
(3)
18,28. By Lemma 4.1, LC(3)

6 |K
(3)
18,18,18+ℓ, ℓ ∈ {0, 2, 10}.

Case 2. n = 36k + ℓ,where ℓ ∈ {1, 9}.
Then, K(3)

n = K(3)
36k+ℓ = K(3)

X , where X = X0 ∪ X1 ∪ X2 ∪ · · · ∪ Xk−1 be pairwise disjoint union of
sets X0, X1, X2, . . . , Xk−1 with |X0| = 36 + ℓ and |X1| = |X2| = . . . = |Xk−1| = 36. Write K(3)

X as
an edge-disjoint union of K(3)

X0
� K(3)

36+ℓ, K(3)
Xi
� K(3)

36 , K(3)
Xi,X0

� K(3)
36,36+ℓ, K(3)

Xi1 ,Xi2
� K(3)

36,36, K(3)
Xi1 ,Xi2 ,X0

� K(3)
36,36,36+ℓ,

K(3)
Xi1 ,Xi2 ,Xi3

� K(3)
36,36,36,where i, i1, i2, i3 ∈ {1, 2, . . . , k − 1}, i1 , i2, i1 , i3 and i2 , i3. By Lemmas 5.2, 2.2 and 2.6,

we have, respectively, LC(3)
6 |K

(3)
36 , LC(3)

6 |K
(3)
37 and LC(3)

6 |K
(3)
45 . By Lemmas 5.1, 3.8 and 3.9, we have, respectively,

LC(3)
6 |K

(3)
36,36, LC(3)

6 |K
(3)
36,37 and LC(3)

6 |K
(3)
36,45. By Lemma 4.1, LC(3)

6 |K
(3)
36,36,36+ℓ, ℓ ∈ {0, 1, 9}.

Case 3. n = 36k + 29.
Then, K(3)

n = K(3)
36k+29 = K(3)

X , where X = X0 ∪ X1 ∪ X2 ∪ · · · ∪ Xk be pairwise disjoint union of sets
X0, X1, X2, . . . , Xk with |X0| = 29 and |X1| = |X2| = . . . = |Xk| = 36.Write K(3)

X as an edge-disjoint union
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of K(3)
X0
� K(3)

29 , K(3)
Xi
� K(3)

36 , K(3)
Xi,X0

� K(3)
36,29, K(3)

Xi1 ,Xi2
� K(3)

36,36, K(3)
Xi1 ,Xi2 ,X0

� K(3)
36,36,29, K(3)

Xi1 ,Xi2 ,Xi3
� K(3)

36,36,36, where

i, i1, i2, i3 ∈ {1, 2, . . . , k}, i1 , i2, i1 , i3 and i2 , i3. By Lemmas 2.1 and 5.2, we have, respectively, LC(3)
6 |K

(3)
29

and LC(3)
6 |K

(3)
36 . By Lemmas 5.6 and 5.1, we have, respectively, LC(3)

6 |K
(3)
36,29 and LC(3)

6 |K
(3)
36,36. By Lemma 4.1,

LC(3)
6 |K

(3)
36,36,36−ℓ, ℓ ∈ {0, 7}.

In any case, LC(3)
m |K

(3)
n . This completes the proof.
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