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Loose 6-cycle decompositions of complete 3-uniform hypergraphs
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Abstract. The complete 3-uniform hypergraph K,(f ) of order 1 has a set V of cardinality 7 as its vertex set
and the set of all 3-element subsets of V as its edge set. For n > 2, let Z,, denote the set of integers modulo
n.Form > 3, let LC£,3,) denote the 3-uniform hypergraph with vertex set Z,,, and edge set {{2i,2i +1,2i +2} :
i € {0,1,2,...,m—1}}. Any hypergraph isomorphic to LCS is a 3-uniform loose m-cycle. Given hypergraphs
& and s, a decomposition of ¢ into . is a partition {&3, &5, ..., &} of the edge set of # such that, for
each i € {1,2,...,b}, the subhypergraph induced by &; is isomorphic to .7°. We show that there exists a
decomposition of K into LCY if and only if n > 12and n = 0,1, 2,9, 10, 18,20, 28 or 29 (mod 36).

1. Introduction

A hypergraph .# consists of a finite nonempty set V of vertices and a set & of nonempty subsets of V
called hyperedges or simply edges.

A decomposition of a hypergraph % is aset A = {J4, 5%, ..., 4} of subhypergraphs of % such that
EWA) U EB) U ... U E(H) = X )and E() N () = Qforalliand jwithl < i < j < b We
denote this factby & = J4 © 56 @ - - - @ 4. It follows from the definition that

&) +|E(AR) + - +|E(A)] = |6(H)).
If each element 7% of A is isomorphic to a fixed hypergraph .7, then 7% is called an .7-block, and A is called
an s#-decomposition of % . In this case, we say that J¢ decomposes %, and we write .7 | % . Also, in this
case, we have
bl& () = 1E(A).
Hence, a necessary condition for the existence of an .#’-decomposition of %" is that
|6(2)| divides |6(2).
The degree of a vertex x in a hypergraph .% is the number of edges of .# containing x.
Another necessary condition for the existence of an J#-decomposition of %" is that
the g.c.d. of the degrees of vertices in .7# divides the g.c.d. of the degrees of vertices in ..

If each vertex x in a hypergraph .7 has the same degree, then we say that the hypergraph .% is regular,
or 7 is k-regular if the degree of x is k.
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If for each edge e in a hypergraph .#, we have |e| = ¢, then .Z is said to be t-uniform. Thus simple graphs
are 2-uniform hypergraphs.

A cycle of length m, in a hypergraph .Z is a sequence of the form vy,e1,vz,¢€3,...,0m, em, v1 Where
v1,0y,...,0y are distinct vertices and ey, ey, . . ., e, are distinct edges satisfying v;, viy1 € e;jforie(1,2,...,m—
1} and v, v1 € ey. This cycle is known as a Berge cycle having been introduced by Berge in [1]. For
i€f{l,2,...,m},if l¢] = t, then we denote this Berge cycle by BCS,).

Forn > 2,let Z, denote the set of integers modulo #.

Form > t > 2,let LCY) denote the t-uniform hypergraph with vertex set Z_1y,, and edge set {{it — i, it —
i+1,it—i+2,...,it—i+({t-1)}:i€{0,1,...,m—1}}. Any hypergraph isomorphic to LCY is a t-uniform
loose m-cycle. In particular, for t = 3, a 3-uniform loose m-cycle LCY is a 3-uniform hypergraph with vertex
set Zy, and edge set {{2i,2i +1,2i + 2} : i € {0,1,...,m—1}}.

Let .# be a t-uniform hypergraph. It follows from the definitions that every loose cycle of .% is a Berge
cycle of #. Observe that, fort = 2, BCfﬁ) = LCS?.

Let % be a t-uniform hypergraph, t > 3. The necessary conditions for the existence of:

BCSf,)—decomposition of A are |V()| = m and m divides |&(%)|;

LCY-decomposition of % are |V(#)| = (t — 1)m and m divides |£(F)|.

As every loose cycle of % is a Berge cycle of %, we have: every LCE,?—decomposition of # is a
BC,(f,)—decomposition of X'.

A t-uniform hypergraph # = (V,&) is said to be complete if every t-element subset of V is in &.
We denote such a hypergraph by Kg) or by K if V] = n. K@ is (""})-regular and it has () edges. An
##-decomposition of KY is also known as an s -design of order n. Given a t-uniform hypergraph .7, the
problem of determining all values of n for which there exists an .7#-design of order n is known as the
spectrum problem for €.

If ¢ = K, then the above necessary conditions for the existence of:

BCfff—decomposition of KY aren > m and m| (});

LC,(,?-decomposition of K" aren > (t—1)mand m| ().

Assume 3 <t <n. A BCS) of K,(f) is called a Hamilton cycle of K,(f) and a BC,(f)—decomposition of K,(f) is
called a Hamilton cycle decomposition of K,(f). The necessary condition for the existence of BCS) |I<§,t) is n|(}).
In [3], Bermond et al. conjectured that this necessary condition is sufficient and proved this conjecture for
n a prime. In [9], Kithn and Osthus, proved that for t > 4 and n > 30, if n|(}), then BCS) |K£,t). Fort = 3,
the necessary condition 7| (g) issm = 1,2,4 0or5 (mod 6); in [2], Bermond proved that: if n = 2,4 or 5
(mod 6), then BCff) |K£,3), and in [16], Verrall proved that: if n = 1 (mod 6), then BCS) IK,S3 ),

Let é"n(t) be the set of all t-element subsets of Z,,, where1 < t < n.If E € é"n(t) andr € Z,,let E +rbe
formed by replacing each element x € E with x +7;s0 (r,E) = E +rmaps Z, X &Y into &, It can be seen
that the group Z, acts on the set 5,1“) partitioning it into Z,-orbits, where E;, E; € é"n(t) are in the same orbit
if and only if E; +r = E, for some r € Z,. We define [E] to be (E +r : v € Z,}, which we refer to as the
Z,-orbit of E .7 € & and r € Z,, let. ¥ +r = {E+7:E € &) By clicking .7, we shall mean replacing
< with & + 1.

Let J¢ be a subhypergraph of Ki,t), where V(K,(f)) = Z, and let I be a J#-decomposition of Kﬁf ). ThenT
is said to be cyclic if I' is closed under clicking. Thus if % € T, then % + 1 € I If we partition &Y into
k distinct Z,-orbits each of size n and if /¢ is a subhypergraph of KY consisting of one edge from each k
distinct Z,-orbits, thenI' = {J¢ +i:i € Z,} is a cyclic 7#-decomposition of Kff).

Petecki [12], showed that K admits a cyclic Hamilton cycle decomposition if and only if g.c.d.(n, £) = 1

and A = min{d > 1 :d|n} > }.

Jordon et al. [8] proved that the necessary conditions are sufficient for the existence of a BCS)—
decomposition of K,(f’). In [10, 11], Lakshmi and Poovaragavan proved that the necessary conditions are
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sufficient for the existence of a BCéB)—decomposition of K and for the existence of a BCS)-decomposition
of K, forp > 5is prime.
In [4], Bryant et al. proved that there exists an LCéS)—decomposition of K,(f) ifand only ifn = 0, 1 or 2

(mod 9). Bunge et al. [5] shown that there exists an LCiS)-decomposition of K& if and onlyifn =0,1,2,4
or6 (mod 8)andn ¢ {4,6}. In[6], Bunge et al. studied LC?) decompositions of KS). In [14], we have shown
that LC(73)|K,(13) ifandonlyifn > 14andn = 0,1 0r2 (mod 7).

In this paper, we prove:
Theorem 1.1. LCS)IKS) ifandonly ifn > 12andn = 0,1, 2,9, 10, 18, 20, 28, or 29 (mod 36).

For convenience, in Kf), we denote the loose 6-cycle
[Gi+j1,i+]2), i+ 2, i+ 3, i+ ja), i+ ja, i+ f5, i+ fo), (i + Je, i+ j7, i+ jg), (i + Js, i+ jo, i+ jr0), (i + j10,1 + ju1,0)]
by
i+ 100, j1, j2), (2, J3, ja), (as 5, o) (Jes 7, J8)s (s, o, 10), (jao, j11, 0)]-

Graphs K,;, C,, P, and K, ,, respectively, denote the complete graph with n vertices, the cycle with n
(n > 3) vertices, the path with n vertices and the complete bipartite graph with partite sizes m and n.

2. Loose 6-cycle decompositions of complete 3-uniform hypergraphs of small order

2.1. Difference technique
Following ‘difference technique” method was introduced by Gionfriddo et al. [7]. Assume that the

vertices of K are 0,1,...,1n — 1 and that they are arranged in a cyclic order. The distance between vertices
i and j is defined to be

i = jll = min{li — jl,n — |i = jl}.
Using this, define a difference triplet
ti ik = (i = jll, 7 — klI, Ik = il[)

to any three vertices i, jk with0 <i<j<k<n-1.

Note that the ordering condition i < j < k is important in the definition. By taking t;x; = (||j — kl|, [lk —
il lli—jll) and t;; = (Ik—ill, lli— jll, llj — k|l), we assume that t; jx = t;x; = tx, ; for all choices of {i, j, k}. Moreover,
difference triplets are rotation-invariant, i.e. f; jx = ti41,j+1,4+1 holds for all {i, j, k}.

From [7], we have: if n is not a multiple of 3, then there can occur two kinds of difference triplets:
o symmetric triplets: of the form (a,a,b), where2a =bor 2a + b =n, and
o reflected triplets: of the form (a,b,c) or (a,c,b), wherea+b=cora+b+c=n,anda#b#c #a.
If n is a multiple of 3, then we have an additional triplet (3, 5, 5).

In what follows, the decompositions are obtained by using the method of difference triplets; in particular,
when 62 divides (n — 1)(n — 2), the decompositions are cyclic.

2.2. 62 divides (n — 1)(n — 2)
Lemma 2.1. LC(:) |K(239).

Proof. Let V(K(;;)) = Zy9. Following LC(63)’s decompose Kg) :
i+1[(13,12,11),(11,9,8),(8,5,4),(4,28,0),(0,1,6),(6,7,13)]

(edges having difference triplets (1,1, 2), (1,2,3), (1,3,4), (1,4,5), (1,5,6), (1, 6,7), respectively),
i+[(2,1,9),(9,10,18), (18,17,27),(27,8,26), (26, 14, 15), (15,3, 2)]

(edges having difference triplets (1,7,8), (1,8,9), (1,9,10), (1,10,11), (1,11,12), (1,12,13), respectively),
i+[(15,1,2),(2,17,3),(3,4,19),(19,18,6), (6, 23,5), (5,16,15)]
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(edges having difference triplets (1, 13, 14), (14, 14, 1), (13,1, 14), (12,1, 13), (11, 1,12), (10, 1, 11), respectively),
i+[(12,11,2),(2,23,3),(3,4,25), (25,26,19), (19,18, 13), (13,8, 12)]

(edges having difference triplets (9,1,10), (8,1,9),(7,1,8), (6,1,7), (5,1,6), (4,1,5), respectively),
i+1[(1,2,27),(27,26,24),(24,20,22),(22,17,19), (19, 21, 25), (25,23, 1)]

(edges having difference triplets (3,1,4), (2,1,3), (2,2,4), (2,3,5), (2,4,6), (2,5,7), respectively),
i+1(1,3,9),09,7,16),(16,6,8),(8,19,10),(10,22,12),(12,28,1)]

(edges having difference triplets (2,6,8), (2,7,9), (2,8,10), (2,9,11), (2,10,12), (2,11, 13), respectively),
i+[(22,20,5),(5,3,18), (18,2, 4), (4,21,6), (6,8,24), (24,12,22)]

(edges having difference triplets (2,12, 14), (2,13, 14), (2,14, 13), (12,2, 14), (11, 2,13), (10, 2, 12), respectively),
i+1[(13,11,2),(2,4,23),(23,1,3),(3,5,26),(26,24,19),(19,17,13)]

(edges having difference triplets (9,2, 11), (8,2,10), (7,2,9), (6,2,8), (5,2,7), (4,2, 6), respectively),
i+1[(28,25,1),(1,4,7),(7,0,3),(3,6,11),(11,5,2),(2,9,28)]

(edges having difference triplets (3,2,5), (3,3,6), (3,4,7), (3,5,8), (3,6,9), (3,7, 10), respectively),
i+[(15,7,4),(4,1,13),(13,0,3),(3,6,17),(17,5,2),(2,28,15)]

(edges having difference triplets (3, 8,11), (3,9,12), (3,10, 13), (3,11, 14), (3,12,14), (13,13, 3), respectively),
i+1[(17,0,3),(3,21,6),(6,9,25),(25,16,28),(28,2,20), (20,10,17)]

(edges having difference triplets (3, 14, 12), (11, 3, 14), (10, 3,13), (9, 3,12), (8, 3,11), (7, 3,10), respectively),
i+[(0,3,23),(23,26,18), (18, 14, 21), (21,17,13), (13,8, 4), (4, 10, 0)]

(edges having difference triplets (6,3,9), (5,3,8), (4,3,7), (4,4,8), (4,5,9), (4,6,10), respectively),
i+1[(0,4,11),(11,7,19),(19,10,6), (6,2,16),(16,27,12), (12,25, 0)]

(edges having difference triplets (4,7,11), (4,8,12), (4,9,13), (4,10, 14), (4,11, 14), (4, 12,13), respectively),
i+1[(17,0,4),(4,8,22),(22,7,3),(3,16,12), (12,20, 24), (24, 28,17)]

(edges having difference triplets (4,13, 12), (4,14, 11), (10,4, 14), (9,4,13), (8,4,12), (7,4, 11), respectively),
i+[(15,11,5),(5,0,9), (9,4, 14), (14,25,19),(19,12,7), (7,2, 15)]

(edges having difference triplets (6,4, 10), (5,4,9), (5,5,10), (5,6,11), (5,7,12), (5,8, 13), respectively),
i+1[(26,2,11),(11,6,21),(21,10,5),(5,0,17),(17,1,12),(12,7,26)]

(edges having difference triplets (5,9, 14), (5,10, 14), (5,11, 13), (12,12,5), (5,13,11), (5, 14, 10), respectively),
i+[(14,28,23),(23,18,10),(10,17,22),(22,16,27),(27,15,21), (21, 8,14)]

(edges having difference triplets (9, 5, 14), (8,5,13), (7,5,12), (6,5,11), (6, 6,12), (6,7,13), respectively),
i+[(1,15,7),(7,22,13),(13,19,0),(0,17,6),(6,12,24), (24,14, 1)]

(edges having difference triplets (6, 8, 14), (6,9, 14), (6,10, 13), (6,11,12), (6,12,11), (6,13, 10), respectively),
i+[(15,21,6),(6,27,12),(12,5,18),(18,4,11), (11, 3,25), (25, 8, 15)]

(edges having difference triplets (6, 14,9), (8,6,14), (7,6,13), (7,7,14), (7,8,14), (7,10, 12), respectively),
i+[(21,28,8),(8,15,26), (26,14,7),(7,0,20), (20,27,12), (12,4,21)]

(edges having difference triplets (7,9,13), (7,11,11), (7,12,10), (7,13,9), (7,14, 8), (8,9, 12), respectively),
i+[(0,8,16),(16,24,5),(5,15,23),(23,3,11), (11, 2,20), (20, 10, 0)]

(edges having difference triplets (8, 8, 13), (8,10, 11), (8,11, 10), (8,12,9), (9,9, 11), (10, 10,9), respectively),
wherei € Zy. O

3) |3
Lemma 2.2. LC(6 ) |K;7)

Proof. Let V(K(337)) = Z3;. Following LC(63)’s decompose Kg37) :
i+1[(11,12,13),(13,14,16),(16,20,17),(17,22,18), (18, 24,19), (19,10, 11)]

(edges having difference triplets (1,1, 2), (1,2,3), (1,3,4), (1,4,5), (1,5,6), (1, 8,9), respectively),
i+[(18,11,12),(12,4,5), (5,15,6), (6,17,7),(7,8,19), (19,31, 18)]

(edges having difference triplets (1,6,7), (1,7,8), (1,9,10), (1,10,11), (1,11,12), (1,12,13), respectively),
i+[(11,30,12),(12,32,13),(13,34,14), (14, 15, 36), (36,0, 23), (23,24, 11)]

(edges having difference triplets (1, 18, 18), (17,1, 18), (16,1,17), (15,1, 16), (13,1, 14), (12, 1, 13), respectively),
i+[(11,12,0),(0,27,1),(1,29,2),(2,31,3),(3,33,4),(4,10,11)]

(edges having difference triplets (11, 1,12), (10,1,11), (9,1,10), (8,1,9), (7,1,8), (6, 1,7), respectively),
i+1[(0,32,1),(1,34,2),(2,36,3),(3,5,6),(6,8,4),(4,35,0)]

(edges having difference triplets (5,1, 6), (4,1,5), (3,1,4), (2,1,3), (2,2,4), (2,4, 6), respectively),
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i+[(12,10,15),(15,13,20),(20,28,22),(22,31,24), (24,16, 14), (14, 23,12)]

(edges having difference triplets (2,3,5), (2,5,7), (2,6,8), (2,7,9), (2,8,10), (2,9,11), respectively),
i+[(22,10,12),(12,25,14),(14,28,16), (16,31, 18), (18, 34, 20), (20, 0,22)]

(edges having difference triplets (2, 10, 12), (2,11, 13), (2,12, 14), (2,13, 15), (2, 14, 16), (2,15, 17), respectively),
i+[(15,13,31),(31,12,14),(14,34,16),(16,18,0),(0,22,2),(2,17,15)]

(edges having difference triplets (2, 16, 18), (2,17, 18), (2,18,17), (16, 2, 18), (15, 2,17), (13, 2, 15), respectively),
i+[(26,28,12),(12,0,14),(14,3,16),(16,18,6),(6,15,17),(17,24,26)]

(edges having difference triplets (14, 2,16), (12,2, 14), (11,2,13), (10,2,12), (9,2,11), (7, 2,9), respectively),
i+1[(29,0,2),(2,33,4),(4,6,36),(36,5,3),(3,1,35),(35,32,29)]

(edges having difference triplets (8, 2,10), (6,2,8), (5,2,7), (4,2,6), (3,2,5), (3,3, 6), respectively),
i+1[(3,0,7),(7,10,15),(15,18,24),(24,27,34),(34,5,31), (31,28, 3)]

(edges having difference triplets (3,4,7), (3,5,8), (3,6,9), (3,7,10), (3,8,11), (3,9, 12), respectively),
i+[(30,27,3),(3,17,6),(6,21,9),(9,12,25),(25,8,11), (11,33, 30)]

(edges having difference triplets (3, 10, 13), (3,11, 14), (3,12, 15), (3, 13, 16), (3, 14, 17), (3,15, 18), respectively),
i+1[(2,20,23),(23,3,6),(6,27,9),(9,31,12),(12,29,26), (26,5, 2)]

(edges having difference triplets (3, 16, 18), (3,17,17), (3,18, 16), (15, 3, 18), (14, 3,17), (13, 3, 16), respectively),
i+1[(25,0,3),(3,29,6),(6,9,33),(33,36,24),(24,27,16), (16,22, 25)]

(edges having difference triplets (12, 3,15), (11, 3, 14), (10, 3,13), (9, 3,12), (8, 3,11), (6, 3,9), respectively),
i+[(27,20,30),(30,35,1),(1,34,4),(4,8,12),(12,16,21),(21,17,27)]

(edges having difference triplets (7,3, 10), (5,3,8), (4,3,7), (4,4,8), (4,5,9), (4, 6,10), respectively),
i+1[(18,7,11),(11,15,23),(23,27,36),(36,3,13),(13,35,2),(2,6,18)]

(edges having difference triplets (4,7,11), (4,8,12), (4,9,13), (4,10, 14), (4,11, 15), (4,12, 16), respectively),
i+[(17,0,4),(4,8,22),(22,3,7),(7,27,11),(11,15,32), (32,36, 17)]

(edges having difference triplets (4, 13,17), (4, 14, 18), (4,15, 18), (4, 16,17), (4,17, 16), (4,18, 15), respectively),
i+[(5,19,23),(23,36,3),(3,7,28),(28,2,6),(6,10,33),(33,9,5)]

(edges having difference triplets (14, 4, 18), (13,4,17), (12,4, 16), (11,4, 15), (10,4, 14), (9,4, 13), respectively),
i+1[(0,4,29),(29,36,3),(3,34,7),(7,2,11),(11, 16, 6), (6,32, 0)]

(edges having difference triplets (8,4, 12), (7,4,11), (6,4, 10), (5,4,9), (5,5,10), (5, 6,11), respectively),
i+[(19,7,12),(12,17,25), (25,30, 2), (2,24, 29), (29, 3,24), (24, 36, 19)]

(edges having difference triplets (5,7,12), (5,8, 13), (5,9, 14), (5,10, 15), (5,11, 16), (5,12,17), respectively),
i+[(26,8,13),(13,18,32),(32,12,17),(17,22,1),(1,16,21),(21,7,26)]

(edges having difference triplets (5, 13, 18), (5, 14, 18), (5,15,17), (5, 16, 16), (5,17, 15), (5, 18, 14), respectively),
i+[(24,0,5),(5,30,10),(10,15,36),(36,31,21),(21,7,16), (16,29, 24)]

(edges having difference triplets (13, 5,18), (12,5,17), (11,5, 16), (10, 5,15), (9,5, 14), (8,5, 13), respectively),
i+1[(0,30,5),(5,36,10),(10,4,16),(16,3,9), (9,23, 15), (15, 6,0)]

(edges having difference triplets (7,5, 12), (6,5, 11), (6,6,12), (6,7,13), (6, 8,14), (6,9, 15), respectively),
i+1[(7,13,23),(23,6,12),(12,30,18), (18, 36, 5), (5,28,22),(22,1,7)]

(edges having difference triplets (6, 10, 16), (6,11, 17), (6,12, 18), (6, 13, 18), (6, 14, 17), (6, 15, 16), respectively),
i+[(21,27,6),(6,12,29),(29,23,10), (10,16, 35), (35,9, 15), (15,5,21)]

(edges having difference triplets (6, 16, 15), (6,17, 14), (6,18, 13), (12, 6, 18), (11, 6,17), (10, 6, 16), respectively),
i+[(14,23,29),(29,0,6),(6,19,13),(13,20,27),(27,34,5), (5,35, 14)]

(edges having difference triplets (9, 6, 15), (8, 6,14), (7,6,13), (7,7,14), (7,8,15), (7,9, 16), respectively),
i+1[(3,10,20),(20,27,1),(1,19,26), (26,33,9), (9,25, 32), (25,18, 3)]

(edges having difference triplets (7, 10, 17), (7,11, 18), (7,12,18), (7,13, 17), (7,14, 16), (7,15, 15), respectively),
i+[(17,10,33),(33,3,20),(20,8,27),(27,34,16),(16,36,9), (9, 25,17)]

(edges having difference triplets (7, 16, 14), (7,17,13), (7,18,12), (11,7,18), (10, 7,17), (8, 8, 16), respectively),
i+[(7,35,14),(14,29,22),(22,30,2),(2,20,10), (10,28, 36), (36,19, 7)]

(edges having difference triplets (9,7,16), (8,7,15), (8,9,17), (8,10, 18), (8,11, 18), (8,12,17), respectively),
i+[(18,10,31),(31,9,17),(17,25,3),(3,11,27),(27,19,7), (7,26, 18)]

(edges having difference triplets (8, 13, 16), (8, 14, 15), (8,15, 14), (8, 16, 13), (8,17, 12), (8,18, 11), respectively),
i+[(1,30,20),(20,29,0),(0,9,18),(18,36,8), (8,28,17),(17,26,1)]

(edges having difference triplets (10, 8, 18), (9, 8,17), (9,9, 18), (9,10, 18), (9,11,17), (9,12, 16), respectively),
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i+[(14,36,23),(23,32,9),(9,18,33),(33,5,21),(21,32,4), (4,24,14)]
(edges having difference triplets (9, 13,15), (9, 14, 14), (9,15, 13), (9,16, 12), (9,17,11), (17,10, 10),
respectively),

i+[(10,19,0),(0,27,11),(11,1,23),(23,13, 36), (36,12, 22),(22,32,10)]
(edges having difference triplets (10,9, 18), (10,11, 16), (10, 12,15), (10,13, 14), (10, 14, 13), (12,10, 15),
respectively),

i+1[(0,10,26),(26,4,15),(15,29, 3),(3,27,14),(14,2,25), (25,13,0)]
(edges having difference triplets (10, 16,11), (15,11, 11), (11,12,14), (11,13,13), (12,11, 14), (13,12,12),
respectively),

i+1(0,23,24),(24,25,2),(2,3,18),(18,17,34), (34,33, 14), (14, 15,0)]
(edges having difference triplets (1, 13, 14), (1, 14, 15), (1,15, 16), (1, 16, 17), (1,17, 18), (14, 1, 15), respectively),
wherei € Zsz;. [

2.3. 62 does not divide (n — 1)(n — 2)

Lemma 2.3. LC(63) IKg).
Proof. Let V(K(138)) = Z;s. Following LC(63)’S decompose K%) :

For eachi € Z;g, consider

i+1[(0,1,2),(2,3,5),(5,6,9),(9,14,10), (10,16,11), (11, 12,0)]

(edges having difference triplets (1,1, 2), (1,2,3), (1,3,4), (1,4,5), (1,5,6), (1, 6,7), respectively),
i+1[(,3,5),(5,7,10),(10,6,4),(4,2,9),(9,11,17),(17,8,1)]

(edges having difference triplets (2,2,4), (2,3,5), (2,4,6), (2,5,7), (2,6,8), (2,7,9), respectively),
i+[(10,0,2),(2,4,13),(13,3,1),(1,6,8), (8,14, 12), (12,7,10)]

(edges having difference triplets (8, 8,2), (7,2,9), (6,2,8), (5,2,7), (4,2,6), (3,2,5), respectively),
i+1[(15,12,9),(9,6,13),(13,8,5),(5,2,11),(11,1,4),(4,7,15)],

(edges having difference triplets (3, 3, 6), (3,4,7), (3,5,8), (3,6,9), (3,7,8), (3, 8,7), respectively),
i+1[(0,12,3),(3,6,16),(16,2,5),(5,9,1),(1,14,10), (10,4, 0)]

(edges having difference triplets (3,9, 6), (5,3,8), (4,3,7), (4,4,8), (4,5,9), (4, 6, 8), respectively),
i+1[(1,15,8),(8,4,16),(16,3,7),(7,12,17),(17,11,6), (6,13, 1)]

(edges having difference triplets (7,7,4), (4,8,6), (4,9,5), (5,5,8), (5,6,7), (5,7, 6), respectively).
Remaining triplets are: (6,6,6), (1,7,8),(1,8,9),(1,9,8),(2,1,3), (3,1,4), (4,1,5), (5,1,6),

(6,1,7)and (7,1, 8).

For each j € Zj3 \ {17}, consider
j+1(14,4,5),(5,16,6),(6,7,0),(0,17,12),(12,8,11),(11,13,14)]

(edges having difference triplets (1,9, 8), (7,1,8), (6,1,7), (5,1,6), (3,1,4), (2,1, 3), respectively).
Finally, consider the following LC(63)’S:
[(0,8,1),(1,9,2),(2,10,3),(3,11,4),(4,5,12),(12,6,0)]

(edge (12, 6,0) is of triplet (6, 6, 6) and the remaining 5 edges are (1,7, 8)),
[(13,5,6),(6,14,7),(7,15,8),(8,4,9),(9,10,0), (0,17,13)]

(edge (9,10, 0) is of triplet (1, 8,9), two edges (8,4,9) and (0,17, 13) are (4, 1,5) and the remaining

3 edgesare (1,7,8)),

[(3,9,15),(15,5,16),(16,6,17),(17,0,7),(7,1,13),(13, 14, 3)]

(edges (3,9,15) and (7,1, 13) are of triplet (6, 6, 6) and the remaining 4 edges are (1,7, 8)),
[(2,6,7),(7,16,8),(8,17,9),(9,5,10),(10,1,11), (11,12, 2)]

(edges (2,6,7) and (9,5, 10) are of triplet (4, 1,5) and the remaining 4 edges are (1,8, 9)),
[(9,13,14),(14,10,15), (15,11, 16), (16,12,17),(17,8,0),(0,1,9)]

(edges (17,8,0) and (0, 1,9) are of triplet (1, 8,9) and the remaining 4 edges are (4,1, 5)),
[(3,12,13),(13,4,14),(14,5,15), (15,6, 16),(16,17,7),(7,8,3)]

(edge (7,8,3) is of triplet (4,1, 5) and the remaining 5 edges are (1, 8, 9)),
[(7,6,15),(15,1,2),(2,16,3),(3,4,17),(17,5,11),(11,12,7)]

(edge (17,5,11) is of triplet (6, 6, 6) and the remaining 5 edges are (4, 1,5)),
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[(13,12,8),(8,16,9),(9,17,10),(10,11,6),(6,1,5),(5,4,13)]
(edge (5,4,13) is of triplet (1, 8,9), two edges (8, 16,9) and (9,17, 10) are (1,7, 8) and the remaining
3 edges are (4,1, 5)),
[(14,0,1),(1,10,2),(2,11,3),(3,12,4),(4,15,5), (5,6,14)]
(edge (14,0,1) is of triplet (4,1, 5), edge (4,15,5) is (7,1, 8) and the remaining 4 edges are (1,8,9)),
[(13,3,4),(4,0,5),(5,6,17),(17,16,11),(11,7,10), (10,12, 13)]
(edges having difference triplets (1,9,8), (4,1,5), (6,1,7), (5,1,6), (3,1,4), (2,1, 3), respectively),
[(10,0,11),(11,1,12),(12,13,2),(2,8,14),(14,15,4), (4,16,10)]
(edges (2, 8,14) and (4, 16, 10) are of triplet (6, 6, 6) and the remaining 4 edges are (1,7,8)). O

3) 3
Lemma 2.4. LC;” K5

Proof. Let V(K(Z%)) = Zy. Following LC(63)’S decompose K%) :
For each i € Z;(, consider
i+1[(0,1,2),(2,3,5),(5,6,9),(9,10,14),(14,8,7),(7,19,0)]

(edges having difference triplets (1,1,2), (1,2,3), (1,3,4), (1,4,5), (1,6,7), (1,7, 8), respectively),
i+1[(1,0,9),(9,8,19),(19,18,10),(10,11,3),(3,16,2),(2,17,1)]

(edges having difference triplets (1,8,9), (1,10,9), (8,1,9), (7,1,8), (6,1,7), (4,1, 5), respectively),
i+1[(17,0,1),(1,3,4), 4,6,8),(8,10,13), (13,19, 15), (15,2, 17)]

(edges having difference triplets (3,1,4), (2,1,3), (2,2,4), (2,3,5), (2,4,6), (2,5,7), respectively),
i+1[(2,0,8),(8,10,17),(17,9,7),(7,18,16), (16, 6,4), (4,15, 2)]

(edges having difference triplets (2,6,8), (2,7,9), (2,8,10), (2,9,9), (2,10, 8), (7,2,9) respectively),
i+1[(15,9,17),(17,2,4),(4,10,8),(8,11,13),(13,16,19), (19,12, 15)]

(edges having difference triplets (6,2,8), (5,2,7), (4,2,6), (3,2,5), (3,3,6), (3,4,7), respectively),
i+1[(0,3,8),(8,5,14),(14,7,4),(4,16,13),(13,2,10), (10,17, 0)]

(edges having difference triplets (3,5, 8), (3,6,9), (3,7,10), (3,8,9), (3,9, 8), (3,10, 7), respectively),
i+1[(0,14,3),(3,18,6),(6,2,9),(9,13,5),(5,1,10),(10,4,0)]

(edges having difference triplets (6,3,9), (5,3,8), (4,3,7), (4,4,8), (4,5,9), (4,6,10), respectively),
i+[(11,0,4),(4,8,16),(16,3,7),(7,13,17),(17,2,6), (6,1,11)]

(edges having difference triplets (4,7,9), (4,8,8), (4,9,7), (4,10, 6), (5,4,9), (5,5, 10), respectively),
i+1[(0,11,5),(5,10,17),(17,9,4),(4,19,13),(13,1,7),(7,14,0)]

(edges having difference triplets (5, 6,9), (5,7,8), (5,8,7), (5,9, 6), (6,6,8), (6,7,7), respectively).
Remaining triplets are: (1,5,6), (1,9,10) and (5, 1, 6). We decompose 60 edges of these 3

triplets into 10 LC(63)’s.
[8,2,3),(3,9,4),(4,10,5),(5,11,6),(6,12,7),(7,13,8)]

(edges having difference triplet (1,5, 6)),
[(0,14,15),(15,1,16),(16,2,17),(17,3,18),(18,4,19),(19,5,0)]

(edges having difference triplet (1,5, 6)),
[(6,1,7),(7,2,8),(8,3,9),(9,4,10),(10,5,11), (11,12, 6)]

(edges having difference triplet (5, 1, 6)),
[(14,8,9),(9,19,10),(10,16,11),(11,17,12),(12,18,13), (13,3, 14)]

(edges having difference triplets (1,5, 6), (1,9, 10)),
[(15,9,10),(10,0,11),(11,1,12),(12,2,13),(13,19, 14), (14,4,15)]

(edges having difference triplets (1,5, 6), (1,9, 10)),
[(0,15,1),(1,11,2),(2,17,3),(3,18,4), (4,19,5), (5,6,0)]

(edges having difference triplets (1,9, 10), (5,1, 6)),
[(12,7,13),(13,8,14),(14,9,15), (15,5, 16), (16,11,17),(17,18,12)]

(edges having difference triplets (1,9, 10), (5,1, 6)),
[(16,1,2),(2,12,3),(3,13,4),(4,14,5),(5,15,6),(6,7,16)]

(edges having difference triplets (1,9, 10), (5,1, 6)),
[(10,15,16),(16,6,17),(17,7,18),(18,8,19),(19,9,0), (0, 1,10)]

(edges having difference triplets (1,9, 10), (5,1, 6)),
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[(18,13,19),(19,14,0),(0,6,1),(1,2,7),(7,17,8),(8,9,18)]
(edges having difference triplets (1,5, 6), (1,9,10), (5,1,6)). O

Lemma 2.5. LCY) [K).

Proof. Let V(K(238)) = Zys. Following LC(63)’S decompose KS;) :
For each i € Z,g, consider
i+1[(1,0,2),(2,3,5),(5,6,9),(9,10,14), (14,15,21), (21,22, 1)]

(edges having difference triplets (1,1, 2), (1,2,3), (1,3,4), (1,4,5), (1,6,7), (1,7, 8), respectively),
i+1[(1,0,9),(9,18,8),(8,26,25),(25,12,13),(13,27,14), (14, 15,1)]

(edges having difference triplets (1, 8,9), (1,9,10), (1,10,11), (1,12,13), (1,13,14), (1, 14, 13), respectively),
i+1[(6,19,18),(18,1,2),(2,20,3),(3,4,22),(22,21,13), (13,14, 6)]

(edges having difference triplets (12,1,13), (11,1,12), (10,1,11), (9,1,10), (8,1,9), (7, 1, 8), respectively),
i+[(7,0,6),(6,5,1),(1,2,26),(26,25,23),(23,21,19), (19,9, 7)]

(edges having difference triplets (6,1,7), (4,1,5), (3,1,4), (2,1,3), (2,2,4), (2,10,12), respectively),
i+1[4,2,7),(7,5,11),(11,13,18),(18,24,16),(16,23,14),(14,6,4)]

(edges having difference triplets (2,3,5), (2,4,6), (2,5,7), (2,6,8), (2,7,9), (2,8,10), respectively),
i+1[(23,21,4),(4,2,15),(15,3,1),(1,16,14),(14,0,12), (12, 25, 23)]

(edges having difference triplets (2,9,11), (2,11,13), (2,12,14), (13,13,2), (2,14,12), (11, 2, 13), respectively),
i+1[(11,13,1),(1,20,3),(3,23,5),(5,7,26),(26,6,4),(4,9,11)]

(edges having difference triplets (10, 2,12), (9,2,11), (8,2,10), (7,2,9), (6,2, 8), (5,2,7), respectively),
i+1[(0,24,2),(2,27,4),(4,7,10),(10,13,17), (17,20, 25), (25,6, 0)]

(edges having difference triplets (4,2, 6), (3,2,5), (3,3,6), (3,4,7), (3,5,8), (3, 6,9), respectively),
i+1[(10,0,3), (3,14, 6), (6,18,9), (9,22, 12), (12, 15,26), (26,23, 10)]

(edges having difference triplets (3,7,10), (3,8, 11), (3,9,12), (3,10,13), (3,11, 14), (3,12, 13), respectively),
i+[(16,0,3),(3,20,6),(6,24,9),(9,21,18), (18,1, 26), (26,23, 16)]

(edges having difference triplets (3,13, 12), (3, 14, 11), (10, 3,13), (9, 3,12), (8, 3,11), (7, 3, 10), respectively),
i+1[(7,4,26),(26,3,6),(6,10,13),(13,17,21),(21,2,25),(25,1,7)]

(edges having difference triplets (6,3,9), (5,3,8), (4,3,7), (4,4,8), (4,5,9), (4,6,10), respectively),
i+1[(5,9,16),(16,4,8),(8,21,12),(12,26,2),(2,6,17),(17,1,5)]

(edges having difference triplets (4,7,11), (4,8,12), (4,9,13), (4,10, 14), (4,11,13), (12,12, 4), respectively),
i+1[(7,3,20),(20,2,6),(6,10,25),(25,9,5),(5,22,1),(1,11,7)]

(edges having difference triplets (4,13, 11), (4, 14, 10), (9,4, 13), (8,4,12), (7,4,11), (6,4, 10), respectively),
i+[(11,15,6),(6,1,24),(24,18,13),(13,8,20), (20,5, 25), (25,16,11)]

(edges having difference triplets (5,4,9), (5,5, 10), (5,6,11), (5,7,12), (5, 8,13), (5,9, 14), respectively),
i+1[(0,23,10),(10,5,21),(21,4,9),(9,14,27),(27,22,13), (13, 8,0)]

(edges having difference triplets (5, 10, 13), (5,11, 12), (5,12,11), (5,13, 10), (5,14,9), (8,5, 13), respectively),
i+1[(20,15,8),(8,3,25),(25,13,19),(19,6,12),(12,18,26),(26,7,20)]

(edges having difference triplets (7,5, 12), (6,5, 11), (6,6,12), (6,7,13), (6, 8,14), (6,9, 13), respectively),
i +1[(0,16,6), (6,23,12),(12,18,2), (2,8,21), (21,27, 13), (13,7, 0)]

(edges having difference triplets (6, 10, 12), (6,11, 11), (6,12,10), (6,13,9), (6,14, 8), (7, 6,13), respectively),
i+[(14,0,7),(7,27,20),(20,4,11),(11,1,22),(22,5,15), (5,21, 14)]

(edges having difference triplets (7,7,14), (7,8,13),(7,9,12), (7,10,11), (7,11,10), (7,12, 9), respectively),
i+[(15,23,2),(2,10,18),(18,1,9),(9,27,17),(17,26,6), (6, 24, 15)]

(edges having difference triplets (7,13, 8), (8,8,12), (8,9, 11), (10,10, 8), (8,11, 9), (9,9, 10), respectively).
Remaining triplets are: (1,5,6), (1,11,12) and (5, 1, 6). We decompose 84 edges of these 3 triplets into 14

LCYs.
Let j € {0,6,12,18}.
j+1(2,14,3),(3,9,4),(4,26,27),(27,5,0),(0,6,1),(1,7,2)]

(first edge is of triplet (1,11,12) and the remaining are (1, 5, 6)),
j+100,23,1),(1,24,2),(2,25,3),(3,26,4),(4,27,5), (5,6,0)]

(edges having difference triplet (5, 1, 6)),
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j+1(8,2,3),(3,15,4),(4,16,5),(5,17,6),(6,18,7),(7,19, 8)]
(first edge is of triplet (1,5, 6) and the remaining are (1,11, 12)).
Remaining two LC?)’S are:
[(24,19, 25), (25,20, 26), (26,21,27), (27,11, 0), (0,22, 23), (23,1, 24)]
(first three edges are of triplet (5,1, 6), (27,11,0) is of (1,11, 12) and the latter two are (1, 5, 6))
[(2,24,25),(25,3,26),(26,10,27),(27,22,0),(0,12,1),(1,13,2)]
(first two edges are of triplet (1,5, 6), (27,22, 0) is of (5,1, 6) and the remaining three are (1,11,12)). O

Lemma 2.6. LCS) IKfS).

Proof. Let V(KY)) = Zss.
Following LC(63)’s decompose be.) :
For each i € Z45, consider
i+[(20,37,21),(21,22,23),(23,24,26),(26,27,30), (30, 34,29), (29, 19, 20)]

(edges having difference triplets (1,16,17),(1,1,2),(1,2,3), (1,3,4), (1,4,5), (1,9, 10), respectively),
i+1[(6,13,7),(7,8,15),(15,16,24), (24,25, 36), (36,4,37), (37,38, 6)]

(edges having difference triplets (1,6,7), (1,7,8),(1,8,9), (1,11,12), (1,12,13), (1, 13, 14), respectively),
i +[(41,36,40), (40, 19, 20), (20,5, 6), (6,31,32), (32,13, 14), (14, 42, 41)]

(edges having difference triplets (4,1,5), (1,20, 21), (1,14, 15), (1,19, 20), (1,18,19), (1,17, 18), respectively),
i+[(18,17,44),(44,22,23),(23,1,24),(24, 25, 3), (3,4, 28), (28, 29, 18)]

(edges having difference triplets (18, 1,19), (1,21, 22), (22,22, 1), (21, 1,22), (20,1, 21), (10, 1, 11), respectively),
i+1[(20,19,2),(2,3,31),(31,30,15),(15,14,0), (0,1, 32), (32, 33, 20)]

(edges having difference triplets (17, 1, 18), (16, 1,17), (15,1, 16), (14,1, 15), (13, 1, 14), (12,1, 13), respectively),
i+1[(0,2,7),(7,9,15), (15,17, 24), (24, 26, 34), (34, 32, 43), (43,10, 0)]

(edges having difference triplets (2,5,7), (2,6,8), (2,7,9), (2,8,10), (2,9,11), (2,10, 12), respectively),
i+1[(3,9,8),(8,7,4),4,5,2),(2,43,0),(0,40,42), (42,44, 3)]

(edges having difference triplets (5,1, 6), (3,1,4), (2,1,3), (2,2,4), (2,3,5), (2,4, 6), respectively),
i+1[(2,4,15),(15,13,27),(27,29,42), (42, 26, 28), (28, 30, 0), (0, 18, 2)]

(edges having difference triplets (2,11, 13), (2,12, 14), (2,13, 15), (2, 14, 16), (2, 15,17), (2,16, 18), respectively),
i+1[(9,35,37),(37,19,17),(17,15,36), (36, 11, 34), (34, 10, 32), (32, 30,9)]

(edges having difference triplets (2,17, 19), (2, 18, 20), (2,19, 21), (2,20, 22), (2, 21, 22), (2,22, 21), respectively),
i+1[(34,9,11),(11,13,37),(37,39,19),(19,21,2),(2,31,4), (4, 6,34)]

(edges having difference triplets (20, 2, 22), (19, 2, 21), (18,2, 20), (17,2, 19), (16, 2, 18), (15, 2, 17), respectively),
i +[(40,9,11), (11,13,43), (43,41,29), (29,27, 16), (16, 18, 6), (6, 4, 40)]

(edges having difference triplets (14, 2,16), (13,2,15), (12,2,14), (11,2,13), (10, 2,12), (9, 2, 11), respectively),
i+[43,6,8),(8,10,1),(1,3,40),(40,42,35),(35,39,41), (41, 38,43)]

(edges having difference triplets (8,2,10), (7,2,9), (6,2,8), (5,2,7), (4,2,6), (3,2,5), respectively),
i+1[(3,0,6),(6,9,13),(13,16,21), (21,24, 30), (30, 33,40), (40,37, 3)]

(edges having difference triplets (3,3, 6), (3,4,7), (3,5,8), (3,6,9), (3,7,10), (3, 8,11), respectively),
i+[(3,0,12),(12,15,25),(25,28,39),(39,42,9),(9,22,6), (6,20, 3)]

(edges having difference triplets (3,9,12), (3,10, 13), (3,11, 14), (3,12,15), (3, 13,16), (3, 14, 17), respectively),
i+[(21,36,18),(18,15,34),(34,31,6),(6,9,27),(27,24,1),(1,43,21)]

(edges having difference triplets (3, 15, 18), (3,16, 19), (3,17, 20), (3, 18, 21), (3, 19, 22), (3, 20, 22), respectively),
i+[(18,42,21),(21,24,1),(1,4,27),(27,30,9),(9,12,37), (37,34, 18)]

(edges having difference triplets (21,21, 3) (3,22, 20), (19, 3,22), (18, 3,21), (17, 3, 20), (16, 3, 19), respectively),
i+[(12,27,30),(30,33,16), (16,29, 32), (32,35, 20), (20, 23,9), (9,44, 12)]

(edges having difference triplets (15, 3, 18), (14, 3,17), (13, 3,16), (12, 3, 15), (11, 3, 14), (10, 3, 13), respectively),
i+1[(12,9,0),(0,3,37),(37,40,30), (30,33,24),(24,27,19), (19, 16, 12)]

(edges having difference triplets (9, 3,12), (8,3, 11), (7,3, 10), (6,3,9), (5,3, 8), (4, 3,7), respectively),
i+[(22,18,14),(14,10,19),(19,23,29), (29, 33,40), (40, 3, 36), (36, 26,22)]

(edges having difference triplets (4,4, 8), (4,5,9), (4,6,10), (4,7,11), (4,8,12), (4,10, 14), respectively),
i+[(4,0,13),(13,17,28),(28,32,44), (44, 3,16), (16,12, 30), (30, 34,4)]
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(edges having difference triplets (4,9,13), (4,11, 15), (4,12,16), (4,13,17), (4,14, 18), (4, 15, 19), respectively),
i +[(24,40,20), (20, 16,37), (37, 10,33), (33,29, 7), (7,32, 28), (28, 4, 24)]

(edges having difference triplets (4, 16, 20), (4,17, 21), (4,18, 22), (4,19, 22), (4, 20, 21), (4,21, 20), respectively),
i+[4,0,26),(26,30,8),(8,36,12),(12,16,41), (41,37,22),(22,18,4)]

(edges having difference triplets (4,22, 19), (18,4, 22), (17,4, 21), (16,4, 20), (15,4, 19), (14, 4, 18), respectively),
i+[(41,24,37),(37,4,8),(8,42,12),(12,16,2),(2,43,34),(34,0,41)]

(edges having difference triplets (13,4,17), (12,4, 16), (11,4, 15), (10,4, 14), (9,4, 13), (7,4, 11), respectively),
i+[4,0,37),(37,41,31),(31,35,26),(26,21,16),(16,22,11), (11,44, 4)]

(edges having difference triplets (8, 4, 12), (6,4, 10), (5,4,9), (5,5,10), (5,6,11), (5,7,12), respectively),
i+1[(8,21,13),(13,18,27),(27,32,42),(42,26,31), (31,36, 3), (3,22, 8)]

(edges having difference triplets (5,8, 13), (5,9, 14), (5,10, 15), (5,11, 16), (5,12,17), (5,14, 19), respectively),
i+1[(5,0,18),(18,23,38),(38,17,22),(22,27,44), (44,21, 26), (26,31, 5)]

(edges having difference triplets (5, 13, 18), (5, 15, 20), (5,16, 21), (5,17, 22), (5, 18, 22), (5,19, 21), respectively),
i+[(20,0,25),(25,30,6),(6,1,28),(28,33,11), (11, 16, 40), (40, 35, 20)]

(edges having difference triplets (20, 20, 5), (5,21, 19), (5,22,18), (17,5, 22), (16, 5, 21), (15, 5, 20), respectively),
i+[(12,26,31),(31,36,18),(18,13,1),(1, 6,35), (35,40, 25), (25,20, 12)]

(edges having difference triplets (14, 5, 19), (13,5, 18), (12,5,17), (11,5, 16), (10, 5, 15), (8, 5, 13), respectively),
i+[(21,26,12),(12,5,17),(17,23,28), (28,16, 22), (22,9, 15), (15,29, 21)]

(edges having difference triplets (9, 5,14), (7,5, 12), (6,5,11), (6,6,12), (6,7,13), (6, 8, 14), respectively),
i+1[(24,9,15),(15,21,31),(31,37,3),(3,30,36), (36,42, 10), (10, 4, 24)]

(edges having difference triplets (6,9, 15), (6, 10, 16), (6,11,17), (6,12, 18), (6,13,19), (6, 14, 20), respectively),
i+1[(6,0,21),(21,15,37),(37,14,20), (20, 26,44), (44,19, 25), (25,31, 6)]

(edges having difference triplets (6, 15, 21), (6, 16, 22), (6,17, 22), (6, 18, 21), (6, 19, 20), (6, 20, 19), respectively),
i +[(22,16,43),(43,15,21),(21,5,27), (27,42, 3), (3,9, 34), (34, 40, 22)]

(edges having difference triplets (6, 21, 18), (6, 22,17), (16, 6,22), (15, 6, 21), (14, 6, 20), (12, 6, 18), respectively),
i+1[(20,7,26),(26,32,15),(15,9,44), (44,5, 35), (35,41,27), (27,33, 20)]

(edges having difference triplets (13, 6, 19), (11,6,17), (10, 6, 16), (9, 6,15), (8, 6,14), (7, 6,13), respectively),
i+[(35,28,21),(21,14,29),(29,22,38),(38, 3,31), (31,24,42), (42,9, 35)]

(edges having difference triplets (7,7,14), (7,8,15), (7,9, 16), (7,10,17), (7,11,18), (7,12, 19), respectively),
i+[(21,28,41),(41,20,27),(27,34,4), (4,26, 33),(33,12,40), (40,2, 21)]

(edges having difference triplets (7, 13, 20), (7,14, 21), (7,15, 22), (7,16, 22),(7,17,21), (19,19, 7), respectively),
i+1[(25,0,7),(7,34,14),(14,42,21),(21, 28, 5), (5,35,12),(12,32,25)]

(edges having difference triplets (7, 18, 20), (7, 20, 18), (7,21,17), (7,22, 16), (15, 7, 22), (13,7, 20), respectively),
i+[(31,0,7),(7,14,40),(40,6,13),(13,20,3), (3,10,39), (39,1, 31)]

(edges having difference triplets (14,7,21), (12,7,19), (11,7,18), (10,7,17), (9,7,16), (8,7, 15), respectively),
i+[(40,32,24),(24,16,33),(33,25,43),(43,35,9),(9,29,17), (17, 3,40)]

(edges having difference triplets (8, 8, 16), (8,9,17), (8,10, 18), (8,11,19), (8,12,20), (8, 14, 22), respectively),
i+1[(8,0,21),(21,36,13),(13,5,29),(29,37,9),(9,17,35), (35,16, 8)]

(edges having difference triplets (8, 13, 21), (8, 15, 22), (8,16, 21), (8,17, 20), (8, 18, 19), (8,19, 18), respectively),
i+1[(28,0,8),(8,37,16),(16,24,1),(1,9,32),(32,19,40), (40, 3,28)]

(edges having difference triplets (8, 20, 17), (8, 21, 16), (8,22, 15), (14, 8, 22), (13, 8, 21), (12, 8, 20), respectively),
i+[(17,9,43),(43,8,16),(16,7,24),(24,15,6), (6,32,41), (41,5,17)]

(edges having difference triplets (11, 8, 19), (10, 8, 18), (9,8,17), (9,9, 18), (9,10, 19), (9, 12, 21), respectively),
i+[(38,27,18),(18,9,31),(31,22,0), (0,21, 30), (30,39, 10), (10, 29, 38)]

(edges having difference triplets (9, 11, 20), (9, 13, 22), (9, 14, 22), (9, 15, 21), (9, 16, 20), (9,17, 19), respectively),
i+1[(19,1,37),(37,9,18),(18,34,43),(43,7,28), (28, 6,42), (42,10, 19)]

(edges having difference triplets (18, 18,9), (9,19, 17), (9,20, 16), (9, 21, 15), (9, 22, 14), (13,9, 22), respectively),
i+[(6,30,42),(42,33,22),(22,31,12),(12,2,37),(37,26,16), (16,28, 6)]

(edges having difference triplets (12,9,21), (11,9, 20), (10,9, 19), (10, 10, 20), (10,11, 21), (10,12, 22),

respectively),
i+[(26,3,13),(13,23,37),(37,27,7),(7,17,33),(33, 6, 16), (16,44, 26)]

(edges having difference triplets (10, 13,22), (10, 14, 21), (10, 15, 20), (10,16, 19), (10,17,18), (10, 18,17),
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respectively),

i+1[(29,0,10),(10,40,20),(20,30,6),(6,28,41),(41,31,19), (19, 8,29)]
(edges having difference triplets (10, 19, 16), (10, 20, 15), (10, 21, 14), (10,22, 13), (12,10, 22), (11,10, 21),
respectively),

i+1[(20,9,31),(31,8,19),(19,30,43), (43,32,12), (12,23, 38), (38, 4, 20)]
(edges having difference triplets (11,11, 22), (11,12, 22), (11,13, 21), (11,14, 20), (11,15,19), (11, 16, 18),
respectively),

i +[(28,0,11),(11,22,40), (40,21, 10), (10, 44, 30), (30,41, 17), (17,5, 28)]
(edges having difference triplets (17,17,11), (11,18, 16), (11,19, 15), (11,20, 14), (11,21, 13), (11,22,12),
respectively),

i+[(12,0,24),(24,36,4),(4,16,30),(30,3,15),(15,43,27),(27,39,12)]
(edges having difference triplets (12,12, 21), (12,13, 20), (12,14, 19), (12,15,18), (12,16,17), (12,18, 15),
respectively),

i+[(7,40,24),(24,12,43), (43,10, 30),(30,4,17),(17,3,35), (35,21, 7)]
(edges having difference triplets (12,17,16), (12,19, 14), (12,20, 13), (13,13,19), (13,14, 18), (14,14,17),
respectively),

i+[(43,11,26),(26,39,10),(10,23,40),(40,27,13), (13,44, 28), (28, 12,43)]
(edges having difference triplets (13, 15,17), (16, 16,13), (13,17, 15), (13,18, 14), (14,15,16), (16,15, 14),
respectively).

Remaining triplets are: (1,5, 6), (1,10, 11), (1,15,16), (6,1,7),(7,1,8),(8,1,9),(9,1,10), (11,1, 12), (19, 1,20)
and (15,15, 15).

For each j € Z45 \ {44}, consider

j+1(39,33,40), (40,2,3),(3,37,4), (4,13, 14), (14,22,23), (23,24, 39)]
(edges having difference triplets (6,1,7), (7,1,8), (11,1,12), (9,1,10), (8,1,9), (1,15, 16), respectively).

Remaining edges are: {38,32,39}, {39,1,2}, {2,36,3}, {3,12,13}, {13,21,22} and {22,23,38} and edges of
the triplets: (1,5, 6), (1,10,11), (19,1,20) and (15, 15, 15).

Finally, consider the following 26 LC(63)’S containing these 156 edges.

[(0,11,1),(1,27,2),(2,13,3),(3,14,4),(4,5,15),(15,30,0)],

[(5,16,6),(6,17,7),(7,18,8),(8,19,9), (9, 10, 20), (20, 35, 5)],

[(21,10,11),(11,17,12),(12,23,13),(13, 24, 14), (14, 25,15), (15,16, 21)],

[(16,27,17),(17,28,18),(18,29,19), (19,0, 20), (20,21, 31), (31,1, 16)],

[(21,32,22),(22,33,23),(23,34,24), (24, 35, 25), (25, 26, 36), (36, 6, 21)],

[(26,37,27),(27,38,28), (28,39, 29), (29, 35, 30), (30, 31,41), (41,11, 26)],

[(32,43,33),(33,44,34),(34,15,35), (35,1, 36), (36,37,2),(2,17,32)],

[(43,4,44),(44,0,5), (5,39,40), (40, 6,41), (41,7,42), (42, 3,43)],

[(3,29,4),(4,30,5),(5,31,6),(6,32,7),(7,8,33), (33,18, 3)],

[(8,34,9),(9,35,10),(10,36,11),(11,37,12), (12,13, 38), (38,23, 8)],

[(13,39,14), (14,40, 15), (15,26, 16),(16,42,17),(17,18,43), (43, 28,13)],

[(30,19,20), (20, 1,21), (21, 2,22), (22, 3,23), (23, 4, 24), (24, 25, 30)],

[(24,5,25), (25, 6,26),(26,7,27),(27,8,28),(28,29,9), (9, 39, 24)],

[(14,44,29),(29,10,30),(30,11,31), (31, 37,32), (32,13, 33), (33,34, 14)],

[(0,6,1),(1,7,2),(2,28,3),(3,9,4), (4,5,10), (10,44, 0)],

[(6,12,7),(7,13,8),(8,14,9), (9, 15,10), (10, 16,11), (11,5, 6)],

[(18,12,13),(13,19,14), (14,20, 15), (15,41, 16),

[(24,18,19), (19,25, 20), (20, 26, 21), (21,27, 22),
[(40,10,25), (25,31, 26), (26, 32,27), (27,33, 28), (28,34, 29), (29, 30, 40)],
[(36,30,31),(31,12,32), (32,38, 33), (33, 39, 34), (34,40, 35), (35,41, 36)],
[(42,36,37),(37,3,38),(38,4,39),(39,0,40), (40,1,41), (41, 2,42)],
[(39,20,40), (40,21,41), (41,22,42),(42,23,43), (43,24, 44), (44, 38, 39)],
[(34,0,35),(35,16,36), (36,17,37),(37,38,18), (18,44,19), (19,4, 34)],
[(1,12,2),(2,3,8),(8,42,43), (43,9, 44), (44,25, 0), (0,26, 1)],

16,22,17),(17,23,18)],
22,28,23),(23,29,24)],
),

.~ o~ —
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[(32,39,38), (38,43,37), (37,7,22), (22,11,12), (12,27, 42), (42, 31, 32)],
[(38,19,39),(39,1,2), (2,36,3),(3,12,13), (13,21, 22),(22,23,38)]. I

3. Loose 6-cycle decompositions of complete bipartite 3-uniform hypergraphs

For disjoint sets X and Y, the hypergraph with vertex set X U Y and edge set consisting of all 3-sets
&
X1y

of Kg?)y into two sets one consisting of all 3-sets having exactly 2 vertices in X and the other consisting of all

having at most 2 vertices in each of X and Y is denoted either by K(3) or by K We partition the edge set

3-sets having exactly 2 vertices in Y. We denote the subhypergraph induced by the former edge set by K;?)Y

or by K(3)7 and the latter by Kg) or K& . Clearly, K® =k® ¢ K9 .
IX11Y1 LS 47 XY

Lemma 3.1. LC(S) IK(3)

Proof. Consider the complete graph K with vertex set Zs. Decompose K into two copies of Cq : (0,2,1,5, 3,
4,0),(0,3,1,4,2,5,0) and a 1-factor: {01, 23, 45}.

Now, consider K(3) Kg?)y with X = {xp,x1,..., x5} and Y = {yo, 11, ..., y5}. By above, decompose each of
the complete graphs KX and Ky into two copies of C¢ and a 1-factor:

Kx = (xo,x2,X1,X5,X3, X4, X0) ® (X0, X3, X1, X4, X2, X5, X0) ® {X0X1, X2X3, X4X5},
Ky = (Yo, Y2, Y1, Y5, Y3, Y4, ¥0) © (Yo, Y3, yl, Y4, Y2, Y5, Y0) © {Yoy1, Y23, Yays}-

From each of the above C4’s, we produce six LC( Vs in K( y as follows:
[(x0, yi, x2), (X2, Yir1, X1), (X1, Yir2, X5), (X5, Yi+3, X3), (x3, yz+4,x4) (x4, Yiss, x0)],
[(x0,, Yi, x3), (x3, Vi1, X1), (X1, Yir2, Xa), (X4, Yix3, X2), (X2, Yira, X5), (X5, Yiss, X0)],
[(vo, xi, y2), (Y2, Xis1, Y1), (Y1, Xiv2, Y5), (Y5, Xix3, Y3), (Y3, Xiva, Y4), (Y, Xivs, Yo)l,
(Yo, , xi, y3), (Y3, Xix1, Y1), (Y1, Xiv2, Ya), (Ya, Xiv3, Y2), (Y2, Xiva, Y5), (Y5, Xivs, Yo)l,

where i € Zs.
From the two 1-factors, we produce six LC(3)’s in K xy as follows:
[(x0, X1, ¥)), (Y, Y1, X2), (X2, X3, Yjs2), (Yjs2, Yja3, X), (X1, X5, Yjra), (Vina, Yins, %0)],
where j € {0,2,4};
[(x1, X0, Y&), Yk, Y5, X3), (X3, X2, Yks2), (Vke2, Yir1, X5), (X5, X4, Yiea), (Yreas Yies, X1)],
where k € {1, 3,5}.
The collection of these loose 6-cycles yield the required decomposition of Kgg. O

Lemma 3.2. LC(63) | K%),w'

Proof. Since K® = K9Y_gk® ,itis enough to show thatLC(3) | KGL and LC(3) | K(3 Let X = {xjli € Zyp}.
10,18 10,18 10,18”

First, consider K 1075 Kg?) with Y = {yjlj € Zi5}. We use the (Hamﬂton path) Plo—decomposition

{XiX14iX94iX04iX84iX3+iX7+iX4+iXe4iX5+i © 1 = 0,1,2,3,4}
of the complete graph Kjgp = Kx. Following LC(3)’s decompose K(3>

[y, xi, X144), (14, Y2, Xo14), (Xois Y3, X244), (X4, Ya, X8+i), (X8is y5,x3+z) (x3+1/x7+z/ y)l,

[(v2, xi, X140), (X144, Y3, X014), (Xo4i, Y12, X241), (X24i, Yo, X8+i), (X8+is Y, X34i), (X341, X741, Y2)],

[(yo, xi, X141), (X141, Ya, X9+i), (X9+i, Y5, X24i), (X2+is Y13, X8+i), (X8+is Y3, X3+i), (X34, X741, Y9)],

[(Ya, xi, X144), (X141, Y5, X91i), (Xowi, Yo, X2+i), (Xo+i, Y7, X84i), (X8+i, Y8, X3+1), (X344, X744, Y4) ],
[(x7+i, Yo, Xa4i), (Xa4i, Yo, X6+i), (X6+is X541, Y8), (Y8, X241, X8+i), (X8+is Y9, X341), (X34i, Y10, X741)],
[(x74i, Y7, Xa4i), (Cati, Y13, X64i)s (K64 X54i5 Y9), (Y9, X24i, X8+i), (X84, Y10, X3+i), (X344, Y11, X740)],
(74, Y8, Xasi), (Xavis Y1a, X6+i), (X61is X540, Y10), (Y10, X24is X84i), (X84, Y11, X3+41), (X341, Y12, X744) ],
(74 Yo, Xasi)s (Xavis Y15, X6+i), (X6is X540, Y11), (Y11, X24is X84i), (X84, Y12, X3+1), (X341, Y13, X74i) ],
[(x7+i, V16, Xari), (Xavis Y7, X64i), (Xowis X541, Y12), (Y12, X21i, X84+i), (X841, Y13, X3+i), (X34, Y14, X74i)],
[(ys, xi, X144), (X141, Yo, Xo+i), (Xowis Y7, X24i), (X2+i, Y3, X84i), (X8+i, Y14, X34i), (X34i, X741, Y8)],
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[(y16, Xis X144), (X141, Y7, X94i), (Xowi, Y8, X24i), (X24i, Y14, Xs+i), (X84, Y15, X3+i), (X341, X74i, Y16)],
[(v17, xi, X144), (X141, Y8, X9+i), (Xowis Yo, X2+4i), (X24i, Y15, Xs+i), (X8+i Y16, X3+i), (X3+i, X7+, Y17)],
[(y5, xi, X144), (X141, Y9, X01i), (Xowi, Y10, X2+i), (X241, Y16, X8+i), (X8+i, Y17, X341), (X34, X741, Y5)],
[(Ye, Xi, X144), (X141, Y10, X941), (Xo4i, Y11, X24i), (X2+i, Y17, X8+i), (X8+is Y0, X341), (X34, X741, Vo)1,
[(y11, X741, Xa1i), (Xavi, Y16, X6+i), (Xewis X515 Y13), (Y13, X204, X94i), (Xowi, Y12, X141), (X144, Xi, Y11)],
(Y12, X7+4i, Xa4i), (Xa+i, Y8, Xe+i), (Xevis X541, Y14), (Y14, X241, X04i), (Xo+i, Y13, X141), (X144, Xi, Y12)],
[(y13, X74i, Xa+i), (Xa+i, Yo, Xe+i), (Xe+is X541, Y15), (Y15, X241, Xo+i), (Xo+i, Y14, X141), (X144, Xi, Y13)],
[(Y14, X741, Xa1i), (Xavi, Y10, X6+i), (Xowis X51i Y16), (Y16, X24is X94i), (Xowi, Y15, X141), (X144, Xi, Y14)],
[(Y15, X741, Xari), (Xawis Y11, X6+i)s (Xois X544, Y17), (Y17, X241, X94i), (Xowi, Y16, X141), (X144, Xi, Y15)],
[(y5, X04i, X84i), (X84, Y1, X341), (X341, Y7, X74i), (X740, Y3, Xawi), (Xati, Ya, X64i), (Xowis X541, Y5) ],
(Y1, X2+, Xs4i), (Xs+is Y2, X341), (X34, Y15, X74i), (X7+is Ya, Xawi), (Xavis Y5, Xe+i), (X6 X541, Y1),
(Y2, X2+, Xs4i), (Xs+is Y7, X3+1), (X34, Y3, X74i), (X741, Y5, Xasi), (Xari, Yo, X6+i), (Xe+is X54i, Y2)],
[(Yo, X7+, Xawi), (Xavi, Y1, X6+i), (Xowis X541, Y7), (Y7, Xis X141), (X14i, Y17, X9+i), (X941, X2+i, Yo)],
[(y1, X7+, Xa4i), (Xati, Y2, X6i), (X64is X504, Y3), (Y3, Xiy X144), (X141, Yo, X94i), (Xo4i, X241, Y1)],
[(y10, Xi, X142), (X144, Y11, X0+i), (Xowis Xo+i, Y4), (Ya, X541, X64i), (Xowis Y3, Xaxi), (Xasis X744, Y10)],
[(v2, X74i, Xa4i), (Xavi, Y17, X6+i), (Xois X540, Y0), (Yo, Xiy X144), (X140, Y1, X94i), (Xoi, X241, Y2)],
[(Ve, X2+i, X8+4i), (X8+is Ya, X34i), (X34i, Y0, X7+i), (X741, Y17, Xawi), (Xawis Y12, X64i), (X6+is X541, Ye)],
wherei = 0,1,2,3,4.

Next, consider K%) . K(;)w with Y = {ye} U {yilk € Z17}. We use the P1g-decomposition

(Yoo Yk Y1k Y164k Y24k Y154k Y34k Y14k YarkY13+k * Kk € Zq7)

of Kig = Ky~ (decomposition arise out of a p-valuation of Py). Following LCS)’S decompose K®

[(x0, Yoor Yi)» Wi X1, Y14k), (Y14 X2, Yie+k)r (Yi6+ks X9, Youk)s (Yosker Xa, Y1515), (Y1545, Y34ks X0)],

[(x1, Yoor Yi)r Wier X2, Y14k), (Y14ks X7, Yi6+k), (Yi6+ks X0, Youk)s (Yoskr X5, Y1515), (Y1545, Y3ks X1)],

[(x2, Yoor Yi), (ks X3, Y14k), (Y14ks X8, Y16+k), (Y16+ks X5, Y2uk), (Y2+ks X6, Y154k), (Y154k, Y3k, X2)],

[(x3, Yeor Vi), ks X4, Y1k), (V14K X9, Y16+k), (Y16+ks X6, Y24k), (Y21ks X7, Yi51k), (V154K Y34k X3)],

(x4, Yoo, Yi), Wk, X5, Y14k), (Y14ks X6, Yi6+k)r Y164k, X7, Y2uk), (Y24ks X8, Y154k), (V154K Y34k, Xa)],

[(x8, Vi6+ks Yo+k), (Yok, X9, Yi54k), (Vi5+k, X5, Y3+k), (Y3+k X6, Yiark), (Yia+k, X7, Yask), (Yask, Y13+k, X8)],
[(x3, Y164k Yo+k), Y2k, X0, Y154k), (V15+k X6s Y3+k), Y34k, X7, Yiark), (V14+k, X8, Yask), (Yask, Y13+k, X3)],
(4, Yiesks Y2+k), (Yairks X1, Y154k), (V154K X7, Ya4k), (Ya4ks X2, Y1a+k), (Y14+ks X0, Yark), (Yark, Y13+k, Xa)],
[(x1, Y16+ks y2+k), (y2+k, X2, y15+k), (y15+k, X8, y3+k), (y3+k, X9, y14+k)/ (y14+k, Xo, y4+k), (Ya+k, Y13+k, x1)],
[(c2, Yisks York)s (Y2rks X3, Y154k), Y154k, X9, Y3+k), (Y3+ks X0, Y1a+k), (Y1d+ks X1, Yask), (Yarks Y134k, X2)],
[(x3, Y34k, Y1a+k), (Viaskr X4, Yark), (Yarks Y131k X5), (X5, Yoo, Yk), (Yks X6, Y14k), Y14k, Yi6+k, X3)],

[(x4, Y34k, Y1a4k), V1a+k X5, Yask), Yark, Yiz+ks X6), (X6, Yoo, Vi), (ks X7, Y14k), Y14k, Y164k, Xa)],

[(x9, Yoo, Yi), (ks X0, Y14k), Y14k Yi61ks X1), (X1, Y3aks Y1ask), Y144k X2, Yark), (Yasrk, Y134k, X9)],

[(x0, Y134k Yask), (Yasks X3, Y1a4k), (Y1d4k, Y34k, X8), (X8, Yoo, Yi), (Vs X9, Y11k), (Y1+ks Y164k, X0)],

[(x7, Yoo, Yi), Wk, X8, Y14k), (Y14ks Yiesks X5), (X5, Y31ks Y1atk), (V14+k X6, Yark), (Yark, Y13+k, X7)],
where k € Zl7. O

Lemma 3.3. Foran integer £ > 5, we have LCS) | K%S;ﬁ.

X,Y" :

7477

Proof. Consider Kgé = K(;)Y withX = {x;|i € Z;andY = {y}U{y;|] € Zs5}. We use the P19-decomposition

{Veo YiVis1 Yj+3a Yj+2 Yj+33 Yj+3 Yj+32 Yj+a Yj+31 Yj+5 Yj+30 Yj+6 Yj+29 Yj+7 Yj+28 Yj+8 Yj+27 Yj+9 - j € Zss}

of K35 = Ky. For each j € Z3s5, we produce 3¢ loose 6-cycles of Kgs)é as follows:

[(Xis Yoo, ), (Yjs Xix1, Yjx1), (Y1, Xiv2, Yje3a), (Y434, Xiv3, Yjw2), (Yj+2, Xiva, Yj+33), (Yj+33, Yjv3, Xi)],
[(xi, Yjws, Yje32), (Yjws2, Xis1, Yjra), (Yjea, Xiv2, Yjxs1), (Yj+31, Xiv3, Yjs5), (Yjs5, Xiva, Yj+30), (Yj+30, Yjrer Xi)],
[(xi, Yive, Yj+29), (Vjw29, Xis1, Yj+7), (Y7, Xiv2, Yjs28), (Vjr2s, Xix3, Yjss), (Yjss, Xiva, Yjr27), (Yj+27, Yjr9, Xi)],
where i € Z,.

The collection of these 105 ¢ loose 6-cycles yield the required decomposition of K%é. O
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Lemma 3.4. For an integer £ > 5, we have LCS’) | Kg’;.

Proof. Consider Kg’;ﬂ = Kg)y with X = {x;|i€ Z;#and Y = {y;|j € Zs;}. We use the Pi9-decomposition

(Vi Vir1 Yjsse Yisa Yj+35 Yj+3 Yj+3a Yj+a Yjr33 Yjrs Yje32 Yjre Yj+31 Yj+7 Yj+30 Yj+8 Yj+29Yj+o Yj+28 = ] € Za7}
of K37 = Ky. For each j € Z3;, we produce 3¢ loose 6-cycles of Kg’; as follows:

(i, v, yjsr), (Yjsr, Xiv1, Yjrss), (Yjeser Xivzs Yiv2), (Yj2, Xix3, Yj435), (Y435, Xivds Y+3), (Y43, Yjraa, Xi)],
(i, Yijwsa, Yiva), (Yjwar Xiv1, Yjra3), (Y33, Xiva, Yjrs), (Yjrs, Xiv3, Yj+32), (Yjs32, Xiva, Yjre), (Yjre, Yjrat, Xi)],
(i, s, Yjsr), (Yjr, Xist, Yjr0), (Y430, Xiv2, Yjes), (Yjrs, Xivs, Yj+29), (Y429, Xiva, Yj+9), (Yjvo, Yjras, Xi)],
wherei € Z,.

The collection of these 111 £ loose 6-cycles yield the required decomposition of K%S;f O

Lemma 3.5. If Cq1 | Ky, then LC(63) | K(S%.
n,

Proof. Consider KS% = K;?)? with X = {x|i = 1,2,...,nfand Y = {y;|j = 1,2,...,18}. Let Z be a
Cn—decomposition’ of K,,. For each Ci1 = Xy, X3, Xiy Xi, Xis Xi Xi, Xig. Xig Xing Xiy Xiy N 9, we consider the following
LCY¥s in K©_,

6 n,18
[(y1, xiy, Xiy), (Xiy, Ya, Xis), (Xig, Y7, %3,), (i, Y10, Xis), (Xis, Y13, Xig), (i, Xizs Y16)],
(v, xiy, x3,), (Xi, Y5, Xi3), (i, Y8, Xiy), (Xiy, Y11, Xis), (Xis, Y14, Xig), (Xig, iy, Y17)],
[y, xiy, Xiy), (Xiy, Yo, Xis ), (Xis, Yo, X4 ), (Xiy, Y12, Xis ), (Xis, Y5, Xig ), (Xig, Xz Y18)],
[(y1, iy, Xi3), (Xiy, Ya, Xiy), (Xiy, Y7, Xis), (Xis, Y10, Xig ), (Xig, Y13, X3 ), (Xiy, Xig, Y16)],
[(y2, xiy, xi5), (X5, Y5, Xi,), (Xiy, Y8, Xis ), (Xis, Y11, Xi, ), (Xig, Y14, Xiy), (Xiy, Xig, Ya7)],
[(v3, xiy, xi3), (Xis, Yo, Xi,), (Xiy, Yo, Xis), (Xis, Y12, Xig ), (Xig, Y15, Xiy), (Xiy, Xig, Y18)],
(1, xi, xi,), Xy Ya, Xis), (Xis, Y7, Xi), (Xig, Y10, i), (X, Y13, Xi ), (Xis, Xio, Y16)],
(2, xiy, xi,), (X, Y5, Xis), (Xis, Y, Xi ), (Xig, Y11, Xiy ), (X, Y14, Xig ), (Xig, Xig, Y17)],
[y, xiy, xi,), (Xiy, Yo, Xis), (Xis, Yo, Xi ), (Xig, Y12, Xiy ), (Xiy, Y15, Xis ), (Xig, Xig, Y18)],
[(ylf Xiy, Xis )/ (xisl Y4, xie)r (xiel Y7, xi7)/ (xi7/ Y10, xig)r (xis/ Y13, xig)r (xi9/ Xiygs y16)]/
[(y2, xiy, xis), (Xis, Y, Xig ), (Xig, Ys, Xi), (Xiy, Y11, Xig), (X, Y14, Xio), (X, Xing, Y17)],
[y, xiy, xis), (Xis, Yo, i), (Xig, Yo, Xi), (X, Y12, Xis ), (Xis, Y15, Xig ), (Xig s Xirg s Y18)],
[(y1xis, xig), (i, Ya, Xiy), (Xiy, Y7, Xi), (Xig, Y10, Xi ), (Xig, Y13, Xisg), (Xisg, Xy Y16)1,
[(y2, Xis, Xig), (Xig, Y5, Xir), (Xi, Y8, Xi ), (Xig, Y11, Xig ), (Xi, Y14, Xigg), (Xirgs Xy Y17)],
[(y3r Xis , Xig )r (xiel Ye, xi7)r (xi7/ Yo, xis)/ (xisf Y12, xi9)r (xi9' Y15, xilo)/ (xiw' Xirys le)]'
[(y1, Xig, Xiy), (Xiz, Ya, Xig), (i, Y7, Xig ), (Xig, Y10, Xivg ) (Xisg, Y13, Xy ), (Xiy, Xiy, Y16)],
[(v2, xig, xi,), (Xiy, Y5, Xig), (Xig, Y8, Xig), (Xig, Y11, Xirg ), (King, Y14, Xiy), (Xiry s Xiy, Y17)),
[(y3/ Xigs xi7)/ (Xi7, Ye, xis)r (xisl Yo, xi9)/ (xigf Y12, Xiy, )/ (xilo/ Y15, Xiyy )/ (xin/ Xiys ]/18)]/
[(ylr Xiy , Xig )/ (xisl Ya, xi9)r (xiq/ Y7, xiw)f (xiluf Y10, xi11)f (xillf Y13, Xiy )/ (xilf Xiys ylﬁ)]l
[(y2r Xiy , Xig )r (xisl Y5, xi9)r (xi9/ Ys, xilo)r (xilo’ Y11, Xiyy )r (xin' Y14, Xy )I (xilr Xiys y17)]/
(Y3, xiy, Xig), (Xig, Yo, Xig), (Xig, Y9, Xisg), (Xing, Y12, Xiy), (Xisy, Y15, X3y ), (X, Xiy, Y18)],
[y, Xig, Xig), (Xig, Ya, Xirg ), (Xisg, Y7, Xiny ), iy, Y10, Xiy ), (Xiy, Y13, Xiy), (Xi, Xz, Y16)],
(2, Xig, Xiy), (Xig, Y5, Xing), (Xisg s Y8, Xy ) (Xing, Y11, Xiy), (Xiy, Y14, Xi), (X, X, Y17)],
[(y3f Xigs Xig )/ (ng, Ye, xilo)f (xim/ Yo, xill)/ (xinl Y12, Xi, )/ (xilf Y15, xiz)l (xizf Xiys ylg)]l
(Y1, Xy, Xirg ), (Xivg s Ya, Xiy ), (Xiny, Y7, X0t ), (X, Y10, Xi), (i, Y13, X4 ), (i, Xig, Yr6)],
[(y2' Xigs xilo)/ (xilo/ Y5, Xiyy )r (xin’ Y8, Xiy )r (xill Y11, xiz)r (xizl Y14, xiz)/ (xi3/ Xigs ]/17)]/
[(3, Xig, Xiry), (Xings Yo, Xing ) (Xigy s Yo, Xiy), (Xiy, Y12, Xiy), (i, Y15, Xi), (Xis, Xy Y18)],
(1, Xing, Xiy ), (Xiny Ya, Xi0), (Xiy, Y7, Xiy), (X, Y10, Xi), (X, Y13, X4 ), (X, Xis, Y16)],
(2, Xise, Xy ) (Xiny, Y5, X3y, (Xiy, Y8, Xiy), (Xiy, Y11, Xis), (Xiy, Y14, Xiy), (i, Xis, Y17)],
[y, Xy, Xiry ), (Xiny, Yo, i), (Xiy, Yo, Xi), (Xiy, Y12, Xi3), (X, Y15, X4y ), (Xiy, Xis, Y18)],
[y, Xiny, xi), (Xiy Yar Xiy), (Xiy, Y7, Xis), (Xis, Y10, Xiy)s (i, Y13, Xis), (X, Xig, Y16)],
(2, X0y, xiy), (Xiy, Y5, Xiy), (Xiys Y8, Xi3), (Xi, Y11, Xiy), (X, Yia, Xis), (Xis, Xig, Y17)1,
[(ys, xi, Xiy), (i, Yo, Xiy), (X, Yo, Xiy), (Xis, Yr2, Xi,), (Xiy, Y15, Xis), (Xis, Xig, Y18)]-

The collection of these loose 6-cycles yield the required decomposition of Kf% O
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Since K& = K®_ g K(SL, we have, by above lemma,
1,36 n,18 n,18

Lemma 3.6. If Cq1| K, then LC(63) | Kf%

@) 3
Lemma 3.7. LC; |K11,36.

Proof. Write K, as K¥_ @ K® . By Lemma 3.3, LC?" | K%)%. As Ci1 |Ky1, by Lemma 3.6, LCY [K®

11,36 11,36 11,36 11,36
33
Hence, LC; |K11,36. O

@) 3
Lemma 3.8. LC, |K36’37.

Proof. Write K9  as K®_ @ kP | By Lemmas 3.3 and 3.4, we have, respectively, LC(63) |K®_ and

00 36,37 ( )36,3(7) 36,37 36,37
3 3 3), 1,3
LC; |K%,37' Hence, LC; |K36/37. O

(3)1(3)
Lemma 3.9. LC; |K36,45.

Proof. Write K _ask®_ e K® . By Lemma 3.3, Lc® |I<(3)f. By Lemma 3.6, Lc® |I&) , if C11]Kys. The
36,45 36,45 36,45 6 36,45 6 36,45
existence of the decomposition Ci1|Ky5 follows from the result of Sajna [13]: “Let n be an odd integer and

m be an even integer with 3 < m < n. The complete graph K, can be decomposed into cycles of length m
whenever m divides the number of edges in K;,.” Hence, LC(:)IK% 5 O

4. Loose 6-cycle decompositions of complete tripartite 3-uniform hypergraphs

For pairwise disjoint sets X, Y and Z, the hypergraph with vertex set X U Y U Z and edge set consisting

of all 3-sets having exactly one vertex in each of X, Y and Z is denoted by Kg?)y , or Kl(f(? iz

(3)

Lemma 4.1. If m,n > 6 are even integers, 3|mn, and € > 5 is an integer, then LC(63) K, -

To prove Lemma 4.1, we use the following:

Theorem 4.2. (Truszczynski [15]). If k,m,n are positive integers with m, n even and m > n, then K,,,, has a
Pii1-decomposition if and only if m > [’%1], n> ('ﬁ] and mn =0 (mod k).

Proof of Lemma 4.1.
Let KS)n 0= Kg?)yz, where X = {x1,..., x4}, Y = {y1,...,yn} and Z = {z; | i € Z;}. Consider the complete

bipartite graph K, , with bipartition (X, Y). By Theorem 4.2, P7 | K, ,. Let Z be one such decomposition. For
each Py := 0100304050607 in 9, construct £ edge-disjoint loose 6-cycles [(z;, v1,v2), (V2, Zi+1, V3), (U3, Zi+2, Va),
(04, Zit3,05), (U5, Zira, Vs), (Ve, V7, 2;)] Of Kg)n ,» where i € Z,. Collection of these loose 6-cycles yield a decom-

position of KS)n O
5. More loose 6-cycle decompositions
Lemma 5.1. Ifn = 0 (mod 6), then LC(:) |K,(132,

S S
Proof. Then, n = 6s for some integer s > 1, and therefore Kf,l = KS)Y, where X = JX;and Y = Y]

i=1 =1
be disjoint union of sets Xi,...,Xs and Y3,..., Y, respectively, with |Xj| = |Y;| = 6, where i,j € {1,...,s}.
Write Kg?)y as an edge-disjoint union of ng),l/j = Kgg, i,jell,...,sh Kf’i X, = KSéﬁ, i1, I, j€{1,...,s}and
; ;. (3) ~ @ ; ; 3) 13).
i1 # ip; and I(XK_,YWY]_2 = K6l6/6, i, i, j2 €{1,...,s} and j; # j». By Lemma 3.1, LC; |K6/6, and by Lemma 4.1,

(3) 11-3) 3) 113
LC, |K6,6,6.Hence, LC7 Ky, O
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(3) | 3
Lemma 5.2. LC6 |K36.

Proof. Write Ké36) = 2K§38) @ K§38)18' By Lemmas 2.3 and 5.1, we have, respectively, LCS) | Kg) and LC(63) | K%)ls'
Hence, LC(63) | Ké36) O

@) 13
Lemma 5.3. LC; |K18’20.

Pro(o{, V(\h)rite Kg),zo ()E If%%),ls as K(li))),ls <) (K)%),l(s) <) K%),lo,ls' By Lemmas 3.2 and 4.1, we have, respectively,
3)| 3 3)| 3 3) 3
LC7 1Ky, and LC™ | Kig g 1- Hence, LCT|K g, O
)13
Lemma 5.4. LC; |K18/28.
Proof. Write K& = K9 ask® o k® o Kk®  ByL 32,5.1and 4.1, we h ivel
. 1528 = Kigrs 10,18 18.18 l0,1818- BY Lemmas 3.2, 5.1 and 4.1, we have, respectively,
3) | 3 3) | 13 G x® 3B
LG 1K g1 LCy " | Kig g and LC™ [ Ky g 1o Hence, LK g o O
()7 3)
Lemma 5.5. LC; |K18,36.
Proof. Write Kg),% as K§38),18 & K§38),18 & K§38),18,18‘ By Lemmas 5.1 and 4.1, we have, respectively, LC(63) IKg),18
and LC(:) |K§38)18’18. Hence, LC(63)|K§38)’36. O
)3
Lemma 5.6. LC; |K29,36.
Proof. Write ng),% as K§31),36 & Kg),% & Kﬁ)’l&%. By Lemmas 3.7, 5.5 and 4.1, we have, respectively, LC(63) | Kﬁ),%,
3) | 3 G x® B3
LC6 |K18’36 and LC6 |K18,36’11.Hence, LC6 |K29/36. O

6. Proof of Theorem 1.1

The proof of the necessity is obvious. The congruence in the necessary condition follows from the
divisibility condition 6 (3). Now, we prove the sufficiency. We consider three cases.
Case1l. n = 18k + ¢, where ¢ € {0,2,10}.

Then, K,(f’) = Kg)k e = Kg’), where X = XoU X; UXpU---U X;_; be pairwise disjoint union of
sets Xo, X1, Xo, ..., Xe with [Xo| = 18+ Cand [Xi| = |Xo| = ... = [Xpl = 18. Write K as
i : 3 ~ B B ~ @ @ L ® 3) ~ 1®) 3 ~ ®
an edge-disjoint union of Ky = Ky, Ky = Kig, Ki'y = Kig. s Kx,l,x,-2 = Kis s KX,I,XiZ,XU = Kis 18,1840
3 3 .. . .. . . .
K§<,-)1,X12,X,-3 =] Kgs),18,18’ where i, iy, ip, i3 €{1,2,...,k—=1},i1 # ip, iy # i3 and i # i3. By Lemmas 2.3, 2.4 and 2.5,
we have, respectively, LC(63) | K?S), LC(63) | Kgso) and LC(63) | K(238). By Lemmas 5.1, 5.3 and 5.4, we have, respectively,
(ORRZE)] 3) | 13 3) | 3 (OFRZE)]
LCP 1K) o LCP 1K), and LCY | K)o By Lemma 4.1, LC (K)o o, € € {0,2,10},
Case 2. n = 36k + ¢, where € € {1,9}.
Then, K,(f) = Késé)k v = KS), where X = XoU X;UXpU -+ U X;_; be pairwise disjoint union of
sets Xo, X1, Xo, ..., Xeor with [Xol = 36+ Cand [Xi] = |Xo| = ... = [Xil = 36. Write K{) as
St : B) ~ 3 @) ~ @ B L O (3 ~ 1® ®3) ~ 1®
an edge-disjoint union of Ky = Ky¢ ,, Ky = K3, Ky = Kygse. s Ky x, = Kaozer Ky, x, %, = Kag 636407
KL o, = Ksasgae Where i, in, iz, i3 € (1,2,...,k =1}, i1 # iz, it # i3 and i # i5. By Lemmas 5.2, 2.2 and 2.6,
we have, respectively, LC(63) | ng, LC(63) | KS) and LC(63) | Kg. By Lemmas 5.1, 3.8 and 3.9, we have, respectively,
(3) | ) 3) | 1) 3) | #3) 3) | )
LC; |K36,36, LC; IK%,37 and LC; |K36,45. By Lemma 4.1, LC; |K36/36,36+€, £€{0,1,9}.
Case 3. n = 36k + 29.
Then, K,(f’) = Kée(’))k w9 = Kg?), where X = XoUX; UXp U --- U X, be pairwise disjoint union of sets

Xo, X1, Xa, ..., Xe with [Xol = 29and [Xi| = [Xa| = ... = [Xil = 36. Write K{ as an edge-disjoint union
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of Kg’z =~ K9 where

0 k9 = k9, KO, = kO, K =k® K ~K® KO ~ KO

367 Xi,Xo 36297 X; X, 36,36" “Xi; Xy Xo 36,36,29” X, Xip Xy 36,36,36
i, i1, 1,13 €{1,2,...,k}, i1 # i, iy # i3 and i, # i3. By Lemmas 2.1 and 5.2, we have, respectively, LCS) IKS))
and LC(63) IK(336). By Lemmas 5.6 and 5.1, we have, respectively, LCS) |I<é36),29 and LC(63) |Ké36)/36.
@) | )
LCS7 1 K5 36362 € €10, 7).
In any case, LCY | KD, This completes the proof. O

By Lemma 4.1,
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