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Abstract. In this study, authors use Riemann-Liouville fractional integrals to get several new inequalities of
Hermite-Hadamard-Mercer type. We establish some trapezoid and midpoint type inequalities for functions
whose twice derivatives in absolute value are convex involving Riemann-Liouville fractional integrals. The
results of the paper are extensions and refinements of Hermite-Hadamard and Hermite-Hadamard-Mercer
type inequalities. we discuss special cases of our main results and give new inequalities of the Hermite-
Hadamard and Hermite-Hadamard-Mercer type. These results are accompanied by further remarks and
observations. Next, we see the efficiency of our inequalities via some applications on special means. Lastly,
a couple of examples through graphical visualizations are provided to illustrate the key findings of our
research.

1. Introduction

The remarkable concept of mathematical inequalities has long been a subject of discussion among math-
ematicians; some interesting applications are found in the following areas: operator equations, numerical
analysis, fractional calculus, quantum information theory, quantum calculus, network theory, and operator
theory. At the moment, this is a very active research topic, enhanced by the interaction between different
fields. Numerical integration and definite integral estimate have significance in applied science.

Fractional calculus is popular among researchers due to its behavior and applications not only in
the field of mathematical sciences but also in different fields of applied sciences such as epidemiology
[6], nanotechnology [7], physics [11], bio-engineering [14], and control systems [17]. Researchers have
used fractional calculus to construct various fractional integral inequalities because of their significance in
approximation theory. Based on their fundamental properties, researchers derive novel fractional operators
and apply them to numerous real-world problems. There are numerous articles and monographs, where
new fractional operators are employed to enhance integral inequalities including the Ostrowski inequality,
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Simpson inequality, Fejer type inequality, Hermite-Hadamard inequality, Jensen-Mercer type inequality,
and so on. The famous Hermite-Hadamard inequality associated with convex functions is one such
important integral inequality.

The concept of a convex function is extremely important in both pure and applied mathematics. Convex
functions are widely used in finance, economy, science and engineering. A function? : j C R — R,
7 :=[01, 0] is said to be convex if

H(E61 + (1 - £)62) < ER(SY) + (1 — E(S2),

holds for all 61,0, € jand & € [0,1]. If the above inequality is reversed, then the function # will be
the concave on [01,0,]. Readers interested in having a broader overview of the development of different
notions of convexity can consult [19], which covers the various ramifications and extensions of the classical
notion of a convex function.

Let0 < x; <x3 £ ... <x, and let §; = (01, 0, ...0,,) non-negative weights such that L, 6; =1. The Jensen
inequality [9]] states that 71 is a convex function on the interval [01, 0,]; then

h(Z?_leixi) < Z?:l 0ifi(x;),

where for all x; € [01,0;] and 6; € [0,1], (i = 1,_n). In particular, if n =2 and 6; = 0, = % we have the
equation (1) of [12]:

h(xl + X2) < fi(x1) + hi(xp)
2 2
The Hermite-Hadamard inequality states that if a mapping #i : ; € R — Ris a convex function on j with
01,02 € I, 61 < 65 then,

61+ 0o 1 02 h(él) + h(52)
A > )< o fé hdx < ————=. (1)

In other words, the integral mean value of a convex function, interpolates the Jensen Inequality for n = 2
and we note that this inequality can make a bounded estimation of the integral mean on [01, 0], so it has
wide applications in numerical integration, so the Hermite-Hadamard Inequality is one of the topics that
attracts the most attention in the Mathematical Sciences today (see [1} [18]).

The double inequality (1) holds in the reversed direction if # is concave [10].

Theorem 1.1. (See [16]). If fi is convex function on j = [01, 02], then
h(él +0p — Z?:leixl‘) < ﬁ(él) + h(éz) - Z?:l Qih(xi),

foreach x; € [01,02] and 6; € [0,1], (i = 1,_n) with X 1 0; = 1.
Remark 1.2. For some results related with Jensen-Mercer inequality, see([2]], 3], [13], [150,[16l], [20]).

After these necessary inequalities about convex functions, we will now give the definitions which we
will use in this paper.

Definition 1.3. (see [8ll, (231, [24], [27]). Let i € L[01,02]. The Left sided and right sided Riemann-Liouville
fractional integrals If,7i and I{ i of order o > 0 with 61 > 0 can be defined respectively by
1 2

a _ L * _ oya-1
I§h(x) = & @ J, (x — &) H(E)E, x>0
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a-1
) @, x <5

here T'() is Euler Gamma function. and Iolji(x) = Igz_h(x) = H(x).

g‘z,h(x) =

Recently, Ogulmiis and Sarikaya [21] introduced several integral inequalities of Hermite-Hadamard-
Mercer type for functions whose first derivatives in absolute value are convex functions via Riemann-
Liouville fractional integrals. We present two of their Lemmas here for the purpose of our new develop-
ments.

Lemma 1.4. ([21]). Let i : j = [01,02] — R be a twice differentiable mapping on (61,02) with 01 < 6. If
fi' € L[61,0,], then the following identity for fractional integrals holds:

Ij’i(él + 62 - 51) + h(él + 52 - Sz) F(a + 1)
2 25— s1)“[ (Oror5p)*

(01 + 62— 51) + I3 s o Ti(61 + 62— 52)]
2)

52— 51
2

1
f (E% = (L= &Y (51 + 6 — (Es1 + (1 — E)s))dE,
0

forall s1,sp € [01,02], @ > 0and & € [0,1].

Lemma 1.5. ([21]). Assume that Ti : ] = [61,02] — R be a differentiable mapping on (01, 02) such that il e L[61,0,]
where 01,0, € ] with 61 < 6. Then the following identity for fractional integrals holds:

20-1T (g + 1)[ i
2(52 — Sl)a (51'*'52—¥)+

1
=225 oo on- (P55 ) <o v (50 )

forall s1,s, € [01,02], a > 0and & € [0,1].

h(él + 0y — 81) +I¢

(61462 Sl*sz)ﬁ(‘sl +0, - Sz)] - h(61 + oy — + 52)

The structure of the current article is as follows: After reviewing some basic ideas and concepts about
fractional calculus and Jensen-Mercer type inequalities, in Section 2 we establish trapezoid type for twice
differential convex functions in the setting of Riemann-Liouville fractional integrals. After that, in the
context of Riemann-Liouville fractional integrals, we develop Midpoint type for twice differential convex
functions in Section 3. Next, applications to special means of real numbers of the outcomes in Section 4 are
examined. Furthermore, the main findings of our study are demonstrated with certain examples through
graphical visualizations. in section 5. Finally, a brief conclusion of the findings is provided in Section 6.

2. Riemann-Liouville fractional integrals inequalities of trapezoid type for twice differentiable convex
functions

Here we give trapezoid type for twice differential convex functions via Riemann-Liouville fractional
integrals. We need the following lemma for obtaining those results:

Lemma 2.1. Assumethathi : ] = [01,02] — R be two times differentiable mapping on (01, 02) such that fi" e L[61,0,]
where 01,0, € ] with 61 < 6. Then the following identity for fractional integrals holds:
Ij’i(él + 62 - 51) + h(él + 52 - Sz) _ F(a + 1)
2(s2 — 51)*

a2
- (S2a +Sl1)) f [1—(1— &)X — & NH" (51 + 6 — (Es1 + (1 — &)s0))dE,

[I&1+62752)+h(61 +0; - Sl) + 1(61+5z —s1)” f(él + 062 — 52)]
(4)

forall si,sp € [61,02], « > 0and & € [0,1].
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Proof. By using integration by parts, we have

1
f [ (1= & = &1 6y + 6 — (81 + (1 — E)sa))dE
0

_ == = &I (51 + 8 = (Es1 + (1= E)sa) !
B Sy — 81 0

1
(sff;) f (E" = (L= &)™ (51 + 62 — (Es1 + (1 — &)sp))dE
0
1
- oty e e b @ 0 -
0

The intended identity in (#) follows from (5) by using (2) and rearranging the terms. [
Remark 2.2. Ifwe take sy = 61 and s, = 0, in Lemma[2.1} then Lemmal2.1|gives [26) Lemma 2.1].
Remark 2.3. Ifwe take sy = 01,5, = 6 and a = 1, in Lemma 2.1} then Lemma 21| gives [5] Lemma 1].

Theorem 2.4. Assume that i : ] = [01,02] — R be two times differentiable mapping on (61, 62) with 61 < 6». Iflh”lq
is convex on [01,02], q = 1, then for all 51,5, € [01,02] and a > 0, the following inequality for fractional integrals
holds:
‘ﬁ(él +6p — 51) + h((Sl + 6 —52) _ F(O( + 1) [
2 2(s2 —51)°

¢ ﬁ(él +0p — Sl) + I%ﬁéz—sl)’h(él +0p — Sz)]

(01+02—52)*

(6)

< a(sy — s1)
T 2(a+1D(a+2)

1" (sl + 11" (s2)l" )"

(Iﬁ” @I + 1" (@)1 — 5

Proof. From Lemma using the Power mean inequality, we obtain

h(él + (32 - 51) + h(61 + 52 - Sz) F(D( + 1)
. = e a 15 ooy (01 + 82 = 52) + I s Ti(51 + 62 — 52)]
(52 = 51)° fl _ (1 _ ryat+l _ ratl =5
< Sarpl ) M=ot erd)

1 q
x( f [1—(1—é>“+1—5“+1]|h"<61+6z—(<ssl+(1—cs>sz)>|qdcs) :
0

Using Jensen-Mercer inequality because of the convexity of [i"|, we obtain

‘h(él + 0y — Sl) + ﬁ(él + 0o —Sz) _ F(O( + 1) [
2 2(sp — 51)*

I Ij’i(él + 0y — 51) + I

(01+02—52)" (01406251

y-T1(01 + 62 - Sz)]

_ 2 1 1
< (;za +511)) (j; [1 _ (1 _ é)a+1 _ £a+1]d5)1 q

1
q

1
x ( fo [1- @ =&t =& (|1 O + 1 621 = (& (s)l" + (1 = O (Sz)lq))dé)

1

— 2 1 ~
1
x (1 @O + 11 (©2)17) f [ (1 &y _ ori]gg
0

1 1
- fo [1- (1= ™ = & (&l (0l + (1= O ()I7))de)"



T. Hussain et al. / Filomat 39:21 (2025), 7483-7497 7487

The desired result follows from the above inequality and using the following computations:

a+1 a+1 _
f[l—(l T =&MdE = +2

!
2a+2)

1 1
f [1-(1-&)" —&ede = f [1-(1-&*! - &1 - &)de =
0 0
this completes the proof. [

Corollary 2.5. If we take s; = 01 and s, = O, in Theorem then we have

‘ﬁ(61)+h(62)_ T(a+1) e
2 2(5, — oy)a Lon*

Remark 2.6. If we take s1 = 01, s = 02 and a = 1, in Theorem 2.4} then Theorem 2.4\ gives [25, Remark 3.11].

(82 — 01)2 (Va"(él)rf + |1 (6217 )

) + Iy H00]| < 50 Ty 2

Theorem 2.7. Assume that fi : ] = [01,02] — R be two times differentiable mapping on (61, 62) with 61 < 6». Iflﬁ”lq
is convex on [61,02], q > 1, then for all 51,5, € [01,02] and a > 0, the following inequality for fractional integrals
holds:

‘ﬁ(él + 0y —51) + ﬁ(él + 6 —Sz) _ F(OI + 1) [
2 2ss —sp)e L Oroes’

(01 + 60— 51) + I3 s o Ti(61 + 62 — 52)]

- 2 1 1 ” ” " 1
< (Sza fll)) ( f 1= (1= g — g g (18 (5ol + 1 @)l — 2 (S“'q;'h G20 @)
_ (e =s)?ra+) [ (sl + 1 (s2)l
a+1)(r(a+1)+1) (1" @I + 1 @) - 2 )'

1,1 _
where;+a—1.

Proof. From Lemma using the Holder’s inequality, we obtain

(01 + 02 —51) + (01 + 02 —52)  T(a+1)
2 h 2(s, — s )a[ (61+62752)*h(61 +0y—s1) + I(é1+62 sl)—h(él +02 - 52)]
—(Sz — 51)2 ! a+ a+1yr %
< TEEEY (fo [1-(1-&2t - gty dé f [ (61 + 62 — (Es1 + (1 — 5)52))|qd5)

Using Jensen-Mercer inequality because of the convexity of |7 |9, we obtain

fl(él +0p — Sl) + ﬁ(él + 0, — Sz) F(O( + 1) a

‘ : = Sor o st T+ 82 =50+ I 1482 = )
(s2—51) fl _ (1 _ oyatl _ catlyr :

< STl [-a-gt-e Ide)

1 1
x( fo (I @I + 11" @I = (&l (DI + (1 = O s2)I) e )

1" (1)l + Ifl"(Sz)Iq)%
5 .

(2 — 51)2 ! atl a1y . .
- 2(0(+1)(j0‘[1_(1_é) -< ]d5> (|h (1)l + |1 (6 )]

This proves the first inequality. To prove the second inequality, we observe that for any A > B > 0 and
r > 1, we have (A — B)" < A" — B'. Thus, it follows that
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[1 _ (1 _ £)a+1 _ £a+l]r <1- (1 _ é)r(a+1) _ ér(a+1),

for all £ € [0,1]. Hence we have that

1 1
f [1 _ (1 _ 5)0&1 _ éuﬂrl]rdé < f [1 _ (1 _ 5)7(0&1) _ ér(aﬁl)]dé
0 0

_ra+1)-1
Cra+ 1)+ 17

This completes the proof of the Theorem. [
Corollary 2.8. If we take s; = 61 and s, = 62, in Theorem[2.7} then we have

< (62 — 61)2(r(a +1)- 1)%(|h”(51)|q + |ﬁ"(62)|q)}7'
T 2@+1) \r(a+1)+1 2

fi(6 hi(o r
‘ ( 1); (02) _ (a+1) [I&lyh(éz) +I&2)_h(51)]

2(02 = 01)°

Corollary 2.9. If we take s; = 01,5 =0y and a =1, in Theorem then we have

(62 — 51)2(2r - 1)%(|h”(51)|q + |h”(62)|q)%‘

fi(x)dx 4 \r+1 2

<

‘h(61)+h(62)_ 1 fz
2 51— 01

01

3. Riemann-Liouville fractional integrals inequalities of midpoint type for twice differentiable convex
functions

Here we give Midpoint type for twice differential convex functions via Riemann-Liouville fractional
integrls. We need the following lemma for obtaining those results:

Lemma 3.1. Assume thathi: ] = [01,02] — R be two times differentiable mapping on (01, 62) such that i’ e L[61,0,]
where 01,0, € J with 61 < 6. Then the following identity for fractional integrals holds:

%[I&mz—w)ﬁ(él + 62 - 51) + I(oé>1+bz—m)‘h(6l + 62 - Sz)] - (0( + 1)h(61 * 62 - 5 52)
1 2 2 (8)
- s fo e R R RUACRS ()

forall s1,s, € [01,02], a« > 0and & € [0,1].

Proof. It suffices to note that

1
I= f £ (51 4+ 62 (25501 4 Ss2)) 1/ (614 82 = (51 + 25 550) e

1 1
= fo Ea+1h/’((§1 + 52 - (2 ; 5S1 + 252))115 + f(; 5a+1h”(51 + (32 - (%Sl + 2 ; 552))115

=L+ L.
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Integrating by parts, we have

1
I = fo é“”h"(él +6y — (2 ; ‘fs1 + §s2))dg

:_2ga+1h'(61 +52_(%S1+§Sz ) 1+2(a+1)f éah 51 +52_( _Esl+§52))d5
Sz—Sl 0 52 — 851
201(61 + 6, — 132
_ (61 + 62 a+1)f§“ﬁ6+62—( 5s1+§52))d£
Sy — 81 S2 — 8§71
By a similar argument, one gets:
Izzf Ea+1h (61 +52—(551+2_552))d5
28 (b + 0r - =
& (1+Sz_(51+ 52 1 z(a_+1 f gah 51 +62—(€ ))dé
2 =81 0 5275
2(01 +62 - 252) 41y , g . 2-¢
- Sy — 851 — - Sza—+51 f(;é“ﬁ (61+62_(551+ 2 52))d5’
we can write
= 2D (o w02 (5 )= o= (- 2 )

The desired identity in (8) follows from (9) by using (3) and rearranging the terms. [
Remark 3.2. If we take a = 1, in Lemma then Lemma|3.1|gives [4, Lemma 1].
Remark 3.3. Ifwe take sy = 01,5, = 6 and a = 1, in Lemma 3.1}, then Lemma B.1|gives [22, Lemma 2].

Theorem 3.4. Assume that i : j = [01,02] — R be two times differentiable mapping on (61, 62) with 01 < 0. If 15|
is convex on [01, 02]. Then the following inequality for fractional integrals holds:

247 IT(a + 2) a 51+ S
(52 _ 51 [ (61462~ 1+sz)+h(61 +062— Sl) + 1(6 +Opm 51-;52 )7h((31 + 0, — Sz)] - (OL + 1)?’1(51 + 0, — 5 )
(52 Sl) ” "

< oy |2l @or+ ' Gal] = [ ol + ]

forall s1,s, € [01,02] and a > 0.
Proof. By means of Lemma3.1/and Jensen-mercer inequality, we find that

20~ 1F(a + 2) S1+ S

(SZ_—Sl[ i) O H O =)+ I (O + 0 — 52)| = (@ + D51 + 65 - )
(Sz - 51) a+1lz” -¢ a+1 < 2-

ST{ ; (S h(61+62—< 7 Sl+—52 'd5+ é (51+62—(251+ Sz |d(§

(82 — 31)2

<2 f [ o)l + I (62)|—(—Ih (sl + 35 I"f'(sz)'))]d‘E

1 - ”
o [ @t = (G sl 255 ei)|oe)

_ S o i (5 = LV 62)
= m[w O1) + 11" (62)] - f]

Which completed the proof. [
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Remark 3.5. If we take a = 1, in Theorem then Theorem [3.4]gives [4, Theorem 3].

Theorem 3.6. Assume that fi : 1 = [01,02] — R be two times differentiable mapping on (61, 62) with 61 < 6,. Iflh"lq
is convex on [01,0,], q > 1, then for all 51,5, € [01,02] and a > 0, the following inequality for fractional integrals
holds:

24~ 1F(C¥ + 2) o S1+ 852
(sz_—sl[ stz OV + 02 =) I (1 + 82 = sz)] — (@ + (51 + 67 - > )
(52 = s1)? 1 i " Bl (s)l" + 11 (s2)17\
< q q_ 1
< =5 (Gror) | eor + 1) I ) (10)
p " i (s)|7 + 3" (s2)17\ 4
+(|h Ol + i (G2))7 i (s1)l ; |72 (s2)l )q],
where 7 + 7 = 1.
Proof. From Lemma using the Holder’s inequality, we obtain
2071 (v + 2) N S14 )
(Sz_—Sl[ stz OV H 02 =)L (01 + 82 52)] = (@ + 1)(51 + 62 — )
1 1
52—S§ g " 2 -
< %([ é(a+1)rdé f ‘h 61 + 62 —( 5 551 + éSz))’ dé)
2 1
f ‘h 51 +62—(581+ 2552))| dcf)q}
Using Jensen-Mercer inequality because of the convexity of |i"|, we obtain
2471 (a + 2) a 51+ 52
(52——sl[ i) O H O =)+ I (O + 0 — 52)| = (@ + D61 + 65 - )

1 1 - %
S@ifnm+&+0«iKW@wﬂﬁ@w%%§W@W+%“Wm“)

1 1
+(L0#@W+W@W—@W@W+%§W@WW@Q

B3I (s1)I7 + |1 (Sz)lq)%
4

(52— 51)? 1 i
- 281 ((oz+1)r+1)

(17" @I + 11 @)1 —

1" (s1)I7 + 3|1 (Sz)lq)%]
1 .

And so the proof is completed. [
Remark 3.7. If we take a = 1, in Theorem [3.6] then Theorem [3.6|gives [4, Theorem 5].

Theorem 3.8. Assume that fi : ] = [01,02] — R be two times differentiable mapping on (61, 62) with 61 < 6». Iflﬁ”lq
is convex on [61,02], q = 1, then for all 51,5, € [01,02] and a > 0, the following inequality for fractional integrals
holds:

+ (11 @I + 11" (62)1" -

21T (a + 2) [
(52 —51)% (G146, 132)*

h(él + 0y — Sl) +1¢ it Sz)

oy o1+ 02~ sz)] — (a+ V(61 + 62—

1

(52 =s0)* [(IH @I + 1 G2)1 1 1 1 p ]
8@ +2)' [( o +2 (G - 2o+ 3)) T (SZ)'q)
1" (017 + |1 (52)17 1 ” 1 1 ” i
+( at2 "33 o= (55 - 2(a+3))|h (SZ)W) ]

forall s1,sp € [61,02] and o > 0.
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Proof. From Lemma [3.1|and using power mean inequality for g > 1, we have

27 @ + 2) 1, N
(52 —s1)* [I(élﬂsz_@)ﬁ(él +0,—51) + 1(61+52_¥

1 _1 1 - '
) @(ﬁ g‘”ldé)l q{(j; gatl h”(él +62—(2 551 +§52))|qd5)

2 2
1 1
o [ e o on = G+ 25 5e))['0e)'

2
Using Jensen-Mercer inequality because of the convexity of [n" |9, we obtain

2T +2) ., )
(52 — Sl)“ [I(é1+62—¥)+h(61 + 62 - sl) + 1(61+627¥

51 +s
1+ 62 = 52)| = (@ + D61 + 62— =)

S1+s
B+ 62 = 52)| = (@ + D61 + 62 = =)

! 1
< %{(ﬁ 5KX+1(IT1H((51)|" + |7 (6|7 - (%Iﬁ” (s1)7 + %h"(sz)w))dé)q
a+ q

1 1
+ fo £ @ + @ - (S (1 + 22 o))}

_ (sa=s1)? [(IE 001 + 17 (62)17 " 1 1 1 " i

8@ +2) [( a+2 ~ (sl)lq(a +2 2+ 3)) " 2(a+3) & (SZ)lq)
1" (00)17 + 1" (62))7 1 " 1 1 " i

" ( a2 BT L (333~ Na+ 3))'h (SZ)W) ]

This complete the proof. [
Remark 3.9. If we take a = 1, in Theorem then Theorem 3.8 gives [4, Theorem 4].
Remark 3.10. If we take q = 1, in Theorem 3.8} then Theorem [3.8|gives Theorem [3.4

4. Application: Special Means

In this section, we provide applications of newly discovered inequalities in the context of special means
of real numbers. For arbitrary positive real numbers 01 and 0, (61 # 0,), we consider the means as follows:

(1) The arithmetic mean:
A5 = 22, 6,5,20

7

(2) The harmonic mean:

26102
H = .
(61,62) 51+ 07) 01,00 >0
(3) The logarithmic mean:
520
2 1 . 61 ¢ 62’
— Indy—Indy”
L(01,02) { > B 5= b, 51,6, > 0.

(4) The generalized logarithmic mean:

s+l %
L,(61,67) = { (njlxézl—él) 7 01# 0y 61,60 >0;ne Z—-{-1,0}.
01; 01=02,
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Proposition 4.1. Let 0 < 01 < 0y, and n € N, n > 3. Then, for q > 1 and for all s1,s, € [61, 62], we have:

LZ((Sl +0p—59,01 + 00 — Sl) - A(((Sl + 0y — Sl)n, (61 + 0y — Sz)n)'

< n(n — 1)1(252 - 51)? [ZA( 61(”_2), 63(”_2)) B A(Sz(n—z)lsg(n—z))]%_

Proof. If we set in Theorem a =1and fi(&) = £" one can obtain the result directly. O

Proposition 4.2. Let 0 < 01 < 0y, and n € N, n > 3. Then, for q > 1 and for all s1,s, € [61,62], we have:

|L71((51 + 07— 89,01 + 0 — 31) - H71(51 +0p—81,00 +0p — Sz)|

< G2ms) _651)2 [207(5, 657) — (s}, 537)] "

Proof. If we set in Theorem a=1and#() = % one can obtain the result directly. [J

==

Proposition 4.3. Let 0 < 01 < Oy, and n € N, n > 3. Then, we have:

n(n = 1) - 512 A1, 65" 7)

12 ’

(57 — 61) q[H—l(éi’il 6;%)
3 .

Proof. If we set s; = 61 and s; = 67 in results of Proposition and Proposition one can obtain the
Proposition 3] O

<

Li(61,62) - A(6}, 63)

and

|L‘1(61,62) ~H(51, 52)| <

Proposition 4.4. Let 0 < 01 < 0y, andn € N, n > 3. Then, forq > 1, % + % = 1 and for all 51,5, € [01, 02], we have:

Lﬁ(él + 62 — Sy, 51 + 62 — Sl) - A(((Sl + 62 - S1)n, (51 + 62 - Sz)n)'

1
n(n—1)(s2 —s1)* (2r —1\" Gn-2) <q(n-2) 1-2) q-2)\17
< 22 () oAl o) - A, 1)

Proof. If we set in Theorem[2.7} a = 1 and #i(&) = £" one can obtain the result directly. [

Proposition 4.5. Let 0 < 01 < 0y, andn € N, n > 3. Then, forq > 1, % + % = 1 and for all 51,5, € [01, 02], we have:
|L_1((51 + 07— 89,01+ 00 — Sl) - H_l(él +0p—51,00 + 00 — Sz)|
1
(52 =507 (2r = 1\" [ 1( <30 <34 _1(.30 3q\]7
< S22 () [aH (67, 61) - (s3]
Proof. If we set in Theorem a=71andf(&) = % one can obtain the result directly. [

Proposition 4.6. Let 0 < 01 < 0y, and n € N, n > 3. Then, we have:

3 n(n = 1)(82 — 51)>V2r =13 A(57" 2, 512

LZ(51,52) - A((ST' 63) 4\2r +1

and
(62 = 612 2r = 1{/H(5}7,577)
2\2r+ 1 '

|71 (81,60) — HY(51,6)| <
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Proof. 1If we set s; = 6; and s; = 01 in results of Proposition and Proposition one can obtain the
Propositiond.6] O

Proposition 4.7. Let 0 < 01 < 0y, and n € N, n > 3. Then, for all s1,s, € [01, 02], we have:

n
LZ(él + (52 — S, 61 + (32 — Sl) - (2A(61, 62) - A(S],Sz)) '
7’1(71—1)(52 _51)2 2 n-2 <n—2 1 n-2 n-2
< Mmoo m o712 5002 )~ L2, o12))
Proof. If we set in Theorem a =1and fi() = £" one can obtain the result directly. [

Proposition 4.8. Let 0 < 01 < 0y, and n € N, n > 3. Then, for all s1,s, € [61, 02], we have:
L7461+ 62— 52,61 + 82— 51) — (24(51,62) ~ AGs1,22)) |
< C o (5], 5) - )

Proof. 1f we set in Theorem. a=1and () = one can obtain the result directly. O

Proposition 4.9. Let 0 < 61 < 0y, and n € N, n > 3. Then, we have:

LZ((SL(SZ) _ (A((Sl,éz))”' 7’1(1’1 1)(62 - 61 [A(é” -2 671 2)]

24
and
[ (61,02) - (A(61,52))_1] < @[H—l(éf, 53)].

Proof. If we set s; = 61 and s; = 67 in results of Proposition and Proposition one can obtain the
Proposition9] O

Proposition 4.10. Let 0 < &; < 6y, and n € N, n > 3. Then, for q > 1, % +1 = 1and for all 51,5, € [61,0,], we
have:

LZ<61 + 52 — S, (31 + 52 — Sl) - (2A(51, (32) - A(Sl,Sz))n'

n(n —1)(s2 — s1)* [( 41-2) <q(n-2) gn-2) g(n-2) )3
< — 272 " |24A(6 ,0 3s ,
16V2r + 1 (% 2 ) A" 5")

+ (2A(5Z(n—2),5g(n—2)) ; A( q(n=2) ,3s q(n 2)));].

Proof. If we set in Theorem 3.6} & = 1 and #i(&) = £" one can obtain the result directly. [

Proposition 4.11. Let 0 < &; < 6y, and n € N, n > 3. Then, for q > 1, % +1 =1 and for all 51,8, € [61,62], we

1=
have:

‘L—l(él + 0y — 5,01 + 02 — Sl) - (2A(61, 5) — A(Sllsz))—l‘
< C oo, o) - S (a5 s) (2 (63,8) - 363 |

Proof. If we set in TheoremE a=1land (&) = one can obtain the result directly. O
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5. Illustration Examples

In this section, a couple of examples through graphical visualizations are provided to illustrate the key
findings of our research.

Example 5.1. Let fi : [0,1] — R be a mapping, 6 =0, 6, = 1,51 = § and s, = 3. Then |i" (x)|7 = x*7 is convex on
[0,1]. We compute the left-member and the right member of the inequality (6) denoting the left member by Ms and
the right member by Md. We have

:|h(1—}1)+h(1—§) _ I(a+1)

(03 1 o 3
Ms 2 23 - Iy Uy i =+ gy A= DI
or
mE)+h()  2T+1),, . 3. . .1
s=l=— — = U, P+ I F P
M = a(f - 37 - (¥ + 3™ 5/
2+ 1)(a+2) 2
or
a 1+97\s
Md = 8(a+1)(a+2) ( C 2161 )

By calculus we get respectively,

@@ (T3
MS_'T_Z a[j; (Z—E) Edé

3
e L d
G
a 13 15 4 2

= - + -
24.42|0z+1 a+2 a+3 a+4
if we take into account that the integrals,

Ms |/

3

I N Y e AW AN 8 3 16
]1‘£(1_5) 12‘1’5‘12(4) (2) I~ 3a+D "3@+2 Z@+d) s+

and that

e [l b= LB S 2 2 1

4) \2 a a+l a+2 az+3+a+4

Now we compute in the same way the right-member of the inequality (7), Theorem 2.7} The left-member is the
same as in Theorem 2.4} inequality (6).

q-1

- 1
o ga+1 4( _1+9q)6
Mdz = g+ (qa+2q—1) =210

The validity of the results from Theorem 2.4} inequality (6), and of Theorem [2.7) inequality (7), is checked in the
special case where a,q € [5,20], as shown in Figures 1(a) and (b). In Figure 1(c), the common left-hand side of
inequalities (6) and (7) is represented in red, while the right-hand sides of (6) and (7)) are represented in blue and green
respectively. Additionally, the analysis is extended to the case where o, q € [1.3,20].
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In order to check the inequality ({I0) from Theorem [3.6|and then the inequality from Theorem [3.8] for the same
function h like before, 1 : [0,1] — R being a mapping, 61 = 0, 6, = 1, 51 = § and s, = 2, but this time when
a,q € [5,70], we need to compute the common left-member My, and the right-members respectively, denoted by Mds
and Mdy.

Thus we have,

Mo = 27T+ Q) ) + 1Y AT = G+ DACG)

C

or by calculus,

_a+1‘§_ 52a N 30a 3 4o N a
27 1216(16  16a+1)  16(@+2) 16(a+3)  16a+4)|

In addition, we get:

-1 1 a1
-1 7 I\7 g+1\ 77
Md; 1(q—)q[(1_3+3) +(1_i) ]

3 qa+2q-1 49+1 49+1
and
1 1 1,1 1 1 30\
Mdy = - _ _ 3
! 32(a +2)'7 (04+2 47 +2 2(a+3)) 2(a+3)4‘1)

RS S W S 1)3_515]
a+2 M2a+3) a+2 2a+3)'47) 7

The graphic representations for the left-member and the right members of the inequalities from Theorem [3.6|and
[3.8|are given in Figure 2 (a), (b) and (c).

Figure 1: (a)The graph of the left- and the right-hand sides of inequality EI) from Theorem@when hi(x) = % and 61 =0, 6 =1,
51 = }1, Sy = %, and a, g € [5,20]. The red surface represents the graphic of left member and the blue surface represents the grapfic of the
right member when the variables are considered to be & and g; (b) The graph of the left- and the right-hand sides of inequality (7) from
Theorem@when h(x) = % and 61 =0, 0o =1,5 = %, Sy = %, and a, g € [5,20]. The red surface represents the graphic of left member
and the green surface represents the grapfic of the right member; (c) The graph of the left- and the right-hand sides of inequality (6)
and (ﬂ) from Theorem|2.4/and Theorem respectively, when fi(x) = ’% and 61 =0, O, =1,81 = %, Sy = %, and «, g € [1.3,20]. The red
surface represents the graphic of left common member, the blue surface represents the grapfic of the right member from inequality (6)
Theorem[2.4] and the green surface represents the graphic of the right member from inequality (7), Theorem 2.7}



T. Hussain et al. / Filomat 39:21 (2025), 7483-7497 7496

0.012 -, 0.012 -,

0,008 0.008 -

a)

” 4
< 0006 20006

=
Z=f(a.q)

]
0.004 N 0004 |

0002 0.002
0 — 0. S >
B 80 T~ 8 i d

80 T

Z

40 T T 60 40 S 60 40 T~ -l

Figure 2: (a)The graph of the left- and the right-hand sides of inequality from Theoremwhen fi(x) = % and 01 =0, 6 =1,

s1=1 s, =3 and a,q € [5,70]. The cyran surface represents the graphic of left member and the magenta surface represents the
1 1 q Y P grap & P

grapfic of the ht member when the variables are considered to be & and g; (b) The graph of the left- and the right-hand sides

of inequality (10) from Theoremﬁar\d of inequality from Theorem m when fi(x) = % and 6, =0, S =1, = 1, sp = %, and
a,q € [5,70]. The cyran surface represents the graphic of the common left member of Theorem [3.6|and Theorem the magenta
surface represents the grapfic of the right member of Theorem@and the yellow surface represents the graphic of the right member

of Theorem (c) The graph of the left- and the right-hand sides of inequality from Theoremwhen i(x) = % and 61 =0, 0, =1,
s1 =1, s2 = 2,and a, 4 € [5,70]. The cyran surface represents the graphic of left member and the yellow surface represents the grapfic
of the right member when the variables are considered to be a and 4.

For graphical illustration from Figure 1 and Figure 2 it was used the MatlabR2023b software version and
also some calculus can be done by using the same software. Similar validations can be done for particular
cases for Theorem [3.4]

6. Conclusion

In this study, we presented some new generalizations of Hermite-Hadamard Mercer type inequalities
involving Riemann-Liouville fractional integrals. We also demonstrated some novel trapezoidal type and
midpoint type inequalities involving Riemann-Liouville fractional integrals for twice differentiable convex
functions. The main advantage some of these inequalities is that we can use them to help us figure out the
error bounds for the trapezoidal formula in both fractional calculus and classical calculus. Moreover, we
prove that our results generalize the inequalities obtained in some earlier works. Next, we have considered
some propositions in the context of special means; these confirm the efficiency of our findings.

Lastly, a couple of examples through graphical visualizations are presented in order to prove the validity
of inequalities from Theorem[2.4] Theorem 2.7} Theorem 3.6|and Theorem 3.4]in a special case. In the future
works, researchers can focus to generalize our findings by utilizing new fractional operators and other
notions of convexity.
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