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Abstract. In this study, we will employ a different methodology compared to the prevailing techniques
in the literature. The literature mainly concentrates on the partitioning of convex sets using hyperplanes.
The focus of our inquiry is the behaviour of a convex set that encompasses the domain of convex and
coconvex polynomials, which we will refer to as (co)convex polynomials. The primary aim of this study
is to investigate the following questions: Given thatD is the domain of (co)convex polynomials of ∆(2)(Ys)
for s ≥ 0 and x ∈ D, the question is whether x qualifies as an inflection point withinD.

1. Introduction

The domain of a polynomial is beneficial because it provides the best approximation to a given function.
However, the domain of polynomials needs to be expanded in order to include more than just the properties
of convex sets. For example, supporting hyperplanes and strongly h-hyperplane need to be added. The
initial literature that discussed separation theorems in the best approximation involving discrete sets was
found in 1979. Singer (1979) and Papini and Singer (1979) proposed some approximation characteristics
to be used to describe the second separation theorem [6]; [15]. All these characteristics were limited to the
approximation theory of an element to a convex set and to the best approximations of elements of convex
sets. However, they have not yet looked into the theory that ”simpler functions can approximate complex
ones” in developing approximations.

Subsequently, numerous researchers have concentrated on building approximation theory with convex
polynomials. For example, Leviatan introduced the best convex polynomial (CP) approximation of a con-
tinuous function, [4]. He showed that for any convex function f ∈ C(D), a sequence of CP pn of degree ≤ n
can be constructed such that pn is the best approximation of f . Other researchers proved that any function
f ∈ C(D) changes its convexity finitely many times in the interval, estimating the degree of approximation
of f by polynomials of degree ≤ n, which changes convexity exactly at the points Ys. Moreover, Al-Muhja,
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Akhadkulov and Ahmad, in (2021a) and (2021b), discussed weighted constrained approximation on the
interval [−1, 1] by piecewise polynomial, [9]. Moreover, They examined the estimation of the best weighted
approximation and convex function with varying degrees of polynomial order, [10]. Then Kareem, Kamel
and Hussain, in (2022), have significant impact on the convex and coconvex multi-approximation. Fur-
thermore, they discussed inverse inequality for the coconvex approximation of the function f using multi
algebraic polynomials, see [12]. Bustamante has proven some estimates the best approximation of the
function f , where f has differentiable function, [7]. In the sequel, Al-Muhja has discovered the principal
benefit of the study ”applications of the best approximation” conducted in (2024). This benefit is derived
from the utilisation of a separation method based on two-best approximations, which are determined by
convex polynomials. The study focuses on analysing the pupil deviation of the eye, as referenced in [11].
Leviatan and Shevchuk concluded to the Jackson type estimates of shape preserving approximation, [3].

Functional analysis and optimization are significantly influenced by convex sets in topological spaces.
A subset A of a topological vector space is convex if the line segment connecting any two coordinates is
entirely contained in A. The study of optimization problems, separation theorems, and fixed-point theorems
is fundamentally dependent on convexity. Convex sets are frequently linked to supporting hyperplanes
and duality principles in locally convex spaces. Generalizing results from finite-dimensional spaces to
infinite-dimensional analysis is facilitated by comprehending convexity in various topological contexts,
such as, the study of Banach and Hilbert spaces. We will adopt the following concepts in this work.

Definition 1.1. [2] A subset X of Rn is a convex set if (1 − λ)x + λy ∈ X, for all x, y ∈ X and 0 < λ < 1.

Definition 1.2. [18] The epigraph of f is the set {(x, µ) ∈ X ×R : X ⊆ Rn, µ ∈ R, µ ≥ f (x)}, denoted by epi( f ). We
define the function f on X as a convex function on X if epi( f ) is a convex subset of Rn+1.

Theorem 1.3. [17] The function f : Rn
→ (−∞,∞) is convex if and only if

f ((1 − λ)x + λy) ≤ (1 − λ)α + λβ, 0 < λ < 1,

where f (x) < α and f (y) < β.

Theorem 1.4. [1] Suppose f ∈ C2n[−1, 1] is (2n − 1)-convex function, and n ∈ {2, 3}. Then

0 ≤
∫ 1

−1
( f (t) − Gn[ f ])dt ≤ Ln+1[ f ] −

∫ 1

−1
f (t)dt.

Definition 1.5. [5] A function f : D→ R is strongly h-convex with modulus u if

f ((1 − λ)x + λy) ≤ h(1 − λ) f (x) + h(λ) f (y) − uλ(1 − λ)∥x − y∥2 ,

for all x, y ∈ D and 0 < λ < 1, where h : (0, 1)→ (0,∞) is given function.

Theorem 1.6. [19] Let h : [0, 1] → R be a multiplicative function such that h(t) ≤ t for all t ∈ [0, 1]. If a function
1 : D→ R is ϵ-strongly h-convex with modulus u, then there exists a function ϕ : D→ R strongly h-convex with
modulus u such that

1(x) − ϵ ≤ ϕ(x) ≤ 1(x), x ∈ D.

Definition 1.7. [13] If X is a vector space that has a topology τ, then we say that X is a locally convex space if every
point has a neighborhood base consisting of convex sets.

Definition 1.8. [4] LetΠn be the space of all algebraic polynomials of degree ≤ n− 1, and ∆(2) be the set of all convex
functions on I, and

E(2)
n ( f ) = inf

pn∈Πn∩∆(2)
∥ f − pn∥

denote the degree of best uniform convex polynomial approximation of f ∈ C[−1, 1] ∩ ∆(2).
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Definition 1.9. [14] LetΠn be the space of all algebraic polynomials of degree ≤ n− 1, and ∆(2)(Ys) be the collection
of all functions f ∈ C[−1, 1] that change convexity at the points of the set Ys and are convex in [Ys, 1]. The degree of
best uniform coconvex polynomial approximation of f is defined by

E(2)
n ( f ,Ys) = inf

pn∈Πn∩∆(2)(Ys)
∥ f − pn∥

where Ys = {yi}
s
i=1 such that y◦ = −1 < y1 < · · · < ys < 1 = ys+1.

Definition 1.10. [16] The weighted Ditzian-Totik modulus of smoothness (DTMS) of a function f ∈ Lp[−1, 1], when
0 < p < ∞, is defined by

ω
ϕ
k,r( f , t)p = sup

0<h≤t
∥ϕ(x)r∆k

hϕ( f , x)∥p

where ϕ(x) =
√

1 − x2 . If r = 0, then

ω
ϕ
k ( f , t)p = ω

ϕ
k,0( f , t)p = sup

0<ht
∥∆k

hϕ( f , x)∥p

is the usual DTMS. Also, note that

ω
ϕ
0,r( f , t)p = ∥ϕ

r f ∥p.

Definition 1.11. [8] Let A be a subset of the topology space X, and x ∈ X. They say that A is a neighborhood of x, if
A merely contains an open set containing x.

2. The Main Results

Contributions to the domain of convex polynomials (DCP) and their properties are presented in this
section. We will provide the following definition.

Definition 2.1. A domainD of a convex polynomial pn of ∆(2) is a subset of X and X ⊆ R, satisfying the following
properties:

1. D ∈ K, where K = {D : D is a compact subset of X} the class of all domain of convex polynomial,
2. there is the point t ∈ X/D, such that |pn(t)| > sup{|pn(x)| : x ∈ D}, and

3. there is the function f of ∆(2), such that ∥ f − pn∥ ≤
c

n2ω
ϕ
2,2( f ′′ , 1

2 ).

LetD and X be as in Definition 2.1.

Definition 2.2. If the compact set U is convex, there is a bounded neighborhood set Y = {ζ ∈ X : |ζ|2 < c} for c in a
suitable position.

Theorem 2.3. IfD is the DCP of pn, and if x◦ ∈ D. Then there is a compact neighborhood Y of the point x◦.

Proof. Suppose thatD is DCP, from Definition 2.1, thenD is a compact subset of X, andD ∈ K. ThenD is
a compact and convex subset of X. From Definition 2.2, there is a bounded neighborhood Y of the point x◦,
such that Y = {x ∈ D : |x|2 < c}, for c suitably near and Y ⊆ D. Since x◦ ∈ D, and |x◦|2 < c, for c suitable near.
Then, Y = D. Therefore, Y is a compact neighborhood of the point x◦, and Y DCP of pn.

Lemma 2.4. If x◦ ∈ D is the DCP of pn. ThenD is a compact neighborhood of the point x◦.

Proof. Clear.
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We operate within the standard topology of R, as it constitutes a metric space. According to the Heine-
Borel Theorem, ”In the Euclidean space Rn, a subset D is a compact if and only if it is closed and
bounded.”. Consequently, we can restrict our focus to all closed intervals of the form [a, b] ⊆ R, where
a, b ∈ R. However, we can operate in the Euclidean spaceRn, where n ≥ 1; so,D can be regarded as a closed
rectangle.

Theorem 2.5. If pn : D→ D is a convex polynomial of ∆(2), and Y is a compact subset ofD. Then Y is DCP of pn
if and only if p−1

n (Y) is DCP of pn.

Proof. Suppose that Y is a compact subset ofD.
Case I. Suppose that Y is DCP of pn. Since pn : D → D, and Y ⊆ D ⊆ X, then Y is a compact subset of

X, and Y ∈ K. Therefore, pn is continuous and p−1
n (Y) = D is a compact subset of X. Let t < p−1

n (Y), then
t ∈ X/p−1

n (Y). From Definition 2.1, we have

|pn(t)| > sup{|pn(x)| : x ∈ D},

and the function f ∈ ∆(2), such that

∥ f − pn∥ ≤
c

n2ω
ϕ
2,2( f

′′

,
1
2

).

Therefore, p−1
n (Y) is the DCP of pn.

Case II. Suppose that p−1
n (Y) is DCP of pn. Since Y is a compact subset of D. Let y < D, then y ∈ X/D,

implies y ∈ X/Y. From Definition 2.1, we have

|pn(y)| > sup{|pn(x)| : x ∈ D},

then,

|pn(y)| > sup{|pn(x)| : x ∈ Y},

and the function f ∈ ∆(2), such that

∥ f − pn∥ ≤
c

n2ω
ϕ
2,2( f

′′

,
1
2

).

Therefore, Y is the DCP of pn.

Theorem 2.6. If D is DCP of pn, and D ⊆ D is DCP of pn. For every convex function f of ∆(2), defined in a
neighborhood ofD, then the setD∪ f−1(0) is DCP of pn.

Proof. Suppose thatD ⊆ D is DCP of pn. Let x◦ ∈ D, then from Theorem 2.3, there is a compact neighborhood
Y of the point x◦. If f ∈ ∆(2), such that f is defined in Y. From Theorem 2.5, then, f−1(Y) is DCP of pn.
Assume x◦ = 0, thenD∪ f−1(0) is DCP of pn.

In the sequel, the presentation includes contributions to the domain of coconvex polynomials (DCCP)
and their properties.

Definition 2.7. A domain D of coconvex polynomial pn of ∆(2)(Ys) is a subset of X and X ⊆ R, satisfying the
following properties:

1. D ∈ K(Ys), where K(Ys) = {D : D is a compact subset of X, and pn changes convexity atD} is the class of all
domain of convex polynomial,

2. yi’s are inflection points, such that |pn(yi)| ≤ 1
2 , i = 1, . . . , s, and

3. there is the function f of ∆(2)(Ys), such that ∥ f − pn∥ ≤
c

n2ω
ϕ
k,2( f ′′ , 1

n ).
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LetD and X be as in Definition 2.7.

Theorem 2.8. If pn : D→ D is the coconvex polynomial of ∆(2)(Ys) andD is DCCP of pn. Then Y is the DCCP of
pn, if Y is a compact neighborhood of the point x◦, where pn(x◦) = 1

2 .

Proof. Suppose that pn : D → D is a coconvex polynomial of ∆(2)(Ys), such that D is a compact subset of
X, and pn changes the convexity at D. Putting Y is a compact neighborhood of x◦, implies x◦ ∈ Y. Since
pn(x◦) = 1

2 , andD is DCCP of pn. From Definition 2.7, then:
Case I. Either x◦ is an inflection point atD. Therefore, x◦ ∈ D, and Y ⊆ D. Since, pn(x◦) = 1

2 . Then, x◦ is
the inflection point at Y.

Case II. Or x◦ is not an inflection point at D. Now, we must prove that pn changes convexity at Y. Let
1 ≤ s < ∞, ys−1, ys ∈ D, and ys−1, ys be inflection points at D, such that pn(ys−1)) ≤ pn(x◦) ≤ pn(ys). Since
pn(x◦) = 1

2 , and ys is an inflection points atD, implies pn(x◦) = pn(ys). This is a contradiction. Therefore, x◦ is
an inflection points at Y, and Y ⊆ D. Thus, pn changes convexity at Y. To prove that we Y have all inflection
points ≤ 1

2 , let y j be an inflection point in Y, such that j < s, and |pn(y j)| > 1
2 . We get a contradiction. Since

Y ⊆ D, then f ∈ ∆(2)(Ys), such that ∥ f − pn∥ ≤
c1

(n2)ω
ϕ
k,2( f ′′ , 1

n ). Thus, Y is the DCCP of pn.

Definition 2.9. γ−H is said to support the hyperplane in the domain of the (co)convex polynomial pn if at least one
point x̂◦ ofD lies in γ −H, and pn(y) ≥ α̂, for all y ∈ D/x◦, and α ∈ R.

Definition 2.10. If D is the domain of the (co)convex polynomial of pn and x < D. γ − H is said to be strictly
separateD, if we choose b ∈ R such that

sup{pn(y) ∈ D} < b < pn(y), y ∈ Y.

Definition 2.11. If h : [0, 1]→ R is a given function,D1 andD2 are domains of (co)convex polynomials of pn and
qn respectively. γ − H and γh − H are said to be strongly hyperplane and strongly h-hyperplane respectively, if and
only if

inf{pn(a) : a ∈ D1} ≥ sup{qn(b) : b ∈ D2}

and

inf{h(t)pn(a) : a ∈ D1} ≥ sup{h(t)qn(b) : b ∈ D2},

where t ∈ [0, 1].

3. Examples of the Study

We now state and provide examples for some of the objectives of this work.

Example 3.1. Let n = 3, p3 : D → (−∞,∞) be polynomial of degree ≤ n − 1, such that D = [−3, 3] and
p3(x) = 0.5x2

− x.

1) Suppose that x = 3, y = −3 and λ = 0.6(0 < λ < 1). Then, p3(x = 3) = 1.5 and p3(y = −3) = 7.5. Now,
p3((1 − λ)x + λy) = p3(−0.6) = −0.78, also, (1 − λ)p3(3) + λp3(−3) = (0.4) × (1.5) + (0.6) × (7.5) = 5.1. Therefore,
p3((1 − λ) × (3) + λ × (−3)) ≤ (1 − λ)p3(3) + λp3(−3). Then, p3 is convex polynomial, andD ∈ K.

2) Let t ∈ R/D, and t = 6 then p3(t = 6) = 12, and sup{|p3(x)| : x ∈ D} = |p3(x = −3)| = 7.5.

3) Let p3 : D→ (−∞,∞) such that

f (x) =


1
2 x4
− (x − 1)3

− 2x2 ; i f 0 ≤ x ≤ 3

x ; i f − 3 ≤ x < 0
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f
′

(x) =


2x3
− 3(x − 1)2

− 4x ; i f 0 ≤ x ≤ 3

1 ; i f − 3 ≤ x < 0

and

f
′′

(x) =


6x2
− 6x2 + 2 ; i f 0 ≤ x ≤ 3

0 ; i f − 3 ≤ x < 0

Let x◦ = 1, y◦ = 2 and λ = 0.5 (0 < λ < 1). Then, f (x◦ = 1) = −1.5 and f (y◦ = 2) = −1. So,

f ((1 − λ)(1) + λ(2)) = f (1.5) = −2.093,

also,

(1 − λ) f (1) + λ f (2) = −1.25.

Therefore,

f ((1 − λ) × (1) + λ(2)) ≤ (1 − λ) f (1) + λ f (2).

Hence, f is a convex function, and it has f ′′ . Now,

∥ f (3) − p3(3)∥ = ∥(
1
2

x4
− (x − 1)3

− 2x2) − (0.5x2
− x)∥ = 13,

and

∆2
0.4×ϕ( f

′′

, x) =
2∑

i=0

(2
i )(−1)2−i f

′′

(x−
2 × (0.4)

2
+i×(0.4)) = (2

0)(−1)2
× f

′′

(x−(0.4))+(2
1)(−1)× f

′′

(x)+(2
2)× f

′′

(x+(0.4))

∆2
0.4×ϕ( f

′′

, 3) = f
′′

(2.6) − 2 f
′′

(3) + f
′′

(3.4) = 1.92.

Therefore,

ω
ϕ
2,2( f

′′

(x) = 6x2
− 6x + 2,

1
2

) = sup
0<h≤ 1

2

∥(1 − x2) × ∆2
h( f

′′

, x)∥ = |(−8) × (1.92)| = 15.36.

Thus,

∥ f − p3∥ ≤
c1

9
ω
ϕ
2,2( f

′′

(x) = 6x2
− 6x + 2,

1
2

),

where c1 = 7.62.

Example 3.2. Let n = 5, p5 : D → (−∞,∞) be a polynomial of degree ≤ n − 1, such that D = [−3, 3] and
p5(x) = (x + 2)(x + 1)(x − 1)(x − 2) .

1)1Suppose that x = 1.5, y = 1 and λ = 0.5 (0 < λ < 1). Then, p5(x = 1.5) = −2.1875 and p5(y = 1) = 0. Now,

p5((1 − λ)x + λy) = p5(1.25) = −1.37,

also,

(1 − λ)p5(1.5) + λp5(1) = (0.5) × (−2.1875) + (0.5)λ(0) = −1.09.
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Therefore,

p5((1 − λ) × (1.5) + λ(1)) ≤ (1 − λ)p5(1.5) + λp5(1).

Then, p5 is changes convexity atD ∈ K.

2) Let Ys = yi
s=4
i=1 such that y0 = −3 < y1 = −2 < y2 = −1 < y3 = 1 < y4 = 2 < ys+1 = 3 and are convex in

[y4, 3]. Then, |p5(yi)| = 0 ≤ 1
2 , i = 1, . . . , 4.

3) Let f : D→ (−∞,∞) such that

f (x) =


|x2
− 4| + x ; i f − 3 ≤ x ≤ 0

|2x − 4| − x ; i f 0 < x ≤ 3,

f ′(x) =

 (2x3
−8x)

|x2−4| + 1 ; i f − 3 ≤ x ≤ 0
(4x−8)
|2x−4| − 1 ; i f 0 < x ≤ 3,

and

f ′′(x) =
{ (|x2

−4|)2
×(6x−8)−(2x3

−8x)2)
(|x2−4|)3 ; i f − 3 ≤ x ≤ 0

0 ; i f 0 < x ≤ 3.

Let x◦ = 0, y◦ = 0.5 and λ = 0.5 (0 < λ < 1). Then, f (x◦ = 0) = 4 and f (y◦ = 0.5) = 2.5. So,

f ((1 − λ) × (0) + λ(2.5)) = f (1.25) = 0.25,

also,

(1 − λ) f (0) + λ f (0.5) = 3.25.

Therefore,

f ((1 − λ) × (0) + λ(0.5)) ≤ (1 − λ) f (0) + λ f (0.5).

Hence, f it changes convexity atD, and it has f ′′ . Now,

∥ f (−3) − p5(−3)∥ = ∥(|x2
− 4| + x) − (x4

− 5x2 + 4)∥ = 38,

and

∆4
(0.1)ϕ( f

′′

, x) =
4∑

i=0

(4
i )(−1)4−i f

′′

(x−
4 × (0.1)

2
+ i×(0.1)) = (4

0)(−1)4
× f

′′

(x−0.2)+(4
1)(−1)3

× f
′′

(x−0.1)+(4
2)(−1)2

× f
′′

(x)+ (4
3)(−1)× f

′′

(x+0.1)+ (4
4)× f

′′

(x+0.2) = f
′′

(x−0.2)−4 f
′′

(x−0.1)+6 f
′′

(x)−4 f
′′

(x+0.1)+ f
′′

(x+0.2).

Then, ∆4
(0.1)ϕ( f ′′ ,−3) = 124.678. Therefore,

ω
ϕ
4,2( f

′′

(x) =
(|x2
− 4|)2

× (6x − 8) − (2x3
− 8x)2

(|x2 − 4|)3 ,
1
5

) = sup
0<h≤ 1

2

∥(1−x2)×∆4
(0.1)( f

′′

, x)∥ = |(−8)×(124.678)| = 997.424.

Thus,

∥ f − p5∥ ≤
c2

25
ω
ϕ
4,2( f

′′

(x) =
(|x2
− 4|)2

× (6x − 8) − (2x3
− 8x)2

(|x2 − 4|)3 ,
1
5

),

where c2 = 0.953.
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4. Conclusion

This work presents an innovative way for broadening the scope of (co)convex polynomials, transcending
conventional techniques that depend on the division of convex sets. Using separation theorems, supporting
hyperplanes, and advanced approximation methods, it creates a more extensive framework for polynomial
analysis. The results indicate increased versatility in the use of convex and coconvex polynomials, thereby
augmenting their significance in optimization and real-world problem solving. This paper establishes
a theoretical framework with significant implications for optimization, machine learning, and numerical
analysis.

To partition the domain of convex polynomials pn and qn topologically, we can apply the separation
axioms. Our continued operation within the metric space, which preserves its boundaries and closure, has
no effect on the compactness of the domainsDpn andDqn . The theorem of separation for convex sets holds
that if two convex sets in topological space are disjoint and closed, then there exists a continuous between
them. This topological result lends credence to this viewpoint. The study can be improved by iteratively
switching between the separation axioms τi, i = 1, . . . , 5, which is particularly useful given that we are
addressing compactness.

Finally, if pn and qn are two convex polynomials of ∆2. If Dpn is a nonempty set and compact (and Dqn

is a nonempty set and closed), such that Dpn and Dqn are disjoint. Are pn they qn strongly separated by a
hyperplane?
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