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Abstract. We introduce the notions of ideal relatively equal convergence and ideal relatively uniform

convergence inconjunction with the difference operators of sequences of functions (Z(A’ Bqui)—convergence

and 1| (Aﬁ,u)—convergence, respectively, for short). Under some condition, we obtain an equavalence relation
by means of aforesaid notions. The Korovkin-type result is obtained through our newly notion of 7(A/ qu,)-
convergence and construct an example by taking A-Bernstein operators to support this result. Moreover,

we analyze the rate of 1 (Af f',W.)—convergence by utilizing the modulus of continuity.

1. Introduction and preliminaries

Ideal convergence, simply write, J-convergence, was given by Kostyrko et al. [28] and Nuray and
Ruckle [35], independently, which is an interesting generalization of widely studied notion of statistical
convergence (see [19, 48]). The authors of [35] called 7-convergence by the named generalized statistical
convergence. Both of the aforesaid concepts have been extensively examined from multiple angles and
utilized to address various problems that arise within the convergence theory (see [1} 2, 5] 22} 34, [44]).

Consider an arbitrary set X. A nontrivial ideal 7 € X is admissible if {x} € 1 for each x € X. In what
follows, 1 is a nontrivial admissible ideal in IN (the set of natural numbers). We use the symbol 7  to denote
the class of all finite subsets of IN. A sequence s = (s,;) (m € IN) is called 7-convergence to & € R (the set of
real numbers), in symbols, write 7-lim,, s,, = & (lim,, means lim,,_,«) or sy, 4 &, if for every € > 0, the set
S(¢)={meN:|s, — & >¢}lel.

Take 7 = ;= {S c IN : d(S) = 0}, where d(S) is the density of any subset S of IN defined by

d(S) = lim l|{51 <m:s €8S}
m M

2020 Mathematics Subject Classification. Primary 40A35; Secondary 40A30, 41A36.

Keywords. Equal convergence; ideal relatively equal convergence; difference operator; Korovkin approximation theorem; rate of
convergence.

Received: 20 January 2025; Revised: 10 February 2025; Accepted: 12 March 2025
Communicated by Dragan Djordjevié¢
* Corresponding author: S. A. Mohiuddine

Email addresses: mohiuddine@gmail.com (S. A. Mohiuddine), bh_rgu@yahoo.co.in (Bipan Hazarika), amkasiri@kau.edu.sa
(Asim Asiri)

ORCID iDs: https://orcid.org/0000-0002-9050-9104 (S. A. Mohiuddine), https://orcid.org/0000-0002-0644-0600
(Bipan Hazarika), https://orcid.org/0000-0003-2350-9697 (Asim Asiri)



S. A. Mohiuddine et al. / Filomat 39:21 (2025), 7209-7221 7210

and here | . | means the cardinality of enclosed set. In this case, 1 -convergence concides with statistical
convergence while (s,,) is statistical convergent to £ if d(S(¢)) = 0 forany ¢ > 0. We refer to [4}[16}24}130,/45] 46]
for some recent work.

The space of all continuous real-valued functions defined on a compact subset Y of IR is assumed to be
denoted by the notation C(Y). For h € C(Y), ||h]| = Sup,cy |h(y)|. We take (h,,), h € C(Y). For a sequence (h,,)
of functions, Cséaszar and Laczkovich [11] presented the notion of equal convergence and an interesting
generalization of this notion was given Filipéw and Szuca [21] and Das et al. [12], called by J-equally
(or, say J-equi) convergence, which is based on ideal 7 and further studied by the authors Filipéw and
Staniszewski [20] and Staniszewski [47] in various aspects. Recall as in [12] that (k) is 7-equally ()

convergent to / if there is a sequence (e;,,) L 0of positive reals such that
meN:|h,(y)—hy)l > en} €T yeY)

while the difference in Filipéw and Szuca [21] definition is that they considered usual limit, that is, (¢,) — 0

instead of (&) Lo By this fact, 7. convergence introduced by Filipéw and Szuca [21] implies 7
convergence due to Das et al. [12].

Firstly, Moore [33] gave the notion of relative uniform convergence for (h,,) and later discussed in [8-
10]. Recently, Demirci and Orhan [13] and Dirik and $ahin [14], by taking into their account aforesaid
notion and statistical convergence, respectively, defined statistical relatively uniform (simply, write S,,)
and statistical relatively equal (simply, write S, ;) convergence and investigated several results related
to their notions. Later, the notion of ideal relatively uniform convergence was given by the authors of
[31] and, as an application, they have established Korovkin as well as Voronovskaya theorems. Moreover,
quui) convergence defined and studied for double sequence in [43] and an application of S, , convergence
considered in [49].

For any sequence space U, the difference operator A/ (j € N) [17] involving sequence spaces is defined
by

NU) = 1{s = (5w) : (Asy) € U,

where 4 ' .
A% = (m), Ns = (A]_lsm - A]_1Sm+1)

j .
Ns,, = Z(—l)h(].] )Sm+j1-
1

j1=0

and so

Also, As = (Asy) = (S, — smﬂ) due to [26]. Temizsu et al. [50] showed that if s € A/(U), there is only one
s’ = (s;,) € U so that s;, = A/s,,. The difference operators have been used to defined some sequence spaces
(see [38,139, 142]]).

2. Ideal relatively equal convergence of difference sequence of functions

Definition 2.1. We say that (h,,) is

(D1) Al-ideally relative equal convergent, shortly, T (Ai oqu
reals satsfies

.)-convergent, to hon Yif there is a sequence (&) of positive
I-lime, =0, 1)
and a scale function x(y), |x(y)| > 0, such that

{m N ANh(y) = h(y)

) > em} el (2)
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forany y € Y, where

]

Ajhm(]/) = Z(_l)]‘1 (j];)her]j (y)

=0
Denoted by
I(Af;;xn) j/X .
hy ——h or I (Awqm.)— 11nr1n hy =h,

in this case.

(D2) Al-ideally relative uniform convergent, shortly, T (Ai/u)—convergent, to hon Y if x(y) (Ix(y)| > 0) such that for
every € > 0, we have

Nhy,(y) = h
me]N:supM2€ el. 3)
yey x(y)
Denoted by
124 .
h ~h 1 o T(AIY)-limhy, = .

The choice of j = 0in (D) gives the notion of ideally relative equal convergent, shortly, 7 ¢;.i-convergent,
to lron Y. In this case, () becomes

hu(y) — h(y)
x(y)

{mE]N: Zsm}ef

and denoted by

JiX

7 .
hy —>h  or I -limh,, =h.

requi

Remark 2.2. (i) Take I = 15 ={S c IN : d(S) = 0} in (D1). Then, in this case, (2) becomes

d({me]N: M‘Zem})zo

x(v)
and called by Sr,gqui(Af)—convergent to h. Additionally, if j = O then I (Ai/eqm)—convergence coincides with Syequi-
convergence [14].
(i) IfT =1;={SCIN:d(S)=0}and j = 0in (D,), then I (Aﬂllu)—convergence coincides with S, ,-convergence [13].
(iii) If j = 0 and x(y) is constant in (D), then 1 (Ai,equi)—convergence coincides with 1 oyi-convergence defined in
[12]. Additionally, by taking classical limit in (1), we obtain T equi-convergence due to [21]].
(iv) If j = 0in (Dy), then I (Ai,l,)—convergence coincides with 1, ,-convergence [31]].

() IfI =1y, j=0, x(y) is constant in (D1), then 1 (Aj )-convergence coincides with equal convergence [[11]]

requi

Theorem 2.3. The implication

(AL AP
By —% = hy —s g (4)

holds.
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N ) .
Proof. Suppose h,, ¥> h. Therefore, for given ¢ > 0, one writes

> e} el.
Let us define

% (m € B)

Nhu(y) — h(y)

B:{me]N:sup W)

yeYy

Al ) |+ L (mgB).

SUp, ey
Thus, we have (¢,) N 0, and

Nhy(y) = h(y)
x(y)

‘<sm VYm ¢ B

jx
I(Ar,cqui)

which yields b, —— h. O

The example below shows that the converse of implication @) doesn’t hold true.

7212

Example 2.4. Suppose y € Y = [0, 1] and h(y) = 0. For each m, define (hy,) of difference operators Al (j € IN) by

A o= k2
Afhm<y>={g/2 G eN).

and

1
x(y) = m (v € [0,1]).

We also define a sequence (&,,) by

[ 2m if m=k
é"1‘{1/m if mege FEN)

We see that €, ER 0. Then, we obtain that

{me]N:

Consequently, we observe that

A]hm(y) -0

W) Zem}:(Z)eI.

I( Af,,\' )

Tequi
_—
m 7

but
T(AIY)-limh, #0

as well as (hy,) is not uniformly convergent on [0,1]. From here, we can observe that

I(A%u) I(Af;u()
hy —— h#=h, —>h,

in general.
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An ideal 7 is said to satisfy the chain condition (see [18]), in short, we shall write CC, if there is a
sequence (U,,;) C 1 having U; c U, C ... such that for any V € 7 3m € IN such that V C U,,.

Theorem 2.5. Consider the ideal I that satisfy CC. Then, the following are equivalent.
I(Ax;yui)
(C1) hyy —— h
(Cy) There are sets Y; C Y such that
(N .
v={Jvi and h " nony,  vi=12,...
ieN
(C3) There are sets Y; C Y such that
(N .
vy={Jv, vicvac.. and by S hony,  Vi=12,..
ieN

129
requi

I(A
Proof. (C1) = (C3). Suppose h,, ——— h. So, the condition (1) holds, and |x(t)| > 0. For any y € Y, there is
aset B, € I such that

Nhy(y) = h(y)
x(y)

‘<sm VmeEB;

Since 7 satisfies CC, there is (U;) C 7 having U; C U, C ... such that for every V € 7, there is some U; € 7,
i € N with V c U;. We define

Al (y) —h
Yiz{er: M < Em VmeZUf,ie]N}.
x(y)
I(A{':)qui)
This means that Y1 C Y, C.... We observe that if, as stated above, the set B, € I gives h,, ——— h, then,

for some i € N, we have B, C U;. Thus, we get y € Y;. We therefore have
Y:LJm.
ieN
Consequently,

Il

2

h, —— h onY;

which proves (C3).
(C2) = (Cy). To obtain this implication, suppose

ANhy(y) - h(y)
y=| |y, anda |22/ 7V
k% x(y)

< Ekm Vy € Yk,

when m ¢ A(k) € I, where (¢x,) L, 0 for fixed k, and a function |x(y)| with |[x(y)| > 0. Choosing the sets
A; € T such that

1
AiCAyCc---CA;C... and Eim<?
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wheneverm ¢ A; (i =1,2,...). Now, we define

1 (H’l S A2)
o = I (meAin\A)
L |me¢ U Ai)-
ieN

So, we obtain

Al (y) = h(y)

T
(64) — 0 and W)

< Em < Em

129
requi )

I
for y € Yy and if m ¢ A(k) U Ax € 1 which gives that h,, ——— h, so (C;) holds. Hence (C;) = (Cy).
Moreover, clearly (C3) = (C»), which completes the proof. [

3. Approximation theorems

We now establish the Korovkin approximation theorem for the test function h(y) = v* (k = 0,1,2) by
I (Ai’fqui)—convergence while the classical, statistical and ideal version of this result were obtained in [27],

[23] and [15], respectively. For related recent work, we refer to [6] 25| 29,36/ 37, [41].

Theorem 3.1. Consider a sequence (H,,) (m € IN) of positive linear operators acting from C(Y) into itself. Then

I(Afi’(qui)

Hy(hy) —— h(y)  (h € C(Y)) 5)

if and only if

%)

Hy(ho; y) ——— ho(y), (6)
@)

H,,(h;y) —— n(y), )
@)

Hyu(h; y) —— ha(y), (8)

where x(y) = max{|x;(y)| : |xi(y)| > 0} fori=0,1,2.

Proof. The conditions (6)-(8) follows from (5) by using the fact that ko, h1,h3 € C(Y). We now assume that
@)- holds. Since h is continuous on Y, for all ,y € Y, we obtain |h(r) — h(y)| < 2D, where D = ||1||. By
continuity of # on Y, for every ¢ > 0 36 > 0 such that

|h(r) — h(y)| < € whenever |[r—y| <0 VryeY.

Therefore

D D
—&— 25_2(r —y)* <h(r)-h(y) < e+ Zé—z(r -y~

Applying A/H,,(ho; y) to the last equation by using the fact that the operator (A/H,,) is positive and linear,
we get

N ) (=& = 52 = 9) < S H (s )(1tr) = ) < Ao ) (¢ + 20 = 97
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which yield that
AN H,,(h; v) = h(y) A H,, (ho; N H,,(ho; 2D N - 1) 9
m(; y) — h(y)A Hy(ho; y) < eAHy(ho; y) + 5 m((r =)%Y )

We can also write

N'H,,(h; y) - h(y)

NHy(h; y) = h(y)N Hy(ho; y) + h(y)AN Hy(ho; y) = h(y)
= NHy(;y) = ()N Hyu(ho; y) + h(y) A Hy(ho; y) = ho).-

Using (9), the last equality becomes
. . 2D . ) .
AH(h; y) = h(y) < eNHn(o;y) + 5 AMHu((r = y)% y) + hYIA Hu(ho; y) = ho}- (10)

Let us compute A/H,,((r — y)%; y) as

NHy((r=y7%y) = (8Hu(hy) = @)} = 208 Hy(hy; y) = In(n)}
+yH{N Hyy(ho; y) — ho(y)}-

We obtain by substituting the value of A/H,,((r — y)?; y) in (10) that

AN Hu (B y) = ()l < leAHy(ho; y) + 26_12)[{Ame(h2; y) — ha(y)}

—Zy{AjH,n(hl; y) — ()} + YA Hy(ho; y) — ho(y)}]
+h(Y{A Hy(ho; y) — ho(y)}]

= el H(0; y) — ho(y)) + € + é—?[{Ame(hz; y) = b))

—Zy{Ame(hl; y) — ()} + YA H,(ho; y) = ho(y)}]
+h(Y{A'Hy(ho; y) — ho(y)}

2D :
e+ (e +D+ ﬁuhzucm) |AH,y, (ho; y) — ho(y)

IA

4D ;
+ sz mlleon|&Hun(n; ) = I (y)l
2D
+ 57 1A Hun(ha; y) = ha(y). (11)

Let
2D 2D 2D
Dy = max {é‘ +D + §||h2||C(Y), §||h1||cm, g}

Then, from (1)), we have

INHu(hy) =h(yl < e+ Do{IAme(ho; y) = ho)| + 1A Hyy (1 y) = ()|
+A Hy(h2; y) = ha()1}-

Since ¢ is arbitrary and x(y) = max{lxi(y)| : xi(y)| > 0}, (i = 0,1,2), so, we have

< b, { N H,(ho; y) — ho(y) ‘ s 'Ame(hl; y) — hi(y)
Xo(y) Xl(]/)

|Ame<h2; y) — ha(y) '}

+ .

X2(y)

ANH,u(h; y) = h(y)
X()

(12)
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A/).g
The assumption (H) that is, Hy,(ho; ) e ho(y) gives that there is a sequence (¢},) of positive reals
satisfies that 7-1lim €], = 0 and xo(y), |xo(y)| > 0 such that

{m eN: lAme(hO' Y~
Xo(y)

> e;n} el (yey).

@)
From assumption H,,(h1;y) ——— hi(y), we have that there is (/) satisfies that 7-lim ¢/, = 0 and x1(y),
lx1(y)| > 0 such that

{m eN: 'Ame(hl,y) _
x1(y)

Zs;g}ef (yey).

AMZ
requx

In the same way, from Eb that is, Hy(hy; y) ——

fmen >ey}er,

Then, upon setting, inequality gives
> 3D0€m} ,

ha(y), for any y € Y, we get

Xz(}/)

ANH,y(h; y) = h(y)
x()

AiH,u(ho; y) = ho(y) >g,}
Xo(y) BN

on{me]N:

meN:

AH,u(h1;y) = hi(y)

{m eN: ) > e:,’,},

NH,,(ho; y) — h
meN : (h2;y) 2(v) >e”’},

x2(y)
} and x(y) = max{|xi(y)| : lxi(y)| > 0} (i = 0,1,2). From (12), we fairly have

/I I//

where ¢, = max{e;,, €

3
Xp C U Xi,.
=1

This yield from the hypotheses (6)-(8) that X, € 7, that is,

/A
I reqm

Hu(hyy) — h(y)
which completes the proof. 0O

For the validation of our last approximation theorem, we construct an example with the help of A-
Bernstein operators [7] in which Bézier bases [52] has been used. For more details on recently discussed
these kind of operators, we refer to [3}[32] 40| 51].

Example 3.2. For any function h € C(Y) (Y =[0,1]), y € [0,1] and m € IN, consider the Bernstein operators with
parameter A € [-1,1] as

Dualis) = Y s (), 13)
n=0
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where d,, ,(\; y) are Bézier bases with shape parameter A defined by

- A
oA y) = duo(y) — mdmﬂ,l(y)/

5 m—2my +1 m—2my —1
Ay (A ) = mml(y)+/\(m—_ll m+1,m; (Y) — m—_lldm+l,m1+l(y))

forn=m; (1 <m <m-—1)and

Jm,m(/\/' ]/) dn m(]/) A1 m(y)

m+1

In this case
n(y) = (':)t"(l -y,
known as Bernstein basis functions. Now, we define the following sequence (A/L,,) of PLO on C(Y) by
NLy(;y) = (1 + Mhu(y)Da(hy) - (h € C0,1]), (14)
where (Ahy(t)) and a sequence (&,,) are same as in Examplewzth X(y) = —=. Thus, we obtain

NLy(ho; y) = (1 + Ahu(y)),

' ' 1+2 m+l _ (1 — q)m+l
ANLy(hi;y) = (1 + Ny, (y)) {y + Tay+y (1-y) A}

m(m — 1)
and
2 m+1
T (e = j , yl-y) (23/—4y +2y
NLy(h; y) 1+A hm(y)){y e A m(m — 1)
-y -1 )}
m2(m —1)
Since

(A
hy —— 0,

we thus obtain by using the fact I is an admissible ideal of IN that

kx
, cqm

Ly (hi; y) — hi(y)
foreachi=0,1,2. This conclude that operators satisfy Theorem
For j = 0, we get I, oyui-convergence, so Theorem gives the following:

Corollary 3.3. Let (H,,) (m € N) and a function x(y) are same as Theorem[3.1} Then

r qux

Hu(lyy) — h(y) ~ (he C(Y))
if and only if

JiXi

I(Arcqzu .
m(hl/ ,1/) —h; (y) (l = 0/ 1/ 2)
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4. Rate of 7(A/ )-convergence
requi

We finally define and estimate the rate of 7 o

reqm) convergence.

Definition 4.1. We say that (h,,) is 1 (Ai eqm) convergent to h on 'Y with the rate b € (0, 1) if there is a sequence (&)

of positive numbers satsfies 1-1im,, €,, = 0 and a function x(y), |x(y)| > 0 such that

() -h(y)
{melN ‘—w ’Z&ﬂ}

o el (yeY).

Denoted by
By —h = T(AY ) —o(m™?)

requi

onY.

Lemma 4.2. Consider the function sequences (hy) and (h,,) in C(Y). Consider that h,, —h = T (Ai ffqlm) —o(m™)
and b, —H = T(A* ) — o(m™t). Then

Tequi

(i) (£ h,) = (h+ 1) = T(A ) —o(m™)

Tequi

(i) a(hy, —h) = T(A ) = o(m~br)

T,equi

forany A € R, where b = min{by, by} and x(y) = max{lxi(y)! : xi(y)l >0,i =1,2}.

Proof. Since hy,, —h =1 (Ai qulm) o(m™"), there exists (¢,,) satisfies 7-lim,, ¢,, = 0 and xi(), lxi(y)l > 0, such
that

| At |
{melN.| ) |Zem}

e’

P

for any y € Y. Again, since h,, —h' = T (Aif,;u,) — o(m™), there is (,,) satisfies 7-lim, ¢,, = 0 and x2(y),
Ix2(y) > 0, such that

{meN ‘Nh ()1 () > ém}

ml by

el (yey).

Upon setting, one gets

X, = {m e | O£ Ny (y) = (£ )(y)‘
x()
X, = {m eN: | W)~ MY h(y)‘
x1(y)
and
X/2 = {m eN: —A]hm(y) at) > é';;l},
X2(y)

where ¢, = max{e,,, €,,} and x(y) = max{|xi(y)| : [xi(y)| > 0} (i = 1,2). Consequently, we obtain

X, X X,

c )
b = b T b
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where b = min{b4, b»}. Hence

| A AT )= (e£H ) () X
{m eIN: | 0 | > Zem}

el
b

which proves (i). Likewise, we can obtain (ii). [

For h € C(Y) and 6 > 0, the modulus of continuity is w(h, ) = SUP_y < |h(t) = h(y)| fort,y € Y.

Theorem 4.3. Consider a sequence H,, : C(Y) — C(Y) of PLO. Consider that

Hyulho; y) = ho = T(AY ) = o(m™) (15)
w(h, &) = T(A[2 ) = o(m™), (16)

where O, (y) = VHu(9% y) and g(t) = (t — y). Then
Hu(;y) —h = I(AZ:fqui)—o(m’b) (17)

for all g in C(Y), where hy(y) = y* (k = 0,1,2), b = min{by, by} and x(y) = max{|xi(y) : lxi(y) > 0, = 1,2}.

Proof. Leth € C(Y), y € Y. Then, by positivity and linearity of (H,,), we write

IN

NHy(I1(H) = () y) + RWIAH(o; y) = ho(y)]

A'H,, ((1 + '92%)') w(h, 3); y) + 1A Hinl; ) = hoy)

w(h, )
5

\NHou(h; y) = h(y)|

IN

= w(h, )N Hy(ho; y) + NHyu(lg(®); v)
HIRIATH, (ho; y) = ho(y)l-

The Cauchy-Schwarz inequality gives

IN

. 1o) [ ,
w(it, S)ATH, (I0; y) + % VNH,(5 y) | A Hu(00; )
+HIHIIA Hy(ho; y) = ho(y)l.

\NHyu(h; y) = h(y)|

Consequently,

A H(; ) = h(y)|

IN

w(h, 6,m)N H,(ho; y)

+@(h, 6m) \J AT Hyu(ho; y) + WA Hin(ho; y) = o(y)]
for the choice of 6 := 6,,(y) = \VA/H,,(9%; y), and so gives

INHu(h;y) =yl < wh, 5m){|NHm(ho; y) = ho(y)l + 2ho(y)

[ NH o ) = ho(9)} + WA H 03 ) = o).
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We thus get
NIH,,(h; y) = h(y) ”h”||A7Hm(h0, y) — ho( y)l’ oh w(h, b)
W ")l
w(h, 8) | NHy(ho; y) — ho(y)
L2yl 1)l
w(h, by) |A1Hm(ho; y) = ho(y)
Ix2(y)l x1(w)l

which completes the proof by employing (15), and Lemma O

5. Conclusion

For the difference operators AJ, in our investigation, we defined the notions of ideal relatively equal

convergence (I (A )-convergence) and ideal relatively uniform convergence (I (Ai/u)—convergence) of se-

requi
quences of functions. By assuming some conditions, we showed that these notions coincide with some
previously defined and studied notions, and developed an example to view the implication of aforesaid no-

tions. We also obtained an equavalence relation by means of 1 (AL - convergence and J (Ai,u)—convergence

r,equi

inconjuction with chain condition. Moreover, we used our idea of 7(A! )-convergence to demonstrate the

T,equi
Korovkin-type theorem for the test funtion y* (k = 0,1,2). An illustrative example is constructed in support
of this approximation result by taking into our account A-Bernstein operators, where -1 < A < 1. Finally,

we analyzed the rate of 7(A! )-convergence by utilizing the modulus of continuity. Besides this, one can

requi
try to define and studied above notions for double sequences.
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