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Abstract. We introduce the notions of ideal relatively equal convergence and ideal relatively uniform
convergence inconjunction with the difference operators of sequences of functions (I(∆ j

r,equi)-convergence

and I(∆ j
r,u)-convergence, respectively, for short). Under some condition, we obtain an equavalence relation

by means of aforesaid notions. The Korovkin-type result is obtained through our newly notion of I(∆ j
r,equi)-

convergence and construct an example by taking λ-Bernstein operators to support this result. Moreover,
we analyze the rate of I(∆ j

r,equi)-convergence by utilizing the modulus of continuity.

1. Introduction and preliminaries

Ideal convergence, simply write, I-convergence, was given by Kostyrko et al. [28] and Nuray and
Ruckle [35], independently, which is an interesting generalization of widely studied notion of statistical
convergence (see [19, 48]). The authors of [35] called I-convergence by the named generalized statistical
convergence. Both of the aforesaid concepts have been extensively examined from multiple angles and
utilized to address various problems that arise within the convergence theory (see [1, 2, 5, 22, 34, 44]).

Consider an arbitrary set X. A nontrivial ideal I ∈ X is admissible if {x} ∈ I for each x ∈ X. In what
follows, I is a nontrivial admissible ideal inN (the set of natural numbers). We use the symbolI f to denote
the class of all finite subsets ofN. A sequence s = (sm) (m ∈ N) is called I-convergence to ξ ∈ R (the set of

real numbers), in symbols, write I- limm sm = ξ (limm means limm→∞) or sm
I
−→ ξ, if for every ε > 0, the set

S(ε) = {m ∈N : |sm − ξ| ≥ ε} ∈ I.
Take I = Id = {S ⊂N : d(S) = 0}, where d(S) is the density of any subset S ofN defined by

d(S) = lim
m

1
m
|{s1 ≤ m : s1 ∈ S}|
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and here | . | means the cardinality of enclosed set. In this case, Id-convergence concides with statistical
convergence while (sm) is statistical convergent toξ if d(S(ε)) = 0 for any ε > 0. We refer to [4, 16, 24, 30, 45, 46]
for some recent work.

The space of all continuous real-valued functions defined on a compact subset Y of R is assumed to be
denoted by the notation C(Y). For h ∈ C(Y), ∥h∥ = supy∈Y |h(y)|. We take (hm), h ∈ C(Y). For a sequence (hm)
of functions, Császár and Laczkovich [11] presented the notion of equal convergence and an interesting
generalization of this notion was given Filipów and Szuca [21] and Das et al. [12], called by I-equally
(or, say I-equi) convergence, which is based on ideal I and further studied by the authors Filipów and
Staniszewski [20] and Staniszewski [47] in various aspects. Recall as in [12] that (hm) is I-equally (Iequi)

convergent to h if there is a sequence (εm) I−→ 0 of positive reals such that

{m ∈N : |hm(y) − h(y)| ≥ εm} ∈ I (y ∈ Y)

while the difference in Filipów and Szuca [21] definition is that they considered usual limit, that is, (εm)→ 0

instead of (εm) I
−→ 0. By this fact, Iequi convergence introduced by Filipów and Szuca [21] implies Iequi

convergence due to Das et al. [12].
Firstly, Moore [33] gave the notion of relative uniform convergence for (hm) and later discussed in [8–

10]. Recently, Demirci and Orhan [13] and Dirik and Şahin [14], by taking into their account aforesaid
notion and statistical convergence, respectively, defined statistical relatively uniform (simply, write Sr,u)
and statistical relatively equal (simply, write Sr,equi) convergence and investigated several results related
to their notions. Later, the notion of ideal relatively uniform convergence was given by the authors of
[31] and, as an application, they have established Korovkin as well as Voronovskaya theorems. Moreover,
Sr,equi) convergence defined and studied for double sequence in [43] and an application of Sr,u convergence
considered in [49].

For any sequence space U, the difference operator ∆ j ( j ∈ N) [17] involving sequence spaces is defined
by

∆ j(U) = {s = (sm) : (∆ jsm) ∈ U},

where
∆0s = (sm), ∆ js = (∆ j−1sm − ∆

j−1sm+1)

and so

∆ jsm =

j∑
j1=0

(−1) j1

(
j
j1

)
sm+ j1 .

Also, ∆s = (∆sm) = (sm − sm+1) due to [26]. Temizsu et al. [50] showed that if s ∈ ∆ j(U), there is only one
s′ = (s′m) ∈ U so that s′m = ∆ jsm. The difference operators have been used to defined some sequence spaces
(see [38, 39, 42]).

2. Ideal relatively equal convergence of difference sequence of functions

Definition 2.1. We say that (hm) is

(D1) ∆ j-ideally relative equal convergent, shortly,I(∆ j
r,equi)-convergent, to h on Yif there is a sequence (εm) of positive

reals satsfies

I- lim
m
εm = 0, (1)

and a scale function χ(y), |χ(y)| > 0, such that{
m ∈N :

∣∣∣∣∣∣∆ jhm(y) − h(y)
χ(y)

∣∣∣∣∣∣ ≥ εm

}
∈ I (2)



S. A. Mohiuddine et al. / Filomat 39:21 (2025), 7209–7221 7211

for any y ∈ Y, where

∆ jhm(y) =
j∑

j1=0

(−1) j1

(
j
j1

)
hm+ j1 (y).

Denoted by

hm
I(∆ j,χ

r,equi)
−−−−−−→ h or I(∆ j,χ

r,equi)- lim
m

hm = h,

in this case.
(D2) ∆ j-ideally relative uniform convergent, shortly, I(∆ j

r,u)-convergent, to h on Y if χ(y) (|χ(y)| > 0) such that for
every ε > 0, we havem ∈N : sup

y∈Y

∣∣∣∣∣∣∆ jhm(y) − h(y)
χ(y)

∣∣∣∣∣∣ ≥ ε
 ∈ I. (3)

Denoted by

hm
I(∆ j,χ

r,u )
−−−−→ h or I(∆ j,χ

r,u)- lim
m

hm = h.

The choice of j = 0 in (D1) gives the notion of ideally relative equal convergent, shortly,Ir,equi-convergent,
to h on Y. In this case, (2) becomes{

m ∈N :
∣∣∣∣∣hm(y) − h(y)

χ(y)

∣∣∣∣∣ ≥ εm

}
∈ I

and denoted by

hm
I

j,χ
r,equi
−−−→ h or I

j,χ
r,equi- lim

m
hm = h.

Remark 2.2. (i) Take I = Id = {S ⊂N : d(S) = 0} in (D1). Then, in this case, (2) becomes

d
({

m ∈N :

∣∣∣∣∣∣∆ jhm(y) − h(y)
χ(y)

∣∣∣∣∣∣ ≥ εm

})
= 0

and called by Sr,equi(∆ j)-convergent to h. Additionally, if j = 0 then I(∆ j
r,equi)-convergence coincides with Sr,equi-

convergence [14].
(ii) If I = Id = {S ⊂N : d(S) = 0} and j = 0 in (D2), then I(∆ j

r,u)-convergence coincides with Sr,u-convergence [13].
(iii) If j = 0 and χ(y) is constant in (D1), then I(∆ j

r,equi)-convergence coincides with Iequi-convergence defined in
[12]. Additionally, by taking classical limit in (1), we obtain Iequi-convergence due to [21].
(iv) If j = 0 in (D2), then I(∆ j

r,u)-convergence coincides with Ir,u-convergence [31].
(v) If I = I f , j = 0, χ(y) is constant in (D1), then I(∆ j

r,equi)-convergence coincides with equal convergence [11]

Theorem 2.3. The implication

hm
I(∆ j,χ

r,u )
−−−−→ h =⇒ hm

I(∆ j,χ
r,equi)

−−−−−−→ h (4)

holds.
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Proof. Suppose hm
I(∆ j,χ

r,u )
−−−−→ h. Therefore, for given ε > 0, one writes

B =

m ∈N : sup
y∈Y

∣∣∣∣∣∣∆ jhm(y) − h(y)
χ(y)

∣∣∣∣∣∣ ≥ ε
 ∈ I.

Let us define

εm =


1
m (m ∈ B)

supy∈Y

∣∣∣∣∆ jhm(y)−h(y)
χ(y)

∣∣∣∣ + 1
m (m < B).

Thus, we have (εm) I
−→ 0, and∣∣∣∣∣∣∆ jhm(y) − h(y)

χ(y)

∣∣∣∣∣∣ < εm ∀m < B

which yields hm
I(∆ j,χ

r,equi)
−−−−−−→ h.

The example below shows that the converse of implication (4) doesn’t hold true.

Example 2.4. Suppose y ∈ Y = [0, 1] and h(y) = 0. For each m, define (hm) of difference operators ∆ j ( j ∈N) by

∆ jhm(y) =
{

y/2 i f m = k2

0 i f m , k2 , (k ∈N).

and

χ(y) =
1

y + 1
(y ∈ [0, 1]).

We also define a sequence (εm) by

εm =

{
2m i f m = k2

1/m i f m , k2 , (k ∈N).

We see that εm
I
−→ 0. Then, we obtain that{

m ∈N :

∣∣∣∣∣∣∆ jhm(y) − 0
χ(y)

∣∣∣∣∣∣ ≥ εm

}
= ∅ ∈ I.

Consequently, we observe that

hm
I(∆ j,χ

r,equi)
−−−−−−→ 0,

but

I(∆ j,χ
r,u)- lim

m
hm , 0

as well as (hm) is not uniformly convergent on [0, 1]. From here, we can observe that

hm
I(∆ j,χ

r,equi)
−−−−−−→ h ̸=⇒ hm

I(∆ j,χ
r,u )

−−−−→ h,

in general.
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An ideal I is said to satisfy the chain condition (see [18]), in short, we shall write CC, if there is a
sequence (Um) ⊂ I having U1 ⊂ U2 ⊂ . . . such that for any V ∈ I ∃ m ∈N such that V ⊂ Um.

Theorem 2.5. Consider the ideal I that satisfy CC. Then, the following are equivalent.

(C1) hm
I(∆ j,χ

r,equi)
−−−−−−→ h.

(C2) There are sets Yi ⊂ Y such that

Y =
⋃
i∈N

Yi and hm
I(∆ j,χ

r,u )
−−−−→ h on Yi ∀i = 1, 2, . . . .

(C3) There are sets Yi ⊂ Y such that

Y =
⋃
i∈N

Yi, Y1 ⊂ Y2 ⊂ . . . and hm
I(∆ j,χ

r,u )
−−−−→ h on Yi ∀i = 1, 2, . . . .

Proof. (C1)⇒ (C3). Suppose hm
I(∆ j,χ

r,equi)
−−−−−−→ h. So, the condition (1) holds, and |χ(t)| > 0. For any y ∈ Y, there is

a set By ∈ I such that∣∣∣∣∣∣∆ jhm(y) − h(y)
χ(y)

∣∣∣∣∣∣ < εm ∀m < Bc
y

Since I satisfies CC, there is (Ui) ⊂ I having U1 ⊂ U2 ⊂ . . . such that for every V ∈ I, there is some Ui ∈ I,
i ∈Nwith V ⊂ Ui. We define

Yi =

{
y ∈ Y :

∣∣∣∣∣∣∆ jhm(y) − h(y)
χ(y)

∣∣∣∣∣∣ < εm ∀m < Uc
i , i ∈N

}
.

This means that Y1 ⊂ Y2 ⊂ . . . . We observe that if, as stated above, the set By ∈ I gives hm
I(∆ j,χ

r,equi)
−−−−−−→ h, then,

for some i ∈N, we have By ⊂ Ui. Thus, we get y ∈ Yi. We therefore have

Y =
⋃
i∈N

Yi.

Consequently,

hm
I(∆ j,χ

r,u )
−−−−→ h on Yi

which proves (C3).
(C2)⇒ (C1). To obtain this implication, suppose

Y =
⋃
i∈N

Yi and

∣∣∣∣∣∣∆ jhm(y) − h(y)
χ(y)

∣∣∣∣∣∣ < εkm ∀y ∈ Yk,

when m < A(k) ∈ I, where (εkm) I
−→ 0 for fixed k, and a function |χ(y)| with |χ(y)| > 0. Choosing the sets

Ai ∈ I such that

A1 ⊂ A2 ⊂ · · · ⊂ Ai ⊂ . . . and εim <
1
i
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whenever m < Ai (i = 1, 2, . . . ). Now, we define

εm =


1 (m ∈ A2)
1
i , (m ∈ Ai+1 \ Ai)
1
m ,

(
m <

⋃
i∈N

Ai

)
.

So, we obtain

(εm) I
−→ 0 and

∣∣∣∣∣∣∆ jhm(y) − h(y)
χ(y)

∣∣∣∣∣∣ < εkm < εm

for y ∈ Yk and if m < A(k) ∪ Ak ∈ I which gives that hm
I(∆ j,χ

r,equi)
−−−−−−→ h, so (C1) holds. Hence (C2) ⇒ (C1).

Moreover, clearly (C3)⇒ (C2), which completes the proof.

3. Approximation theorems

We now establish the Korovkin approximation theorem for the test function hk(y) = yk (k = 0, 1, 2) by
I(∆ j,χ

r,equi)-convergence while the classical, statistical and ideal version of this result were obtained in [27],
[23] and [15], respectively. For related recent work, we refer to [6, 25, 29, 36, 37, 41].

Theorem 3.1. Consider a sequence (Hm) (m ∈N) of positive linear operators acting from C(Y) into itself. Then

Hm(h; y)
I(∆ j,χ

r,equi)
−−−−−−→ h(y) (h ∈ C(Y)) (5)

if and only if

Hm(h0; y)
I(∆ j,χ0

r,equi)
−−−−−−→ h0(y), (6)

Hm(h1; y)
I(∆ j,χ1

r,equi)
−−−−−−→ h1(y), (7)

Hm(h2; y)
I(∆ j,χ2

r,equi)
−−−−−−→ h2(y), (8)

where χ(y) = max{|χi(y)| : |χi(y)| > 0} for i = 0, 1, 2.

Proof. The conditions (6)-(8) follows from (5) by using the fact that h0, h1, h3 ∈ C(Y). We now assume that
(6)-(8) holds. Since h is continuous on Y, for all r, y ∈ Y, we obtain |h(r) − h(y)| ≤ 2D, where D = ∥h∥. By
continuity of h on Y, for every ε > 0 ∃ δ > 0 such that

|h(r) − h(y)| < ε whenever |r − y| < δ ∀r, y ∈ Y.

Therefore

−ε −
2D
δ2 (r − y)2 < h(r) − h(y) < ε +

2D
δ2 (r − y)2.

Applying ∆ jHm(h0; y) to the last equation by using the fact that the operator (∆ jHm) is positive and linear,
we get

∆ jHm(h0; y)
(
−ε −

2D
δ2 (r − y)2

)
< ∆ jHm(h0; y)(h(r) − h(y)) < ∆ jHm(h0; y)

(
ε +

2D
δ2 (r − y)2

)
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which yield that

∆ jHm(h; y) − h(y)∆ jHm(h0; y) < ε∆ jHm(h0; y) +
2D
δ2 ∆

jHm((r − y)2; y). (9)

We can also write

∆ jHm(h; y) − h(y) = ∆ jHm(h; y) − h(y)∆ jHm(h0; y) + h(y)∆ jHm(h0; y) − h(y)
= ∆ jHm(h; y) − h(y)∆ jHm(h0; y) + h(y){∆ jHm(h0; y) − h0}.

Using (9), the last equality becomes

∆ jHm(h; y) − h(y) < ε∆ jHm(h0; y) +
2D
δ2 ∆

jHm((r − y)2; y) + h(y){∆ jHm(h0; y) − h0}. (10)

Let us compute ∆ jHm((r − y)2; y) as

∆ jHm((r − y)2; y) = {∆ jHm(h2; y) − h2(y)} − 2y{∆ jHm(h1; y) − h1(y)}
+y2
{∆ jHm(h0; y) − h0(y)}.

We obtain by substituting the value of ∆ jHm((r − y)2; y) in (10) that

|∆ jHm(h; y) − h(y)| < |ε∆ jHm(h0; y) +
2D
δ2 [{∆ jHm(h2; y) − h2(y)}

−2y{∆ jHm(h1; y) − h1(y)} + y2
{∆ jHm(h0; y) − h0(y)}]

+h(y){∆ jHm(h0; y) − h0(y)}|

= |ε{∆ jHm(h0; y) − h0(y)} + ε +
2D
δ2 [{∆ jHm(h2; y) − h2(y)}

−2y{∆ jHm(h1; y) − h1(y)} + y2
{∆ jHm(h0; y) − h0(y)}]

+h(y){∆ jHm(h0; y) − h0(y)}|

≤ ε +
(
ε +D +

2D
δ2 ∥h2∥C(Y)

)
|∆ jHm(h0; y) − h0(y)|

+
4D
δ2 ∥h1∥C(Y)|∆

jHm(h1; y) − h1(y)|

+
2D
δ2 |∆

jHm(h2; y) − h2(y)|. (11)

Let

D0 = max
{
ε +D +

2D
δ2 ∥h2∥C(Y),

2D
δ2 ∥h1∥C(Y),

2D
δ2

}
.

Then, from (11), we have

|∆ jHm(h; y) − h(y)| ≤ ε +D0{|∆
jHm(h0; y) − h0(y)| + |∆ jHm(h1; y) − h1(y)|

+|∆ jHm(h2; y) − h2(y)|}.

Since ε is arbitrary and χ(y) = max{|χi(y)| : |χi(y)| > 0}, (i = 0, 1, 2), so, we have∣∣∣∣∣∣∆ jHm(h; y) − h(y)
χ(y)

∣∣∣∣∣∣ ≤ D0

{∣∣∣∣∣∣∆ jHm(h0; y) − h0(y)
χ0(y)

∣∣∣∣∣∣ +
∣∣∣∣∣∣∆ jHm(h1; y) − h1(y)

χ1(y)

∣∣∣∣∣∣
+

∣∣∣∣∣∣∆ jHm(h2; y) − h2(y)
χ2(y)

∣∣∣∣∣∣
}
. (12)
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The assumption (6), that is, Hm(h0; y)
I(∆ j,χ0

r,equi)
−−−−−−→ h0(y) gives that there is a sequence (ε′m) of positive reals

satisfies that I- lim ε′m = 0 and χ0(y), |χ0(y)| > 0 such that{
m ∈N :

∣∣∣∣∣∣∆ jHm(h0, y) − h0(y)
χ0(y)

∣∣∣∣∣∣ ≥ ε′m
}
∈ I (y ∈ Y).

From assumption Hm(h1; y)
I(∆ j,χ1

r,equi)
−−−−−−→ h1(y), we have that there is (ε′′m) satisfies that I- lim ε′′m = 0 and χ1(y),

|χ1(y)| > 0 such that{
m ∈N :

∣∣∣∣∣∣∆ jHm(h1, y) − h1(y)
χ1(y)

∣∣∣∣∣∣ ≥ ε′′m
}
∈ I (y ∈ Y).

In the same way, from (8), that is, Hm(h2; y)
I(∆ j,χ2

r,equi)
−−−−−−→ h2(y), for any y ∈ Y, we get{

m ∈N :

∣∣∣∣∣∣∆ jHm(h2, y) − h2(y)
χ2(y)

∣∣∣∣∣∣ ≥ ε′′′m

}
∈ I.

Then, upon setting, inequality (12) gives

X0 =

{
m ∈N :

∣∣∣∣∣∣∆ jHm(h; y) − h(y)
χ(y)

∣∣∣∣∣∣ ≥ 3D0εm

}
,

X1 =

{
m ∈N :

∣∣∣∣∣∣∆ jHm(h0; y) − h0(y)
χ0(y)

∣∣∣∣∣∣ ≥ ε′m
}
,

X2 =

{
m ∈N :

∣∣∣∣∣∣∆ jHm(h1; y) − h1(y)
χ1(y)

∣∣∣∣∣∣ ≥ ε′′m
}
,

X3 =

{
m ∈N :

∣∣∣∣∣∣∆ jHm(h2; y) − h2(y)
χ2(y)

∣∣∣∣∣∣ ≥ ε′′′m

}
,

where εm = max{ε′m, ε′′m, ε′′′m } and χ(y) = max{|χi(y)| : |χi(y)| > 0} (i = 0, 1, 2). From (12), we fairly have

X0 ⊆

3⋃
i1=1

Xi1 .

This yield from the hypotheses (6)-(8) that X0 ∈ I, that is,

Hm(h; y)
I(∆ j,χ

r,equi)
−−−−−−→ h(y)

which completes the proof.

For the validation of our last approximation theorem, we construct an example with the help of λ-
Bernstein operators [7] in which Bézier bases [52] has been used. For more details on recently discussed
these kind of operators, we refer to [3, 32, 40, 51].

Example 3.2. For any function h ∈ C(Y) (Y = [0, 1]), y ∈ [0, 1] and m ∈ N, consider the Bernstein operators with
parameter λ ∈ [−1, 1] as

Dm,λ(h; y) =
m∑

n=0

d̃m,n(λ; y)h
( n

m

)
, (13)



S. A. Mohiuddine et al. / Filomat 39:21 (2025), 7209–7221 7217

where d̃m,n(λ; y) are Bézier bases with shape parameter λ defined by

d̃m,0(λ; y) = dm,0(y) −
λ

m + 1
dm+1,1(y),

d̃m,m1 (λ; y) = dm,m1 (y) + λ
(m − 2m1 + 1

m2 − 1
dm+1,m1 (y) −

m − 2m1 − 1
m2 − 1

dm+1,m1+1(y)
)

for n = m1 (1 ≤ m1 ≤ m − 1) and

d̃m,m(λ; y) = dm,m(y) −
λ

m + 1
dm+1,m(y).

In this case

dm,n(y) =
(
m
n

)
tn(1 − y)m−n,

known as Bernstein basis functions. Now, we define the following sequence (∆ jLm) of PLO on C(Y) by

∆ jLm(h; y) = (1 + ∆ jhm(y))Dm,λ(h; y) (h ∈ C[0, 1]) , (14)

where (∆ jhk(t)) and a sequence (εm) are same as in Example 2.4 with χ(y) = 1
y+1 . Thus, we obtain

∆ jLm(h0; y) = (1 + ∆ jhm(y)),

∆ jLm(h1; y) =
(
1 + ∆ jhm

(
y
)) {

y +
1 + 2y + ym+1

− (1 − y)m+1

m(m − 1)
λ

}
and

∆ jLm(h2; y) = (1 + ∆ jhm(y))
{

y2 +
y(1 − y)

m
+ λ

(2y − 4y2 + 2ym+1

m(m − 1)

+
ym+1 + (1 − y)m+1

− 1
m2(m − 1)

)}
.

Since

hm
I(∆k,χ

r,equi)
−−−−−−→ 0,

we thus obtain by using the fact I is an admissible ideal ofN that

Lm(hi; y)
I(∆k,χ

r,equi)
−−−−−−→ hi(y)

for each i = 0, 1, 2. This conclude that operators (13) satisfy Theorem 3.1.

For j = 0, we get Ir,equi-convergence, so Theorem 3.1 gives the following:

Corollary 3.3. Let (Hm) (m ∈N) and a function χ(y) are same as Theorem 3.1. Then

Hm(h; y)
I

j,χ
r,equi
−−−→ h(y) (h ∈ C(Y))

if and only if

Hm(hi; y)
I(∆ j,χi

r,equi)
−−−−−−→ hi(y), (i = 0, 1, 2).
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4. Rate of I (∆j
r,equi

)-convergence

We finally define and estimate the rate of I(∆ j
r,equi)-convergence.

Definition 4.1. We say that (hm) is I(∆ j
r,equi)-convergent to h on Y with the rate b ∈ (0, 1) if there is a sequence (εm)

of positive numbers satsfies I- limm εm = 0 and a function χ(y), |χ(y)| > 0 such that{
m ∈N :

∣∣∣∣∆ jhm(y)−h(y)
χ(y)

∣∣∣∣ ≥ εm

}
m1−b

∈ I (y ∈ Y).

Denoted by

hm − h = I(∆ j,χ
r,equi) − o(m−b)

on Y.

Lemma 4.2. Consider the function sequences (hm) and (h′m) in C(Y). Consider that hm − h = I(∆ j,χ1

r,equi) − o(m−b1 )

and h′m − h′ = I(∆ j,χ2

r,equi) − o(m−b2 ). Then

(i) (hm ± h′m) − (h ± h′ ) = I(∆ j,χ
r,equi) − o(m−b)

(ii) α(hm − h) = I(∆ j,χ1

r,equi) − o(m−b1 )

for any λ ∈ R, where b = min{b1, b2} and χ(y) = max{|χi(y)| : |χi(y)| > 0, i = 1, 2}.

Proof. Since hm − h = I(∆ j,χ1

r,equi) − o(m−b1 ), there exists (ε
′

m) satisfies I- limm ε
′

m = 0 and χ1(y), |χ1(y)| > 0, such
that {

m ∈N :
∣∣∣∣∆ jhm(y)−h(y)

χ1(y)

∣∣∣∣ ≥ ε′m}
m1−b1

∈ I

for any y ∈ Y. Again, since h′m − h′ = I(∆ j,χ2

r,equi) − o(m−b2 ), there is (ε
′′

m) satisfies I- limm ε
′′

m = 0 and χ2(y),
|χ2(y)| > 0, such that{

m ∈N :
∣∣∣∣∆ jh′m(y)−h′ (y)

χ2(y)

∣∣∣∣ ≥ ε′′m}
m1−b2

∈ I (y ∈ Y).

Upon setting, one gets

X
′

0 =

{
m ∈N :

∣∣∣∣∣∣ (∆ jhm ± ∆
jh′m)(y) − (h ± h′ )(y)
χ(y)

∣∣∣∣∣∣ ≥ 2εm

}
,

X
′

1 =

{
m ∈N :

∣∣∣∣∣∣∆ jhm(y) − h(y)
χ1(y)

∣∣∣∣∣∣ ≥ ε′m
}
,

and

X
′

2 =

{
m ∈N :

∣∣∣∣∣∣∆ jh′m(y) − h′ (y)
χ2(y)

∣∣∣∣∣∣ ≥ ε′′m
}
,

where εm = max{ε
′

m, ε
′′

m} and χ(y) = max{|χi(y)| : |χi(y)| > 0} (i = 1, 2). Consequently, we obtain

X′

0

m1−b
⊆

X′

1

m1−b1
∪

X′

2

m1−b2
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where b = min{b1, b2}. Hence{
m ∈N :

∣∣∣∣ (∆ jhm±∆
jh′m)(y)−(h±h′ )(y)
χ(y)

∣∣∣∣ ≥ 2εm

}
m1−b

∈ I

which proves (i). Likewise, we can obtain (ii).

For h ∈ C(Y) and δ > 0, the modulus of continuity is ω(h, δ) = sup
|t−y|≤δ |h(t) − h(y)| for t, y ∈ Y.

Theorem 4.3. Consider a sequence Hm : C(Y)→ C(Y) of PLO. Consider that

Hm(h0; y) − h0 = I(∆ j,χ1

r,equi) − o(m−b1 ) (15)

ω(h, δm) = I(∆ j,χ2

r,equi) − o(m−b2 ), (16)

where δm(y) =
√

Hm(12; y) and 1(t) = (t − y). Then

Hm(h; y) − h = I(∆ j,χ
r,equi)-o(m−b) (17)

for all 1 in C(Y), where hk(y) = yk (k = 0, 1, 2), b = min{b1, b2} and χ(y) = max{|χi(y) : |χi(y) > 0|, i = 1, 2}.

Proof. Let h ∈ C(Y), y ∈ Y. Then, by positivity and linearity of (Hm), we write

|∆ jHm(h; y) − h(y)| ≤ ∆ jHm(|h(t) − h(y)|; y) + |h(y)||∆ jHm(h0; y) − h0(y)|

≤ ∆ jHm

((
1 +
|1(t)|
δ

)
ω(h, δ); y

)
+ ∥h∥|∆ jHm(h0; y) − h0(y)|

= ω(h, δ)∆ jHm(h0; y) +
ω(h, δ)
δ
∆ jHm(|1(t)|; y)

+∥h∥|∆ jHm(h0; y) − h0(y)|.

The Cauchy-Schwarz inequality gives

|∆ jHm(h; y) − h(y)| ≤ ω(h, δ)∆ jHm(h0; y) +
ω(h, δ)
δ

√
∆ jHm(12; y)

√
∆ jHm(h0; y)

+∥h∥|∆ jHm(h0; y) − h0(y)|.

Consequently,

|∆ jHm(h; y) − h(y)| ≤ ω(h, δm)∆ jHm(h0; y)

+ω(h, δm)
√
∆ jHm(h0; y) + ∥h∥|∆ jHm(h0; y) − h0(y)|

for the choice of δ := δm(y) =
√
∆ jHm(12; y), and so gives

|∆ jHm(h; y) − h(y)| ≤ ω(h, δm)
{
|∆ jHm(h0; y) − h0(y)| + 2h0(y)

+

√
∆ jHm(h0; y) − h0(y)

}
+ ∥h∥|∆ jHm(h0; y) − h0(y)|.
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We thus get∣∣∣∣∣∣∆ jHm(h; y) − h(y)
χ(y)

∣∣∣∣∣∣ ≤ ∥h∥

∣∣∣∣∣∣ |∆ jHm(h0; y) − h0(y)|
χ1(y)

∣∣∣∣∣∣ + 2h0
ω(h, δm)
|χ2(y)|

+
ω(h, δm)
|χ2(y)|

∣∣∣∣∣∣∆ jHm(h0; y) − h0(y)
|χ1(y)|

∣∣∣∣∣∣
+
ω(h, δm)
|χ2(y)|

√∣∣∣∣∣∣∆ jHm(h0; y) − h0(y)
|χ1(y)|

∣∣∣∣∣∣
which completes the proof by employing (15), (16) and Lemma 4.2.

5. Conclusion

For the difference operators ∆ j, in our investigation, we defined the notions of ideal relatively equal
convergence (I(∆ j

r,equi)-convergence) and ideal relatively uniform convergence (I(∆ j
r,u)-convergence) of se-

quences of functions. By assuming some conditions, we showed that these notions coincide with some
previously defined and studied notions, and developed an example to view the implication of aforesaid no-
tions. We also obtained an equavalence relation by means ofI(∆ j

r,equi)-convergence andI(∆ j
r,u)-convergence

inconjuction with chain condition. Moreover, we used our idea of I(∆ j
r,equi)-convergence to demonstrate the

Korovkin-type theorem for the test funtion yk (k = 0, 1, 2). An illustrative example is constructed in support
of this approximation result by taking into our account λ-Bernstein operators, where −1 ≤ λ ≤ 1. Finally,
we analyzed the rate of I(∆ j

r,equi)-convergence by utilizing the modulus of continuity. Besides this, one can
try to define and studied above notions for double sequences.
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[16] M. Et, P. Baliarsingh, H. Ş. Kandemir, M. Küçükaslan, On µ-deferred statistical convergence and strongly deferred summable functions,

Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM 115 (2021), Article 34.
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