Filomat 39:21 (2025), 7223-7237

Published by Faculty of Sciences and Mathematics,
https://doi.org/10.2298/F1L2521223C

University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

A
2 S
) @
b, &
Ty s

&
Ipapor®

Numerical radius inequalities on C*-algebras via generalized Cartesian
decomposition

Yueyang Chen?, Botao Long®*

#School of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, Jiangsu, China

Abstract. We introduce a Cartesian type decomposition of an element in the setting of C*-algebras, and
hence obtain several lower and upper bounds for both a-numerical radius and algebraic numerical radius
on C*-algebras, which improve some existing bounds by means of Cartesian decomposition.

1. Introduction

Let A be a unital C*-algebra with identity 14, and let S(A) be the state space of A. By the algebraic
numerical range of x € A, we mean the set V(x) = {f(x) : f € S(A)}. This set generalizes the algebraic
numerical range V(T) of a bounded linear operator T € B(H) on a Hilbert space H, which is the closure
of its classical spatial numerical range W(T) = {(T¢, &) : & € H,||&|l = 1}. The algebraic numerical radius
of x € A is defined as v(x) = supflz| : z € V(x)}. The numerical radius serves as a crucial instrument for
studying bounded linear operators (see [4] and the references therein).

For any element x € A, it can be represented as

x = Re(x) + ilm(x),
where Re(x) = % and Im(x) = 35X are the real and imaginary parts of x, respectively. This decomposition
is well known as the Cartesian decomposition. Using Cartesian decomposition, Kittaneh proved a famous
inequality for the spatial numerical radius of a bounded linear operator, that is,

1 1
Z||ir*tr +TT| < w*(T) < E||:r*ir +TT, (1)

where w(T) = sup{lz| : z € W(T)} [10]. In [14], Zamani gave various refinements and some useful character-
izations of the algebraic numerical radius of an element in a C*-algebra by means of Cartesian decomposi-

tion. For more information about numerical radii on C*-algebra and Banach algebra, we refer the readers
to [1,13,16, 17, [11}, 12, [16].
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Motivated by the concepts of A-numerical range and A-numerical radius of operators in B(H) for a given
positive operator A on the Hilbert space H, Bourhim and Mabrouk introduced the notions of a-numerical
range and a-numerical radius of elements for a given positive element a in the setting of C*-algebras [7].
Moreover, they defined a-adjoint x* of an element x in A, and hence obtained a new type of Cartesian
decomposition of x by the formula

x = Rx) +i3(x),

where R(x) = % and J(x) = "*2’1‘.#” , as the classical Cartesian decomposition. Through this new kind of
decomposition, they earned an important and useful characterization of the a-numerical radius as follows:

va(%) = sup |R (7). ()

OeR

In [11], Mabrouk and Zamani derived an upper and lower bound of the a-numerical radius, similar to the
famous inequality(T), that is,

1 1
lex#"x + x|, < v (x) < Ellx#"x + x|, 3)

Recently, Bhunia, Sen, and Paul defined a generalized Cartesian decomposition of T € B(H) as
T = Rex(T) + ilm,(T),

where Rey(T) = % and Im,(T) = % for all A in the unit circle [5]. Furthermore, they developed
several interesting descriptions of the spatial numerical radius of bounded linear operators, and refined
several classical inequalities. Therefore, it is a very natural question whether there is a proper generalized
Cartesian decomposition of an element in the framework of C*-algebras.

In this paper, we introduce a Cartesian type decomposition of elements in the setting of C*-algebras,
and develop several upper and lower bounds of numerical radius on C*-algebras. The contents of the
sections of this paper are as follows. In Section 2, we give some basic concepts on numerical ranges and
numerical radii. In Section 3, we define generalized a-Cartesian decomposition of an element, and give
several characterizations of a-numerical radius on C*-algebras for a given positive element a based on
(2). Moreover, we develop several lower bounds of a-numerical radius which refine the inequality (3),
and present some conditions when these equalities hold. In Section 4, as an application of this Cartesian
decomposition, we give some more general upper bounds for the algebraic numerical radius on C*-algebras.

2. Numerical ranges and numerical radii

Let A be a unital C*-algebra with the identity 14, and let A’ be the dual space of A, the family of all
continuous linear functional on A. A linear functional f € A’ is said to be positive if f(x*x) > 0 forallx € A,
and written as f > 0. We denote S(A) by the set of all states on A, i.e.,

SA)={feA :f>0,f1a) =1}
The algebraic numerical range and algebraic numerical radius of an element x € A are defined by
Vx) ={f(x): f € S(A)}

and
v(x) = supilz| : z € V(x)},

respectively. It is known that v(-) is a norm on A with

1
51l < 0x) < x|
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for all x € A. In particular, let T € B(H) be a bounded linear operator on a Hilbert space H, and let
A = B(H), then the spatial numerical range and the spatial numerical radius of T are given by

W(T) = (T¢&, &) - x e H,|IEll = 1}
and
w(T) = supllzl : z € W(T)},

respectively.
A positive element x € A is denoted by x > 0. Denote A* by the set of all positive elements in A.
Suppose that a € A* is a nonzero positive element in A. As the notation in [7], we set

Si(A)={feA :f>0,f@) =1},

the set of all positive linear functionals on A with f(a) = 1.
The a-numerical range and a-numerical radius of an element x € A are defined by

Va(x) = {f(ax) : f € Sa(A)}
and

va(x) = supflz] : z € Vi(x)},
respectively [7], which are extensions of the notions of A-numerical range and A-numerical radius of abounded
linear operator T € B(H), given by

Wa(T) = (TE E)a: & € H,IElla =1}
and
wa(T) = supllz| : z € Wa(D)},

respectively [15]. Here A is a positive bounded linear operator on a Hilbert space H and [|&]la = V(AE, &)
for & e H.
For any x € A, we define

lIx|ls = sup { Vf(xax): f e Sa(ﬂ)}.

It follows from [7, Proposition 3.3] that || - ||, is actually a semi-norm on the set A’ = {x € A : ||x||, < oo}, and

lleylla < llxllallylla

forall x, y € A"

For any x € A, an element x* € A is said to be a-adjoint of x if ax* = x*a. Denote A, by the collection of
all elements in A that admits an a-adjoint. Moreover, A, and A" are unital subalgebras of A with A, c A’
[7]. Furthermore, for any x € A,, it follows from [7, Corollary 4.9] that the following equation holds:

2 Bl — ] — [[nall2
IIxllz = llxx™la = [lx™x]la = [lx™l7- 4)
In addition, we also have
1
Ellxllu < 0a(%) < |Ixla

forall x € A,.
An element x € A is said to be a-hermitian or a-selfadjoint (a-positive) if ax is hermitian or selfadjoint
(positive), that is, ax = x*a (ax > 0). If x* is an a-adjoint of x, then it is easy to check that

x =R +iI(x), ®)

the a-Cartesian decomposition of x, where R(x) = % and J(x) = "‘zf#“ are a-hermitian. However, this

decomposition is not unique in general [7].
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3. a-numerical radius

Let T = {A € C : |A| = 1}. Motivated by a generalized Cartesian decomposition of a bounded linear
operator on a Hilbert space defined in [5], we introduce the following Cartesian decomposition in the
framework of unital C*-algebras.

Definition 3.1. The generalized a-Cartesian decomposition of an element x € A, is
x = Ra(x) +i3a(),

where .
X + Ax™a x — Ax™a
7 S = . 7
> A(x) o7

Ra(x) =
forall A €T.

In particular, if A = 1, then this decomposition is just the usual a-Cartesian decomposition in [7].
The following proposition gives some new characterizations of a-numerical radius by means of gener-
alized a-Cartesian decomposition.

Proposition 3.2. Let x € A,. Then
(i) va(x) = sup [Ra()lla = sup [[T2(x)lla-

AET AT
(ii) Forany A € T, we have
v(x) = sup  [laRa(x) + BT ()l

a,BeR,a?+p2=1
(iii) For any ¢ € R, we have
60y + ¢ll=0)xta

Ua(x) = sup 5

OcR

Proof. (i) From [7, Theorem 4.11], we see that

0a(%) = sup [|R(2)|l. = sup 1T (€x)lla.
0eR f6eR

It follows that

» efx + ¢ 0yt
04(x) = sup [|R(x)||, = sup ||[—————

0eR 0€eR 2 a
x + e 20yt
=sup ||[—————
0eR 2 a
#ﬂ
X+ Ax
= sup =sup ||9%A(x)“ﬂ.
AeT 4 AeT

Similarly, we have

i0 —i0 . #
0 eOx — e Wy
0,(x) = sup [|F (" x)ll, = sup >
0eR 0eR 1 B
x — o210y,
=sup||——=——
0€eR 2i 4
x — Axfa

= sup > = s}\t;;;”ﬁA(x)||a.

a
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(if) For any A € T, we have

Ua(x)

sup
yeT

sup
0eR

7227

4
x 4yt
IR, @)l = sup >
yeT a
x + AeOxt
2
a

e210(e=210x 4 £310 A x*1)

sup
OeR 2 a

e 210y 4 310 Ayt
sup || ———
OeR 2 a

cos(§)x — isin(£)x + cos(§)Ax* + i sin(§)Ax™
sup
OeR 2 a
“u COS(Q)x+Ax#” m(g)x—/\x#ﬂ
66]113 2 2 2 2

sup  [laRa(x) + BI1(0)lla-

a,BeR,a?2+p2=1

(iii) For any ¢, 0 € R, we take A = ¢, = cos 0 and B = —sin 0, respectively. It follows from the proof

of (ii) that

v,(x) = sup Hcos OR 1 (x) + (- sin Q)fh(x)”ﬂ
OeR

O

Theorem 3.3. If x € A,, then

forall A € T.

#a L x— Axfa
+ (—sin 6) o

6x+Ax

sup ||cos

feR

(cos O + isin )x + (cos O — i sin O)Ax*
2

sup
OeR

e0x + Ne~0xta
sup || —————

OeR 2 4

eiex + ei(([)—e)x#ﬂ
sup||—————
OeR 2

02(%) < 0, (%) + |RA()I2

Proof. For any ¢, 6 € R, by the equation @) and Proposition[3.2} we have

e + ei(¢_6)x#“||§ _ H(ez‘ex " ei(qb—e)x#a)z

a

= ||ezi9x2 + ez’l(‘l)‘e)(x#“)2 + ei¢(x#”x + xx#“)llg

— ”(621'9 _ 1)x2 + €2i¢(€_2i6 _ 1)(x#a)2 + (x + ei¢x#ﬂ)2”u

_ H2 Sin O (ei(6+77/2)x2 + 2% e—i(6+n/2)(x#a)2) + e+ ei:j)x#a)Z”
a

< 2||ei(6+n/2)x2 + 62i¢e—i(9+n/2)(x#a)2”a + ”x + eig‘bx#ﬂ”g
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< 40,(x%) + ||x + e Pxt| 2,

Taking supremum over all 0 € IR, we get

vg(x) < va(xz) + >

by (i) of Proposition[3.2] This implies the desired inequality. [J

Theorem 3.4. Let x € A,. Then

A+
x+—ux#”

1
> =
Ua(x) >

2

orall A, u € T.
f u

Proof. For any A, u € T, it follows from (i) of Proposition 3.2 that

X + P xta

a

2

a

4

x4+ Axte||||x+ pa
0,(x) = max , -
2 2i
a a
“x_'_/\x#a x+uxta ||x+/\x#a || repate
2 |la 2 2 g 2
— a
2 2
x+Axta + l-x+yx"ﬂ || xidata || || xrpa
2 27 ||, 2 |l 2 ||,
- 2 2
“x+/\x“ﬂ ) [t
1 . A+ ‘ux#“ 2 o 2 ||,
2 2 a 2
1 A+
> = ||lx+ ‘ux#“ ,
2 2 a

and hence the conclusion follows. [

Theorem 3.5. Let x € A,. Then for any A € T, we have

Il R 2@l = I92Gl]

0a(x) 2 5 5
e 1B — 1Rl 1B — T A @)Ll
() > > + 1 + 1 .

ella , MRAG) + Ia@)lla = B AG) = Fa@)llal

a(x) = >

22
Proof. From (i) of Proposition 3.2} we have

V(%) 2 [|RA@)a,  va(x) 2 1T2 ()4

forall A € T. Thus,

0a(x) 2 max{l| R (0)lla, 131 (x)lla}

_ IRa@)lla + 192l N R = 133 (0)lal

2

2

7228
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S IR A(x) + 181 (x)lla N B = 1T 1)l

2 2
_ Il , IRA@le = IS 2 @)l
=2 _ .
Take Il Il
o = ma { ",||m(x>||a}, B =ma { 2195 (x )||a}.
Hence
Ua(x) > # + @
_ B IR@le 5 - IR
h 4 4
Bl 19,000 1B — 19,000 |a - Bl
2 a 2 a
* 1 * 1 T
_ Il 1RGN+ 192G, 1155 = IRACO
T4 4 4
1B — Syl |- pl
* 1 T
J Il IRAG) + 81 @l |l — R A @)l
4 4 4
1B 115,00 | — Bl
* 1 T
_ Il 1B — RN e — )13 ()1l

+

2 i " i
Now we take @ = %2 and f = +2. Then it follows from (ii) of Proposition[3.2]that
va(x) = —- \/— R (x) £ T2 (0)lla
for all A € T. Therefore,
V20,(2) 2 max{Ra(x) + 510l B2 — Sa@l
= 0% + Sa@l + 1R = T3 (l)
+ 21110 + 5300l ~ 1R409 ~ Tall
> %ll%;‘(x) + J2(x) + iR (x) — iT 1 ()lla
+ 21IR1) + 300l ~ 1R4(9 ~ Tall

= 210+ DA + 2R + Tl ~ 1R409 = Sa@l

= %Hxna + %HPRA(X) + T2 = 1R (x) = TA)]]al-

This completes the proof of the theorem. [

Corollary 3.6. Let x € A,. Then the following statements are equivalent:
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(i) va(x) = L.
(i) 1R = 1IFa(x)lls = B for all A € T.

Proof. Suppose that v,(x) = ”"ZH” . By the inequality (7) in Theorem we conclude that

Ixlla [1x[la
e B =R B~ 1A s
> — >
vax) 2 5=+ 4 * 4 =
for all A € T. Tt is easy to see that R (¥)ll, = T2 (¥l = He forall A € T.
From (i) of Proposition 3.2 we have

0a(x) = supl|R1()llz = supl|T(x)lla,
AeT AeT

and hence the proof of the other direction is obvious. [

The following proposition gives another characterization of a-numerical radius through generalized
a-Cartesian decomposition.

Proposition 3.7. Let x € A,. Then

Ua(x) = gSUPH%A(X) £ J1(0)la-

AeT

Proof. From Proposition[3.2 by a simple computation, we have

1 1 x+ Axt x— Ax
—sup||R(x) + Ty (¥)ll. = —=sup

+
AeT 2 AeT 2 2i "
1 (1 Fi)x + (1 +i)AxH
" Vot 2 .
X+ 12 Axs
I I
= v,(x).

|

Corollary 3.8. Let x € A,. Then the following statements are equivalent:
(i) va(x) = B,
(i) |Rr(x) £ T (), = %illxllﬂfor allA € T.

Proof. Suppose that v,(x) = @ As in the proof of the inequality (8) in Theorem we have
1
a(X) 2 B max{||R,(x) + Ty (@)lla, 1B (x) = Ta(@)lla}
s lla I1RA(x) + Fa@)lla = B (x) = Fa(@)llal

o2 242
, Il
-2
for all A € T. Then it is straightforward that
V2
1R1(0) £ T2l = =l

forall A € T.
Conversely, by Proposition[3.7]we can complete the proof of the other direction immediately. [
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Theorem 3.9. Let x € A,. Then for any A € T, we have
22 2 gl + <ol + SIRAWIE - 1331
20 2 gl + 22l + IR + SA@IE ~ %400 — TAGIEL
Uﬁ(x) > lellxx#” + xPox|, + }I(a +B),

where

1
o= 'nm(x)nz — T+ 2%

and

1
= ISAGIE - Jla? +

Proof. From Proposition 3.2} we have
0a(x) Z IRA@)ll,  va(x) 2 [1T2()la

for all x € A, and A € T. Then it follows from the equation that

1 1
Zlhec® 52l + SIRA@IE - 1911

R + (T ()l N IR = 1T 2 ()12
h 2 2
< ICRA D)l + (T A (x))?]la . MR = 1T ()12

2 2
IRAGIE + 132 ()17 N IIRA@)IE = 1T (I
2 2
= max{[|RAIZ, 1TA(0)I7}

< vp(x),

forall A € T.
By Proposition[3.7} for any A € T, we have the inequality

V2

7”%/\(35) + Ta@)lla < va(x),

and so
Sty + IR @)+ T WIE - [RA0) ~ Fr W]
= SIRI@) + 102 + (R ) = WYl
+ 2R + TWIE - 1R - T W)
< ZIRA@) + T@Pll + SIRA@) = TPl
+ 3 1IR40) + TR - %400 ~ AW

= JIR400 + TA@IE + 3I%a00) ~ 1

7231

(10)

(11)
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+ 21110 + SR = %400 ~ SA ]
= max{lRA() + T 1R - S, 1E)
< 202(x).

This completes the proof of (I0).
Set

1
y = max { IR, 7la® + ¥l
and

1
6 = max {18, OIR, 3l + 3741}

One can easily conclude that for any A € T, we get

azﬁ + }Lllxx#" + x|,
< }Illxx#“ + x|, + % + b/zj
_ IR . B2l Lt 4+ a%ﬁ + @
S ||m<x)||31 19, % e+ aal, + a%ﬁ N @
= max{y, 6} = )/_-I-é + M

2 2
< v2(x).

This completes the proof of the theorem. [

Example 3.10. Let A = M,(C), and let a = [(1) 2] Consider x = [1 (J)r ! 8] and A = i. It is easy to see that

?’\A(x):[la-i 8] F,(x) = 0.

Then the three inequalities in Theorem (3.9)give the following bounds:

()22, v(0)=1, vi(x)>

N W

respectively.
While for A = =1, we have

Ra() = [5 8] 3,(0) = [{f 8] .
It follows that the three inequalities in Theorem [3.9|give the following bounds:

() >1, v2(x) =2, v(x)=>1,
respectively.

Corollary 3.11. Let x € A,. Then the following statements are equivalent:
(i) v2(x) = Hllxx® + xfox]],.
(ii) IRA@)IF = 1IT2)IF = Fllex® + xFoxll, for all A € T.

7232
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Proof. Suppose that v2(x) = 1|lxx* + x*x||,. From the inequality (II), we have
2 Lot 1 Lot o4
v (x) = lexx “ 4 x"ox|, + Z(a +B) = L—lllxx 4+ x"x|,,

where )
a= '||‘R/\(x)||§ - lexx#“ + x|,

and :
B= ‘nsxx)ui ~ Tl + 2

for all A € T. Then it is easy to see that

1
IRAIE = 1Fa@)Ii7 = lexx#” + o,

forall A € T.
From (i) of Proposition 3.2 we have

0a(x) = supllRa()lla = supl| T2 (x)lle,

AeT AeT
and hence the proof of the other direction is obvious. [

Corollary 3.12. Let x € A,. Then the following statements are equivalent:

(i) v2(x) = Hllxx® + xfox]],.
(i) |RA(x) £ Tp@)I2 = Hlxx® + xfox]|, forall A € T.

Proof. Suppose that v2(x) = 1|lxx* + x"x]|,. From the proof of the inequality (I0), we get

1
va(x) > 3 max{||R(x) + Ta @)l 1R A (x) = T @)I1Z}
1 1
> lexx#" + x|, + 7RG + L2 = IR A(x) — Ta(x)II2]
> }Lllxx#” + x#”xlla,

for all A € T. Then it is obvious that
1
IRAG) £ TAIE = Fllex™ + x*xl,

forall A € T.
According to Proposition[3.7} the proof of the other direction is completed. []

Theorem 3.13. If x € A,, then

[lcxcts + xtax]|,

2002 SR WIE + 1510 =

forall A € T.

Proof. By a simple computation, one can easily find that

Ri() + Fi(x) = %(xx#” + x*x),
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forall A € T, and so

et + ]y _ A Gt + ),

4 4
1
= SIR3@ + T,

< AR + 193 l) < ),

forallA eT. O

4. Algebraic numerical radius

It is obvious that if a is the identity 14 of a unital C*-algebra A, then v,(x) = v(x) for all x € A. Moreover,
for any x € A, one can easily see that x* = x*, and the generalized a-Cartesian decomposition of x is just
given as follows:

x = Rey(x) + ilm, (x),
where

X+ Ax* x— Ax*
2 7 Im}\(x) - 21

It is easy to find that Re; (x) and Im,(x) are normal elements of A for allx € Aand A € T.

Rep(x) =

Theorem 4.1 ([2], Theorem 1.6.3). Let f € A’ with f > 0. Then there is a representation m of A on a Hilbert space
H and a vector & € H such that f(x) = (n(x)&, &) for every x € A. Moreover, if f € S(A), then ||&]| = 1.

Lemma 4.2 ([8,3]). Let A € B(H). Then the following inequalities hold:

(i) KAE, mP < (JAIE, EXA*n, 1) for all E,n € H.
(ii) If A € B(H) is positive and & € H with ||&|| = 1, then

(A&, &) <(A'E, &)
forallr > 1.

Theorem 4.3. Let x € A, then

[l x + xx*||

v*(x) < P*(IRep (x)] + illmy (x)]) < 5

forall A € T.
Proof. For any state f € S(A), by Theorem[4.T|and Lemma[4.2} we have

f@)P = (r(x)E, OF
= [(Re(n(x))&, E)F + KImy((x)€, E)
< (IRex(n(x))IE, &) + (Ima((x))IE, €)
= [IRex((x))IE, &) + i{lmy ((x))IE, E)
= [(r(IRea ()] + dlma ())&, E)F
< (In(Rea()PE, &) + (Im(Ima ())&, €
= (n(Rey ()P + [Ima(x))E, &)

- (r(F5))
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(2" + x|
ST
2
for all A € T. Taking supremum over all states f € S(A), we have

[lc*x + xx*]|

v?(x) < v*([Rey(x)] + i[Im (x)]) < >

forallA eT. O

— O

Example 4.4. Let A = M,(C). Consider x = E ] and A = i. Then we have

111+ i 1{-1-i -1
Re/\(x)=§|: 1 1+i:|l Im/\(x)_z[ - _1_i]/

and so

[ V2 + Y25

1
2 —
Vi A3 5 } , Imy (x)] >

— =51

N

IRex (x)] =

N~

2
Therefore,
) 3
v(Rex ()] +illma ())) = 5,

and hence the inequality in Theorem[4.3|gives

?(x) < 02(IRep (¥)] + illm, (x)]) = Z < g = ”xxzix||

Lemma 4.5 ([9). If A, B € B(H) are positive operators, then
(A +B)'ll < |A" + B]|
forre[0,1].
Theorem 4.6. Let x € A. Then for any r € [0,2], we have
' (x) < [IIRex (x)I" + [Im (x) [
forall A € T.
Proof. As in the proof of Theorem [4.3, we have

[f@)P = Kr()E, OF < (n(IRex ()P + Ima()P)E, &)

< lIRex ()P + [tma ()Pl

forall A € T. Thus,
0*(%) < [IReA () + [Im, (x) |

for all A € T. It follows from Lemma [4.5|that for any r € [0, 2], we get

' (x) < [IIRex (x)* + [Im, (x)I?]]2
= [|(IRex(x)* + [Tm (x)P) 2|
< [IReA ()" + [Imy (x)I']l,

forallA e T. O
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Theorem 4.7. Let x € A. Then for any r > 2, we have
1 -
5 IReA ()" + [ (OI'l] < o'(x) < 22 HlIRex ()" + [Tz (I

forall A € T.
Proof. By Proposition 3.2} we have

1
v (x) > Z||x + Ax|]?

for all A € T. Therefore,
1 * L 1 7
v'(x) > Ell(x + Ax")?|7 = flllx = AxXl.

This implies
a 1 r r
v'(x) 2 S(lIReA()['Il + [T ()11
1
2 §|||RGA(X)|r + [Ima ()["]l-
For any f € S(A), by Theorem[4.1]and Lemma 4.2} we get

[f (0l = Km(x)&, E)

., (|<ReA<n<x>)fs, P +IImi (r()E, 5>|2)%
2

1
T

<2l (l(ReA(n(x))ér ol + I<m(”(x))é'é>lr)
= 2

<207 ((Rea(r()IE, &) + (IIma(r())IE, €))7
< 24 (Ren(REO)'E, &) + (llmy (&, £)?
= 2t (m(Rep (o) + [my ()&, )

< 287IRes ()1 + [, (Il

Taking supremum over all f € S(A), we obtain
v'(x) < 287 IRex ()" + Imp ()l

This completes the proof. O
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