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On deferred sequence spaces defined by invariant convergence

Ekrem Savas?

?Department of Mathematics, Usak University, Usak, Turkey

Abstract. The main contribution of this paper is to define the notion of deferred Cesaro mean coming
from modern summability methods by using invariant means and study some of its properties and also
establish relations among these sequence spaces. These ideas and results are expected to be a source for
researchers in the area of summability theory. In the end we can say that this concept can be generalized
and applied for further studies.

1. Definitions

Let S denote the set of all real and complex sequences s = (s). By m and ¢, we denote the Banach spaces
of bounded and convergent sequences s = (s;) normed by |[|s|| = sup,, Is,|, respectively.

Let 0 be a mapping of the positive integers into themselves. A continuous linear functional ¢ on m is
called to be an invariant mean or a o-mean if and only if

1. o(s) = 0 when the sequence s = (s,,) has s, > 0 for all n;
2. o(e) =1 wheree=(1,1,1,...) and

3. 0(Ss(m) = @(s) for all s € m.

The mapping ¢ is assumed to be one-to-one and such that ¢"(n) # n for all n,m € Z*, where ¢"(n)
denotes the m th iterate of the mapping o at n.

For certain class of mapping o every invariant mean ¢ extends the limit functional on space ¢, in the
sense that ¢(s) = lims for all s € c.

The space V,; of the bounded sequences whose invariant means are equal may be defined, as follows:

1 n
V, = {limn_m - ;(sgk(m) — &) = 0, uniformly in m}
=1

Schaefer [21]) presented that a bounded sequence s = (si) of real numbers is o- convergent to & if and
only if

1 n
E Z(Sak(m) - é) -0
k=1
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as n — oo uniformly in m. Consequently, ¢ C V.
Note that the space [V,] is strongly o-convergent sequence was introduced by Mursaleen [10] which is
below: A sequence s = (s) is said to be strongly o-convergent if there exists a number & such that

. 1y . .
[V,]= {llmn_m; kz_; [St(my — &I = 0, uniformly in m}

If we consider o(m) = m + 1, then [V,] = [¢], the set of all strongly almost convergent sequences which is
defined by Maddox in [9].

Definition 1.1. (see, [8]).
Let X be a real or complex linear space, g be a function from X to the R. The pair (X, g) is called a paranormed
space and g is a paranorm for X, if the following properties are satisfied for all elements x,y € X

1. g(6) = 0, where O is the zero element of X;

g(x) 2 0;

9(=x) = g(x);

g(x +y) < g(x) + g(y) (triangle inequality);

If (An) is a sequence of scalars with A, — A as n — oo and (x,),7 , is a sequence in X with g(x, —x) — 0as
n — oo then g(Ayx, — Ax) — 0as n — oo (continuity of multiplication by scalars).

SIS

Observe that, if in addition g is increasing and g(x) = g(|x|), and the sequence (A,) converges to A, then for
large n’s
J(Anxn = Ax) < g(An = D) (xn = %)) + g(A(xn = %)) + g((An = A)x)
< gl = x) + (1 + [IADg(xn = 2) + g((An = A)x)
= @+ [ADgGen = x) + g((An = A)x),
where [|A[] is the integer part of |A|. Hence to prove condition (5) it is enough to show that for all fixed y € X

and A, — 0, g(A,y) — 0. Throughout this work we introduce the sequence spaces using the following type
of transformation:

Definition 1.2. (see, [4], [14]). Let T = (t,x) denote a matrix transformation that maps complex sequences s into
the sequence T's where the n-th term of T's is as follows:

(Ts), = Z b kSk-
k=1

Such transformation is called to be nonnegative if ¢, is nonnegative.
The deferred Cesaro mean of sequence s = (s,) is defined by (see, [11], [2]) as follows:

S,Un+1 +spn+2 +-- +Sqn
qn_pn

(Dp,qs)n =

where p = (p,) and g = (g,) are sequences of non-negative integers (see, Agnew|[1]) satisfying
i) pn < g, foralln € Ny
ii) lim g, = oo.

In the notation of matrix transformation

(Tp,qs)n = Z EnkSk-
k=0
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where

1
- { L (pu<k<q) } "

0, otherwise.

It is obvious that (Dy,,,) is regular with conditions (i) and (ii). Indeed, this mean generalizes various
transforms such as D,_1, = I, the identity transform, Dy, = C(0, 1), the Cesaro transformation. Later on
generalizations of deferred Cesaro mean of sequences are presenting in many articles by various authors(see,
[3,5-7, 12, 14-18]).

We now have

Definition 1.3. Suppose T = (t,x) is a non-negative summability matrix with the property

(o)
sup Z by < 0.
"ok=l

and f is a modulus function. We consider the new deferred invariant sequence spaces as follows:

In
VE(T,0,f)={s€S: lirrln Z tuxf ([Xgeoml) = 0, uniformly inm ¢,
k=pn+1

VD(T,a,f) = {s €S:s—-¢ee€ VE(T,a,f)for some scalar 5},

and
In

VE(T,0,f)=3s€S:sup Y tuf(Worgm)) < 01,

nm k=p,+1
wheree =1{1,1,1,1, ...} and (p,), (g.) are sequences of non-negative integers satisfying the conditions (i) and (ii).

If x € VJ(T, 0, f), then we say that the sequence s is strong deferred T- invariant convergent to 0 with respect
to a modulus f, where modulus function was defined by Ruckle [13] as follows.

Definition 1.4. A function f : [0, 00) — [0, 00) is called a modulus function provided that
1. f(s) =0ifandonlyifs = 0,
2. f(s+1)< f(s)+ f(r) foralls > 0and r > 0,
3. f is increasing, and
4. fis continuous from the right of 0.

If f(s) = s, then the above sequence spaces reduce to the following:

In
Vg’ (T,0) =4s€S: lirrln Z tuxlXgkomyl = 0, uniformly inm ¢,
k=p,+1

VP(T,0) = {s €S:s—¢ee V(?(T,a) for some 5},

and
In

VP(T,0,)={s€S: sup Z En el Xk < 003 .
M g1
If T is the deferred matrix defined as in (1.1) with g(n) = n and p(n) = 0 for all n € N. It is obvious that

we get the generalizations of the classical strongly invariant summable sequences spaces w{(f), wg(f), and
w7, (f) as defined in [19] that is:



E. Savas / Filomat 39:21 (2025), 7261-7269 7264

1 n
wy(f) = {s €S:lim - Zf(|xgk(m)|) = 0, uniformly in m} ,
k=1

w’(f) = {s €S :s5— &e € wj(f) for some scalar cf},

and

wi(f) = {s esssup Y il < oo},
k=1

n,m

wheree =1{1,1,1,1,...}
If T is the deferred matrix defined as in (1.1) with g(n) = n and p(n) = n — A, for all n € N, we have (see,
[20]),

. 1y . .
wy(A, f) = {s €S :lim T Z f(IxXgkoml) = 0, uniformly in m} ,

n
" k=n—A,+1

w’(A, f) = {s €S :s5—&e€wj(A, f) for some scalar é},

and

wl(A, f) = {s €S:sup Ai Y Al < oo},

n k=n-A,+1

where e = {1,1,1,1,...} and (A,) being a non-decreasing sequence of positive numbers tending to co and
A1 <A +1, A =1,

If T is the deferred matrix defined as in (1.1) with g(n) = k,, and p(n) = k,—1 foralln € N, and 0 = (k,),
we have

wy(0, f) = {s €S :lim hl Z f(IxX5k(ml) = 0, uniformly in m},

kel,

wo(6, f) = {s €S :5—¢&e€wy(0, f) for some scalar é},

and

w0, f) = {s €S :sup hl Zf(lxgk(m)|) < oo},

kel,

wheree = {1,1,1,1,.. .} and a lacunary sequence being an increasing integer sequence 0 = {k,},enujo) such
thatko =0and h, = k,, —k,_1 — o0, asn — oo. Let I,, = (k,—1, k,.].

2. Main Results
We now start our main discussions.
Theorem 2.1. V(’)D (T,0)f), VD(T, g, f), and VE(T, o, f) are linear space over the complex field C.

Proof. Let us show that the space V(T g, f) is linear. It is easy to prove that the linearity of V°(T, g, f) and
VR2(T,o, f) by proceeding in the similar line. Puts,r € Véj (T, o, f). Let o, B € C, and choose natural numbers
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K, and Lg such that |a| < K, and || < L,. We know that f is monotonicity and subadditivity, so we write ,
for all m,

qn

qn
Z t",kf(msok(m) + ﬁsak(m)D < Z tn (f(|a”86k(m)|) + f(|ﬁ”rok(m)|))

k=pn+1 k=p,+1
n In

< Yt fKalsaD + Y bk f gl

k=p,+1 k=p,+1
qn n

<Ko Y tuif QoD+ Lp Y, tuif(roigm)).

k=p,+1 k=p,+1

We know thats, r € VOD (T, 0, f), soitisclear thatlim, e len o bk f(sok(ml) = 0and lim;; o Z”z _— tug f (I gk my)) =

0, uniformly in m . Finally as + Br € VJ(T, 0, f) and thus the space V) (B, f) is linear. [

Theorem 2.2. For any non-negative matrix T = (t,) with the property sup, Y.po; tyx < oo, and any modulus
function f, the following inclusions hold.

1. VP(T,q, f) c VR(T, 0, f)

2. VO(T,0, f) c VP(T, 0, )

Proof. The second part inclusion is obvious. Lets € VP(T, o, f). Now, by the definition of a modulus
function (2) and (3), for all m we write

qn qn
Z bk f (k) = Z b f (Sotmy — € + €D

k:py,+1 k:pv1+1

qn qn
< Yt fGorgm = ED+ FUED Y b

k=p,+1 k=pn+1

Since sup,, ):Z”:pnﬂ twx < oo and x € VP(B, f) itis clear that s € VR(T, 0, f). O

Theorem 2.3. Let f be a modulus function and T = (t,) a non-negative summability matrix with the property
sup,, Xy tuk < 0, then

1. VP(T,0) c VP(T,q, f),
2. VB(T,0) c VO(T,0, f), and
3. VB(T,0) c VR(T, 0, f).

Proof. We will give the proof of (3) only. The proofs of the remaining parts follow in similar manners. Let
s € VD(T,0), that is sup,,,, ZZ"ZP 1 tnklSeram| < 0, and f be any modulus function. Further let € > 0 and

0 € (0,1) such that f(¢) < € for 0 < t < §. Take the following partition of Z”: _— tuk f(ISo+(myl) and denote each

sum by }’; and },, respectively.

qn qn In
Y taflsead = Y, tflsaaD+ Y. bkfOsu): 2)
k=pn+1 {k=pu+1 & sk, <6} {k=p,+1 & \sak(mlzél

We write

|Sk+m| <

|Szrk(m)| |So"(m)|
<1+ |——|,
0 o
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where [t] denotes the integer part of . Thus by properties (2) and (3) of modulus function, for [s,« ()| > 6
we write f([S(l) < (1 + [M]) f) <2f (1)@. Therefore the second partition in (2.1) can be bounded

as follows, for all m

qu
f()
Z < ZT Z tn,k|50k(m)|.
2 k=p,+1
Also,
qn
2.<e )t
1 k=p,+1
and therefore, for all m
qn qn f(l) In
Z tn,kf(lsok(m)D <€ Z tn,k +ZT Z tn,k|s(r"(m)|-
k=p,+1 k=p,+1 k=p,+1
Since .
sup 2 tpgx < 00
n k=p,+1

and s € VR(T, o) this gives thats € VE(T,0, f). O
Theorem 2.4. Let f be a modulus function and T a non-negative summability matrix with the property

qn
sup Z tog < 00,
T k=p,+1

If B = infrg @ > 0, then
VP(T,0) = VP(T, 0, f).
Proof. Note that the previous theorem it remains to show that VP(T,q, f) € VP(T,0). Since f(t) > Bt for

allt > 0 and p > 0, we granted t < %f(t) forallt > 0. Lets € VP(T, o, f), that is for some scalar &,

In

oo 2y,

f(Isgkeny — &l) = 0. Since for every n € IN, for all m,
qn 1 qn
Y tudsoron =< 7 Y bk f(Sorc — ED)-
k=pn+1 ﬁ k=pn+1
Finally we get that s € VP(T,0). O

Theorem 2.5. Let T = (t,x) be a non-negative summability matrix with the property

qn n
sup E tpk < oo, inf E fok >0,
n
" k=p,+1 k=p,+1

and f is a modulus function then V(T f) and VP(T, f) are linear topological spaces with paranorm

In
() =sup Y b f(oim)-
I fe=p,+1

Also, if forall N € N, UN_ [p, +1,4,) = [1,qn) then VJ (T, 0, f) and VP(T, 0, f) are complete with respect to the
paranorm g.
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Proof. We will give the proof of VP(T, 0, f) only. The case of V{(T, g, f) will follow analogously. For this,
we will first show that VP(T, o, f) with g is a paranormed linear topological space. By Theorem 2, for each
s € VP(T, f), g(x) exists. Further, note g(s) = 0 if and only if s = 0, g(—s) = g(s) and g(s + 1) < g(s) + g(r).
Since by the nature of the function f, g is increasing and g(s) = g([s|), it remains to show that for fixed s
taking a sequence (A,,) of scalars converging to 0, we write that g(A,,5) — 0 (see the remark after definition
paranorm).

Fix € > 0 and write s € VP(T, f) and sequence (A,,) converging to 0. Then there exists & and N € N such
thatforalln,m > N

In
€
Y tukflsorn = €D < 5.

k=p,+1

In

Denote by K = sup,, . tnx and t = max<y 8,4y — |- Since f is continuous we can find M € N such

k=p,+1
€
that A < 1 and f(JAs]) <
o UMD < SxG T+ e
scalar s. Then for all n,m € IN and n > M we have for all m

for all t > M, where [s] denotes the integer part of a positive

qn

In
Y kAo = Y ukf (Aot + A€ = A

k=p,+1 k=pn+1

n In
< Y bSOl =D+ Y b fUAIsan — €D + Kf(AnéD
k=p,+1&n>N k=p,+1&n<N

qn

<Y takf o — D+ KFQAID + KF(AE])

k=p,+1&n>N
qn

< Z tnjef (ISotmy = €D + K2 + [I1]] + [ED f(Aml) <e.

k=p,+1&n=N

Finally , g(A,;s) = sup,,,, tuk f(IAmSgkoml) — 0 as n — oo, uniformly in m.

qn
k=p,+1
We assume next that

UN Tpn +1,q0) = [1,9n), 3)

thatis p; = 0 and the sums ZZ”: st Tok(m) taken over all natural numbers n will run through each coordinate
of given r at least once. We will establish that under the above condition VP (T, f) is complete with respect to
its paranorm g. Let (s;:) be a Cauchy sequence in (VD (T, f, g)). Then the convergence lim,, ;, e g(s” —s") =0
means that, as y, 1 — oo for all n,m

In

Z tn,kf(|xz:k(m) - Sgk(m)D - 0. (4)

k=p,+1
VA |
)~ Sat]
since T = (t,x) is a non-negative and f continuous, (SZ) is a Cauchy sequence in C for each fixed k. Since C
is complete there exists a sequence s = (sx) € C such thatas y — oo, SZ — s for each k.

Now from (4), given € > 0 there exists a natural number N such that for all y,n > N and n € IN, for all m,

Thus by assumption (3) for each fixed k € IN, it follows that t, x f(Is ) = 0, with y,n — o0, and

In
€
D kU = 5D < 5 (5)
k=p,+1
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Since by the continuity for f we also get that for fixed k, f(|s” Sekeml) — 0 as 1 — oo, for every k € N

ok(m)

there is My € IN such that if n > M then f(lsak(m) = Sgkml) < %, where C = sup, _p 1 tnk. Write
N, = maxy, y1<k<q, {Mi, N}. We have for nn > N,
qn n e
1 _
Yty = s € Y, tuigm <Coa= = 3, (6)
k=p,+1 k=p,+1
for all n, m.

Letn,m € N, choose y > N and 11 > N,,. Then from (5) and (6),

qn n
D ok = Soonl) < Z i F sy = Sk + 2 Eni 5y = St < &
k—pn+1 —Pn+1 k:P11+1

Finally , g(s” - &) = sup,, Zznzpy,ﬂ t”rkf(lxzk(m) - So"(m)') <e¢ forally > Nand g(s” —s) > 0asn — oo,
uniformly in m. Since all s” € VP(T, f), for each y there exists £ with

In
lim Y f(sl,,, - & =0

k=p,+1

uniformly in m. Write by ¢ = inf, ZZ’“ZP 41 tnk, which is assumed to be positive. Write that for all n, m and
Y.,

qn
cfIE =N < Y b fE - O < Z i fET =0, D)
k—pn+1 k= pr1+1
q’l
T V
bk f (5%, 0y = i) + 2 bk f(5), 0y = &)
k=p,+1 k=p,+1

n qn
< Y bafUE =l D+ g =)+ Y baef(sl,, — &

k=p,,+1 k=p11+1

Since the outer sums for fixed 1 and y converge to 0 as # — oo, uniformly in m and g(s” —s") — 0 as
¥, — oo, wehave f(|& - &) - 0asy,n — oo. By the continuity of f, (£7) is Cauchy in C, and so its limit

& exists. Using the assumption that C = sup,, k gt nk < and the estimate, for all m,

qn n
Y tufls =D < gl =)+ Y tuefllsl,,, — &N +CAIE - &),

k=p,+1 k=p,+1

it is clear that

In
lim Y e f (g — €D = 0
k=p,+1

uniformly in m. Thus we get s € VP(T, 0, f). O
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