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Characterization of ss-supplemented modules with respect to finitely
generated factor modules in view of singularity

Esra Öztürk Sözena

aSinop University, Faculty of Sciences and Arts, Department of Mathematics, 57000, Sinop, Turkey

Abstract. In this essay (amply) cofinitely δss-supplemented modules are presented and fundamental
algebraic features of these modules are examined. Privately, a ring characterization theorem is presented
as follows. R is a δss-perfect ring if and only if every (projective) left R-module is (amply) cofinitely
δss-supplemented. Moreover, the question when cofinitely δss-supplemented modules are cofinitely ss-
supplemented is checked. With this aim we define left ∆ss-rings and the fact that a ring R is a left ∆ss-ring if
and only if each cofinitely δss-supplemented R-module is cofinitely ss-supplemented is proven.

1. Introduction

In Module Theory, it is an important research area to investigate modules which have a decomposition by
direct summands. Generalizing this, modules whose submodules have a supplement are of an importance
too. In Figure 1 we emphasise the wide usage field of supplement submodules via keywords taken from
Web of Science (WOS). Now let us introduce the basic concepts of this field that we need. At first, underline
that R will indicate an associative ring with unit and W will indicate a unitary R-module in this essay.

By A ≤ W we indicate that A is a submodule of W. A module W is called simple if W has only trivial
submodules. Socle(W) which points the sum of whole simple submodules of W, is denoted by Soc(W).
A ≤ W is called small (denoted by A ≪ W) if A + T , W for every proper T ≤ W. The sum of whole small
submodules of W is denoted by Rad(W). For A ≤W, if there exists a submodule T ≤W satisfying A+T =W
and A ∩ T ≪ T, then T is a supplement submodule of A in W. If A ≤ W is of a supplement contained
in B whenever A + B = W for any B ≤ W, then A is of ample supplements in W. A module W is called
(amply) supplemented if each submodule of W is of a (ample supplements) supplement in W. In [2], the
authors characterized cofinitely supplemented modules as the modules whose maximal submodules are of
supplements. A ≤ W is called cofinite if W

A is finitely generated and W is called cofinitely supplemented if
each cofinite submodule of W is of a supplement in W.

In the years of 2000 and 2007, [28] and [13] generalized small submodules and supplemented modules via
singularity and contributed δ-small submodules and δ-supplemented modules in the literature. Afterwards,
studies on the generalization of these modules were carried out and are still continuing [9, 17]. The sum of
whole δ-small submodules of W will be indicated by δ(W).

2020 Mathematics Subject Classification. Primary 16D10; Secondary 16D60, 16L99, 16D99.
Keywords. left δss-perfect ring, (amply) cofinitely δss-supplemented module, left ∆ss-ring.
Received: 10 February 2025; Accepted: 14 June 2025
Communicated by Dijana Mosić
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Figure 1: Bibliometric analyse of supplement submodules from WOS with respect to keywords

In [11], ss-supplemented modules are defined as follows. A module W is called ss-supplemented if
there exists some T ≤ W such that A + T = W and A ∩ T ≤ Socs(T) for any A ≤ W where Socs(T) =
Soc(T) ∩ Rad(T). Hence a new algebraic structure is constructed between semisimple submodules and
supplemented modules. Motivetad by this, in [22] the authors introduced δss-supplemented modules
which takes place between ss-supplemented modules and δ-supplemented modules. A module W is called
δss-supplemented if there exists a submodule T ≤ W such that A + T = W and A ∩ T ≤ Socδ(T) for any
submodule of A of W where Socδ(T) = Soc(T) ∩ δ(T). And also see [6, 7, 15, 18, 19] for further and lifting
property of these type of modules.

In the year of 2023 in [23], the authors generalized ss-supplemented modules with respect to finitely
generated factor modules and so the definition of cofinitely supplemented modules was born in the liter-
ature. Combining [11, 22, 23], we have designed this study. This paper consists of three main parts. In
the fist section of the study, we present a literature summary that includes the articles that motivate the
basic definitions we constructed in the study with a bibliometric analyse support. In the second part of the
study, we begin the original part of the work including three subsections. In the first subsection, cofinitely
δss-supplemented modules are defined, basic features as therotically are investigated and also necessary and
sufficient conditions that will be equivalent to the definition are determined. In the second subsection of the
main results we define amply cofinitely δss-supplemented modules. And here we continue the process we
followed in the previous section. Apart from this, we concretize with examples the relationship between
the three emerging module types, which are generalizations of each other. Also, ring characterizations (see
in Theorem 2.31) of these modules are investigated. By means of these concepts we reach the hierarchy
given below for a module.

(Amply) cofinitely ss-supp. ⇒ (Amply) cofinitely δss-supp. ⇒ (Amply) cofinitely δ-supp.

And we show that the relations given above are not reversible (see in Example 2.33 and Example 2.34).
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In the last subpart of the study we examine the suitable conditions which makes cofinitely δss-supplemented
modules cofinitely ss-supplemented given in [23] (see Proposition 2.45). With this aim we also define left
∆ss-rings and it is proven in Proposition 2.41 that each cofinitely δss-supplemented R-module is cofinitely
ss-supplemented over a ∆ss-ring R. And in Conclusion, reference studies that will help us generalize the
definitions we have created and contribute to the sustainability of the study are included.

2. Main results

2.1. Cofinitely δss-Supplemented Modules

In this part of the study, cofinitely δss-supplemented modules are defined and basic theoretic properties
of these modules are presented with additional examples.

Definition 2.1. If there exists a submodule B ≤ W satisfying A + B = W and A ∩ B ≤ Socδ(B) for each cofinite
submodule A ≤W where Socδ(B) = Soc(B) ∩ δ(B) then W is called a cofinitely δss-supplemented module.

Obviously, each cofinitely δss-supplemented module is cofinitely δ-supplemented. Moreover, δss-
supplemented modules are cofinitely δss-supplemented. Moreover, δss-supplemented modules are cofinitely
δss-supplemented. The converse is provided for finitely generated modules.

Proposition 2.2. Any factor module of a cofinitely δss-supplemented module is cofinitely δss-supplemented.

Proof. Let W be cofinitely δss-supplemented and A ≤ W. For each cofinite submodule K
A of W

A , we have
W
K �

W
A
K
A

is finitely generated. So K ≤ W is cofinite. By hypothesis, there exists T ≤ W satisfying K + T = W

and K ∩ T ≤ Socδ(T). Thus, W
A =

K
A +

T+A
A and K

A ∩
T+A

A =
K∩(T+A)

A =
A+(T∩K)

A ≪δ
T+A

A [28, Lemma 1.3(2)].
Moreover, A+(T∩K)

A � T∩K
T∩(K∩A) =

T∩K
T∩A is semisimple as a factor module of the semisimple module K ∩ T by

[10, Corollary 8.1.5]. So, K
A ∩

T+A
A ≤ Socδ( T+A

A ). Hence, T+A
A is a δss-supplement of K

A in W
A , that is, the factor

module K
A is cofinitely δss-supplemented.

Corollary 2.3. Any homomorphic image of a cofinitely δss-supplemented module is cofinitely δss-supplemented
module.

Corollary 2.4. Any direct summand of a cofinitely δss-supplemented module is cofinitely δss-supplemented module.

Lemma 2.5. Let W be a module and A, X ≤ W such that X ≪δ W. If A + X is of a δss-supplement B in W, then a
projective semisimple direct summand P of W exists satisfying that B + P is a δss-supplement of A in W.

Proof. By hypothesis, we get (A+X)+B =W, (A+X)∩B ≤ Socδ(B). Thus, (A+X)∩B≪δ B and (A+X)∩B
is semisimple. As W = X + (A + B) and X ≪δ W, there exists a projective semisimple submodule P ≤ W
provided P ≤ X and W = P⊕(A+B). In this case, W = A+(B+P). Now, it remains to show that A∩(B+P)≪δ
B+P and also it is semisimple. Since A∩(B+P) ≤ [B∩(A+P)]+[P∩(A+B)] = [B∩(A+P)] ≤ [B∩(A+X)]≪δ B
and so A∩ (B+P)≪δ B+P by [28, Lemma 1.3(1)] and it is also semisimple as a submodule of the semisimple
submodule B ∩ (A +X) by [10, Corollary 8.1.5]. This completes the proof as A ∩ (B + P)≪δ Socδ(B + P).

We give the following standart lemma as it is useful to prove the fact that an arbitrary sum of cofinitely
δss-supplemented modules is cofinitely δss-supplemented.

Lemma 2.6. Let A, B ≤W such that A is cofinitely δss-supplemented and B is cofinite. If A+B is of a δss-supplement
in W, then B is of a δss-supplement in W.
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Proof. Let S be a δss-supplement of A+B in W, that is W = (A+B)+S and (A+B)∩S ≤ Socδ(S). Since B ≤W is

cofinite, then
W
B

S+B
B
� W

S+B =
(S+B)+A

S+B � A
A∩(S+B) is finitely generated and so, A∩ (S+ B) ≤ A is cofinite. From the

assumption, there exists T ≤ A satisfying A = [A∩ (S+ B)]+ T and [A∩ (S+ B)]∩ T = T ∩ (S+ B) ≤ Socδ(T).
In the remaining part of the proof, it will be shown that S + T is a δss-supplement of B in W. Clearly,
W = A+ (B+S) = {[A∩ (S+B)]+T}+ (B+S) = B+ (S+T). Moreover, B∩ (S+T) ≤ [S∩ (B+T)]+ [T∩ (B+S)] ≤
[S∩ (B+A)]+ [T∩ (B+S)]≪δ S+T and [S∩ (B+A)]+ [T∩ (B+S)] is also semisimple by [10, Corollary 8.1.5].
Therefore B ∩ (S + T) is also δ-small and semisimple in S + T as a submodule of [S ∩ (B +A)] + [T ∩ (B + S)]
by [28, Lemma 1.3(a)] and [10, Corollary 8.1.5].

Proposition 2.7. An arbitrary sum of cofinitely δss-supplemented modules is cofinitely δss-supplemented.

Proof. Let {Mi}i∈I be a community of cofinitely δss-supplemented modules and W =
∑

i∈I
Mi. For any cofinite

K ≤W, we have W =Mi1 +Mi2 + ...+Min +K where n ∈N and i1, i2, ..., in ∈ I. By hypothesis, Mi1 is cofinitely
δss-supplemented and 0 is the trivial δss-supplement of W, Mi2 + ...+Min +K is of a δss-supplement in W via
Lemma 2.6. Applying Lemma 2.6 again by induction, it can be seen that K is of a δss-supplement in W.

Corollary 2.8. Any direct sum of cofinitely δss-supplemented modules is cofinitely δss-supplemented.

Corollary 2.9. Let W be a cofinitely δss-supplemented module. Then so is any W-generated module.

Proof. Let G be a W-generated module. Then, there exists an epimorphism f : W(I) = ⊕W −→ G. Thus, W(I)

cofinitely δss-supplemented by Corollary 2.8. So G is cofinitely δss-supplemented by Proposition 2.2.

Definition 2.10. A module W is called ⊕-cofinitely-δss-supplemented if there exists a δss-supplement which is a
direct summand of W for each cofinite submodule of W.

Proposition 2.11. Let W be a cofinitely δss-supplemented module. In this case, each cofinite submodule of W
Socδ(W) is

a direct summand.

Proof. Let K
Socδ(W) ≤

W
Socδ(W) be cofinite. Then K ≤ W is cofinite and by hypothesis there exists T ≤ W such

that K + T = W and K ∩ T ≤ Socδ(T). Clearly, K
Socδ(W) +

T+Socδ(W)
Socδ(W) =

W
Socδ(W) . Moreover K

Socδ(W) ∩
T+Socδ(W)

Socδ(W) =
(K∩T)+Socδ(W)

Socδ(W) = 0. Hence, K
Socδ(W) ≤⊕

W
Socδ(W) .

Corollary 2.12. Let W be a cofinitely δss-supplemented module. In this case, W
Socδ(W) is⊕-cofinitely δss-supplemented.

Corollary 2.13. Let W be a cofinitely δss-supplemented module. If W
Socδ(W) is finitely generated, then W

Socδ(W) is
δss-supplemented and semisimple.

Remember from [22] that a module W is called strongly δ-local, if it is δ-local and δ(W) ≤ Soc(W).

Lemma 2.14. Let W be a module and T,X ≤ W such that T is a δss-supplement of a maximal submodule of W and
T + X is of a δss-supplement in W. In this case, X has a δss-supplement in W.

Proof. As T is a δss-supplement of a maximal submodule of W, T is strongly δ-local or projective semisimple
by [22, Proposition 3.4]. If T is projective semisimple, it is δss-supplemented obviously. Or if T is strongly
δ-local, it is δss-supplemented by [22, Lemma 4.1]. Taking into account both cases, it can be obtained that X
is of a δss-supplement in W by [22, Lemma 4.8].

Now we want to construct the conditions when a module W is cofinitely δss-supplemented. With this aim
we point by Co fδss (W) the sum of whole submodules of W that are δss-supplements of maximal submodules
of W. If there is no such a module, Co fδss (W) = 0 is accepted. Also, we prefer the notations δ-Locs(W) and
SocP(W) to indicate the sum of strongly δ-local and the sum of projective semisimple submodules of W,
respectively.
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Theorem 2.15. The implications given above are equivalent for a module W.

(1) W is cofinitely δss-supplemented.
(2) A δss-supplement is present in W for each maximal submodule of W.
(3) W

δ−Locs(W)+SocP(W) is of no maximal submodule.
(4) W

Co fδss (W) is of no maximal submodule.

Proof. (1) ⇒ (2) : Let P ≤ W be maximal. Then P is cofinite in W as W
P is simple. Therefore, P is of a

δss-supplement in W.
(2) ⇒ (3) : Suppose that the submodule P

δ−Locs(W)+SocP(W) ≤
W

δ−Locs(W)+SocP(W) be maximal. In this case, P is
a maximal submodule of W containing δ-Locs(W) + SocP(W). From assumption, there exists a submodule
T ≤ W such that P + T = W and P ∩ T ≤ Socδ(T). In this case, T is strongly δ-local or projective semisimple
by [22, Proposition 3.4]. Then, we have T ≤ δ-Locs(W) + SocP(W) ≤ P. Hence, we get the contradiction
T + P = P =W.

(3) ⇒ (4) : Assume that P
Co fδss (W) ≤

W
Co fδss (W) is maximal. In this case, P is a maximal submodule of W

including P. As δ-Locs(W) ≤ Co fδss (W) and SocP(W) ≤ Co fδss (W), we get δ-Locs(W) + SocP(W) ≤ Co fδss (W) ≤
P. Consider the natural epimorphism π : W −→

W
δ−Locs(W)+SocP(W) . Then P

δ−Locs(W)+SocP(W) is maximal in
W

δ−Locs(W)+SocP(W) which is a contradiction.
(4) ⇒ (1) : Let K ≤ W be cofinite. In this case, as W

K is finitely generated for K ≤ K + Co fδss (W) ≤ W,
W
K

K+Co fδss (W)
K

� W
K+Co fδss (W) is finitely generated and so, K + Co fδss (W) is cofinite. Moreover, K + Co fδss (W) is not

proper in W. Otherwise, if it were proper, then there would be a maximal submodule P
K+Co fδss (W) ≤

W
K+Co fδss (W)

including every proper submodule of W
K+Co fδss (W) as it is finitely generated. Thus, Co fδss (W) ≤ K+Co fδss (W) ≤

P ≤ W where P is maximal in W. Thus, P
K+Co fδss (W) ≤

W
K+Co fδss (W) would be maximal which contradicts with

(3). Then, K + Co fδss (W) = W is deduced. As W
K is finitely generated, we have W = K + A1 + A2 + ... + An

for some positive integer i = 1, 2, ...,n where each Ai is a δss-supplement of a maximal submodule of W.
As An is a δss-supplement of a maximal submodule of W and (K + A1 + A2 + ...An−1) + An is of the trivial
δss-supplement 0 in W, then K + A1 + A2 + ...An−1 is of a δss-supplement in W by Lemma 2.14. Repeating
Lemma 2.14 again and again, at the end it will be verified that K has a δss-supplement in W. Hence, W is
cofinitely δss-supplemented.

By means of the theorem given above we can give the following example verifying that a cofinitely
δss-supplemented module may not be δss-supplemented.

Example 2.16. Since the Z-module Q does not have maximal submodules, then it is cofinitely δss-supplemented by
Theorem 2.15 as Q

Co fδss (Q) =
Q
0 � Q. However, it is not a δss-supplemented module.

Now we go on by giving anecdotes showing the conditions that make the relations reversible mentioned
before.

The following proposition taken from [22] is given for the completeness.

Proposition 2.17. Given implications below are equivalent for a finitely generated module W.

(1) W is δss-supplemented.
(2) W is cofinitely δss-supplemented.
(3) W =W1 +W2 + ... +Wn where each Wi is strongly δ-local or projective semisimple.

Theorem 2.18. Let W be a cofinitely δ-supplemented module with δ(W) ≤ Soc(W). In this case, W is cofinitely
δss-supplemented.

Proof. Let the submodule K ≤W be cofinite. Then, there exists a submodule S of W such that K+S =W and
K∩S≪δ S. Thus, K∩S ≤ δ(S) ≤ δ(W). Then K∩S is semisimple by hypothesis. Thus, S is a δss-supplement
of K in W. Consequently, W is cofinitely δss-supplemented.
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2.2. Amply Cofinitely δss-Supplemented Modules

Here we define cofinitely δss-supplemented modules as a genaralization of the modules given in the
previous subsection. We investigate basic features and ring characterization of these modules.

Definition 2.19. A submodule A of W is of ample δss-supplements in W if each submodule B of W with W = A + B
includes a δss-supplement of A in W [22].

Definition 2.20. If each cofinite submodule of a module W is of ample δss-supplements in W then W is called amply
cofinitely δss-supplemented.

Proposition 2.21. If each submodule of a module W is cofinitely δss-supplemented, then W is an amply cofinitely
δss-supplemented module.

Proof. Let K ≤ W be cofinite and W = K + B for some B ≤ W. As W
K =

K+B
K � B

B∩K is finitely generated,
K ∩ B ≤ B is cofinite. then, there exists T ≤ W such that (K ∩ B) + T = B and (K ∩ B) ∩ T = K ∩ T ≪δ T and
K ∩ T is semisimple. Also, we have W = K + B = K + [(K ∩ B) + T] = K + T. Hence, T is a δss-supplement of
K contained in B. It means that W is amply cofinitely δss-supplemented.

Corollary 2.22. The implications given below are equivalent for a ring R :

(1) Each module is cofinitely δss-supplemented.
(2) Each module is amply cofinitely δss-supplemented.

Remember from [3] that a module W is called coatomic if each submodule of W is included in a maximal
submodule of W and a ring R is called a left max ring if Rad(W) ≪ W for each left R-module W, which is
equivalent to the fact that R is a left max ring iff each nonzero left R-module is coatomic.

Proposition 2.23. For a ring R each left R-module is amply cofinitely δss-supplemented iff each left R-module is the
sum of strongly δ-local or projective semisimple submodules.

Proof. Let W be an arbitrary left R-module. By assumption W is amply cofinitely δss-supplemented and
so it is cofinitely δss-supplemented. It follows that R is a δss-perfect ring by [22, Theorem 5.3] and also R
is a left max ring by [22, Proposition 5.5]. Thus W is coatomic. Hence, W is the sum of strongly δ-local
or projective semisimple submodules by [22, Proposition 4.10]. For the sufficiency, let W be an arbitrary
module. By hypothesis W is the sum of strongly δ-local or projective semisimple submodules of W. Then
W is coatomic and W is cofinitely δss-supplemented by [22, Proposition 4.10]. Hence, W is amply cofinitely
δss-supplemented by Corollary 2.22.

A module W is called π-projective if an f ∈ End(W) exists such that f (W) ≤ A and (IW − f )(W) ≤ B
whenever W = A + B for any A, B ≤W.

Proposition 2.24. Let W be a π-projective cofinitely δss-supplemented module. In this case, W is amply cofinitely
δss-supplemented.

Proof. Let K ≤W be cofinite and B ≤W where W = K + B. From hypothesis there exists an endomorphism
f : W −→ W such that f (W) ≤ K and (IW − f )(W) ≤ B. It is clear that (IW − f )(K) ≤ K. Let T be a
δss-supplement of K in W. In this case, K + T = W, K ∩ T ≪δ T and K ∩ T is semisimple. Therefore,
W = f (W) + (IW − f )(W) = f (W) + (IW − f )(K + T) ≤ K + (IW − f )(K) + (IW − f )(T) ≤ K + (IW − f )(T) ≤ W.
Then we have K + (IW − f )(T) = W. Note that (IW − f )(T) ≤ (IW − f )(W) ≤ B. Now it will be shown that
K ∩ (IW − f )(T) = (IW − f )(K ∩ T). Let y ∈ K ∩ (IW − f )(T). Then y ∈ K and y = (IW − f )(t) = t − f (t) for some
t ∈ T. From here, y + f (t) = t ∈ K ∩ T. This implies that K ∩ (IW − f )(T) = (IW − f )(K ∩ T)≪δ (IW − f )(T) by
[28, Lemma 1.5] and also it is semisimple by [10, Corollary 8.1.5].
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Lemma 2.25. Let Li (1 ≤ i ≤ n) be a finite community of submodules of a module W such that for each 1 ≤ i ≤ n, Li
is either strongly δ-local or projective semisimple and let A ≤W such that A+L1+L2+ · · ·+Ln is of a δss-supplement
T in W. In this case, there exists (possibly empty) I ⊆ {1, 2, ...,n} satisfying that T +

∑
i∈I Xi is a δss-supplement of A

in W such that Xi = Li or Xi is a projective semisimple direct summand of Li.

Proof. Let n = 1. By assumption, (A + L1) + T = A + (L1 + T) = W, (A + L1) ∩ T ≪δ T and (A + L1) ∩ T is
semisimple. If A∩ (L1 + T) ≤ Socδ(L1 + T) can be shown, it will be verified that L1 + T is a δss-supplement of
A in W where X1 = L1. It is a known fact that A ∩ (L1 + T) ≤ [L1 ∩ (A + T)] + [T ∩ (A + L1)]. Let us consider
the submodule H = L1 ∩ (A + T).

Case 1 : Let H = L1 ∩ (A + T) ≪δ L1. As T ∩ (A + L1) ≪δ T, then we have A ∩ (L1 + T) ≪δ L1 + T. On
the other side, L1 ∩ (A + T) ≤ δ(L1) and so H is semisimple whenever L1 is strongly δ-local or projective
semisimple. Thus, A ∩ (L1 + T) is semisimple by [10, Corollary 8.1.5].

Case 2 : Suppose that H is not δ-small in L1. Then, it is not possible that L1 ≪δ L1 and so L1 is not
projective semisimple by [21, Lemma 2.9]. As L1 is strongly δ-local, δ(L1) ≪δ L1 and also δ(L1) is maximal
in L1. Thus, H + δ(L1) = L1 and so there exists a projective semisimple submodule X ≤ δ(L1) provided
H ⊕X = L1. Then W = A + (T + L1) = A + (T +H +X) = A + (T +X) as H = L1 ∩ (A + T) ≤ A + T. Moreover,
we have A∩ (T +X) = [T ∩ (A+X)]+ [X ∩ (A+ T)] ≤ [T ∩ (A+ L1)]+ [X ∩ (A+ T)]≪δ T +X. Furthermore,
since the submodules T ∩ (A+X) ≤ T ∩ (A+ L1) and X∩ (A+ T) ≤ X are semisimple, then so is A∩ (T +X).
Hence, T + X is a δss-supplement of A in W where X is a projective semisimple direct summand of L1. So
the proof is completed for n = 1.

Let n > 1. With induction on n, a subset J of {2, ...,n} and submodules X j ≤ L j exist where j ∈ J such that
T+
∑

j∈J X j is a δss-supplement of A+L1 in W and X j = L j for each j ∈ J or X j is a projective semisimple direct
summand of L j. Then the case n = 1 shows the existince a submodule X1 ≤ L1 such that T + X1 +

∑
j∈J X j is

a δss-supplement of A in W where X1 = L1 or X1 is a projective semisimple direct summand of L1.

Theorem 2.26. The implications given below are equivalent for a module W :

(1) W is amply cofinitely δss-supplemented.
(2) Each maximal submodule of W has ample δss-supplements in W.
(3) For each cofinite submodule K and a submodule L ≤W such that W = K+L, an integer n ∈ Z+ exists such that

W = K + L1 + L2 + · · · + Ln where each Li is either strongly δ-local submodule of L or a projective semisimple
submodule of L for each 1 ≤ i ≤ n.

Proof. (1)⇒ (2) : It is evident.
(2) ⇒ (3) : Let K ≤ W be cofinite and W = K + L for some submodule L ≤ W. It will be shown that the

existence of finitely many strongly δ-local or projective semisimple submodules X1,X2, ...,Xn of W satisfying
W = K + (X1 + X2 + ... + Xn). Let ϕ be the community of submodules X of L where X = X1 + X2 + ... + Xn;
Xi is strongly δ-local or projective semisimple for i = 1, 2, ...,n. Let us assume that W , K + X for every
X ∈ ϕ. Then it is possible to find a set of submodules U such that W , U +X. By Zorn’s Lemma a maximal
element V of this collection exists satisfying W , V + X and also K ≤ V by [21, Lemma 3.5]. Here V ≤ W
is cofinite obviously. As W

V is finitely generated and V is proper, there exists a maximal submodule P of
W containing V. In this case, W = P + X and V ≤ P and V is the maximal one satisfying W , V + X. As
X ≤ L we have W = P+ L. Therefore, by (2) there exists a δss-supplement T of P which is strongly δ-local or
projective semisimple by [22, Proposition 3.4]. Note that V , V + T. If it were the contrast, we would get
the contradiction W = P+T = T since T ≤ V ≤ P and T is the δss-supplement of P where P is maximal in W.
Then V < V + T and W = (V + T) + S = V + (T + S) is got where T, S ∈ ϕ. As T + S ∈ ϕ, W = V + (T + S) is
obtained and this contradicts with the maximality of V.

(3)⇒ (1) : It is clear from Lemma 2.25.

Theorem 2.27. Let K, L ≤W such that W = K + L. If L is δss-supplemented, then L includes a δss-supplement of K
in W.

Proof. By assumption, a submodule T of L exists such that (K∩ L)+T = L and (K∩ L)∩T = K∩T ≤ Socδ(T).
Since W = K + (K ∩ L) + T = K + T, then T is a δss-supplement of K in W contained by L.
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Proposition 2.28. Let W be a module such that each cyclic submodule of W is δss-supplemented. Then W is amply
cofinitely δss-supplemented.

Proof. Let P ≤W be maximal and W = P + L for some L ≤W. Then there exists x ∈ L such that x < P and so
we have W = P+Rx by the maximality of P. By hypothesis and Theorem 2.27, Rx contains a δss-supplement
of P in W. Hence, W is amply cofinitely δss-supplemented by Theorem 2.26.

Theorem 2.29. The implications given below are equivalent for a finitely generated module W:

(1) W is amply δss-supplemented.
(2) Each maximal submodule of W has ample δss-supplements in W.
(3) For each submodule A and a submodule B of W such that W = A+B, it can be written that W = A+L1+L2+...+Ln

provided each Li is either strongly δ-local or projective semisimple submodule of L for 1 ≤ i ≤ n.

Proof. It is a clear consequence of Theorem 2.26.

Corollary 2.30. If W is a finitely generated module such that each cyclic submodule of W is δss-supplemented, then
W is amply δss-supplemented.

Proof. It follows from Theorem 2.29 and Proposition 2.28.

Theorem 2.31. The implications given below are equivalent for a ring R:

(1) R is δss-perfect.
(2) RR is amply cofinitely δss-supplemented.
(3) R is δ-semiperfect and δ(R) = Soc(R).
(4) Each projective left R-module is (amply) cofinitely δss-supplemented.
(5) Each left R-module is (amply) cofinitely δss-supplemented.
(6) Each left R-module is the sum of strongly δ-local or projective semisimple submodules.
(7) RR is the sum of strongly δ-local or projective semisimple submodules.
(8) Every maximal left ideal of R has ample δss-supplements in R.

Proof. (1)⇒ (2) : From (1) RR is cofinitely δss-supplemented. Hence, RR is amply cofinitely δss-supplemented
by Proposition 2.21.

(2) ⇒ (3) : By hypothesis RR is δss-supplemented. Then R is δ-semiperfect and δ(R) = Soc(R) by [22,
Theorem 5.3].

(3)⇒ (4) : By (3) each projective left R-module is δss-supplemented and so cofinitely δss-supplemented.
Hence each projective left R-module is amply cofinitely δss-supplemented by Proposition 2.21.

(4)⇒ (5) : Because each left R-module is an epimorphic image of a projective R-module, then the proof
completes from Corollary 2.3.

(5)⇒ (6) : It follows from Proposition 2.23.
(6)⇒ (7) : It is clear.
(7)⇒ (8) : It follows from [22, Corollary 4.11].
(8)⇒ (1) : It is clear from [22, Theorem 5.3].

In the next theorem the notations δ-Locs(W), SocP(W) and γ(A) will represent the sum of whole strongly
δ-local submodules of W; the sum of whole projective semisimple submodules of W; the (possibly empty)
family of maximal submodules P of W with A ≤ P ≤W, respectively.

Owing to these notations we will give a new characterization for modules whose maximal submodules
have ample δss-supplements.

Proposition 2.32. The implications given below are equivalent for a module W:

(1) Each maximal submodule of W has ample δss-supplements in W.
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(2) γ(A) = γ[δ-Locs(A) + SocP(A)] for every submodule A ≤W.
(3) γ(Rx) = γ[δ-Locs(Rx) + SocP(Rx)] for every x ∈W − Rad(W).

Proof. (1)⇒ (2) : Let A ≤W and P be a maximal submodule of W which does not include A. By maximality
of P we have W = P + A. By hypothesis a δss-supplement T of P exists contained in A. Then T is strongly
δ-local or projective semisimple by [22, Proposition 3.4] and so we have T ≤ δ-Locs(A) + SocP(A) ≤ A ≰ P.
Hence, P does not contain δ-Locs(A) + SocP(A).

(2)⇒ (3) : Evident by assumption.
(3) ⇒ (1) : Let P ≤ W be maximal and W = P + B for some B ≤ W. Then, there exists x ∈ B − P

and so we have W = P + Rx by maximality of P. As x < Rad(W), Rx is not contained by P. Then
P < γ(Rx) = γ[δ-Locs(Rx) + SocP(Rx)]. Therefore, there exists a projective semisimple or strongly δ-local
submodule L of W which is not contained by P. Using maximality of P we have W = P + L. Since P + L has
the trivial δss-supplement 0 where L is projective semisimple or strongly δ-local, then by Lemma 2.25 P has
a δss-supplement T contained by L. Hence the proof is completed.

A module W holds the following relationship.
(Amply) cof. ss-supplemented⇒ (Amply) cof. δss-supplemented⇒ (Amply) cof. δ-supplemented
Now, we show that the relations given above are not reversible. In Example 2.33 we give a module

proportion which is (amply) cofinitely δss-supplemented but not (amply) cofinitely ss-supplemented; and
in Example 2.33 we give a module proportion which is (amply) cofinitely δ-supplemented module but not
(amply) cofinitely δss-supplemented.

Example 2.33. Let Q =
∞∏

i=1
Z2 and let R be the subring of Q generated by

∞⊕
i=1
Z2 and 1Q. Since R

∞⊕
i=1
Z2

is the only

singular simple module, we have δ(R) =
∞⊕

i=1
Z2 = Soc(R). Also R is a δ-semiperfect ring which is not semiperfect by

[28, Example 4.1]. Hence RR is (amply) cofinitely δss-supplemented by Theorem 2.31 as it is δss-perfect. Furthermore,
RR is not (amply) cofinitely ss-supplemented by [23, Theorem 3].

Example 2.34. Let

R =
{

(r1, r2, . . . , rn, r, r, ...) | n ∈N, ri ∈M2(F), r ∈
[
F F
0 F

]}
.

where F be a field. Here R is a ring with component-wise operations such that,

Soc(R) = {(r1, r2, . . . , rn, 0, 0, ...) | n ∈N, ri ∈M2(F)} ,

δ(R) =

{
(r1, r2, . . . , rn, r, r, ...) | n ∈N, ri ∈M2(F), r ∈

[
0 F
0 0

]
= Rad(R)

}
.

By [28, Lemma 4.3] R is a δ-semiperfect ring but it is not δss-perfect as δ(R) , Soc(R) by [22, Theorem 5.3]. Hence, RR
is an (amply) cofinitely δ-supplemented module by [26, Theorem 4.3] but it is not (amply) cofinitely δss-supplemented
by Theorem 2.31.

2.3. When Cofinitely δss-Supplemented Modules Are Cofinitely ss-Supplemented?

It is a known fact that every cofinitely ss-supplemented module is cofinitely δss-supplemented. In the
remaining part of the study we examine the reversible relation between these modules.

Lemma 2.35. Let W be a module with finitely generated socle and the submodule P ≤ W be maximal. If P has a
δss-supplement S in W, then P has an ss-supplement in W contained in S.
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Proof. By hypothesis, we have P + S =W and P ∩ S ≤ Socδ(S). Since P is maximal and W
P =

P+S
P �

S
P∩S , then

P∩ S is maximal in S. As P∩ S ≤ δ(S) ≤ S, it must be true that δ(S) = S or δ(S) = P∩ S by the maximality of
P ∩ S.

Case 1 : Let δ(S) = S. Then S
P∩S is not singular simple and so P∩ S is not essential in S. So S = (P∩ S)⊕D

for some D ≤ S. It follows that W = P + S = P + [(P ∩ S) ⊕D] = P ⊕D and obviously D is an ss-supplement
of P in W which is contained by S.

Case 2 : Let δ(S) = P ∩ S.
If P ∩ S≪ S, then S is an ss-supplement of P in W.
Otherwise, for a proper submodule T ≤ S we have (P ∩ S) + T = S. As P ∩ S ≪δ S, a projective

semisimple submodule Y of P ∩ S exists satisfying Y ⊕ T = S. It follows that δ(S) = δ(Y) ⊕ δ(T) and
T ∩ P = T ∩ P ∩ S = T ∩ δ(S) = δ(T) + [T ∩ δ(Y)] = δ(T) by modularity. Moreover, δ(T) = T ∩ P ≤ P∩ S≪δ S
and as T is a direct summand of S, δ(T) = T ∩ P ≪δ T. Note that it is also semisimple as a submodule of
P ∩ S. Furthermore, W = P + S = P + Y + T = P + T, that is T is a δss-supplement of P in W.

Here, if δ(T) = T ∩ P ≪ T, then T is an ss-supplement of the maximal submodule P of W contained in
S and the proof is completed. Suppose the contrary. Since T is proper in S and Y is nonzero semisimple
in S, Soc(T) ≰ Soc(S) is got. Whenever δ(T) is not small in T, repeating the steps given above we get
Soc(T) ≩ Soc(T′ ) for a proper submodule T′ ≨ T as T = δ(T) + T′ . Repeating the process, we get the
descending chain Soc(T) ≩ Soc(T′ ) ≩ · · · of Soc(W) throughout none of the T, T′ , ... is an ss-supplement of P.
We run into a contradiction as Soc(W) is finitely generated. Hence, δ(T)≪ T and P has an ss-supplement T
contained in S.

Corollary 2.36. Let W be a finitely generated module with a finitely generated socle. W is ss-supplemented if and
only if W is δss-supplemented.

Corollary 2.37. Let W be a module with a finitely generated socle. Then, W is cofinitely ss-supplemented iff W is
cofinitely δss-supplemented.

Proof. It is clear by Lemma 2.35 and [23, Theorem 1].

Lemma 2.38. Let W be a strongly δ-local module. Then W = A ⊕ B such that A is cyclic strongly δ-local and B is
projective semisimple.

Proof. By hypothesis, as δ(W) is maximal, for an element x ∈ W − δ(W), δ(W) + Rx = W. As δ(W) ≪δ W,
a projective semisimple submodule Y of δ(W) exists such that Y ⊕ Rx = W by [28, Lemma 1.2] and
δ(Y) ⊕ δ(Rx) = Y ⊕ δ(Rx) = δ(W) by [28, Lemma 1.5(3)] and [20, Corollary 2.2(2)]. As W

δ(W) =
Y⊕Rx

Y⊕δ(Rx) �
Rx
δ(Rx) ,

δ(Rx) ≤ Rx is maximal and semisimple. Moreover, as δ(Rx) ≤ δ(W) ≪δ W and Rx is a direct summand of
W, δ(Rx)≪δ Rx by [1, Lemma 1.1(4)].

Lemma 2.39. Let W be a strongly δ-local module. In this case, W is ss-supplemented if and only if W = L ⊕ P such
that L is strongly local and P is projective semisimple.

Proof. For the necessity, note that δ(W) ≤W is maximal, δ-small and semisimple in W from the assumption.
As W is ss-supplemented a submodule L ≤ W exists for δ(W) ≤ W such that δ(W) + L = W and δ(L) =
δ(W) ∩ L ≤ Socs(L). Clearly, W

δ(W) =
L+δ(W)
δ(W) �

L
δ(W)∩L is simple and δ(W) ∩ L ≤ L is maximal. Now we want to

show that L is hollow. Let X ≨ L. For the inclusion δ(W) ≤ δ(W)+X ≤W, δ(W)+X = δ(W) or δ(W)+X =W
is got by the maximality of δ(W). As L is the minimal one of the submodules of W provided δ(W) + L =W,
then it is not possible δ(W)+X =W. It means that δ(W)+X is proper in W. Thus δ(W)+X = δ(W) is satisfied
and so X ≤ δ(W) is obtained. It follows that X = X ∩ L ≤ δ(W) ∩ L ≪ L as required. On the other side, as
the submodule δ(L) ≤ L is maximal and semisimple, L is strongly local. In addition to these, as δ(W) ≪ W
and δ(W) + L = W, a projective semisimple submodule P of δ(W) exists satisfying P ⊕ L = W. Also, the
sufficiency is clear by [11, Proposition 15 and Corollary 24].

Definition 2.40. A ring R is called a left ∆ss-ring if every finitely generated δss-supplemented left R-module is
ss-supplemented.
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Proposition 2.41. The implications given below are equivalent for a ring R :

(1) R is a left ∆ss-ring.
(2) Each cyclic δss-supplemented R-module is ss-supplemented.
(3) Each cyclic strongly δ-local R-module is ss-supplemented.
(4) Each strongly δ-local R-module is ss-supplemented.
(5) Each cofinitely δss-supplemented R-module is cofinitely ss-supplemented.

Proof. (1)⇒ (2) : Evident.
(2)⇒ (3) : Clear from [22, Lemma 4.1].
(3)⇒ (4) : Let W be a strongly δ-local module. In this case, W has a decomposition W = A⊕ B provided

that A is cyclic strongly δ-local and B is semisimple projective by Lemma 2.38. By (3), A is ss-supplemented
and clearly B is ss-supplemented. Thus, W is ss-supplemented by [11, Corollary 24].

(4) ⇒ (5) : Let W be a cofinitely δss-supplemented module and P ≤ W be maximal. A submodule S
of W exists such that P + S = W and P ∩ S ≤ Socδ(S). It follows that P ∩ S ≤ δ(S). On the other side, as
W
P =

P+S
P � S

P∩S is simple, P ∩ S ≤ S is maximal and so δ(S) = P ∩ S or δ(S) = S. Additionally, for every
x ∈ S − (P ∩ S) we have xS + (P ∩ S) = S. It follows that xS ⊕D = S for a projective semisimple submodule
D of P ∩ S because P ∩ S≪δ S by [28, Lemma 1.2].

Case 1 : Let δ(S) = P ∩ S. Since P ∩ S is maximal, semisimple and δ-small in S, S is strongly δ-local and
so it is ss-supplemented from (4). Thus, S is a direct sum of a strongly local submodule and a projective
semisimple submodule. Hence S is ss-supplemented and so cofinitely ss-supplemented by [23].

Case 2 : Let δ(S) = S. Then δ(xS) ⊕ δ(D) = xS ⊕ D by [28, Lemma 1.5(3)]. Clearly, δ(D) = D as D is
projective semisimple. Using [28, Lemma 1.5(4)] it must be true that δ(xS) = xS ≪δ xS since xS is cyclic.
Thus, xS is projective semisimple and so S = xS ⊕ D is semisimple by [10, Corollary 8.1.5]. Hence S is
cofinitely ss-supplemented.

Taking into account two cases handled above, since W = P + S has a trivial ss-supplement 0, P ≤ W
is cofinite and S is cofinitely ss-supplemented, then P also has an ss-supplement in W by [23, Lemma 3].
Hence, W is cofinitely ss-supplemented by [23, Theorem 1].

(5)⇒ (1) : It is obvious.

Remark 2.42. By [22, Corollary 5.10] and [23, Theorem 3] every left δss-perfect ring with finitely generated χ(R)
where χ(R) = Soc(RR)

Socs(RR) given in [4, Corollary 4.3] is a left ∆ss-ring.

In [14] a ring R is said to be ss-perfect if and only if R is semilocal and Rad(R) ≤ Soc(R). Using this
concept we obtain another examples of left ∆ss-rings.

Example 2.43. Every ss-perfect ring is a left ∆ss-ring: For an ss-perfect ring R, it is enough to show that every
cyclic strongly δ-local R-module is ss-supplemented by Proposition 2.41. Let W be cyclic strongly δ-local. Thus,
W has finite hollow dimension by [5, 18.10, (a ⇔ b)]. It follows W satisfies ascending and descending chain
condition on coclosed submodules by [5, 5.3]. Thus, W = W1 ⊕W2 ⊕ · · · ⊕Wn where each Wi is an indecomposable
submodule of W. By [28, Lemma 1.5] we have δ(W) = δ(W1) ⊕ δ(W2) ⊕ · · · ⊕ δ(Wn). As W is strongly δ-local
there exists an index i0 ∈ {1, 2, ...,n} such that δ(Wi0 ) ≤ Wi0 is maximal and δ(Wi) = Wi for every i , i0 as

W
δ(W) =

W1⊕···⊕Wi0⊕···⊕Wn

M1⊕···⊕δ(Wi0 )⊕···⊕Wn
�

Wi0
δ(Wi0 ) from the maximality of δ(W) ≤ W. Clearly, every Wi (i , i0) is projective

semisimple by [21, Lemma 2.9] since δ(W) ≪δ W ⇔ δ(Wi) = Wi (i , i0) and δ(Wi0 ) ≪δ Wi0 . In view of brevity
let us assume that K = W1 ⊕ W2 ⊕ · · · ⊕ Wn (Wi0 , Wi) and so W = Wi0 ⊕ K. Note that K is semisimple by
[10, Corollary 8.1.5] and obviously it is ss-supplemented. In the remaining part of the solution we aim to show
that Wi0 is also ss-supplemented. If we show that W is strongly local, then the problem will be completed by [11,
Proposition 15 and Corollary 24]. For any proper X ≤ Wi0 we have δ(Wi0 ) + X = Wi0 as δ(Wi0 ) ≤ Wi0 is maximal.
Since δ(Wi0 ) ≪δ Wi0 , a projective semisimple submodule Y ≤ δ(Wi0 ) exists such that Y ⊕ X = Wi0 . As Wi0 is
indecomposable we get the contradiction X =Wi0 or Y =Wi0 . So it must be true that X =Wi0 , that is, δ(Wi0 )≪Wi0
and so Wi0 , Rad(Wi0 ) = δ(Wi0 ) ≤ δ(W). Clearly, Rad(Wi0 ) is semisimple as W is strongly δ-local. Moreover, since
Wi0 is finitely generated, then each proper submodule of it is small and so Wi0 is hollow. It follows that Wi0 is local by
[5, 2.15(4)]. So we obtain that Wi0 is strongly local. Hence, W = Wi0 ⊕ K is ss-supplemented as a direct sum of two
ss-supplemented modules.
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Example 2.44. Let R = Z4. Then R is a semilocal ring as it is local. Also, since Soc(R) = Rad(R) = 2Z4, R is
ss-perfect by [14, Theorem 2.15]. Hence, R is a left ∆ss-ring by Example 2.43.

Proposition 2.45. Let W be a projective, semilocal and cofinitely δss-supplemented module with Rad(W) ≪ W. In
that case, W is cofinitely ss-supplemented.

Proof. Note that Socs(W) is a direct summand of Soc(W) as Soc(W) is semisimple. Then Soc(W) = Socs(W)⊕T
for some T ≤ Soc(W). Since W is semilocal, W = T + N and T ∩ N ≪ W for some N ≤ W. So it is clear
that T ∩N ≤ Rad(W). From here T ∩N ≤ T ∩ Rad(W) = [T ∩ Soc(W)] ∩ Rad(W) = T ∩ [Soc(W) ∩ Rad(W)] =
T ∩ Socs(W) = 0. Also it is obtained that Rad(W) = Rad(T) ⊕ Rad(N) = Rad(N) as T is semisimple. Note that
N is projective as a direct summand of the projective module W. Now it will be shown that δ(N) = Rad(N).
With this aim it is necessary to verify that N has no simple projective direct summand by [20, Proposition
2.4]. Let us suppose that S is a simple projective direct summand of N. Thus N = S ⊕ K for some
K ≤ N. From here, S ≪δ S ≤ N and so S ≤ Socδ(N) ≤ Soc(N) as S is projective semisimple. We get,
Soc(N) = Soc(W) ∩N = [Socs(W) ⊕ T] ∩N = [{Soc(W) ∩ Rad(W)} ⊕ T] ∩N = [{Soc(W) ∩ Rad(N)}] ⊕ (T ∩N) =
Soc(W) ∩ Rad(N) ≤ Rad(N) from modularity and so S ≤ Soc(N) ≤ Rad(N) = Rad(W) ≪ W is got. Since Y is
a direct summand of W, S ≪ N then the contradiction K = N is got. Thus, it requires that δ(N) = Rad(N).
Since W is cofinitely δss-supplemented, then N is cofinitely δss-supplemented from Corollary 2.4 . Thus, for
every cofinite submodule U of N, a submodule V of N exists such that U + V = N and U ∩ V ≤ Socδ(N). It
follows that U ∩ V ≤ δ(N) = Rad(N) ≪ W and so U ∩ V ≪ N as N ≤⊕ W. Therefore, U ∩ V ≤ Socs(N), that
is, N is cofinitely ss-supplemented. So, W = T ⊕N is cofinitely ss-supplemented by [23, Proposition 2].

Corollary 2.46. The following statements are equivalent for a ring R :

(1) R is semiperfect and Rad(R) ≤ Soc(RR).
(2) R is left δss-perfect and semilocal.

(3) R is left δss-perfect and Soc(RR)
Socs(R) is finitely generated.

Proof. (1)⇒ (2) : From hypothesis RR is ss-supplemented from [11, Theorem 41] and so it is δss-supplemented.
Thus R is left δss-perfect from [22, Theorem 5.3]. And, R is semilocal as it is semiperfect by [27, 42.6].

(2)⇔ (3) : It follows from [4, Lemma 4.1].
(3)⇒ (1) : Since R is left δss-perfect, then R is δ-semiperfect and δ(R) = Soc(RR) by [22, Theorem 5.3]. So,

Rad(R) ≤ Soc(RR). Moreover, R is semiperfect by [4, Corollary 4.3].

3. Conclusion

Owing to this article a middle module form (cofinitely δss-supplemented module) takes place between
cofinitely ss-supplemented modules and cofinitely δ-supplemented modules as it can be seen from the
definitions. Many new generalizations of ss-supplemented modules have emerged in recent years ([8], [12],
[16], [24], [25]). And each of these with the interpretation of singularity can be handled again with respect
to cofinite submodules of a module. In this way, sustainability of our study is possible by establishing new
definitions.
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