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Abstract. The Drazin inverse is the most important pseudo-inverse of linear operators of finite-dimensional
vector spaces. One of its applications is in finite Markov chains theory, where they are used to calculate
certain properties such as the average number of times the chain passes through a particular state or the
expected time it takes for the chain to enter it. Since it has been possible to generalize Drazin’s inverse
to linear operators in arbitrary dimension (Core-Nilpotent Operators), the aim of this paper is to use it to
obtain the same results for infinite Markov chains. Furthermore, the results will be applied to a concrete
example.

1. Introduction

It is well known that a linear operator may not be invertible, meaning its inverse does not exist. Therefore,
it can be very useful to look for alternatives: given a linear operator, find another one that, even if not
invertible, acts as the inverse operator or at least shares similar characteristics. For this reason, generalized
inverses (or pseudo-inverses) were introduced: these have properties similar to inverse operators. One of
the most studied generalized inverses is the Drazin inverse, named in honor of Michael Peter Drazin for
his work in 1958 (see [3]).

The Drazin inverse is particularly useful in the analysis of dynamic systems, where operators are often
defined by transition rules. In particular, Markov chains model dynamic systems that are stochastic rather
than deterministic. In this context, there are linear operators that provide information about the probability
distribution at each stage.

It is reasonable to think that the Drazin inverse can be useful in obtaining certain information about
the chain. Specifically, it allows us to solve or analyze systems of linear equations associated with non-
invertible linear operators. For example, in the calculation of stationary distributions, long-term behaviors
of the chain, recurrence, among other aspects.
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Another important aspect of Markov chains is the classification of states in terms of recurrence and
transience. The Drazin inverse facilitates the study of these properties in finite Markov chains by providing
another perspective on the transition matrix (see [2]).

In addition to the Drazin inverse, other generalized inverses are relevant. For instance, E. H. Moore and
R. Penrose defined a generalized inverse called the Moore-Penrose inverse (see [7] and [9]). Nevertheless,
this definition requires a vestor space endowed with an inner product. In contrast, the Drazin inverse just
uses the vector space structure.

In general, generalized inverses have been shown to be useful tools for the study of Markov chains,
especially in the finite case. Nevertheless, there is less theoretical development in the context of Markov
chains with an infinite number of states. The Drazin inverse, which can be defined for linear operators
over arbitrary vector spaces, namely infinite dimensional ones, using the Core-Nilpotent operators (see [8]),
gives an appropriate framework to approach this type of systems.

For this reason, throughout this work, we will explore in detail the formal definition of the Drazin inverse
and its generalization to the infinite-dimensional case, its fundamental properties, and its application in the
theory of Markov chains with infinite number of states.

We will start with a review of linear operators in spaces with arbitrary dimension and the definition of
the Drazin inverse, followed by an introduction to Markov chains and the application of the pseudo-inverse
to chains with a finite number of states. We will continue with the generalization of some results to infinite
Markov chains and, finally, we will end with the application of these results to an illustrative example.

The main objective of this work is to see that, through a deeper understanding of the Drazin inverse, the
results that Campbell and Meyer proved in [2] are also correct on an arbitrary Markov chain. It is hoped
that this exploration will serve as a motivation for future research about Drazin inverse and its applications
in various disciplines that use linear operators and matrices.

2. Preliminaries

2.1. Drazin inverses and Core-Nilpotent operators

Let k be a field, and let V be a k-vector space. Like it was said before, a linear operator may not be
invertible. For this reason, the theory of generalized inverses tried to deal with this problem. In this section,
we will define a generalized inverse, called the Drazin inverse, and study when it can be defined.

Definition 2.1. A linear operator f : V −→ V is core-nilpotent (CN operator) when there exist two f -invariant
subspaces, U1 and U2, such that f|U1 is an automorphism, f|U2 is nilpotent and

V = U1 ⊕U2.

The decomposition V = U1 ⊕U2 is called AST-decomposition of f .

Definition 2.2. A CN operator f : V −→ V has index n, and it will be denoted as Ind( f ) = n, when Ker f n = Ker f n+1

and Im f n = Im f n+1, but Ker f n , Ker f n−1 or Im f n , Im f n−1.

If the convention where f 0 = Id is used, the previous definition says that Ind( f ) = 0 if and only if f is an
automorphism.

Theorem 2.3. (Characterization of CN operators). If f : V −→ V is a linear operator, then the following
conditions are equivalent:

1. f is CN operator.
2. Ker f n = Ker f n+1 and Im f n = Im f n+1 for a certain n ∈N.
3. V = Ker f n

⊕ Im f n for a certain n ∈N.
4. There exists two linear operators f1, f2 : V −→ V such that f = f1 + f2, Ind( f1) ≤ 1, f2 is nilpotent and

f1 ◦ f2 = f2 ◦ f1 = 0.
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Proof. See Theorem 3.6 in [8].

As an immediate consequence of the previous theorem and with the previous notations

Corollary 2.4. Given f : V −→ V a linear operator

Ind( f ) ≤ 1 if and only if V = Ker f ⊕ Im f .

Proposition 2.5. If V is finite-dimensional, then every linear operator is CN.

Proof. One can find a explanation in [8].

Now, we will introduce the definition of the Drazin inverse.

Definition 2.6. A linear operator f : V −→ V has a Drazin inverse when there exists f D : V −→ V such that

• f m+1
◦ f D = f m for m ≥ n where n is a certain non-negative integer,

• f D
◦ f ◦ f D = f D,

• f D
◦ f = f ◦ f D.

Notice that if f is an isomorphism, then his Drazin inverse exists and coincides with his inverse.

Proposition 2.7. A linear operator f : V −→ V is a CN operator if and only if there exists an unique Drazin inverse
f D where n = Ind( f ).

Proof. We know that V = U1 ⊕U2 where f|U1 is an isomorphism. We define

f D(u1 + u2) =
(

f|U1

)−1 (u1). (1)

It is easy to see that it verifies the previous definition. Conversely, one can take f1 = f ◦ f D
◦ f and

f2 = f − f ◦ f D
◦ f . It is easy to prove that they verify condition 4 of the Theorem 2.3. For a detailed proof,

check [8].

Proposition 2.8. Let f : V −→ V a CN operator and f D his Drazin inverse. The following properties are satisfied:

•
(

f D
)D
= f if and only if Ind( f ) ≤ 1.

• f ◦ f D = Id|U1 and Id − f ◦ f D = Id|U2 where V = U1 ⊕U2 is the AST-decomposition.

•
(

f m)D =
(

f D
)m

for all m ∈N.

Proof. One can easily see all of them from (1).

2.2. Markov Chains
Let {Xi}i∈N be a Markov chain and let E be the states set (finite or countable) of the chain. We denote by

p(n)
i, j the probability to change to j-state from the i-state in the n-th step; and by d(n) =

(
d(n)

i

)
i∈E

the probability
distribution of the chain. That is,

p(n)
i, j = P(Xn+1 = j |Xn = i), d(n)

i = P(Xn = i).

By the law of total probability, the following holds:

d(n+1)
j =

∑
i∈E

d(n)
i p(n)

i, j , (2)

or equivalently

d(n+1) = d(n)
·P (n),

where P (n) =
(
p(n)

i, j

)
i, j∈E

is the transition matrix.
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Definition 2.9. A Markov chain is homogeneous when the probability of change states does not depend on the step,
that is

p(n)
i, j = p(0)

i, j ∀n ∈N.

Unless otherwise indicated, we will always consider homogeneous Markov chains from this point on.

Definition 2.10. If E is a finite set, the Markov chain is said to be finite. On the contrary, it is said to be infinite.

In the next section, we will focus on a specific type of Markov chain. Therefore, it is important to classify
the states and the Markov chains.

Before proceeding, a definition will be introduced to aid in the states classification.

Definition 2.11. Let e1, e2 ∈ E be two states of a Markov chain, it is said that e1 communicates with e2, and it will
be denoted by e1 → e2, if it is possible to go from e1 to e2 in a finite number of steps. That is

P(Xn = e2|X0 = e1) > 0 for some n > 0,

and it is said that e1 and e2 intercommunicate, denoted by e1 ↔ e2, if e1 → e2 and e2 → e1.

The first and most important distinction between states is based on the system’s ability to return to a
specific state.

Definition 2.12. Let e ∈ E. We say that e is transient if it is not certain that the chain will return to it after leaving.
Otherwise, e is called recurrent.

Definition 2.13. Let e ∈ E be a recurrent state:

• it is positive recurrent if the mean time it takes to return to e is finite. Otherwise, it is null recurrent.

• it is said to be periodic with period t if it is only possible to return to that state after a number of steps that is a
multiple of t. In the case where t = 1, the state is said to be aperiodic.

• it is ergodic if it is both positive recurrent and aperiodic.

Proposition 2.14. Given a Markov chain, and e1, e2 ∈ E such that e1 → e2. If e1 is recurrent, e2 is also recurrent
and if e2 is transient, e1 must also be transient.

Proof. If e1 → e2 and e1 is recurrent, then the Markov chain is in state e1 an infinite number of times and,
due to P(Xn = e2|X0 = e1) > 0, the chain returns to e2 with absolute certainty.

Now, suppose that e2 is transient. If e1 was recurrent, we have just proved that e2 is recurrent too, but
this leads to a contradiction.

Corollary 2.15. If two states intercommunicate, they are of the same type (positive recurrent, null recurrent, aperiodic
or transient).

During this work, we will only consider ergodic Markov chains. Let us formally define this concept.

Definition 2.16. A Markov chain is said to be ergodic if all states are ergodic and they intercommunicate with each
other.

Theorem 2.17. Consider an ergodic Markov chain. Then there is a unique stationary distribution, that is, there
exists a unique π = (πi)i∈E where 0 ≤ πi ≤ 1 and

∑
πi = 1, such that

π = π ·P , (3)

and, in that case,

π = lim
n→∞

d(0)
·Pn (4)

for all initial probability distribution d(0).
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Proof. A detailed proof can be found in Section 1.5 of [6].

There is a similar theorem, but more useful in some later proofs.

Theorem 2.18. Given a Markov chain whose states all intercommunicate with each other, a stationary distribution
π exists if and only if there is a positive recurrent state. In that case, all states are positive recurrent and π is unique.

Proof. See Section 6 of [4].

2.3. Aplication of the Drazin inverse to finite Markov chains

Let P be a transition matrix of a Markov chain with m states. Then, for A = Id −P , it holds that
Ind(A) = 1, as demonstrated by Campbell in Section 8 of [2].

Theorem 2.19. Let us consider an ergodic Markov chain and A as defined above. One has

Id − A AD = lim
n→∞

Pn, (5)

where AD is the Drazin inverse of A.

Proof. See Theorem 8.2.2 in [1].

Henceforth, we will write W = Id − A AD. It is easier to calculate W than AD, because each row of W
corresponds to the stationary distribution. For this reason, the next result is useful.

Theorem 2.20. With the notation of above, one has that

AD =

∞∑
n=0

(Pn
−W). (6)

Proof. See Theorem 8.3.1 in [1].

Another characterization for AD using W is given in the following theorem.

Theorem 2.21. For A = Id −P , AD is the unique solution of the equations W X = 0 and A X = I −W.

Proof. See Theorem 8.5.5 in [1].

Theorem 2.22. Let N(n) be a matrix whose (i, j)-th entry is the expected number of times the chain is in j-th state in
n steps when the chain was initially in i-th state. Then,

AD = lim
n→∞

(
N(n)
− (n + 1)W

)
. (7)

Proof. See Theorem 8.3.2 in [1].

Theorem 2.23. Let M be the matrix whose (i, j)-th entry is the expected number of steps before entering the j-th state
for the first time from the i-th state. Then,

M = (Id − AD + J AD
d ) D, (8)

where J is a matrix of all 1’s, Xd is the diagonal matrix of X, obtained setting all off-diagonal entries of X equal to zero
and D = (Wd)−1

Proof. See Theorem 8.4.1 in [1].
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3. Application of the Drazin Inverse to Infinite Markov Chains

Throughout this section, we will consider a homogeneous Markov chain {Xn}n≥0. We will assume that
the state space is E = N (whether 0 ∈ N or 0 < N depends on the context in which the Markov chain is
defined).

Let V =
{

(di)i∈N ∈
∏
i∈N
R :

∑
i∈N
|di| < ∞

}
. There exists an operator P : V −→ V called the transition

operator, defined as

P((di)i∈N) =

∑
i∈N

di pi, j


j∈N

. (9)

Lemma 3.1. The transition operator defined as (9) is well defined.

Proof. Since pi, j ≤ 1, we have ∑
i∈N

di pi, j ≤
∑
i∈N

di < ∞.

Furthermore, it should be

∑
j∈N

∣∣∣∣∣∣∣∑i∈N dipi, j

∣∣∣∣∣∣∣ ≤∑
j∈N

∑
i∈N

∣∣∣dipi, j

∣∣∣ =∑
i∈N

∑
j∈N

|di|
∣∣∣pi, j

∣∣∣ ≤∑
i∈N

|di| < ∞.

We define A = Id −P . We will restrict ourselves to the case where the chain is ergodic and where A is
a CN operator of index 1. Then V = KerA ⊕ ImA such that A over ImA is an isomorphism.

Furthermore, since the chain is ergodic, there exists a unique stationary distribution π = (πi)i∈N.
In this section, we will attempt to generalize the existing results for finite Markov chains to arbitrary

Markov chains using the theory of CN operators.
The first result deals with the relationship between the stationary distribution and AD.

Theorem 3.2. Let {Xn}n≥0 be a homogeneous ergodic Markov chain and let P its transition operator. For A = Id−P

Id − A AD = lim
n→∞

Pn. (10)

Proof. First, we know that if
∑

i∈N
di = 1, lim

n→∞
Pn(d) exists and coincides with π. By proposition 2.8, Id −A AD

vanishes over ImA and it acts as the identity on KerA. Let us see that the limit in the right side of the
equation (10) verifies the same. Let v ∈ KerA. Then P(v) = v, so

lim
n→∞

Pn(v) = lim
n→∞

v = v.

Now, let A(d) ∈ ImA, then

lim
n→∞

Pn(Id −P)(d) = lim
n→∞

(Pn
−Pn+1)(d) = sπ − sπ = 0,

where s =
∑

i∈N
di.

This result is significant because it connects the long-term behavior of the Markov chain, as described
by the limit of Pn, with the Drazin inverse.

For the rest of the section, we will denote by W the projection onto KerA, W = I − A AD.
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Theorem 3.3. Given an ergodic arbitrary Markov chain, it holds that

AD =

∞∑
k=0

(Pk
−W). (11)

Proof. Let v ∈ KerA, then

∞∑
k=0

(Pk
−W)(v) =

∞∑
k=0

(v − v) = 0.

On the other hand, if A(d) ∈ ImA,

∞∑
k=0

(Pk
−W)(A(d)) =

∞∑
k=0

(Pk(d) −Pk+1(d))

= lim
k→∞

(d −Pk+1(d)) = d −W(d)

Note that A(d −W(d)) = A(d) and that d −W(d) ∈ ImA, we conclude therefore, AD(d) = d −W(d).

This series can be very useful in practical computations, especially in iterative algorithms for approx-
imating the Drazin inverse, since calculating Drazin inverse explicitly may be expensive in terms of time
computing or even be impossible.

The following theorem gives one of the most interesting uses of the Drazin inverse.

Theorem 3.4. Let {Xn}n≥0 be an ergodic Markov chain and let Nn)
i, j be the expected number of times the chain enters

state j in n steps, having started from state i. If Nn) = (Nn)
i, j), then it holds that

AD = lim
n→∞

(Nn)
− (n + 1)W). (12)

Proof. It is known that Nn) =
n∑

k=0
Pk. Applying the previous theorem, we get

lim
n→∞

(Nn)
− (n + 1)W) = lim

n→∞

n∑
k=0

(Pk
−W) = AD.

This result implies that if n is large enough, we can approximate Nn) by AD + (n + 1)W.

Nn)
≈ AD + (n + 1)W.

We have talked about the number of times the chain passes through a certain state, now the question
is, how long will it take the chain to reach a certain state? The following theorem allows us to calculate it
using the Drazin inverse.

Theorem 3.5. For an arbitrary ergodic Markov chain, let mi, j be the expected number of steps it takes for the system
to reach state j when it initially starts in state i. Then, it holds that

mi, j =
1
π j

(
δi, j + AD(µ j

− µi) j

)
, (13)

where δi, j is the Kronecker delta, µi = (δi,k)k∈N, AD(d) j is the jth coordinate of AD(d), andπ = (π j) j∈N is the stationary
distribution of the Markov chain.
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Proof. The expected number of steps to go from state i to state j satisfies the following system of equations

mi, j = 1 +
∑
k∈N

pi,kmk, j − pi, jm j, j.

Let’s see that the expression in the statement satisfies it. Noting that
∑

k∈N
pi,kAD(µk) j = AD(P(µi)) j and that

A AD(µi) = (Id −W)(µi) = µi
− π, we have

1 +
∑
k∈N

pi,k
1
π j

(δk, j + AD(µ j
− µk) j) − pi, j

1
π j

=1 +
1
π j

AD(µ j) j −
1
π j

AD(P(µi)) j = 1 +
1
π j

AD(µ j) j −
1
π j

AD(Id − A)(µi) j

=1 +
1
π j

AD(µ j) j −
1
π j

AD(µi) +
1
π j

(δi, j − π j) =
1
π j

(
δi, j + AD(µ j

− µi) j

)

This theorem provides a powerful method for computing mean passage times using the Drazin inverse
in arbitrary Markov chains. It proves that the Drazin inverse not only helps in understanding the stationary
behavior of Markov chains but also in calculating important dynamical quantities like the expected passage
times between states.

4. Illustrative Example

The most typical example of an infinite Markov chain is the random walk with reflection. Consider
a particle that moves randomly on the natural numbers, forward, with probability p, or backward with
probability 1 − p. In the special case of 0, since it cannot move further backward, we consider that it can
stay in place with probability 1 − p. Then

P(Xn+1 = j|Xn = i) = pi, j =


p if j = i + 1

1 − p if j = i − 1 or j = i = 0
0 in other case

(14)

We can represent this chain with the following diagram.

0 1 2 ... n ...
p p p p p

1 − p1 − p1 − p1 − p1 − p
1 − p

In matrix form, the following matrix is obtained

P =


1 − p p 0 · · ·

1 − p 0 p · · ·

0 1 − p 0
. . .

...
...

. . .
. . .


It is easily seen that any state can be accessed from any other, but it is not so immediate that all states

are ergodic.

Theorem 4.1. If p < 1
2 , the previous Markov chain is ergodic and, therefore, it has a unique stationary distribution.
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Proof. One can find a similar proof of this result in [5]. Let us see if there exists a stationary distribution,
π = (πi)i∈E. This distribution should be a solution of the following system,

π ·P = π

therefore, it has to verify{
π0 = π0(1 − p) + π1(1 − p)
πi = πi−1 p + πi+1 (1 − p) ∀i > 0 (15)

From the first equation, it follows that

π1 =
p

1 − p
π0,

and from the second with i = 1 we have that

π2 =
1

1 − p
(π1 − π0 p) =

(
p

1 − p

)2

π0.

Applying induction, we can conclude that

πi+1 =
1

1 − p
(πi − πi−1(1 − p)) =

1
1 − p

(
pi

(1 − p)iπ0 −
pi

(1 − p)i−1
π0

)
=

(
p

1 − p

)i+1

π0,

and that
(

pi

(1−p)iπ0

)
i∈E

is a solution of the system (15). For it to indeed be a solution, it must satisfy

∞∑
i=0

(
p

1 − p

)i

π0 = 1.

Since p < 1
2 , then p

1−p < 1 and

∞∑
i=0

(
p

1 − p

)i

π0 =
π0

1 − p
1−p

.

Taking π0 = 1 − p
1−p =

1−2p
1−p , we determine a stationary distribution. By Theorem 2.18 all states are positive

recurrent and, therefore, the chain is ergodic due to the fact that the states are aperiodic.

Theorem 4.2. If P is the transition operator of the Markov chain of the random walk with reflection, defined in (14),
the operator A = Id −P has index 1.

Proof. Let us see V = {(di)i≥0 :
∑
|di| < ∞} decompose into V = KerA ⊕ ImA. Firstly, one has that

A((di)i≥0) = (p d0 + (p − 1)d1, ...,−p di−1 + di + (p − 1)di+1, ...)

Furthermore, in the previous proof we just demonstrate that KerA =
〈(( p

1−p

)i
)

i≥0

〉
.

Suppose by contradiction that KerA ∩ ImA , 0, so there exists (di)i≥0 ∈ V such that p d0 + (p − 1)d1 = 1
−p di−1 + di + (p − 1)di+1 =

pi

(1−p)i ∀i > 0
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Adding first equation with second one when i = 1, we get that

p d1 + (p − 1)d2 = 1 +
p

1 − p
.

Applying induction, we obtain that

p di + (p − 1)di+1 =

i∑
k=0

(
p

1 − p

)k

.

Since
∑
i≥0

di < ∞, lim
i→∞

di = 0. Then, the left member of the expression above goes to 0, but the right-hand

side goes to 1
1− p

1−p
, which leads to a contradiction.

Now, let (µi)i≥0 ∈ V. To see if it is in KerA + ImA, let us see if the following system has a solution. p d0 + (p − 1)d1 + a = µ0

−p di−1 + di + (p − 1)di+1 + a pi

(1−p)i = µi ∀i > 0

Reasoning analogously to before, we conclude that for any i > 0 it holds that

p di + (p − 1)di+1 + a
i∑

k=0

(
p

1 − p

)k

=

i∑
k=0

µk. (16)

And as i→∞, we obtain that

a =
1 − 2p
1 − p

∞∑
k=0

µk.

Finally, solving from (16), one determines (di)i≥0 through the recurrence formula

di+1 =
1

p − 1

 i∑
k=0

µk − a
i∑

k=0

(
p

1 − p

)k

− p di

 .
We need to check if (di)i≥0 ∈ V. For this, we use the ratio criterion.

lim
i→∞

|di+1|

|di|
= lim

i→∞

∣∣∣∣∣∣ i∑
k=0
µk − a

i∑
k=0

( p
1−p

)k
− p di

∣∣∣∣∣∣
|di|(p − 1)

=
p

1 − p
< 1.

Thus, the series
∑
|di| converges.

Based on the above, it has been proven that V = KerA ⊕ ImA and by Theorem 2.3, A has index 1.

Now that we have shown that we are under the hypotheses of the theory from the previous section,
we can apply it. To proceed, we need to compute the Drazin inverse of A. Let µ = (µi)i≥0. We know that
there exist d = (di)i≥0 ∈ V and v ∈ KerA such that µ = A(d) + v. In the same way, we can write d = A(d) + v,
so d − v ∈ ImA and A(d) = A(d − v). Consequently, AD(µ) = A−1(A(d)) = d − v. It is easy to check that

v =
( 1−2p

1−p
∑

d j

) (( p
1−p

)i
)

i≥0
and

AD(µ) =

di −

1 − 2p
1 − p

∞∑
j=0

d j


(

p
1 − p

)i


i≥0
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where (di)i≥0 is recurrently calculated by

di+1 =
1

p − 1

 i∑
k=0

µk − a
i∑

k=0

(
p

1 − p

)k

− p di

 .
By Theorem 3.4, the expected number of times the chain is in jth state in n stages when the chain was

initially in ith state, Nn)
i, j, can be approximated by (i, j)-th entry of AD + (n+ 1) W. For example, if we want to

know how many times the chain is in 0 state, we need to calculate the 0th coordinate of AD(µi)+ (n+1) W(µi)
where µi

j = δi, j, and δi, j is the Kronecker delta.

If AD
(
µi

)
= di)

− vi) and di) =
(
di)

j

)
, with patience, one can find

di)
j =


1−2p

(1−p)2

j−1∑
k=0

(k + 1)
( p

1−p

)k
+

( p
1−p

) j
d0 if j ≤ i

1
p−1

j−i−1∑
k=0

( p
1−p

)k
+

1−2p
(1−p)2

j−1∑
k=0

(k + 1)
( p

1−p

)k
+

( p
1−p

) j
d0 if j > i

Consequently, the 0th coordinate of AD(µi) matches with

d0 −
1 − 2p
1 − p

∞∑
j=0

 1
p − 1

j−i−1∑
k=0

(
p

1 − p

)k

+
1 − 2p

(1 − p)2

j−1∑
k=0

(k + 1)
(

p
1 − p

)k

+

(
p

1 − p

) j

d0


=d0 −

1 − 2p
1 − p

∞∑
j=0

d j
i)
−

1 − 2p
1 − p

∞∑
j=0

(
p

1 − p

) j

d0 = −
1 − 2p
1 − p

∞∑
j=0

d j
i)
,

where d j
i)
= 1

p−1

j−i−1∑
k=0

( p
1−p

)k
+

1−2p
(1−p)2

j−1∑
k=0

(k + 1)
( p

1−p

)k
and we used the convention

j∑
k=0

ak = 0 if j < 0. Notice that

it does not depend on the (di)i≥0 we used to calculate it.
Given that W = lim

n→∞
Pn, it follows that W(µi) = π, where π is the stationary distribution. Finally, we

have that

Nn)
i,0 = −

1 − 2p
1 − p

∞∑
j=0

d j
0)
+ (n + 1)

1 − 2p
1 − p

.

Now, we can consider the expected number of steps the chain needs to reach the state j from the state i.
By Theorem 3.5, this number matches with 1

π j

(
δi, j + AD(µ j

− µi) j

)
. Since

AD(µi) j = d j
i)
−

1 − 2p
1 − p

(
p

1 − p

) j ∑
k≥0

dk
i)
,

one can get

mi, j =
1 − p

1 − 2p

(
1 − p

p

) j (
δi, j + d j

j)
− d j

i)
)
−

∑
k≥0

(
dk

j)
− dk

i)
)
.

To conclude the section, we will use the software Wolfram Mathematica to perform some computation
and verify experimentally that the theoretical calculations are correct.

First, a function to compute d j
i)

is created (Figure 1). Then, using p = 0.1, we compute the expected
number of times the chain is in 0th state in 1000 stages when the chain was initially in 41th state ,N1000)

41,0 , and
the expected time to reach the 0th state for the first time, m41,0 (Figure 2). The results are 844.361 and 51.25
respectively.
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Figure 1: Function to compute d j
i
.

Figure 2: Computation of N1000)
41,0 and m41,0. To reduce computing time, the series

∑
d j

i
is approximated by a

partial sum.

In Figure 3, one can see the code for approximating N1000)
41,0 . For this propose, 2000 simulations of the

random walk have been done, and the number of times it passes thought 0th state has been measured.
Finally, the average of this data has been calculated.

Figure 3: Experimental calculation for N1000)
41,0 .

Similarly, the analogous process has been carried out to approximate m41,0. The code can be seen in
Figure 4.
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Figure 4: Experimental calculation for m41,0.

The results obtained experimentally coincide with the theoretical ones.
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