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Abstract. Hyperbolic numbers are one of the well-known number systems, like complex numbers. In this
paper, we will talk about some properties of hyperbolic numbers, define the P−modulus, and give some
properties of the P−modulus. We will also map the points on the unit hyperbolic sphere of the P−module
to some special directional lines in E3. Then, we will show the relation between the angle between these
directional lines and the hyperbolic angle between the unit hyperbolic vectors.

1. Introduction

Hyperbolic numbers were introduced as “double numbers” by Clifford (1873, 1878). In the following
periods, they were called by different names such as hyperbolic numbers, double numbers, split complex
numbers, perplex numbers, and duplex numbers. After the hyperbolic numbers were introduced by
Clifford, they received intense attention from physicists and were used in many fields. In addition, the
mathematical analysis and physical applications of hyperbolic numbers is one of the areas that have
developed in recent years [3, 7, 10, 13, 14, 21]. In a similar vein, the study of transformations, curves
and surfaces in Euclidean spaces has also seen notable advancements. For example, recent works by Li
et al. explore sweeping surfaces and directional developable surfaces [16, 29, 30], while other studies
have focused on differential geometry of curves in Euclidean spaces [9, 17]. F. Catoni and P. Zampetti
have made important contributions to the study of hyperbolic numbers by demonstrating that functions
of a hyperbolic variable are best studied in a pseudo-Euclidean plane. Their work shows that, similar
to complex analysis, a Cauchy integral formula holds for hyperbolic functions in this framework [7]. In
analogy to complex numbers, the system of perplex numbers, introduced as z = x + jy, where j satisfies∥∥∥ j

∥∥∥ = −1, has been proposed. This system, developed by four freshmen at St. Olaf College, has potential
relevance in physics, particularly in extending special relativity to superluminal velocities using a velocity
parameter ϕ, where υ = c tanhϕ [10]. Khrennikov developed the quantization formalism in a hyperbolic
Hilbert space, generalizing Born’s probability interpretation and showing that unitary transformations in

2020 Mathematics Subject Classification. Primary 47B37; Secondary 51M09, 16R40.
Keywords. Hyperbolic numbers, P−modulus, Hyperbolic angle, E. Study map.
Received: 05 February 2025; Revised: 04 April 2025; Accepted: 15 April 2025
Communicated by Mića Stanković
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such a space represent a new class of probability transformations describing hyperbolic interference. His
work also explores the potential of hyperbolic quantum formalism as a new theory of probability waves,
which could be developed in parallel with standard quantum theory [13]. Also, hyperbolic numbers were
used to extend quantum mechanics, and hyperbolic quantum mechanics was studied. Similarly, Hucks
(1993) used hyperbolic numbers for Dirac spinors, and Kunstatter et al. (1983) used hyperbolic numbers for
applications in the theory of gravity, [12, 15]. In addition, rotational movements in the Lorentz plane are also
made with hyperbolic numbers. Properties and some applications of hyperbolic numbers are examined
in detail in articles [1–6, 8, 22, 23]. For example, Çakır and Özdemir examined the use of split-complex
(hyperbolic) numbers to describe the geometry of the Lorentzian plane and investigated the exponential
of split-complex matrices in three different cases. Their work discusses the computation of the exponential
for split-complex matrices, considering the presence of null split-complex numbers and their impact on the
calculations [4].

The subject of this article concerns the question “Can we find a transformation in hyperbolic numbers
as the E. Study transformation in dual numbers?”. Some properties and applications related to the E. Study
transform can be found in articles [11, 18–20, 24–28].

In this paper, we will examine theP−module. First, we present an introduction to hyperbolic numbers to
provide the necessary background. Then we pass to theP−module by giving some properties of hyperbolic
numbers. However, in the P−module we define the basic operations and give some of their properties. In
the next section, we map points on the unit hyperbolic sphere in the P−module to directional lines at E3

whose vector moment norm is less than or equal to 1
2 . We then present a relationship between the angle

between the directional lines corresponding to the unit hyperbolic vector and the angle between the unit
hyperbolic vectors.

2. Preliminaries

The set of hyperbolic numbers P is expressed as follows:

P =
{
z = z1 + jz2 : z1, z2 ∈ R

}
where the hyperbolic unit j satisfies j2 = 1 and j , 1. The sum and product of two hyperbolic numbers are
defined as similar to complex numbers, but keep in mind that j2 = 1. For any z = z1 + jz2 ∈ P, we define the
real part of z as Re(z)=z1 and the hyperbolic number part of z as Hp( z) = z2. The conjugate of z is denoted
by z and it is z = z1 − jz2. The inner product of z = z1 + jz2 and w = w1 + jw2 is defined as

⟨ , ⟩ : P × P→ R
⟨z,w⟩ = Re (zw) = w1z1 − w2z2.

The fact that the scalar product defined in the set of hyperbolic numbers is not positively defined will require
us to classify the hyperbolic numbers. Accordingly, we will classify the hyperbolic number z = z1 + jz2 as
spacelike, timelike or null according to the following conditions.

If ⟨z, z⟩=zz > 0, spacelike hyperbolic number.
If ⟨z, z⟩=zz < 0, timelike hyperbolic number.
If ⟨z, z⟩=zz = 0, null or lightlike hyperbolic number.

Since ⟨z, z⟩=zz =z2
1 − z2

2, this expression can be shortened as
|z1| > |z2| ⇒ spacelike hyperbolic number,
|z1| < |z2| ⇒ timelike hyperbolic number,
z1 = ±z2 ⇒ null or lightlike hyperbolic number.
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The number z is said to be positive or negative, depending on the sign ε (z) = s1n (z1 + z2), where z = z1+ jz2
is a hyperbolic number. If z1 + z2 > 0 z is positive, if z1 + z2 < 0 then it is negative. That is, it is defined as

ε (z) =


+1 z1 + z2 > 0
−1 z1 + z2 < 0
0 z1 + z2 = 0

.

According to this definition, in the hyperbolic plane, all hyperbolic numbers on the line y = −x have a zero
sign. Numbers in the form z = z1 − jz1 are considered equivalent to zero in the set of hyperbolic numbers.
In the literature, a positive number of z positive is defined as future pointing in the Lorentz space, and past
pointing when it is negative. The vector product in P is defined by

Figure 1: Classification of hyperbolic numbers.

× : P × P→ P

z ×w = Hp (zw) j = (z1w2 − z2w1) j,

where z = z1 + jz2 and w = w1 + jw2. The norm of the hyperbolic number z = z1 + jz2 is defined by

|·| : P→ R+ ∪ {0}

|z| =
√
|⟨z, z⟩| =

√∣∣∣z2
1 − z2

2

∣∣∣.
P is a commutative ring with a unit element.

The square root of the hyperbolic number z = z1 + jz2 can be found by

√
z =

√
z1 + z2 +

√
z1 − z2

2
+ j
√

z1 + z2 −
√

z1 − z2

2
. (1)

Corollary 2.1. If the number z = z1 + jz2 is a null hyperbolic number, then z1 = ±z2. Therefore, according to Eq.
(1), the square root of null hyperbolic numbers can be written as

z1 = z2 ⇒
√

z1 + jz2 =
√

2z1
2

(
1 + j

)
,

z1 = −z2 ⇒
√

z1 + jz2 =
√

2z1
2

(
1 − j

)
.

Corollary 2.2. The necessary and sufficient condition for a non-lightlike hyperbolic number to have a square root is
that the number is positive spacelike.
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3. P−Module

The set

P3 = {A = (a1, a2, a3) : a1, a2, a3 ∈ P}

is a module over the ring P which called a P-module. The elements of P3 are called hyperbolic vectors.
Thus a hyperbolic vector A can be written

A = −→a + j
−→
a∗

where −→a and
−→
a∗ are real vector at R3. For A,B ∈ P3 and α, β ∈ P, the followings are satisfied:

α (A + B) = αA + αB,(
α + β

)
A = αA + βA,(

αβ
)

A = α
(
βA

)
,

1A = A.

P3 is a module on P, which is a ring of unitary and commutative hyperbolic numbers. The inner product
of a vector on P3 is defined as

⟨ , ⟩ : P3
× P3

→ P

⟨A,B⟩ =
〈
−→a + j

−→
a∗ ,
−→
b + j

−→
b∗

〉
where A =−→a + j

−→
a∗ and B =

−→
b + j

−→
b∗ . The norm of any vector in P3 is defined as

∥·∥ : P3
→ P

∥A∥ =
√
|⟨A,A⟩|.

So for A =−→a + j
−→
a∗ , the norm of A is found by

∥A∥=

∥∥∥∥−→a +−→a∗∥∥∥∥+ ∥∥∥∥−→a −−→a∗∥∥∥∥
2

+ j

∥∥∥∥−→a +−→a∗∥∥∥∥− ∥∥∥∥−→a −−→a∗∥∥∥∥
2

.

Hence, for a unit hyperbolic vector, that has a norm of 1, we define the hyperbolic vector unit condition as〈
−→a ,−→a

〉
+

〈
−→
a∗ ,
−→
a∗

〉
= 1〈

−→a ,
−→
a∗

〉
= 0.

The cross product of A and B for A = (a1, a2, a3) ∈ P3 and B = (b1,b2,b3) ∈ P3 is defined as

A×PB =

∣∣∣∣∣∣∣∣
i j k

a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣∣∣ .
Proposition 3.1. Let A = (a1, a2, a3) ∈ P3 and B = (b1,b2,b3) ∈ P3

1. A×PB = −B×PA,

2. A×PA = 0,

3. (λA)×PB =λ (A×PB) , for λ ∈ R,
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4. 0×PA = A×P0 =0

5. A×PB = 0⇔ A =λB, for λ ∈ R.

6. A×P (B + C)= (A×PB)+ (A×PC)

Definition 3.2. The set
{
A = −→a + j

−→
a∗ : ∥A∥ = (1, 0) , −→a ,

−→
a∗ ∈ R3

}
is called unit hyperbolic sphere in P−module.

Theorem 3.3. A point on the unit hyperbolic sphere of the P−Module corresponds to directional lines in E3 that is
less than or equal to the vector moment norm 1

2 . Conversely, directional lines in E3 whose vector moment norm is
less than or equal to 1

2 correspond to two different unit hyperbolic vectors in the P-module.

Proof. A line in E3 is completely determined by a point P on it with respect to an origin O and a vector
−→u ∈ R3 that specifies the direction of the line. In the P−module, we know that for a vector A = −→a + j

−→
a∗ on

the unit hyperbolic sphere,∥∥∥−→a ∥∥∥2
+

∥∥∥∥−→a∗∥∥∥∥2
= 1 and

〈
−→a ,
−→
a∗

〉
= 0.

Let A = −→a + j
−→
a∗ be a point on the unit hyperbolic sphere. So, if we draw the plane Sp

{
−→a ,
−→
a∗

}
in E3, we can

take
−→
a∗ ×−→a as the normal vector of this plane. As seen in Figure 2, if a d-direction line is drawn through the

endpoints of vectors −→a and
−→
a∗ , the direction vector of this d line becomes −→a −

−→
a∗ . Moreover,

∥∥∥∥−→a − −→a∗∥∥∥∥ = 1

since A = −→a + j
−→
a∗ is the unit hyperbolic vector. If any P and X points are taken on the d line, we can write

Figure 2: Directional line corresponding to the unit hyperbolic vector A.

it as (
−→x − −→p

)
×

(
−→a −

−→
a∗

)
= 0.

Also, since the normal vector
−→
a∗ × −→a of the plane is perpendicular to the vectors −→x ,−→p and −→a −

−→
a∗ , if the

equation −→x ×
(
−→a −

−→
a∗

)
= −→p ×

(
−→a −

−→
a∗

)
is denoted by

−→
a∗ × −→a , the vector

−→
a∗ × −→a can be chosen as the vector

moment of the unit vector −→a −
−→
a∗ with respect to the origin. The vector −→a −

−→
a∗ is independent of the choice

of the point on the line. If a point Y other than X is taken on the line,
(
−→y − −→p

)
×

(
−→a −

−→
a∗

)
= 0 is obtained.

Hence it is seen that

−→y ×
(
−→a −

−→
a∗

)
= −→x ×

(
−→a −

−→
a∗

)
= −→p ×

(
−→a −

−→
a∗

)
=
−→
a∗ × −→a .

The length of the vector
−→
a∗ ×−→a is equal to the perpendicular distance of origin to the line. To illustrate this,

let Z be the point where the perpendicular is drawn from the origin to the line crosses with the line. Since
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the vector
−→
a∗ × −→a is independent of the choice of the point on the line, it can be written as

−→z ×
(
−→a −

−→
a∗

)
=
−→
a∗ × −→a .

Thus, the length of the vector
−→
a∗ × −→a can be found as∥∥∥∥−→a∗ × −→a ∥∥∥∥ =

∥∥∥−→z ∥∥∥ ∥∥∥∥−→a − −→a∗∥∥∥∥ sin
π
2

=
∥∥∥−→z ∥∥∥ .

It can be seen from here that the vector
−→
a∗ ×−→a depends on the choice of point O. Also, since

∥∥∥−→a ∥∥∥2
+
∥∥∥∥−→a∗∥∥∥∥2

= 1,

the length of the vector moment
−→
a∗ × −→a is less than or equal to 1

2 . That is,
∥∥∥∥−→a∗ × −→a ∥∥∥∥ ⩽ 1

2 .

Therefore, given the unit hyperbolic vector A = −→a + j
−→
a∗ , given the vector pair

(
−→a ,
−→
a∗

)
, a line with a

vector moment less than or equal to 1
2 in E3 is determined in a completely uniquely way. That is, the unit

hyperbolic vector A = −→a + j
−→
a∗ corresponds to a directional line in E3 whose vector moment is less than or

equal to 1
2 .

Now let’s take a line d in E3 with the unit direction vector −→u = (u1,u2,u3) and the vector moment norm
less than or equal to 1

2 . So we can write
d : x−x0

u1
=

y−y0

u2
= z−z0

u3
= λ,

u2
1 + u2

2 + u2
3 = 1,

P
(
x0, y0, zo

)
∈ d.

From here, the vector moment of the line d is found as

−→
u∗ =

−−→
OP × −→u =

∣∣∣∣∣∣∣∣
i j k

x0 y0 z0
u1 u2 u3

∣∣∣∣∣∣∣∣ .
Since we have chosen the norm of the vector moment of the line d less than or equal to 1

2 , we can choose
the points A

(
x, y, z

)
and B

(
x − u1, y − u2, z − u3

)
on the line so that∥∥∥∥−−→OA

∥∥∥∥2
+

∥∥∥∥−−→OB
∥∥∥∥2
= 1,

where x = x0 + λu1, y = y0 + λu2, z = z0 + λu3. From here, we get

λ1 =
1
2
− u1x0 − u2y0 − u3z0 +

1
2

√
1 − 4

∥∥∥∥−→u∗∥∥∥∥2
,

λ2 =
1
2
− u1x0 − u2y0 − u3z0 −

1
2

√
1 − 4

∥∥∥∥−→u∗∥∥∥∥2
.

Therefore, given a line inE3 with a vector moment norm less than or equal to 1
2 , there are two unit hyperbolic

vectors

A =
(
x0+λ1u1, y0 + λ1u2, z0 + λ1u3

)
+ j

(
x0+ (λ1−1) u1, y0+ (λ1−1) u2, z0+ (λ1−1) u3

)
and

B =
(
x0+λ2u1, y0 + λ2u2, z0 + λ2u3

)
+ j

(
x0+ (λ2 − 1) u1, y0+ (λ2 − 1) u2, z0+ (λ2 − 1) u3

)
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where

λ1 =
1
2
− u1x0 − u2y0 − u3z0 +

1
2

√
1 − 4

∥∥∥∥−→u∗∥∥∥∥2
,

λ2 =
1
2
− u1x0 − u2y0 − u3z0 −

1
2

√
1 − 4

∥∥∥∥−→u∗∥∥∥∥2
.

Figure 3: Representation of two points on the unit hyperbolic sphere corresponding to the directional line whose vector moment norm
is less than or equal to 1

2 in E3.

Remark 3.4. With the mapping used in the proof of the above theorem, we will call the line corresponding to the unit
hyperbolic vector as type 1 directional line. Similarly, the unit hyperbolic vector A = −→a + j

−→
a∗ can be corresponded to

a directional line, with the directing vector −→a +
−→
a∗ and the vector moment

−→
a∗ × −→a . We will call such lines as type 2

directional lines.

Figure 4: Representation of type 1 and type 2 directional line corresponding to the unit hyperbolic vector A.

Example 3.5. Find the type 1 and type 2 directional lines in E3 corresponding to the unit hyperbolic vectors
A =

(
4
5 , 0, 0

)
+ j

(
0, 0, 3

5

)
and B =

(
0,− 3

13 ,
4

13

)
+ j

(
12
13 , 0, 0

)
.
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First, let’s find the vectors −→a −
−→
a∗ , −→a +

−→
a∗ and

−→
a∗ × −→a to find the type 1 and type 2 directional line

corresponding to the unit hyperbolic vector A and B. The vectors −→a −
−→
a∗ , −→a +

−→
a∗ and

−→
a∗ × −→a are calculated

as

−→a −
−→
a∗ =

(4
5
, 0, 0

)
−

(
0, 0,

3
5

)
=

(4
5
, 0,−

3
5

)
,

−→a +
−→
a∗ =

(4
5
, 0, 0

)
+

(
0, 0,

3
5

)
=

(4
5
, 0,

3
5

)
,

and

−→
a∗ × −→a =

∣∣∣∣∣∣∣∣
i j k
0 0 3

5
4
5 0 0

∣∣∣∣∣∣∣∣ =
(
0,

12
25
, 0

)
.

Since
∥∥∥∥−→a∗ × −→a ∥∥∥∥ = ∥∥∥−→z ∥∥∥ for −→z = (z1, z2, z3),

z2
1 + z2

2 + z2
3 =

(12
25

)2

. (2)

Also, using −→z ×
(
−→a −

−→
a∗

)
=
−→
a∗ × −→a for the type 1 directional line,

(
0,

12
25
, 0

)
=

∣∣∣∣∣∣∣∣
i j k

z1 z2 z3
4
5 0 −

3
5

∣∣∣∣∣∣∣∣ =
(
−

3z2

5
,

3z1 + 4z3

5
,−

4z2

5

)
(3)

⇒ z2 = 0 and 3z1 + 4z3 =
12
5
.

Using the equations (2) and (3) , z1, z2 and z3 are calculated as

z1 =
36

125
, z2 = 0, z3 =

48
125
.

Thus, the type 1 directional line corresponding to the unit hyperbolic vector A =
(

4
5 , 0, 0

)
+ j

(
0, 0, 3

5

)
is found

as

d1 :
x − 36

125
4
5

=
z − 48

125

−
3
5

, y = 0,

d1 :
125x − 36

4
=

125z − 48
−3

, y = 0.

Since
∥∥∥∥−→a∗ × −→a ∥∥∥∥ = ∥∥∥−→w∥∥∥ for −→w = (w1,w2,w3),

w2
1 + w2

2 + w2
3 =

(12
25

)2

. (4)

Also, using −→w ×
(
−→a +

−→
a∗

)
=
−→
a∗ × −→a for the type 2 directional line,

(
0,

12
25
, 0

)
=

∣∣∣∣∣∣∣∣
i j k

w1 w2 w3
4
5 0 3

5

∣∣∣∣∣∣∣∣ =
(3w2

5
,

4w3 − 3w1

5
,−

4w2

5

)
(5)

⇒ w2 = 0 and 4w3 − 3w1 =
12
5
.



J. Li et al. / Filomat 39:22 (2025), 7735–7748 7743

Using the equations (4) and (5) , w1,w2 and w3 are calculated as

w1 = −
36
125
, w2 = 0, w3 =

48
125
.

Thus, the type 2 directional line corresponding to the unit hyperbolic vector A =
(

4
5 , 0, 0

)
+ j

(
0, 0, 3

5

)
is found

as

d2 :
x + 36

125
4
5

=
z − 48

125
3
5

, y = 0,

d2 :
125x + 36

4
=

125z − 48
3

, y = 0.

Now let’s find the type 1 and type 2 directional line corresponding to the unit hyperbolic vector B =(
0,− 3

13 ,
4
13

)
+ j

(
12
13 , 0, 0

)
. The vectors

−→
b −
−→
b∗ ,
−→
b +
−→
b∗ and

−→
b∗ ×
−→
b are calculated as

−→
b −
−→
b∗ =

(
0,−

3
13
,

4
13

)
−

(12
13
, 0, 0

)
=

(
−

12
13
,−

3
13
,

4
13

)
,

−→
b +
−→
b∗ =

(
0,−

3
13
,

4
13

)
+

(12
13
, 0, 0

)
=

(12
13
,−

3
13
,

4
13

)
,

and

−→
b∗ ×
−→
b =

∣∣∣∣∣∣∣∣
i j k

12
13 0 0
0 −

3
13

4
13

∣∣∣∣∣∣∣∣ =
(
0,−

48
169
,−

36
169

)
.

Since
∥∥∥∥−→b∗ × −→b ∥∥∥∥ = ∥∥∥−→p ∥∥∥ for −→p =

(
p1, p2, p3

)
,

p2
1 + p2

2 + p2
3 =

( 60
169

)2

. (6)

Also, using −→p ×
(
−→
b −
−→
b∗

)
=
−→
b∗ ×
−→
b for the type 1 directional line,

(
0,−

48
169
,−

36
169

)
=

∣∣∣∣∣∣∣∣
i j k

p1 p2 p3

−
12
13 −

3
13

4
13

∣∣∣∣∣∣∣∣ (7)

=

(
4p2 + 3p3

13
,
−4p1 − 12p3

13
,
−3p1 + 12p2

13

)
(8)

⇒ 4p2 + 3p3 = 0, p1 + 3p3 =
12
13

and p1 − 4p2 =
12
13
.

Using the equations (6) and (7) , p1, p2 and p3 are calculated as

p1 =
300

2197
, p2 = −

432
2197

, p3 =
576

2197
.

Thus, the type 1 directional line corresponding to the unit hyperbolic vector B =
(
0,− 3

13 ,
4
13

)
+ j

(
12
13 , 0, 0

)
is

found as

k1 :
x − 300

2197

−
12
13

=
y + 432

2197

−
3
13

=
z − 576

2197
4

13

,

k1 :
300 − 2197x

2028
=
−2197y − 432

507
=

2197z − 576
676
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Since
∥∥∥∥−→b∗ × −→b ∥∥∥∥ = ∥∥∥−→q ∥∥∥ for −→q =

(
q1, q2, q3

)
,

q2
1 + q2

2 + q2
3 =

( 60
169

)2

. (9)

Also, using −→q ×
(
−→
b +
−→
b∗

)
=
−→
b∗ ×
−→
b for the type 2 directional line,

(
0,−

48
169
,−

36
169

)
=

∣∣∣∣∣∣∣∣
i j k

q1 q2 q3
12
13 −

3
13

4
13

∣∣∣∣∣∣∣∣ (10)

=

(
4q2 + 3q3

13
,

12q3 − 4q1

13
,
−3q1 − 12q2

13

)
(11)

⇒ 4q2 + 3q3 = 0, q1 − 3q3 =
12
13

and q1 + 4q2 =
12
13
.

Using the equations (9) and (10) , q1, q2 and q3 are calculated as

q1 =
300

2197
, q2 =

432
2197

, q3 = −
576

2197
.

Thus, the type 2 directional line corresponding to the unit hyperbolic vector B =
(
0,− 3

13 ,
4
13

)
+ j

(
12
13 , 0, 0

)
is

found as

k2 :
x − 300

2197
12
13

=
y − 432

2197

−
3
13

=
z + 576

2197
4

13

,

k2 :
2197x − 300

2028
=

432 − 2197y
507

=
2197z + 576

676
.

3.1. Hyperbolic Angle in P−Module

Let A = −→a + j
−→
a∗ and B =

−→
b + j

−→
b∗ be two unit hyperbolic vectors. From here, the dot product of two unit

hyperbolic vectors is

⟨A,B⟩ =
〈
−→a + j

−→
a∗ ,
−→
b + j

−→
b∗

〉
=

〈
−→a ,
−→
b
〉
+

〈
−→
a∗ ,
−→
b∗

〉
+ j

(〈
−→a ,
−→
b∗

〉
+

〈
−→
a∗ ,
−→
b
〉)
.

On the other hand, type 1 and type 2 direction lines corresponding to the unit hyperbolic vector A = −→a + j
−→
a∗

are d1 and d2, respectively, and type 1 and type 2 direction lines corresponding to the unit hyperbolic vector
B =

−→
b + j

−→
b∗ are k1 and k2, respectively. Also, if the angle between the lines d1 and k1 is called α, and the

angle between the lines d2 and k2 is called β, we can get〈
−→a −

−→
a∗ ,
−→
b −
−→
b∗

〉
=

∥∥∥∥−→a − −→a∗∥∥∥∥ ∥∥∥∥−→a − −→a∗∥∥∥∥ cosα

⇒ cosα =
〈
−→a ,
−→
b
〉
+

〈
−→
a∗ ,
−→
b∗

〉
−

〈
−→a ,
−→
b∗

〉
−

〈
−→
a∗ ,
−→
b
〉

(12)

and 〈
−→a +

−→
a∗ ,
−→
b +
−→
b∗

〉
=

∥∥∥∥−→a + −→a∗∥∥∥∥ ∥∥∥∥−→a + −→a∗∥∥∥∥ cos β

⇒ cos β =
〈
−→a ,
−→
b
〉
+

〈
−→
a∗ ,
−→
b∗

〉
+

〈
−→a ,
−→
b∗

〉
+

〈
−→
a∗ ,
−→
b
〉
. (13)
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Thus, using equations (12) and (13), we get

⟨A,B⟩ =
〈
−→a ,
−→
b
〉
+

〈
−→
a∗ ,
−→
b∗

〉
+ j

[〈
−→a ,
−→
b∗

〉
+

〈
−→
a∗ ,
−→
b
〉]

=
cos β + cosα

2
+ j

cos β − cosα
2

= cos
(
β + α

2

)
cos

(
β − α

2

)
− j sin

(
β + α

2

)
sin

(
β − α

2

)
= cos

(
β + α

2
+ j
β − α

2

)
.

Also, if we use that ⟨A,B⟩ = ∥A∥ ∥B∥ cosθ for the hyperbolic angle θ =θ + jθ∗, then

θ =
β + α

2
and θ∗ =

β − α

2
.

Example 3.6. Find the unit hyperbolic vectors corresponding to the type 1 directional line d1 : x = λ, y = − 1
4 , z = 0.

First, to find the unit hyperbolic vector corresponding to the type 1 directional line d1, let’s find the vector
moment of the line using the unit direction vector and a point P on it. Let P

(
1,− 1

4 , 0
)

and −→u = (1, 0, 0). Then
we get

−→
u∗ =

−−→
OP × −→u =

∣∣∣∣∣∣∣∣
i j k
1 −

1
4 0

1 0 0

∣∣∣∣∣∣∣∣ =
(
0, 0,

1
4

)
,

⇒

∥∥∥∥−→u∗∥∥∥∥ = 1
4
⩽

1
2
.

Since the vector moment norm of the line d1 is less than or equal to 1
2 , there are points A

(
λ,− 1

4 , 0
)

and

B
(
λ − 1,− 1

4 , 0
)

such that∥∥∥∥−−→OA
∥∥∥∥2
+

∥∥∥∥−−→OB
∥∥∥∥2
= 1.

From here, we get

λ2 +
(
−

1
4

)2

+ (λ − 1)2 +
(
−

1
4

)2

= 1

⇒

 λ1 =
√

3+2
4 ,

λ2 =
2−
√

3
4 ,

A =
( √

3+2
4 ,−

1
4
, 0

)
+ j

( √
3−2
4 ,−

1
4
, 0

)
and

B =
(

2−
√

3
4 ,−

1
4
, 0

)
+ j

(
−2−

√
3

4 ,−
1
4
, 0

)
.

Therefore, the unit hyperbolic vectors A and B correspond to the type 1 directional line d1, whose vector
moment norm is less than 1

2 .
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Corollary 3.7. The closest point to the origin of the type 1 directional line corresponding to the unit hyperbolic vector
A = −→a + j

−→
a∗ is found with

H1

(∥∥∥∥−→a∗∥∥∥∥2
−→a +

∥∥∥−→a ∥∥∥2 −→
a∗

)
.

Corollary 3.8. The closest point to the origin of the type 2 directional line corresponding to the unit hyperbolic vector
A = −→a + j

−→
a∗ is found with

H2

(∥∥∥−→a ∥∥∥2 −→
a∗ −

∥∥∥∥−→a∗∥∥∥∥2
−→a

)
.

Corollary 3.9. If one of the unit hyperbolic vectors corresponding to the type 1 directional line is A = −→a + j
−→
a∗ , the

other unit hyperbolic vector is calculated with

B =
−→
a∗ + 2

∥∥∥∥−→a∗∥∥∥∥2 (
−→a −

−→
a∗

)
+ j

(
−→a − 2

∥∥∥−→a ∥∥∥2
(
−→a −

−→
a∗

))
.

Corollary 3.10. If one of the unit hyperbolic vectors corresponding to the type 2 directional line is A = −→a + j
−→
a∗ , the

other unit hyperbolic vector is calculated with

B = −
−→
a∗ + 2

∥∥∥∥−→a∗∥∥∥∥2 (
−→a +

−→
a∗

)
+ j

(
−
−→a + 2

∥∥∥−→a ∥∥∥2
(
−→a +

−→
a∗

))
.

Theorem 3.11. When another point P is chosen instead of the origin with a distance less than or equal to 1
2 to the

directional line, the unit hyperbolic vectors that denote the line with respect to the point P are

A =
(
x0+λ1u1 − p1, y0 + λ1u2 − p2, z0 + λ1u3 − p3

)
+ j

(
x0+ (λ1−1) u1 − p1, y0+ (λ1−1) u2 − p2, z0+ (λ1−1) u3 − p3

)
and

B =
(
x0+λ2u1 − p1, y0 + λ2u2 − p2, z0 + λ2u3 − p3

)
+ j

(
x0+ (λ2 − 1) u1 − p1, y0+ (λ2 − 1) u2 − p2, z0+ (λ2 − 1) u3 − p3

)
where

λ1 =
1
2
−

〈−−→
PQ,−→u

〉
+

1
2

√
1 − 4

∥∥∥∥−−→PQ × −→u
∥∥∥∥2
,

λ2 =
1
2
−

〈−−→
PQ,−→u

〉
−

1
2

√
1 − 4

∥∥∥∥−−→PQ × −→u
∥∥∥∥2
.

Proof. Let’s take a line d in E3 with the unit direction vector −→u = (u1,u2,u3) and the vector moment norm
less than or equal to 1

2 . So we can write
d : x−x0

u1
=

y−y0

u2
= z−z0

u3
= λ,

u2
1 + u2

2 + u2
3 = 1,

Q
(
x0, y0, zo

)
∈ d.

Given any point P
(
p1, p2, p3

)
that is less than or equal to 1

2 the distance from the line d, we can choose points
X

(
x, y, z

)
and Y

(
x − u1, y − u2, z − u3

)
on the line d such that

−→
PX =

(
x0 + λu1 − p1, y0 + λu2 − p2, z0 + λu3 − p3

)
−→
PY =

(
x0 + (λ − 1) u1 − p1, y0 + (λ − 1) u2 − p2, z0 + (λ − 1) u3 − p3

)
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and ∥∥∥∥−→PX
∥∥∥∥2
+

∥∥∥∥−→PY
∥∥∥∥2
= 1,

where x = x0 + λu1, y = y0 + λu2, z = z0 + λu3. Also, we can write the vector moment of the line d with
respect to the point P as

−→
u∗p =

−→
PY ×

−→
PX =

(−−→
PO + −→y

)
×

(−−→
PO + −→x

)
=

(−−→
PO × −→x

)
+

(
−→y ×

−−→
PO

)
+ −→y × −→x

=
(−−→
PO × −→u

)
+

(−−→
OQ × −→u

)
.

=
(−−→
PO +

−−→
OQ

)
×
−→u

=
−−→
PQ × −→u

From here, we get the values of λ as

λ1 =
1
2
−

〈−−→
PQ,−→u

〉
+

1
2

√
1 − 4

∥∥∥∥−−→PQ × −→u
∥∥∥∥2
,

λ2 =
1
2
−

〈−−→
PQ,−→u

〉
−

1
2

√
1 − 4

∥∥∥∥−−→PQ × −→u
∥∥∥∥2
.

Therefore, when choosing a point P other than the origin whose distance to the directional line in E3 is less
than or equal to 1

2 , the unit hyperbolic vectors denoting the directional line are found with

A =
(
x0+λ1u1 − p1, y0 + λ1u2 − p2, z0 + λ1u3 − p3

)
+ j

(
x0+ (λ1−1) u1 − p1, y0+ (λ1−1) u2 − p2, z0+ (λ1−1) u3 − p3

)
and

B =
(
x0+λ2u1 − p1, y0 + λ2u2 − p2, z0 + λ2u3 − p3

)
+ j

(
x0+ (λ2 − 1) u1 − p1, y0+ (λ2 − 1) u2 − p2, z0+ (λ2 − 1) u3 − p3

)
where

λ1 =
1
2
−

〈−−→
PQ,−→u

〉
+

1
2

√
1 − 4

∥∥∥∥−−→PQ × −→u
∥∥∥∥2
,

λ2 =
1
2
−

〈−−→
PQ,−→u

〉
−

1
2

√
1 − 4

∥∥∥∥−−→PQ × −→u
∥∥∥∥2
.

4. Conclusion

In this study, we have explored the properties of hyperbolic numbers and introduced the concept of
the P-module. By examining the fundamental operations and defining the P-modulus, we have provided
a deeper understanding of hyperbolic numbers and their structure. We also mapped the points on the
unit hyperbolic sphere of the P-module to directional lines in E3, focusing on the relationship between the
angles of these lines and the hyperbolic angles between the corresponding unit vectors.

Our findings suggest that the study of hyperbolic numbers, particularly through the P-module frame-
work, opens new avenues for both mathematical and physical applications. The connections between
hyperbolic angles and directional lines provide valuable insights into the geometric properties of hyper-
bolic numbers, which could be applied in areas such as quantum mechanics, gravity theory, and other
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Figure 5: The unit hyperbolic vector corresponding to a point P other than the origin.

physical domains where hyperbolic structures are utilized. Future work may involve further exploration
of transformations in hyperbolic numbers, akin to the E. Study transformation in dual numbers, and their
potential applications in advanced mathematical and physical models.
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