Filomat 39:22 (2025), 7767-7779
https://doi.org/10.2298/FIL2522767Z

(S
&

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia

Available at: http://www.pmf.ni.ac.rs/filomat

o

%
<,

b, &

Ty xS’

5
TIprpor®

Generalized Delannoy paths with cyclically shifting boundaries
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Abstract. In this paper, we consider the generalized Delannoy paths with steps N; = (0,i),i > 1 and
H; = (1,)),j =2 0, where all steps are weighted by u; for N; and v; (vy = 1) for H;. By the Riordan array
theory, we provide a counting formula for the number of all generalized Delannoy paths dominated by a
cyclically shifting piecewise linear boundary of varying slopes. Our main result can be viewed as a unified
generalization of the well-known enumerative formulas for the generalized Dyck and Schréder paths from
(0,0) to (kn,n) staying above the line x = ky. We also study the number of generalized Delannoy path
boundary pairs (P, a,x) with m-flaws, where P is a generalized Delannoy path (with steps N; and Hy) from

(0,0) to (n,k), a,x is a k-part composition of 1, and a flaw is a horizontal step (1, 0) of P below the boundary
8an,k.

1. Introduction

A lattice path in the xy-palne with steps in a given set S ¢ IN? is a sequence of points (called nodes)
a = vyvy - - - vy, with v; € IN? such that each vector 0—,:1—5), is a member of the step set S. Lattice paths have
been studied for a very long time. They have close links with many combinatorial objects, such as pattern-
avoiding permutations, integer partitions, graph theory, RNA structures, etc. [2,3,6,7,12,15-25]. A historical
review of research related to lattice paths and their enumeration was presented in Humphreys [13]. In this
paper, we consider the generalized Delannoy paths whose definition is given below.

Definition 1.1. The generalized Delannoy paths are nonempty lattice paths in the first quadrant of IN?
starting at the origin, and consisting of step set

S={Ni=(0,9li 21} U{H; = (1, ))lj = 0},
where each step is labeled with weights u; for N;’s and v; (v = 1) for H;’s, respectively.

Let a,x = (ap,a1 -+ ,ax-1) be a k-part composition of n (i.e.,, ag + a1 + - + a1 = n,and agp, - -+ , a1 > 1).
The piecewise linear boundary curve da,  is defined by
i1
x=ai(y—i)+ Zuj, for y € [i,i + 1].
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Fig. 1. A generalized Delannoy path dominated by ay4 = (1,2,3,1)

D(L,1,1, 461+ =694 D@&111t1+0=90 D41L1t1+0=222 D(,1,41;t1+0) =402

D(1,1,2,3;1,1 +1) = 650
D(l 2,2,2;t,1+1) =498 D(2,1,2,2;t,1+ ) = 366 D(2 2,1,2;t,1+£) = 306 De, 2,2,1;t,1+ ) = 238

Fig. 2. The number of paths dominated by cyclically shifting boundaries

A generalized Delannoy path is said to be dominated by a, if it lies weakly above the boundary da, .
For example, the boundary day 4 for ay4 = (1,2, 3, 1) is shown in Figure 1, together with a path it dominates.

The weight of a path is the product of the weights of all its steps. The weight of a set of paths is the sum
of the weights of all paths. Let D(a, x; 1, v) denote the sum of the weights of all generalized Delannoy paths
from (0,0) to (1, k) dominated by a, x, where weight functions u := u(t) = Y5, u;t' and v := v(t) = Y50 vit'.
For example, Figure 2 provides numerical values of D(a,;t,1 + t) for various 4-part compositions of 7,
along with their corresponding boundary curves. When u(t) = ¢, v(t) = 1 and all parts of a, x are the same,
it is well known [8, Exercise 5.3.5] that D(a, x; t, 1) is a generalized Catalan number. Namely, we get

_ B 1 @+ Dk+1
D(ﬂ,ﬂ,"',ﬂ,t,].)— (ﬂ+l)k+1( k )I (11)
k

where the case a = 1 corresponds to the Dyck paths counted by the Catalan numbers OEIS[21, A000108].
When u(t) = t,v(t) = 1 + t and all parts of a, x are the same, Song [24] showed that

1 [ ak \(k).,
D(a,a,---,a;t,1+t)=EZ G 1.2)
i=1

———
k

where the case a = 1 corresponds to the Schroder paths enumerate by the Schroder numbers OEIS[21,
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A006318]. It is easy to understand that for general a, x no enumerating formula for D(a,; 1, v) is known,
although Goulden and Jackson [8, Section 5.4.6] gave a determinant expression for D(a; t, 1).

Irving and Rattan [14] gave an explicit formula for classical lattice paths (with steps E = (0, 1), N = (1,0))
dominated by all cyclic shifts of an arbitrary composition. Precisely, for any j € IN*, let a<] » denote the j shift
of a, x, namely,
<j> (a—]I a—]+1r T ra—j+k—1)/
where the indices are understood modulo k. Irving and Rottan [14] found that, for any k-part composition
of n,

D (@nit, 1) + D (afit, 1) + -+ D(afiVin 1) = (Zf If) (13)

The rows of Figure 2 illustrate the boundaries a7 4, a;ﬁ, a%i, and a<3> for the compositions az4 = (1,1,1,4),
(1,1,2,3), and (1, 2,2, 2). Notice that in each row of Figure 2, there are a total of 1408 dominated Delannoy
paths (with steps E = (1,0),D = (1,1), N = (0,1)) from (0, 0) to (7,4). Motivated by this phenomenon, we
get the following result.

Theorem 1.1. Let a,,x and b, x be distinct k-part compositions of n. Let D(ay; u,v) and D(b,, x; u,v) be the sum of
the weights of all generalized Delannoy paths dominated by a, x and b, x, respectively. Then, we have

T
N
-~

-1

D(au) = Y D (v{y2)
]

Il
(==}
1l
fe=}

j

Let H (a,x; 1, v) be the sum of the weights of all the generalized Delannoy paths dominated by all cyclic
shifts of a composition a,, i.e.,

H (ani;u, v)—ZD ;’;{, u,v )

Define the generalized Delannoy matrix H(u, v) = [H,,,k(u, v)]n LN through the relation

Hn,k(u/ U) =H (an+1,n—k+1; u, U) ’
where a,41 k41 is @ (n — k + 1)-part composition of n + 1. We show that this matrix is a Riordan array.

Theorem 1.2. The generalized Delannoy matrix H (11, v) = [Hyx (U, V)] ke is a Riordan array given by

Houo = “)) 10)-

H (ang; 1,0) = Hyot i1, 0) = [t“]( ® ) (e,

Then

to(h(t))
1-u(h(t))’

where h(t) satisfies the equation h(t) =

Apparently, Theorem 1.2 is a generalization of Song’s formula (1.2) and Irving-Rattan’s formula (1.3).
The following two special cases deserve mention.
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Corollary 1.1. [14, Corollary 2] When u(t) = t, v(t) = 1, we get h(t) = =32 thus

HE 1) :(1—2t— \/1—4t,1— \/1—41‘),
21241 — 4t 2
n—k
H(anit,1) = [t”‘l]l_Zt_ V1 - 4¢ .(1 - \/1—4t) _ (n+k).
2121 — 4t 2 k-1

Fig. 3. 8 GDPBPs with 0,1, -+ ,7 flaws, respectively

Corollary 1.2. When u(t) = t, v(t) = 1 +t, we have h(t) = =YL pep

HE 14D = 1-3t— V1-6t +12 1—t—\/1—6t+t2]
' 2WNT—6t+£ 2 '

and

H(ayt,1+1t) =[t"]

1-3t— \/1—6t+t2‘(1—t— \/1—6t+t2]"_kzz":( n )(k)zz- (1.4)
l, ) .

222V1 -6t + 12 2
which is a generalization of the formula (1.2).

Formula (1.4) explains that there are Y%, ( ifl)(?)Zi = 1408 dominated Delannoy paths for each row of
Figure 2. The initial parts of matrices H (t,1) and H (¢, 1 + t) are

1 2
41 2 2
5 5 1 6 16 2
HED=| 56 21 6 1 c HEIED=1 s 12 20 2
210 84 28 7 1 1970 608 146 24 2
792 330 120 36 8 1 10386 3530 952 198 28 2

A generalized Delannoy path boundary pair (GDPBP) is an ordered pair (P, a,x), where P is a generalized
Delannoy path from (0,0) to (1, k) and a,x is a k-part composition of n. We say that a GDPBP (P, a,,x) has
m-flaws if there are exactly m horizontal steps of P lying below the boundary da, . Thus, a path P is
dominated by a, if and only if (P, a,x) has no flaws. For ay4 = (1,1,4, 1), eight GDPBPs with different
numbers of flaws are shown in Figure 3. The sum of the weights of all GDPBPs (P, a,x) with m-flaws is

denoted by Dy, (a,; 1, v), and let Hy,(a,x; u,v) = ):i:ol Dm(afq")k; u,v). It seems difficult to obtain an explicit

formula for H,,(a, x; 1, v). However, when v(t) = 1, we have the following result, which is a refinement of
Theorem 2.1 in [9].
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Theorem 1.3. Let a, . be the k-part composition of n, and let 0 < m < n. Then, we have

k-1
Huanw 1) = Y Do, 1) = [ 1](’“”) ey,
j=0

where h(t) satisfies the equation h(t) = m

The remainder of this paper is organized as follows. In the next section, we review the concept of Riordan
arrays and then use the Riordan arrays to study enumerative problems about generalized Schroder paths
and primitive generalized Schroder paths. In Section 3, we obtain a new class of generalized Delannoy
matrices and give the bijective proofs of Theorem 1.1 and Theorem 1.2. In Section 4, we will show a bijective
proof of Theorem 1.3.

2. Riordan arrays and enumeration of generalized Schroder paths

Since Shapiro et al. [22] introduced the concept of Riordan arrays, many authors have applied them
to several counting problems [10,15,18,27-31]. An infinite lower triangular matrix D = [d, x]nten is called
a Riordan array if its column k has generating function g(f)f(t)", where g(t) and f(t) are formal power
series with g(0) # 0, f(0) = 0 and f’(0) # 0. The matrix corresponding to the pair g(t), f(t) is denoted by
D = (g(t), f(t)). Recently, many generalizations of the Riordan arrays have been studied. One of them is
the almost-Riordan arrays [1,4]. An almost-Riordan array (I()|g(t), f(t)) is a matrix that consists of an initial
column vector (Iy, l1, - - - )T with generating function I() = Y., I,t", followed by a vertically shifted Riordan
array (g(t), f(#)) as illustrated below

|0 - 0 0

s (9(®), f()

The multiplication of the two Riordan arrays is defined as follows

(&), fFO)G (), (D) = (9(Bg"(f(B), f(f(H))) . 21

The set of Riordan arrays is a group under multiplication with (2.1). The identity element of the Riordan
arrays is (1, t), and the inverse of the Riordan array (g(t), f(t)) is given below

(9(t), fB) ™ = ( S )) 22)

g(fe)’

where f(t) is the compositional inverse of f(t), i.e., f(f(t)) = f(f(t)) = ¢.
A Riordan array (g(t), f(t)) can also be characterized by two sequences, the A-sequence (4,),en and the
Z-sequence (z,)nen (see [5,11]), such that

Apa1,0 = 2odno + z21dpg + Zodpp + -+ -,
A1 = Aodug + Bdyjer + odpjrr + -+, (k2> 1). (2.3)

If A(t) and Z(t) are the generating functions for the corresponding A- and Z-sequence, respectively, then it
follows that

A) = —— t 7 = 1- doo{](t)‘

f® f(®

A Riordan array D = [dyk]uken can also be characterized by another matrix as follows (see [18]).
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Lemma 2.1. A lower triangular array D = [durluken s a Riordan array if and only if there exists an array
A = [ayilnken, with agg # 0, and a sequence p = [pyluen such that

Apiijsr = Z Z Qi ifsj + Z Pidns1k+jr2- (2.4)
20 j20 720
_The array [a,]qken in the above lemma is called the A-matrix of the Riordan array (g(f), f(f)). Let
L) = ijo ait/,i>0,and L1(t) = Z]’zo pjt’. Then f(t) for D is given by
fioy =Y BLED) + FEPL (). (25)
i>0
Let B = [B.xlnken and 1 = [1n]uz0. If column O of the Riordan array D is defined by
dup10 = Z Z Bijdn-ij + Z Njdn+1,j+1, (2.6)
20 j20 j20
then g(t) for D is
doo
1 = Yo tIMEN(f(1)) = M(f(1)

where MU(t) = L 20 Bijt/,i>0,and M(t) = Y. 20 nitl.
Now we can use the Riordan arrays to study enumerative problems about generalized Schroder paths
and primitive generalized Schroder paths, whose definitions are given below.

g9(t) = 2.7)

Definition 2.1. [16] A generalized Schréder path of order 7 is a generalized Delannoy path from (0, 0) to
(n,n), stay weakly below the mian diagonal y = x. A primitive generalized Schroder path is a generalized
Schroder path that its nodes (excluding the initial and ending nodes) never on the y = x.

Let R(n, k) be the set of all partial generalized Schroder paths from (0, 0) to (1, n—k), and R, x = |R(n, k)|. Let
P(n, k) be the set of all partial primitive generalized Schroder paths from (0, 0) to (n, n—k), and P, = |P(n, k)|.
We call the matrices R = [Ryi]uken and P = [Py ilnren the generalized Schroder matrix and the primitive
generalized Schroder matrix, respectively.

Theorem 2.2. [16] The generalized Schroder matrix R = [Ry,x]u ke s a Riordan array given by

h(t) T—u®) t1-u®)\"
R= ( h(t)) (v(t) ) ) ’

where h(t) satisfies the equation h(t) = fvgz,(f()t)) and u(t) = Y ioq tit!, 0(t) = Yo vit'.
Proof. See proof of [16, Theorem 3]. [

Theorem 2.3. The primitive generalized Schroder matrix P = [P, x]n ke is a almost-Riordan array given by
2h(t) — t|h(t
oo ( Ot ), )

where h(t) satisfies the equation h(t) =

to(h(t))
1-u(h(t))’

Proof. For any P € P(n, k), according to the last step of P, one can deduce the following recurrences for P, ,
i.e.

P10 =v1Pog +u1P1,
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n n+1
Pn+1,0 = Z Ui+1p71,i + Z uipn+1,i/ (71 = 1)/ (28)
-1 P
n n
Puyig =) 0P+ Z WiPpi1,is1, (2.9)
P p
n n
Puiiksr = Pug + Z UiPy i + Z UiPpi1jriv, (k= 1), (2.10)
P P

with initial conditions P, , = 1 for n > 0. Let P = [Py ilnken+- By (2.9), (2.10), and Lemma 2.1, we get

P=R= (@,h(t)),

where h(t) satisfies the equation h(t) = t_v(h(t)) . Let d(t) denote the generating function of the first column of
q T=u(h() g g

#. By (2.8), we have

Ho(h(t) —1)  2h(t) —t
nt) k()

d(t) = 1+ u(h(t)) +

Thus,

P = (2h(t)_t’@,h(t)).

h(t)
This completes the proof. [J

Remark 2.4. Let Q(n) be the set of all generalized Delannoy paths from (0,0) to (n, n) stay weakly above
the diagonal y = x. and let S(n) the subset of Q(n) whose paths touch v = x only at (0,0) and (n,71). Let
gn = 1Q(n)| and s, = |S(n)|. It is easy to know that g, = R, and s, = P,,9. Thus, we have

Y gt = (@) ;Y st = —h(}?(t; 3 (2.11)

i>1 i>1

where h(t) is determined by equation h(t) = 1t_vl(f(’,(f()t>))

We give the following examples of primitive generalized Schroder matrices.

Example 2.5. If u(t) = t,0(t) = 1 + t, we have
(3+t=VI-6t+ 2|1 -t VN1-6t+2 1—t— V1—6t+1

r= 2 2t 2

2 1

6 6 4 1

= 22 22 16 6 1

9 9 68 30 8 1
394 394 304 146 48 10 1

1
2 1
2

The first column of the matrix # corresponds to the sequence A108524 in OEIS [21].

Example 2.6. Let u(t) = 1=, () = 1, we obtain
3—t—V1-6t+#2|1+t— V1—-6t+12 1+t— V1 —6t+12

2 4t 4

P =
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(o)}

w
NN =

—

394 197 121 52 18 5 1

Example 2.7. If u(t) = t, o(t) = 1= t,we derive
7):(3— \/1—8t'1— VIi-8t 1- \/1—8t)

2 2t ! 2
1
2 1
8 4 1

40 20 6 1

= 224 112 36 8 1

1344 672 224 56 10 1
8448 4224 1440 384 80 12 1

The first column of the matrix # corresponds to the sequence A175962 in OEIS [21].

Fig. 4. A path dominated by a74 \ by 4

3. The proofs of Theorem 1.1 and Theorem 1.2

Leta,x = (a1,a2,...,ar) and b, = (b1, by, ..., by) denote two arbitrary k-part compositions of n, such that
the boundary curve db,,  lies weakly above da, x. A generalized Delannoy path P is said to be dominated
by a,x \ b, if it is dominated by da, x but not dominated by db,,x. For example, if ay4 = (2,2,1,2) and
by4 = (1,2,1,3), Figure 4 shows a generalized Delannoy path dominated by day4 but not by dby4. Let
D(ay \ b, ; u,v) denote the set of all generalized Delannoy paths from (0, 0) to (1, k) that are dominated by
An k \ bn,kr and let D(an,k \ bn,k; u,v) = |D(an,k \ bn,k; u,v)|.

Lemma3.1. Leti€{0,1,...,k—2}). Assume that a,y; = (a0, ,ai,8ix1,* - ,0k=1) and by ;i = (ao, -+ ,ai—1,a141 +

1,---,ax_1) are k-part compositions of n. Then there exists a bijection between
k-1
G (]> (k—i-1) (k—i-1),
U Z) aj \b i uv )andZ)(b \a . u ,v).
]# -1

This bijection induces the following identity:

=

k-1 -1

9728
D nk1
j=0

(3.1)

D (b;]?w )

-
Il
o
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Proof. We construct the required bijection as follows:

k-1
0: D(a \ b u,0) - D%\ u,0).
j=0
ki1
Ifje{0,...,k=i-2,k—i,...,k—1}, for these indices, the boundary curve 8b<”j ;{ /is weakly above the boundary
curve 8a<] > A generalized Delannoy path P is dominated by afj ?” \ b<j ) ; if and only if P is dominated by
<] ) .and a hor1zontal step of P touches the boundary 8a<] ) cat(x, i+ + 1) mod k). If j = k—i— 1, here the
(k i-1) 5

boundary curve da, is weakly above the boundary curve 8bgfk;. V. A generalized Delannoy path P is
dominated by b<k = 1> \ agf];_b if and only if P is dominated by bg;;:_b and there exists a horizontal step of
P that intersects w1th Bbff,; E_D excluding the terminal point (#, k).

Letje(0,....k—i-2,k=i,.. k-1 and let (Pa’ \bY )bea GDPBP in D(a’, \ b, ;u,0). Then

P = AH{B, where Hj is the horizontal step that touches the boundary Bafj ?“, at (x,(i+j+1) mod k). We
define P’ = BH{A, then

6( AP \b<]> ) _ (P,,b<k—g—1> \a(k—z 1>) c Z)(b<k =1\ Qlk=im1), v).

4 nkz nk,i nk,i lel

Fig. 5. The bijection 0 in the proof of Lemma 3.1.

To establish bijectivity, we construct the inverse mapping 07! as follows. Let (P’,bff; ;_D \ a<k - 1>) be
a GDPBP in D(bqu,: §_1> \akim sy, v) Then P’ = AH(()S)B, where Hés) marks the first horizontal step that

n,k,i
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touches the boundary 8b;’;’i"’1> at level s. We define P = BHyA, then

k-1

(k—i 1) (k i-1) {(k—i—1-s) mod k) {(k—i—1-s) mod k) G (])
(P, bnkl nkl )_( ’ nkz \bnkt E U D

nkz nk,i;u’v)'
;qt -1
For example, if a741 = (1,3,2,1) and by 41 = (1,2, 3,1), the bijection 0 is given in Figure 5. [

Proof of Theorem 1.1. Leta,; = (ao, ..., 4 1) and b, x = (bo,
the condition:

iui Zibi Vse{0,...,k—1}L
i=0 i=0

Define the cumulative difference x; := Zf-zo(ai —b;). Then, by Lemma 3.1, we obtain

., bk-1) be k-part compositions of # satisfying

H(ay; u,v) = H(ag — xo, a1 + Xo = X1, .., -1 + X2 = X1, 4, 0) = H(by i 1, 0). (3.2)
For arbitrary compositions, let ys := max (}Y.;_yai, Y.i— bi). The transformed composition

Yok = (Yo, Y1 = Yo, - Yk = Yk=3, Yk-1 — Yik—2) -
By (3.2), we have

H(Yn,k} u, U) = H(an,k; u, 7)) = H(bn,k; u, U)' |

Fig. 6. The bijection ¢ in the proof of Lemma 3.2.

As mentioned in Section 2, let S(n) be the set of all primitive generalized Schréder paths of order n, and
let s, = [s(n)|. We derive the following recurrence relation for H (a,; u, v).
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Lemma 3.2. Let a,x be the k-part composition of n. The number H (a,x; u,v) satisfies the following recurrence
relation:

=~

-1
H(ayxu,v) = siH (ay-if—i; 4,v) + H(ay-14;4,0) . (3.3)

5

I
—_

Proof. We assume that ¢, = (1,---,1,n — k + 1). Then we construct a bijection ¢» between Z)( N4 ) and
\/_/

k-1
the following disjoint subsets:

k—

-

[D(c?,,_u,0) x S| U [D (T, u,0) x {(1,0)}].

Il
—_

i

We consider generalized Delannoy paths dominated by c<] ’ for j=0,1,--- ,k—1. We will decompose these
paths into an initial subpath and a final subpath. Let1 < i < k—j, and let ( —1,k—1i) be the penultimate note

on the boundary 8c<] ) The initial subpaths from (0, 0) to (1 — 7, k — i) are dominated by c<] ) . and the final

subpaths from (1 — i, k — i) to (n, k) belong to S(i). If the penultimate note on the boundary 8c . isnot belong

to{(n—i,k—1i)li=1,2,---,k — j}, the initial subpaths from (0, 0) to (n — 1,k) are dominated by 8c<}>1 . and
the final subpaths are horizontal steps. In both cases, the decomposition is reversible, and hence, b1]ect1ve.

By this decomposition, we have

=

—1

H(cpp;u,v) = ‘Z)( ;];{, u, v)'
j=0
k=1 k=j
— 2 G
- |D nlkz | |S(Z)|+Z|Z) nlk’ u,o |
j=0 i=1
k-1

siH (¢pije—i; U, v) + H (Cho1) 1, V) .
i=1
For an arbitrary a,;, Lemma 3.1 implies that D(a,.; 4, v) = D(cuk; 4,v). Thus, H (a,x; u, v) satisfies (3.3). An
example of the bijection ¢ is given in Figure 6. [
Proof of Theorem 1.2. From (3.3), we find that the generalized Delannoy matrix H(u, v) = [H,x(1, V)] ken
satisfies the following recurrence relation:

n—k

Hy1 541 (1,0) = Hyp(u, 0) + Z siHu—iv1j1, 1,k20.
P

From this recurrence, the associated A-matrix and p-sequence are

1 S1 0 0
0 s, 00

A=|0 s 00 , p=(0,0,0).
0 s 00 p=t :

Hence, from Lemma 2.1, the matrix H(#, v) is a Riordan array (g(t), f(t)). The generating functions of rows
of A-matrix are LI%(t) = 1 + s;t, and LI1(t) = s;41t for all i > 1. The generating function of the p-sequence is
L(t) = 0. Using (2.5) and (2.11), we get f(t) = t + sitf(t) + sot> f(t) + s3> f(t) + - - -. Thus, f(t) = h(t), where

h(t) is determined by equation h(t) = fsz,i?t))) By Remark 2.4, we have g(t) = Y5, igit ™! = (@), a.
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4. The proof of Theorem 1.3

Our proof of Theorem 1.3 is bijective and is motivated by Guo and Wang’s bijective proof of [9, Theorem
2.1]. Let Dy (an; u, v) denote the set of all GDPBPs (P, a,, ) with m flaws. We will construct a bijection

k—

k-1
¢ Jon(@%u1) > | Dus (¥ u1), (4.1)
j=0 j=0

H

which keeps the numbers of the vertical steps unchanged, to prove this result.

Let1 < m < nand (P,a;) be a GDPBP in D, (a’};u,1). Then P = A’HyB, where Hj is the rightmost

<]> <]>

horizontal step intersecting the boundary da_ Since k > 1, such Hy must

exist. We have two cases:

, and stays weakly below da_

e If A’ is empty or A’ ends with a horizontal step, then we define P’ = A’BHj and ¢ (P, a;j i) = (P’, a;j i)

o If A’ ends with a vertical step N;, and the length of all vertical steps N; of A’ is equal to d, then we
define P’ = BHyA’, and ¢ (P, a<n]>) (P' - d>)

It is easy to see that ¢ (P a! >) U Dm_1 ( ko

construct its inverse i)~ L as follows. Suppose that (P’, a;] i) is a GDPBP in D,,_1 (ay ;{; u, 1). We consider the
following two cases:

S, 1) To prove that the mapping v is a bijection, we

|

|

| |

| I TTLTT T T T T T T &=
| | | | |
I I 8a7,4 I I I
[N /40 DU e N S A
i i i i I I
I I I I I I
I I I I I I
el L ___l___J
I I I I I I I
I I I I I I
I I I I \P I I
il S v I |
| | | | | |
| | \HO | | | |
| | | | | |
| I TTLOTT T T T T T T T &=

| | | | | |
I I NZ‘ &37‘,4 | | |
Lo A n i __ 1
i | I I I I I
I I I I I I I
I I I I I I I
el L ___l___J

Fig. 7. The bijection ¢ in the proof of Theorem 1.3.

e ' is end with Hy. We write P’ = A’BH,, where A’ = AH, and this Hj is the rightmost flaw in A’B
that intersects a<] ) if such Hj exists, and we write P’ = BHy(A’ = 0) otherwise. Then P = A’HyB and

l/i_ (P <]>) (Pa(l))

e P’ is end with N;. We write P’ = BHyA’ = BHyAN;, where Hj is the leftmost flaw in (P a<j>) that
intersects a<] ). Assume that the length of all vertical steps N; of A’ is equal to d. then we let P = A’"HyB

and i~ ( <]>) (P,afj;@).
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The example of the bijection v is given in Figure 7. From Theorem 1.2 and bijection (4.1), for 1 < m < n, we
have

=

—1

Hy(anu,1) = Y Du(@y;u,1) = Hoaniu, 1) = [t"-l](
j

h(t)

T) h,

1l
(=)

where h(t) satisfies the equation h(t) = O

t
1-u(h(t))
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