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Abstract. In this paper, we consider the generalized Delannoy paths with steps Ni = (0, i), i ≥ 1 and
Hi = (1, j), j ≥ 0, where all steps are weighted by ui for Ni and v j (v0 = 1) for H j. By the Riordan array
theory, we provide a counting formula for the number of all generalized Delannoy paths dominated by a
cyclically shifting piecewise linear boundary of varying slopes. Our main result can be viewed as a unified
generalization of the well-known enumerative formulas for the generalized Dyck and Schröder paths from
(0, 0) to (kn,n) staying above the line x = ky. We also study the number of generalized Delannoy path
boundary pairs (P, an,k) with m-flaws, where P is a generalized Delannoy path (with steps Ni and H0) from
(0, 0) to (n, k), an,k is a k-part composition of n, and a flaw is a horizontal step (1, 0) of P below the boundary
∂an,k.

1. Introduction

A lattice path in the xy-palne with steps in a given set S ⊂ N2 is a sequence of points (called nodes)
α = v0v1 · · · vn with vi ∈ N2 such that each vector −−−−→vi−1vi is a member of the step set S. Lattice paths have
been studied for a very long time. They have close links with many combinatorial objects, such as pattern-
avoiding permutations, integer partitions, graph theory, RNA structures, etc. [2,3,6,7,12,15-25]. A historical
review of research related to lattice paths and their enumeration was presented in Humphreys [13]. In this
paper, we consider the generalized Delannoy paths whose definition is given below.

Definition 1.1. The generalized Delannoy paths are nonempty lattice paths in the first quadrant of N2

starting at the origin, and consisting of step set

S = {Ni = (0, i)|i ≥ 1} ∪ {H j = (1, j)| j ≥ 0},

where each step is labeled with weights ui for Ni’s and v j (v0 = 1) for H j’s, respectively.

Let an,k = (a0, a1 · · · , ak−1) be a k-part composition of n (i.e., a0 + a1 + · · · + ak−1 = n, and a0, · · · , ak−1 ≥ 1).
The piecewise linear boundary curve ∂an,k is defined by

x = ai(y − i) +
i−1∑
j=0

a j, for y ∈ [i, i + 1].
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∂a7,4

P

Fig. 1. A generalized Delannoy path dominated by a7,4 = (1, 2, 3, 1)

D(1, 1, 1, 4; t, 1 + t) = 694 D(4, 1, 1, 1; t, 1 + t) = 90 D(1, 4, 1, 1; t, 1 + t) = 222 D(1, 1, 4, 1; t, 1 + t) = 402

D(1, 1, 2, 3; t, 1 + t) = 650 D(3, 1, 1, 2; t, 1 + t) = 214 D(2, 3, 1, 1; t, 1 + t) = 178 D(1, 2, 3, 1; t, 1 + t) = 366

D(1, 2, 2, 2; t, 1 + t) = 498 D(2, 1, 2, 2; t, 1 + t) = 366 D(2, 2, 1, 2; t, 1 + t) = 306 D(2, 2, 2, 1; t, 1 + t) = 238

Fig. 2. The number of paths dominated by cyclically shifting boundaries

A generalized Delannoy path is said to be dominated by an,k if it lies weakly above the boundary ∂an,k.
For example, the boundary ∂a7,4 for a7,4 = (1, 2, 3, 1) is shown in Figure 1, together with a path it dominates.

The weight of a path is the product of the weights of all its steps. The weight of a set of paths is the sum
of the weights of all paths. Let D(an,k; u, v) denote the sum of the weights of all generalized Delannoy paths
from (0, 0) to (n, k) dominated by an,k, where weight functions u := u(t) =

∑
i≥1 uiti and v := v(t) =

∑
i≥0 viti.

For example, Figure 2 provides numerical values of D(an,k; t, 1 + t) for various 4-part compositions of 7,
along with their corresponding boundary curves. When u(t) = t, v(t) = 1 and all parts of an,k are the same,
it is well known [8, Exercise 5.3.5] that D(an,k; t, 1) is a generalized Catalan number. Namely, we get

D(a, a, · · · , a︸     ︷︷     ︸
k

; t, 1) =
1

(a + 1)k + 1

(
(a + 1)k + 1

k

)
, (1.1)

where the case a = 1 corresponds to the Dyck paths counted by the Catalan numbers OEIS[21, A000108].
When u(t) = t, v(t) = 1 + t and all parts of an,k are the same, Song [24] showed that

D(a, a, · · · , a︸     ︷︷     ︸
k

; t, 1 + t) =
1
k

k∑
i=1

(
ak

i − 1

)(
k
i

)
2i, (1.2)

where the case a = 1 corresponds to the Schröder paths enumerate by the Schröder numbers OEIS[21,
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A006318]. It is easy to understand that for general an,k no enumerating formula for D(an,k; u, v) is known,
although Goulden and Jackson [8, Section 5.4.6] gave a determinant expression for D(an,k; t, 1).

Irving and Rattan [14] gave an explicit formula for classical lattice paths (with steps E = (0, 1), N = (1, 0))
dominated by all cyclic shifts of an arbitrary composition. Precisely, for any j ∈N+, let a⟨ j⟩n,k denote the j shift
of an,k, namely,

a⟨ j⟩n,k = (a− j, a− j+1, · · · , a− j+k−1),

where the indices are understood modulo k. Irving and Rottan [14] found that, for any k-part composition
of n,

D
(
an,k; t, 1

)
+D

(
a⟨1⟩n,k; t, 1

)
+ · · · +D

(
a⟨k−1⟩

n,k ; t, 1
)
=

(
n + k
k − 1

)
. (1.3)

The rows of Figure 2 illustrate the boundaries a7,4, a⟨1⟩7,4, a⟨2⟩7,4, and a⟨3⟩7,4 for the compositions a7,4 = (1, 1, 1, 4),
(1, 1, 2, 3), and (1, 2, 2, 2). Notice that in each row of Figure 2, there are a total of 1408 dominated Delannoy
paths (with steps E = (1, 0),D = (1, 1),N = (0, 1)) from (0, 0) to (7, 4). Motivated by this phenomenon, we
get the following result.

Theorem 1.1. Let an,k and bn,k be distinct k-part compositions of n. Let D(an,k; u, v) and D(bn,k; u, v) be the sum of
the weights of all generalized Delannoy paths dominated by an,k and bn,k, respectively. Then, we have

k−1∑
j=0

D
(
a⟨ j⟩n,k; u, v

)
=

k−1∑
j=0

D
(
b⟨ j⟩n,k; u, v

)
.

Let H
(
an,k; u, v

)
be the sum of the weights of all the generalized Delannoy paths dominated by all cyclic

shifts of a composition an,k, i.e.,

H
(
an,k; u, v

)
=

k−1∑
j=0

D
(
a⟨ j⟩n,k; u, v

)
.

Define the generalized Delannoy matrixH(u, v) =
[
Hn,k(u, v)

]
n,k∈N

through the relation

Hn,k(u, v) = H
(
an+1,n−k+1; u, v

)
,

where an+1,n−k+1 is a (n − k + 1)-part composition of n + 1. We show that this matrix is a Riordan array.

Theorem 1.2. The generalized Delannoy matrixH (u, v) = [Hn,k (u, v)]n,k∈N is a Riordan array given by

H (u, v) =
((

h(t)
t

)′
, h(t)

)
.

Then

H
(
an,k; u, v

)
= Hn−1,n−k(u, v) = [tn−1]

(
h(t)

t

)′
· h(t)n−k,

where h(t) satisfies the equation h(t) = tv(h(t))
1−u(h(t)) .

Apparently, Theorem 1.2 is a generalization of Song’s formula (1.2) and Irving-Rattan’s formula (1.3).
The following two special cases deserve mention.
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Corollary 1.1. [14, Corollary 2] When u(t) = t, v(t) = 1, we get h(t) = 1−
√

1−4t
2 , thus

H(t, 1) =
(

1 − 2t −
√

1 − 4t

2t2
√

1 − 4t
,

1 −
√

1 − 4t
2

)
,

H
(
an,k; t, 1

)
= [tn−1]

1 − 2t −
√

1 − 4t

2t2
√

1 − 4t
·

(
1 −
√

1 − 4t
2

)n−k

=

(
n + k
k − 1

)
.

Fig. 3. 8 GDPBPs with 0, 1, · · · , 7 flaws, respectively

Corollary 1.2. When u(t) = t, v(t) = 1 + t, we have h(t) = 1−t−
√

1−6t+t2

2 , then

H(t, 1 + t) =

1 − 3t −
√

1 − 6t + t2

2t2
√

1 − 6t + t2
,

1 − t −
√

1 − 6t + t2

2

 ,
and

H
(
an,k; t, 1 + t

)
= [tn−1]

1 − 3t −
√

1 − 6t + t2

2t2
√

1 − 6t + t2
·

1 − t −
√

1 − 6t + t2

2

n−k

=

k∑
i=1

(
n

i − 1

)(
k
i

)
2i, (1.4)

which is a generalization of the formula (1.2).

Formula (1.4) explains that there are
∑4

i=1
( 7

i−1
)(4

i
)
2i = 1408 dominated Delannoy paths for each row of

Figure 2. The initial parts of matricesH (t, 1) andH (t, 1 + t) are

H(t, 1) =



1
4 1
15 5 1
56 21 6 1

210 84 28 7 1
792 330 120 36 8 1


, H(t, 1 + t) =



2
12 2
66 16 2

360 102 20 2
1970 608 146 24 2
10386 3530 952 198 28 2


.

A generalized Delannoy path boundary pair (GDPBP) is an ordered pair (P, an,k), where P is a generalized
Delannoy path from (0, 0) to (n, k) and an,k is a k-part composition of n. We say that a GDPBP (P, an,k) has
m-flaws if there are exactly m horizontal steps of P lying below the boundary ∂an,k. Thus, a path P is
dominated by an,k if and only if (P, an,k) has no flaws. For a7,4 = (1, 1, 4, 1), eight GDPBPs with different
numbers of flaws are shown in Figure 3. The sum of the weights of all GDPBPs (P, an,k) with m-flaws is
denoted by Dm(an,k; u, v), and let Hm(an,k; u, v) =

∑k−1
i=0 Dm(a⟨i⟩n,k; u, v). It seems difficult to obtain an explicit

formula for Hm(an,k; u, v). However, when v(t) = 1, we have the following result, which is a refinement of
Theorem 2.1 in [9].
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Theorem 1.3. Let an,k be the k-part composition of n, and let 0 ≤ m ≤ n. Then, we have

Hm(an,k; u, 1) =
k−1∑
j=0

Dm(a⟨ j⟩n,k; u, 1) = [tn−1]
(

h(t)
t

)′
· h(t)n−k,

where h(t) satisfies the equation h(t) = t
1−u(h(t)) .

The remainder of this paper is organized as follows. In the next section, we review the concept of Riordan
arrays and then use the Riordan arrays to study enumerative problems about generalized Schröder paths
and primitive generalized Schröder paths. In Section 3, we obtain a new class of generalized Delannoy
matrices and give the bijective proofs of Theorem 1.1 and Theorem 1.2. In Section 4, we will show a bijective
proof of Theorem 1.3.

2. Riordan arrays and enumeration of generalized Schröder paths

Since Shapiro et al. [22] introduced the concept of Riordan arrays, many authors have applied them
to several counting problems [10,15,18,27-31]. An infinite lower triangular matrix D = [dn,k]n,k∈N is called
a Riordan array if its column k has generating function 1(t) f (t)k, where 1(t) and f (t) are formal power
series with 1(0) , 0, f (0) = 0 and f ′(0) , 0. The matrix corresponding to the pair 1(t), f (t) is denoted by
D = (1(t), f (t)). Recently, many generalizations of the Riordan arrays have been studied. One of them is
the almost-Riordan arrays [1,4]. An almost-Riordan array (l(t)|1(t), f (t)) is a matrix that consists of an initial
column vector (l0, l1, · · · )T with generating function l(t) =

∑
n≥0 lntn, followed by a vertically shifted Riordan

array (1(t), f (t)) as illustrated below

l0 0 · · · 0 0 · · ·

l1
l2
l3
l4 (1(t), f (t))
l5
...

...
...

...
...

...


.

The multiplication of the two Riordan arrays is defined as follows

(1(t), f (t))(1∗(t), f ∗(t)) =
(
1(t)1∗( f (t)), f ∗( f (t))

)
. (2.1)

The set of Riordan arrays is a group under multiplication with (2.1). The identity element of the Riordan
arrays is (1, t), and the inverse of the Riordan array (1(t), f (t)) is given below

(1(t), f (t))−1 =

(
1

1( f̄ (t))
, f̄ (t)

)
, (2.2)

where f̄ (t) is the compositional inverse of f (t), i.e., f̄ ( f (t)) = f ( f̄ (t)) = t.
A Riordan array (1(t), f (t)) can also be characterized by two sequences, the A-sequence (an)n∈N and the

Z-sequence (zn)n∈N (see [5,11]), such that

dn+1,0 = z0dn,0 + z1dn,1 + z2dn,2 + · · · ,

dn+1,k+1 = a0dn,k + a1dn,k+1 + a2dn,k+2 + · · · , (k ≥ 1). (2.3)

If A(t) and Z(t) are the generating functions for the corresponding A- and Z-sequence, respectively, then it
follows that

A(t) =
t

f̄ (t)
, Z(t) =

1 − d0,01(t)
f̄ (t)

.

A Riordan arrayD = [dn,k]n,k∈N can also be characterized by another matrix as follows (see [18]).
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Lemma 2.1. A lower triangular array D = [dn,k]n,k∈N is a Riordan array if and only if there exists an array
A = [αn,k]n,k∈N, with α0,0 , 0, and a sequence ρ = [ρn]n∈N such that

dn+1,k+1 =
∑
i≥0

∑
j≥0

αi, jdn−i,k+ j +
∑
j≥0

ρ jdn+1,k+ j+2. (2.4)

The array [αn,k]n,k∈N in the above lemma is called the A-matrix of the Riordan array (1(t), f (t)). Let
L

[i](t) =
∑

j≥0 αi, jt j, i ≥ 0, and L∗(t) =
∑

j≥0 ρ jt j. Then f (t) forD is given by

f (t) =
∑
i≥0

t1+i
L

[i]( f (t)) + f (t)2
L
∗( f (t)). (2.5)

Let B = [βn,k]n,k∈N and η = [ηn]n≥0. If column 0 of the Riordan arrayD is defined by

dn+1,0 =
∑
i≥0

∑
j≥0

βi, jdn−i, j +
∑
j≥0

η jdn+1, j+1, (2.6)

then 1(t) forD is

1(t) =
d0,0

1 −
∑

i≥0 t1+iM[i]( f (t)) −M∗( f (t))
, (2.7)

whereM[i](t) =
∑

j≥0 βi, jt j, i ≥ 0, andM∗(t) =
∑

j≥0 η jt j.
Now we can use the Riordan arrays to study enumerative problems about generalized Schröder paths

and primitive generalized Schröder paths, whose definitions are given below.

Definition 2.1. [16] A generalized Schröder path of order n is a generalized Delannoy path from (0, 0) to
(n,n), stay weakly below the mian diagonal y = x. A primitive generalized Schröder path is a generalized
Schröder path that its nodes (excluding the initial and ending nodes) never on the y = x.

Let R(n, k) be the set of all partial generalized Schröder paths from (0, 0) to (n,n−k), and Rn,k = |R(n, k)|. Let
P(n, k) be the set of all partial primitive generalized Schröder paths from (0, 0) to (n,n−k), and Pn,k = |P(n, k)|.
We call the matrices R = [Rn,k]n,k∈N and P = [Pn,k]n,k∈N the generalized Schröder matrix and the primitive
generalized Schröder matrix, respectively.

Theorem 2.2. [16] The generalized Schröder matrix R = [Rn,k]n,k∈N is a Riordan array given by

R =

(
h(t)

t
, h(t)

)
=

(
1 − u(t)

v(t)
,

t(1 − u(t))
v(t)

)−1

,

where h(t) satisfies the equation h(t) = tv(h(t))
1−u(h(t)) , and u(t) =

∑
i≥1 uiti, v(t) =

∑
i≥0 viti.

Proof. See proof of [16, Theorem 3].

Theorem 2.3. The primitive generalized Schröder matrix P = [Pn,k]n,k∈N is a almost-Riordan array given by

P =

(
2h(t) − t

h(t)

∣∣∣∣∣h(t)
t
, h(t)

)
,

where h(t) satisfies the equation h(t) = tv(h(t))
1−u(h(t)) .

Proof. For any P ∈ P(n, k), according to the last step of P, one can deduce the following recurrences for Pn,k,
i.e.

P1,0 = v1P0,0 + u1P1,1,
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Pn+1,0 =

n∑
i=1

vi+1Pn,i +

n+1∑
i=1

uiPn+1,i, (n ≥ 1), (2.8)

Pn+1,1 =

n∑
i=1

viPn,i +

n∑
i=1

uiPn+1,i+1, (2.9)

Pn+1,k+1 = Pn,k +

n∑
i=1

viPn,k+i +

n∑
i=1

uiPn+1,k+i+1, (k ≥ 1), (2.10)

with initial conditions Pn,n = 1 for n ≥ 0. Let P = [Pn,k]n,k∈N+ . By (2.9), (2.10), and Lemma 2.1, we get

P = R =

(
h(t)

t
, h(t)

)
,

where h(t) satisfies the equation h(t) = tv(h(t))
1−u(h(t)) . Let d(t) denote the generating function of the first column of

P. By (2.8), we have

d(t) = 1 + u(h(t)) +
t(v(h(t)) − 1)

h(t)
=

2h(t) − t
h(t)

.

Thus,

P =

(
2h(t) − t

h(t)

∣∣∣∣∣h(t)
t
, h(t)

)
.

This completes the proof.

Remark 2.4. Let Q(n) be the set of all generalized Delannoy paths from (0, 0) to (n,n) stay weakly above
the diagonal y = x. and let S(n) the subset of Q(n) whose paths touch y = x only at (0, 0) and (n,n). Let
qn = |Q(n)| and sn = |S(n)|. It is easy to know that qn = Rn,0 and sn = Pn,0. Thus, we have∑

i≥1

iqiti−1 =

(
h(t)

t

)′
,

∑
i≥1

siti =
h(t) − t

h(t)
, (2.11)

where h(t) is determined by equation h(t) = tv(h(t))
1−u(h(t)) .

We give the following examples of primitive generalized Schröder matrices.

Example 2.5. If u(t) = t, v(t) = 1 + t, we have

P =

 3 + t −
√

1 − 6t + t2

2

∣∣∣∣∣1 − t −
√

1 − 6t + t2

2t
,

1 − t −
√

1 − 6t + t2

2



=



1
2 1
2 2 1
6 6 4 1
22 22 16 6 1
90 90 68 30 8 1

394 394 304 146 48 10 1
...

...
...

. . .


.

The first column of the matrix P corresponds to the sequence A108524 in OEIS [21].

Example 2.6. Let u(t) = t
1−t , v(t) = 1, we obtain

P =

 3 − t −
√

1 − 6t + t2

2

∣∣∣∣∣1 + t −
√

1 − 6t + t2

4t
,

1 + t −
√

1 − 6t + t2

4


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=



1
1 1
2 1 1
6 3 2 1
22 11 7 3 1
90 45 28 12 4 1

394 197 121 52 18 5 1
...

...
...

. . .


.

Example 2.7. If u(t) = t
1−t , v(t) = 1

1−t , we derive

P =

(
3 −
√

1 − 8t
2

∣∣∣∣∣1 − √1 − 8t
2t

,
1 −
√

1 − 8t
2

)

=



1
2 1
8 4 1

40 20 6 1
224 112 36 8 1

1344 672 224 56 10 1
8448 4224 1440 384 80 12 1
...

...
...

. . .


.

The first column of the matrix P corresponds to the sequence A175962 in OEIS [21].

∂a7,4
∂b7,4

P

Fig. 4. A path dominated by a7,4 \ b7,4

3. The proofs of Theorem 1.1 and Theorem 1.2

Let an,k = (a1, a2, . . . , ak) and bn,k = (b1, b2, . . . , bk) denote two arbitrary k-part compositions of n, such that
the boundary curve ∂bn,k lies weakly above ∂an,k. A generalized Delannoy path P is said to be dominated
by an,k \ bn,k if it is dominated by ∂an,k but not dominated by ∂bn,k. For example, if a7,4 = (2, 2, 1, 2) and
b7,4 = (1, 2, 1, 3), Figure 4 shows a generalized Delannoy path dominated by ∂a7,4 but not by ∂b7,4. Let
D(an,k \ bn,k; u, v) denote the set of all generalized Delannoy paths from (0, 0) to (n, k) that are dominated by
an,k \ bn,k, and let D(an,k \ bn,k; u, v) = |D(an,k \ bn,k; u, v)|.

Lemma 3.1. Let i ∈ {0, 1, . . . , k−2}. Assume that an,k,i = (a0, · · · , ai, ai+1, · · · , ak−1) and bn,k,i = (a0, · · · , ai−1, ai+1+
1, · · · , ak−1) are k-part compositions of n. Then there exists a bijection between

k−1⋃
j=0

j,k−i−1

D

(
a⟨ j⟩n,k,i \ b⟨ j⟩n,k,i; u, v

)
andD

(
b⟨k−i−1⟩

n,k,i \ a⟨k−i−1⟩
n,k,i ; u, v

)
.

This bijection induces the following identity:

k−1∑
j=0

D
(
a⟨ j⟩n,k,i; u, v

)
=

k−1∑
j=0

D
(
b⟨ j⟩n,k,i; u, v

)
. (3.1)
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Proof. We construct the required bijection as follows:

θ :
k−1⋃
j=0

j,k−i−1

D

(
a⟨ j⟩n,k,i \ b⟨ j⟩n,k,i; u, v

)
→D

(
b⟨k−i−1⟩

n,k,i \ a⟨k−i−1⟩
n,k,i ; u, v

)
.

If j ∈ {0, . . . , k− i−2, k− i, . . . , k−1}, for these indices, the boundary curve ∂b⟨ j⟩n,k,i is weakly above the boundary

curve ∂a⟨ j⟩n,k,i. A generalized Delannoy path P is dominated by a⟨ j⟩n,k,i \ b⟨ j⟩n,k,i if and only if P is dominated by

a⟨ j⟩n,k,i and a horizontal step of P touches the boundary ∂a⟨ j⟩n,k,i at
(
x, (i + j + 1) mod k

)
. If j = k − i − 1, here the

boundary curve ∂a⟨k−i−1⟩
n,k,i is weakly above the boundary curve ∂b⟨k−i−1⟩

n,k,i . A generalized Delannoy path P is

dominated by b⟨k−i−1⟩
n,k,i \ a⟨k−i−1⟩

n,k,i if and only if P is dominated by b⟨k−i−1⟩
n,k,i and there exists a horizontal step of

P that intersects with ∂b⟨k−i−1⟩
n,k,i excluding the terminal point (n, k).

Let j ∈ {0, . . . , k − i − 2, k − i, . . . , k − 1} and let
(
P, a⟨ j⟩n,k,i \ b⟨ j⟩n,k,i

)
be a GDPBP in D

(
a⟨ j⟩n,k,i \ b⟨ j⟩n,k,i; u, v

)
. Then

P = AH∗0B, where H∗0 is the horizontal step that touches the boundary ∂a⟨ j⟩n,k,i at
(
x, (i + j + 1) mod k

)
. We

define P′ = BH∗0A, then

θ
(
P, a⟨ j⟩n,k,i \ b⟨ j⟩n,k,i

)
= (P′,b⟨k−i−1⟩

n,k,i \ a⟨k−i−1⟩
n,k,i ) ∈ D

(
b⟨k−i−1⟩

n,k,i \ a⟨k−i−1⟩
n,k,i ; u, v

)
.

∂a⟨0⟩7,4
∂b⟨0⟩7,4

P

⇐⇒

∂a⟨2⟩7,4 ∂b⟨2⟩7,4

P

∂a⟨1⟩7,4∂b⟨1⟩7,4

P

⇐⇒

∂a⟨2⟩7,4 ∂b⟨2⟩7,4

P

∂a⟨3⟩7,4
∂b⟨3⟩7,4

P

⇐⇒

∂a⟨2⟩7,4 ∂b⟨2⟩7,4

P

Fig. 5. The bijection θ in the proof of Lemma 3.1.

To establish bijectivity, we construct the inverse mapping θ−1 as follows. Let (P′,b⟨k−i−1⟩
n,k,i \ a⟨k−i−1⟩

n,k,i ) be

a GDPBP in D
(
b⟨k−i−1⟩

n,k,i \ a⟨k−i−1⟩
n,k,i ; u, v

)
. Then P′ = AH(s)

0 B, where H(s)
0 marks the first horizontal step that
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touches the boundary ∂b<k−i−1>
n,k,i at level s. We define P = BH0A, then

θ−1(P′,b⟨k−i−1⟩
n,k,i \ a⟨k−i−1⟩

n,k,i ) =
(
P, a⟨(k−i−1−s) mod k⟩

n,k,i \ b⟨(k−i−1−s) mod k⟩
n,k,i

)
∈

k−1⋃
j=0

j,k−i−1

D

(
a⟨ j⟩n,k,i \ b⟨ j⟩n,k,i; u, v

)
.

For example, if a7,4,1 = (1, 3, 2, 1) and b7,4,1 = (1, 2, 3, 1), the bijection θ is given in Figure 5.

Proof of Theorem 1.1. Let an,k = (a0, . . . , ak−1) and bn,k = (b0, . . . , bk−1) be k-part compositions of n satisfying
the condition:

s∑
i=0

ai ≥

s∑
i=0

bi ∀s ∈ {0, . . . , k − 1}.

Define the cumulative difference xs :=
∑s

i=0(ai − bi). Then, by Lemma 3.1, we obtain

H(an,k; u, v) = H(a0 − x0, a1 + x0 − x1, . . . , ak−1 + xk−2 − xk−1; u, v) = H(bn,k; u, v). (3.2)

For arbitrary compositions, let ys := max
(∑s

i=0 ai,
∑s

i=0 bi
)
. The transformed composition

yn,k =
(
y0, y1 − y0, . . . , yk−2 − yk−3, yk−1 − yk−2

)
.

By (3.2), we have

H(yn,k; u, v) = H(an,k; u, v) = H(bn,k; u, v). □

∂c⟨2⟩7,4

P ⊙
⇐⇒ ∂c⟨2⟩6,3

+

∂c⟨2⟩7,4

P

⊙
⇐⇒

∂c⟨2⟩5,2
+

∂c⟨2⟩7,4

P

⊙

⇐⇒

∂c⟨2⟩6,4

+

Fig. 6. The bijection ϕ in the proof of Lemma 3.2.

As mentioned in Section 2, let S(n) be the set of all primitive generalized Schröder paths of order n, and
let sn = |s(n)|. We derive the following recurrence relation for H

(
an,k; u, v

)
.
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Lemma 3.2. Let an,k be the k-part composition of n. The number H
(
an,k; u, v

)
satisfies the following recurrence

relation:

H
(
an,k; u, v

)
=

k−1∑
i=1

siH
(
an−i,k−i; u, v

)
+H

(
an−1,k; u, v

)
. (3.3)

Proof. We assume that cn,k = (1, · · · , 1︸  ︷︷  ︸
k−1

,n − k + 1). Then we construct a bijection ϕ betweenD
(
c⟨ j⟩n,k,u, v

)
and

the following disjoint subsets:

k− j⋃
i=1

[
D

(
c⟨ j⟩n−i,k−i,u, v

)
× S(i)

]
∪

[
D

(
c⟨ j⟩n−1,k,u, v

)
× {(1, 0)}

]
.

We consider generalized Delannoy paths dominated by c⟨ j⟩n,k for j = 0, 1, · · · , k − 1. We will decompose these
paths into an initial subpath and a final subpath. Let 1 ≤ i ≤ k− j, and let (n− i, k− i) be the penultimate note
on the boundary ∂c⟨ j⟩n,k. The initial subpaths from (0, 0) to (n − i, k − i) are dominated by c⟨ j⟩n−i,k−i, and the final

subpaths from (n− i, k− i) to (n, k) belong to S(i). If the penultimate note on the boundary ∂c⟨ j⟩n,k is not belong

to {(n − i, k − i)|i = 1, 2, · · · , k − j}, the initial subpaths from (0, 0) to (n − 1, k) are dominated by ∂c⟨ j⟩n−1,k, and
the final subpaths are horizontal steps. In both cases, the decomposition is reversible, and hence, bijective.
By this decomposition, we have

H
(
cn,k; u, v

)
=

k−1∑
j=0

∣∣∣∣D (
c⟨ j⟩n,k,u, v

)∣∣∣∣
=

k−1∑
j=0

k− j∑
i=1

∣∣∣∣D (
c⟨ j⟩n−i,k−i,u, v

)∣∣∣∣ · |S(i)| +
k−1∑
j=0

∣∣∣∣D (
c⟨ j⟩n−1,k,u, v

)∣∣∣∣
=

k−1∑
i=1

siH
(
cn−i,k−i; u, v

)
+H

(
cn−1,k; u, v

)
.

For an arbitrary an,k, Lemma 3.1 implies that D(an,k; u, v) = D(cn,k; u, v). Thus, H
(
an,k; u, v

)
satisfies (3.3). An

example of the bijection ϕ is given in Figure 6.

Proof of Theorem 1.2. From (3.3), we find that the generalized Delannoy matrixH(u, v) = [Hn,k(u, v)]n,k∈N
satisfies the following recurrence relation:

Hn+1,k+1(u, v) = Hn,k(u, v) +
n−k∑
i=1

siHn−i+1,k+1, n, k ≥ 0.

From this recurrence, the associated A-matrix and ρ-sequence are

A =


1 s1 0 0 · · ·

0 s2 0 0 · · ·

0 s3 0 0 · · ·

0 s4 0 0 · · ·

...
...

...
...

. . .


, ρ = (0, 0, 0, · · · ).

Hence, from Lemma 2.1, the matrixH(u, v) is a Riordan array (1(t), f (t)). The generating functions of rows
of A-matrix are L[0](t) = 1 + s1t, and L[i](t) = si+1t for all i ≥ 1. The generating function of the ρ-sequence is
L
∗(t) = 0. Using (2.5) and (2.11), we get f (t) = t + s1t f (t) + s2t2 f (t) + s3t3 f (t) + · · · . Thus, f (t) = h(t), where

h(t) is determined by equation h(t) = tv(h(t))
1−u(h(t)) . By Remark 2.4, we have 1(t) =

∑
i≥1 iqiti−1 =

(
h(t)

t

)′
. □.
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4. The proof of Theorem 1.3

Our proof of Theorem 1.3 is bijective and is motivated by Guo and Wang’s bijective proof of [9, Theorem
2.1]. LetDm(an,k; u, v) denote the set of all GDPBPs (P, an,k) with m flaws. We will construct a bijection

ψ :
k−1⋃
j=0

Dm

(
a⟨ j⟩n,k; u, 1

)
→

k−1⋃
j=0

Dm−1

(
a⟨ j⟩n,k; u, 1

)
, (4.1)

which keeps the numbers of the vertical steps unchanged, to prove this result.
Let 1 ≤ m ≤ n and

(
P, a⟨ j⟩n,k

)
be a GDPBP in Dm

(
a⟨ j⟩n,k; u, 1

)
. Then P = A′H0B, where H0 is the rightmost

horizontal step intersecting the boundary ∂a⟨ j⟩n,k, and stays weakly below ∂a⟨ j⟩n,k. Since k ≥ 1, such H0 must
exist. We have two cases:

• If A′ is empty or A′ ends with a horizontal step, then we define P′ = A′BH0 and ψ
(
P, a⟨ j⟩n,k

)
=

(
P′, a⟨ j⟩n,k

)
.

• If A′ ends with a vertical step Ni, and the length of all vertical steps Ni of A′ is equal to d, then we
define P′ = BH0A′, and ψ

(
P, a⟨ j⟩n,k

)
=

(
P′, a⟨ j−d⟩

n,k

)
.

It is easy to see that ψ
(
P, a⟨ j⟩n,k

)
∈

⋃k−1
j=0Dm−1

(
a⟨ j⟩n,k; u, 1

)
. To prove that the mapping ψ is a bijection, we

construct its inverse ψ−1 as follows. Suppose that
(
P′, a⟨ j⟩n,k

)
is a GDPBP in Dm−1

(
a⟨ j⟩n,k; u, 1

)
. We consider the

following two cases:

∂a7,4

H0H0P

⇐⇒
∂a7,4

H0
H0P

∂a7,4

H0

N2

P

⇐⇒

∂a⟨2⟩7,4

P H0 N2

Fig. 7. The bijection ψ in the proof of Theorem 1.3.

• P′ is end with H0. We write P′ = A′BH0, where A′ = AH0 and this H0 is the rightmost flaw in A′B
that intersects a⟨ j⟩n,k if such H0 exists, and we write P′ = BH0(A′ = 0) otherwise. Then P = A′H0B and

ψ−1
(
P′, a⟨ j⟩n,k

)
=

(
P, a⟨ j⟩n,k

)
.

• P′ is end with Ni. We write P′ = BH0A′ = BH0ANi, where H0 is the leftmost flaw in
(
P, a⟨ j⟩n,k

)
that

intersects a⟨ j⟩n,k. Assume that the length of all vertical steps Ni of A′ is equal to d. then we let P = A′H0B

and ψ−1
(
P′, a⟨ j⟩n,k

)
=

(
P, a⟨ j+d⟩

n,k

)
.
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The example of the bijection ψ is given in Figure 7. From Theorem 1.2 and bijection (4.1), for 1 ≤ m ≤ n, we
have

Hm(an,k; u, 1) =
k−1∑
j=0

Dm(a⟨ j⟩n,k; u, 1) = H0(an,k; u, 1) = [tn−1]
(

h(t)
t

)′
· h(t)n−k,

where h(t) satisfies the equation h(t) = t
1−u(h(t)) . □
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