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Abstract. For a connected graph G, let µ(G) denote the distance spectral radius of G. A matching in a
graph G is a set of disjoint edges of G. The maximum size of a matching in G is called the matching number
of G, denoted by α(G). An odd [1, b]-factor of a graph G is a spanning subgraph G0 such that the degree
dG0 (v) of v in G0 is odd and 1 ≤ dG0 (v) ≤ b for every vertex v ∈ V(G). In this paper, we give a sharp upper
bound in terms of the distance spectral radius to guarantee α(G) > n−k

2 in an n-vertex t-connected graph G,
where 2 ≤ k ≤ n − 2 is an integer. We also present a sharp upper bound in terms of distance spectral radius
for the existence of an odd [1, b]-factor in a graph with given minimum degree δ.

1. Introduction

All graphs considered are finite, simple, and connected throughout this paper. For a graph G, we
use V(G) = {v1, v2, . . . , vn} and E(G) to denote the vertex set and the edge set of G, respectively. The set
of neighbors of the vertex vi is denoted by NG(vi), which is defined as the set of vertices adjacent to vi.
The degree of the vertex vi in G is the number of its neighbours, denoted by dG(vi) (or simply d(vi)), i.e.,
dG(vi) = |NG(vi)|. The minimum degree of G is denoted by δ(G) (or simply δ). For any two graphs G1 and
G2, we use G1 +G2 to denote the disjoint union of G1 and G2. The join of G1 and G2, denoted by G1 ∨G2, is
the graph obtained from G1 + G2 by adding all possible edges between V(G1) and V(G2). For S ⊆ V(G), we
use G − S to denote the subgraph obtained from G by deleting the vertices in S together with their incident
edges. For E′ ⊆ E(G), we use G−E′ to denote the subgraph obtained from G by deleting the edges in E′. Let
Kn denote an n-vertex complete graph. The connectivity of G is the minimum number of vertices whose
deletion induces a non-connected graph or a single vertex. For t ≥ 0, a graph G is called t-connected if the
connectivity of G is at least t.

For a connected graph G of order n, the distance between vertices vi and v j denoted by di j, is the length of
the shortest path between vi and v j. The distance matrix of G is defined as D(G) = (di j)n×n, where (i, j)-entry
is di j. The distance spectral radius of G is the largest eigenvalues of D(G), denoted by µ(G).
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For a graph G, a matching of G is a set of pairwise nonadjacent edges of G. The maximum size of a
matching in G is called matching number of G, denoted by α(G). A vertex v is said to be M-saturated
if v is incident to some edge of M. A matching M is called perfect matching if every vertex of G is M-
saturated. Therefore, if a graph G contains a perfect matching, it must have an even number of vertices and
α(G) = |V(G)|

2 .
One of our results is to characterize the matching number of a graph using the distance spectral radius.

Studying the matching of graphs using the spectral radius has received a lot of attention of researchers in
recent years. For example, Feng et al. [3] gave a spectral radius condition for a graph with given matching
number. O [14] proved a lower bound for the spectral radius in an n-vertex graph to guarantee the existence
of a perfect matching. Zhang [18] characterized the extremal graphs with maximum spectral radius among
all t-connected graphs on n vertices with matching number at most n−k

2 , where 2 ≤ k ≤ n − 2 is an integer.
Liu et al. [11] extended some results of [14] and [18], they proved sharp upper bounds for spectral radius
of Aα(G) in an n-vertex t-connected graph with the matching number at most n−k

2 . Zhang and van Dam
[19] gave a sufficient condition in terms of distance spectral radius for the k-extendability of a graph and
completely characterized the corresponding extremal graphs. Guo et al. [5] gave a spectral condition for
a graph to have a rainbow matching. For more literature on studying the matching of graphs using the
spectral radius, please refer to [7–9, 16, 20].

Inspired by [11] and [18], in this paper we firstly investigate the relation between the distance spectral
radius of an n-vertex t-connected graph and its matching number.

[a, b]-factor plays important roles in solving the graph decomposability problem. An [a, b]-factor of
a graph G is defined as a spanning subgraph G0 such that a ≤ dG0 (v) ≤ b for each v ∈ V(G). An odd
[1, b]-factor of a graph G is defined as a spanning subgraph G0 such that dG0 (v) is odd and 1 ≤ dG0 (v) ≤ b for
each v ∈ V(G). Obviously, a perfect matching is a special odd [1, b]-factor when b = 1.

Recently, the existence of an [a, b]-factor in a graph has been investigated by many researchers. In [15],
O provided some conditions for the existence of an [a, b]-factor in an h-edge-connected r-regular graph. In
[2], Fan et al. provided spectral conditions for the existence of an odd [1, b]-factor in a connected graph
with minimum degree δ and the existence of an [a, b]-factor in a graph, respectively. In [10], Li and Miao
considered the edge condition for a connected graph to contain an odd [1, b]-factor. For more literature on
[a, b]-factor, please refer to [6, 22, 23]

Motivated by [2], in this paper we provide a condition in terms of distance spectral radius for the
existence of an odd [1, b]-factor in a graph with given minimum degree.

The rest of the paper is structured as follows. In Section 2, we recall some important known concepts
and lemmas to prove the theorems in the following sections. In Section 3, we give a sharp upper bound
in terms of the distance spectral radius to guarantee α(G) > n−k

2 in an n-vertex t-connected graph G, where
2 ≤ k ≤ n−2 is an integer. In Section 4, we provide a sharp upper bound in terms of distance spectral radius
for the existence of an odd [1, b]-factor in a graph with given minimum degree δ.

2. Preliminaries

In this section, we give some concepts and useful lemmas which will be used in the follows. First
of all, we give some known lemmas about matching number and [1, b]-factor in a graph G. Moreover, for
any S ⊆ V(G) of a graph G, o(G − S) denotes the number of odd components in graph G − S.

Lemma 2.1. ([13]) Let G be a graph of order n. Then

α(G) =
1
2

(n −max{o(G − S) − |S| : for all S ⊆ V(G)}).

Lemma 2.2. ([1]) Let G be a graph and b be a positive odd integer. Then G contains an odd [1, b]-factor if and only
if for every S ⊆ V(G),

o(G − S) ≤ b|S|.
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Equitable quotient matrix plays an important role in the study of spectral graph theory. Thus, we will
give the definition of the equitable quotient matrix and its some useful properties.

Definition 2.3. ([17]) Let M be a complex matrix of order n described in the following block form

M =


M11 · · · M1t
...

. . .
...

Mt1 · · · Mtt

 ,
where the blocks Mi j are the ni × n j matrices for any 1 ≤ i, j ≤ t and n = n1 + n2 + · · · + nt. For 1 ≤ i, j ≤ t, let
bi j denote the average row sum of Mi j, i.e. bi j is the sum of all entries in Mi j divided by the number of rows. Then
B(M) = (bi j)(or simply B) is called the quotient matrix of M. If, in addition, for each pair i, j, Mi j has a constant row
sum, then B is called the equitable quotient matrix of M.

Lemma 2.4. ([17]) Let B be the equitable quotient matrix of M, where M is as shown in Definition 2.3. In addition,
let M be a nonnegative matrix. Then the spectral radius relation satisfies ρ(B) = ρ(M), where ρ(B) and ρ(M) denote
the spectral radii of B and M respectively.

Finally, we give some known results of the change of distance spectral radius caused by graph transfor-
mation.

Lemma 2.5. ([4]) Let e be an edge of G such that G − e is connected. Then µ(G) < µ(G − e).

Lemma 2.6. ([21]) Let n, c, s and ni(1 ≤ i ≤ c) be positive integers with n1 ≥ n2 ≥ · · · ≥ nc ≥ 1 and
n1 + n2 + · · · + nc = n − s. Then

µ(Ks ∨ (Kn1 + Kn2 + · · · + Knc )) ≥ µ(Ks ∨ (Kn−s−(c−1) + (c − 1)K1)),

with equality if and only if (n1,n2, · · · ,nc) = (n − s − (c − 1), 1, · · · , 1).

Lemma 2.7. ([12]) Let n, c, s, p and ni(1 ≤ i ≤ c) be positive integers with n1 ≥ 2p, n1 ≥ n2 ≥ · · · ≥ nc ≥ p and
n1 + n2 + · · · + nc = n − s. Then

µ(Ks ∨ (Kn1 + Kn2 + · · · + Knc )) ≥ µ(Ks ∨ (Kn−s−p(c−1) + (c − 1)Kp)),

with equality if and only if (n1,n2, · · · ,nc) = (n − s − p(c − 1), p, · · · , p).

3. Matching number and distance spectral radius of t-connected graphs

First of all, we give a lemma which was proposed by Zhang [18].

Lemma 3.1. ([18]) Let G be a connected graph on n vertices with connectivity t(G) and matching number α(G) < ⌊ n
2 ⌋

(implying that n − 2α(G) ≥ 2). Then t(G) ≤ α(G).

Let G be a t-connected graph on n vertices with α(G) ≤ n−k
2 , where 2 ≤ k ≤ n − 2 is an integer, and

let S ⊆ V(G) be a vertex subset such that α(G) = 1
2 (n − (o(G − S) − |S|)). Based on Lemma 3.1, we have

t ≤ |S| ≤ α(G) ≤ n−k
2 . It is natural to consider the following question.

Question 3.2: Can we find a condition in terms of distance spectral radius that makes the matching
number of an n-vertex t-connected graph G more than n−k

2 , where 2 ≤ k ≤ n − 2 is an integer? In addition,
can we characterize the corresponding spectral extremal graphs?

Based on the question, we give the following theorem.

Theorem 3.2. Let n, t and k be three positive integers, where 2 ≤ k ≤ n − 2, 1 ≤ t ≤ n−k
2 and n ≡ k(mod 2).

Let G be a t-connected graph of order n ≥ 9k + 10t − 11, and let α(G) be the matching number of G. If µ(G) ≤
µ(Kt ∨ (Kn+1−2t−k + (t + k − 1)K1)), then α(G) > n−k

2 unless G � Kt ∨ (Kn+1−2t−k + (t + k − 1)K1). (see Figure 1)
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Figure 1: The extremal graph of Theorem 3.2.

Before we prove Theorem 3.2, we will prove the following lemmas.

Lemma 3.3. Let n, t and k be three positive integers, where 2 ≤ k ≤ n−2, 1 ≤ t ≤ n−k
2 and n ≡ k(mod 2). Let G be a t-

connected graph of order n with matching number α(G). If α(G) ≤ n−k
2 , thenµ(G) ≥ µ(Ks∨(Kn+1−2s−k+(s+k−1)K1)),

where t ≤ s ≤ n−k
2 . Equality holds if and only if G � Ks ∨ (Kn+1−2s−k + (s + k − 1)K1).

Proof. Suppose that the distance spectral radius of G is as small as possible among all t-connected graph
on n vertices with matching number α ≤ n−k

2 . By Lemma 2.1, there exists a vertex subset S ⊆ V(G) such
that α(G) = 1

2 (n − (o(G − S) − |S|)). Then, by Lemma 2.5, we can claim that all components of G − S are odd
components. Otherwise, we can randomly remove one vertex from each even component of G−S to the set
S until all components of G − S are odd components. In this process, it can be checked that the number of
vertices in set S and the number of odd components G − S have the same increase. Therefore, the equality
o(G − S) − |S| = n − 2α(G) always holds.

Let s = |S| and q = o(G − S). Since o(G − S) − |S| = n − 2α(G) ≥ k, we have q ≥ s + k. Then we will prove
the following claims.

Claim 1. Let G1 = Ks ∨ (Kn1 + Kn2 + · · · + Knq ), where n1 ≥ n2 ≥ · · · ≥ nq are positive odd integers. Then
α(G1) ≤ n−k

2 and µ(G) ≥ µ(G1) with the equality holds if and only if G � G1.
Proof. Obviously, G is a spanning subgraph of G1. By Lemma 2.5, µ(G) ≥ µ(G1), where equality holds if

and only if G � G1. Note that o(G1 − S) = o(G − S) ≥ s + k and n − 2α(G1) = max{o(G1 − K) − |K| : for all K ⊆
V(G1)} ≥ o(G1 − S) − |S| ≥ k, we get α(G1) ≤ n−k

2 .
Claim 2. Let G2 = Ks ∨ (Kn′1 + Kn′2 + · · · + Kn′s+k

), where n′1 = n1 +
∑q

i=s+k+1 ni and n′i = ni for i = 2, · · · , s + k.
Then α(G2) ≤ n−k

2 and µ(G1) ≥ µ(G2) with the equality holds if and only if G1 � G2.
Proof. For i = 1, 2, · · · , q, Since ni is odd, we can take ni = 2ki + 1, where ki ≥ 0 and ki is integer. Since

s +
∑q

i=1 ni = s + q +
∑q

i=1(2ki) = n, we have q + s ≡ n ≡ k(mod 2). Thus q − s − k = q + s − k − 2s is even and
n′1 = n1+

∑q
i=s+k+1 ni is odd. Obviously, o(G2−S) = o(G1−S)− (q− s−k) = s+k and n−2α(G2) ≥ o(G2−S)−|S|.

Hence α(G2) ≤ n−k
2 . Since G1 is a spanning subgraph of G2, by Lemma 2.5, µ(G1) ≥ µ(G2), where the equality

holds if and only if G1 � G2.
Claim 3. Let G3 = Ks ∨ (Kn+1−2s−k + (s + k − 1)K1). Then α(G3) ≤ n−k

2 and µ(G2) ≥ µ(G3) with the equality
holds if and only if G2 � G3.

Proof. Obviously, o(G3 − S) = o(G2 − S) = s + k and n − 2α(G3) ≥ o(G3 − S) − |S|. Therefore α(G3) ≤ n−k
2 .

Moreover, by Lemma 2.6, µ(G2) ≥ µ(G3), where the equality holds if and only if G2 � G3.
Based on the above results, we can conclude that if G is a t-connected graph of order n with α(G) ≤ n−k

2 ,
then µ(G) ≥ µ(G3) = µ(Ks ∨ (Kn+1−2s−k + (s + k − 1)K1)) with the equality holds if and only if G � Ks ∨

(Kn+1−2s−k + (s + k − 1)K1). This completes the proof.

Lemma 3.4. Let n ≥ 9k + 10t − 11, t and k be three positive integers, where 2 ≤ k ≤ n − 2, 1 ≤ t ≤ n−k
2 and

n ≡ k(mod 2). Then µ(Ks ∨ (Kn+1−2s−k + (s + k − 1)K1)) ≥ µ(Kt ∨ (Kn+1−2t−k + (t + k − 1)K1)), where t ≤ s ≤ n−k
2 .

Equality holds if and only if Ks ∨ (Kn+1−2s−k + (s + k − 1)K1) � Kt ∨ (Kn+1−2t−k + (t + k − 1)K1).

Proof. For convenience, let Gs = Ks ∨ (Kn+1−2s−k + (s+ k− 1)K1) and Gt = Kt ∨ (Kn+1−2t−k + (t+ k− 1)K1). Since
t ≤ s ≤ n−k

2 , then we will discuss the proof in two ways according to the value of s.
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Case 1. s = t.
Then Gs � Gt. Clearly, the result holds.
Case 2. t + 1 ≤ s ≤ n−k

2 .
We divide V(Gs) into three parts: V(Ks), V(Kn+1−2s−k) and V((s + k − 1)K1). Then the distance matrix of

Gs, denoted by D(Gs), is (J − I)s×s Js×(n+1−2s−k) Js×(s+k−1)
J(n+1−2s−k)×s (J − I)(n+1−2s−k)×(n+1−2s−k) 2J(n+1−2s−k)×(s+k−1)

J(s+k−1)×s 2J(s+k−1)×(n+1−2s−k) 2(J − I)(s+k−1)×(s+k−1)

 ,
where Ji× j denotes the i × j all-one matrix and Ii×i denotes the i × i identity square matrix. Then the
equitable quotient matrix of the distance matrix D(Gs), denoted by Ms, with respect to the partition V(Ks)∪
V(Kn+1−2s−k) ∪ V((s + k − 1)K1) is

Ms =

s − 1 n + 1 − 2s − k s + k − 1
s n − 2s − k 2(s + k − 1)
s 2(n + 1 − 2s − k) 2(s + k − 2)

 .
Through a simple calculation, the characteristic polynomial of Ms is

fs(x) = x3 + (−s − n − k + 5)x2 + (5s2 + (−2n + 7k − 8)s − 2kn − n + 2k2
− 5k + 8)x

− 2s3 + (n − 3k + 8)s2 + (kn − 3n − k2 + 9k − 8)s − 2kn + 2k2
− 4k + 4.

We use y1(Ms) to denote the largest root of the equation fs(x) = 0. By Lemma 2.4, µ(Gs) = y1(Ms). What’s
more, we can get the equitable quotient matrix Mt of Gt = Kt ∨ (Kn+1−2t−k + (t+ k− 1)K1) by replacing s with
t. Similarly, we can get the characteristic polynomial ft(x) of Mt and µ(Gt) = y1(Mt) is the largest root of the
equation ft(x) = 0. By direct calculation, we have

fs(x) − ft(x) = (t − s)[x2 + (2n + 8 − 5(t + s) − 7k)x + 2s2 + (2t − n + 3k − 8)s

+ 2t2 + (−n + 3k − 8)t + 3n − kn + k2
− 9k + 8].

Obviously, Gs and Gt are both spanning subgraphs of Kn, by Lemma 2.5, µ(Gs) > µ(Kn) = n − 1 and
µ(Gt) > µ(Kn) = n − 1. Then we will give the proof that fs(x) − ft(x) < 0 for x ∈ [n − 1,+∞). Sine, t < s, thus
we only need to prove that p(x) > 0 for x ∈ [n − 1,+∞), where

p(x) = x2 + (2n + 8 − 5(t + s) − 7k)x + 2s2(2t − n + 3k − 8)s + 2t2 + (−n + 3k − 8)t + 3n − kn + k2
− 9k + 8.

Since the symmetry axis of p(x) is

x̂ =
5(t + s) + 7k − 2n − 8

2

=
5
2

s +
5
2

t +
7
2

k − n − 4

≤
5
4

(n − k) +
5
2

t +
7
2

k − n − 4

=
1
4

n +
5
2

t +
9
4

k − 4,

note that n ≥ 9k + 10t − 11 > 3k + 10
3 t − 4 and n > 3k + 10

3 t − 4 ⇐⇒
1
4 n + 5

2 t + 9
4 k − 4 < n − 1, we get

5(t+s)+7k−2n−8
2 < n − 1. Thus, p(x) is increasing with respect to x ∈ [n − 1,+∞), and

p(x) ≥ p(n − 1) = 2s2 + (3k + 2t − 6n − 3)s + 3n2 + 2t2 + (3k − 6n − 3)t + 7n − 8kn + k2
− 2k + 1.

Let
v(s) ≜ p(n − 1) = 2s2 + (3k + 2t − 6n − 3)s + 3n2 + 2t2 + (3k − 6n − 3)t + 7n − 8kn + k2

− 2k + 1.
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Recall that t + 1 ≤ s ≤ n−k
2 and n ≥ 9k + 10t − 11, then

dv
ds
= 4s + 3k + 2t − 6n − 3

≤ 2n − 2k + 3k + 2t − 6n − 3
= −4n + k + 2t − 3 < 0.

Thus, v(s) is decreasing with respect to s ∈ [t + 1, n−k
2 ]. Furthermore,

v(s) ≥ v(
n − k

2
) =

1
2

[n2
− (10t + 9k − 11)n + 4t2 + (4k − 6)t − k + 2]

>
1
2

[n2
− (10t + 9k − 11)n].

Note that n ≥ 10t + 9k − 11, we get v(s) > 0. Therefore, p(x) ≥ p(n − 1) = v(s) > 0, which implies fs(x) < ft(x)
for x ∈ [n − 1,+∞). In addition, by min{µ(Gs), µ(Gt)} > n − 1, we get that µ(Gs) > µ(Gt). This completes the
proof.

By Lemma 3.3 and Lemma 3.4, Theorem 3.2 clearly holds.
Let k = 2 in Theorem 3.2, we can get a condition in terms of distance spectral radius in a graph G with

order n and connectivity t such that α(G) > n
2 − 1. In addition, the matching number of G is no more then

n
2 . Hence, we have α(G) = n

2 . Then we can obtain the following corollary about the perfect matching based
on the distance spectral radius.

Corollary 3.5. Let n be an even integer. Suppose that t is a positive integer, where 1 ≤ t ≤ n−2
2 . Let G be a graph of

order n ≥ 10t + 7 with connectivity t. If µ(G) ≤ µ(Kt ∨ (Kn−2t−1 + (t + 1)K1)), then G contains a perfect matching
unless G � Kt ∨ (Kn−2t−1 + (t + 1)K1).

4. Odd [1, b]-factor and distance spectral radius of graph with given minimum degree

Amahashi [1] gave a sufficient and necessary condition for a graph contains an odd [1, b]-factor.
Therefore, it is natural to consider the following question.

Question 4.1: Can we obtain a distance spectral radius condition that makes a graph G with given
minimum degree δ having an odd [1, b]-factor? In addition, can we characterize the corresponding spectral
extremal graphs?

Based on the question, we give the following theorem.

Theorem 4.1. Let G be a connected graph of even order n ≥ max{2bδ2, ( 3
b + 5 + 2b)δ + 1 + 3(b+1)

b2 } with minimum
degree δ ≥ 3, where b is a positive odd integer. If µ(G) ≤ µ(Kδ ∨ (Kn−(b+1)δ−1 + (bδ + 1)K1)), then G has an odd
[1, b]-factor unless G � Kδ ∨ (Kn−(b+1)δ−1 + (bδ + 1)K1).(see Figure 2)
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Figure 2: The extremal graph of Theorem 4.1.
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Proof. Let G be a connected graph of even order n ≥ max{2bδ2, ( 3
b + 5 + 2b)δ + 1 + 3(b+1)

b2 }, where δ is the
minimum degree of G and δ ≥ 3, b is a positive odd integer. Suppose to the contrary that G has no odd
[1, b]-factor. Then by Lemma 2.2, there exists a vertex subset S ⊆ V(G) such that o(G − S) > b|S|. Let |S| = s
and o(G − S) = q. Since n is even, it is easy to see that s and q have the same parity. Since b is odd, we have
that bs and q have the same parity. Thus q = o(G− S) ≥ bs+ 2. Let t = bs+ 2. Since s+ t ≤ s+ q ≤ n, we have
s ≤ n−2

b+1 . Obviously, G is a spanning subgraph of Ks ∨ (Kn1 + Kn2 + · · · + Knt ) for some positive odd integer
n1 ≥ n2 ≥ · · · ≥ nt with

∑t
i=1 ni + s = n. Let G1 = Ks ∨ (Kn1 + Kn2 + · · · + Knt ). By Lemma 2.5,

µ(G) ≥ µ(G1), (1)

where equality holds if and only if G � G1. Let Gδ = Kδ ∨ (Kn−(b+1)δ−1 + (bδ+ 1)K1). Let S1 be the vertex set of
Ks. Since there exists a vertex subset S1 ⊆ V(G1) such that o(G1 − S1) = t = bs + 2 > bs = b|S1|, we have that
G1 contains no odd [1, b]-factor. Recall that s ≤ n−2

b+1 , then we will discuss the proof in three ways according
to the value of s.

Case 1. s = δ.
In this case, we have G1 = Ks ∨ (Kn1 + Kn2 + · · · + Knt ) = Kδ ∨ (Kn1 + Kn2 + · · · + Knbδ+2 ).
By Lemma 2.6,

µ(Gδ) = µ(Kδ ∨ (Kn−(b+1)δ−1 + (bδ + 1)K1)) ≤ µ(G1), (2)

with equality if and only if Gδ � G1.
Furthermore, combining with (1) and (2),

µ(G) ≥ µ(Gδ) = µ(Kδ ∨ (Kn−(b+1)δ−1 + (bδ + 1)K1)),

with equality if and only if Gδ � G.
Moreover, according to the assumed condition µ(G) ≤ µ(Kδ ∨ (Kn−(b+1)δ−1 + (bδ + 1)K1)), we have µ(G) =

µ(Kδ ∨ (Kn−(b+1)δ−1 + (bδ + 1)K1)).
Based on the above results, we conclude that G � Kδ ∨ (Kn−(b+1)δ−1 + (bδ + 1)K1)). In addition, take

S = V(Kδ), then o(G − S) = bδ + 2 = bs + 2 > bs = b|S|, which implies G does not have an odd [1, b]-factor.
Case 2. δ + 1 ≤ s ≤ n−2

b+1 .
Let Gs = Ks ∨ (Kn−(b+1)s−1 + (bs + 1)K1). By Lemma 2.6,

µ(Gs) = µ(Ks ∨ (Kn−(b+1)s−1 + (bs + 1)K1)) ≤ µ(G1), (3)

with equality if and only if Gs � G1. For the graph Gs, let D(Gs) denote the distance matrix of Gs. Then
the equitable quotient matrix of D(Gs), denoted by Ms, with respect to the partition V(Ks) ∪V(Kn−(b+1)s−1) ∪
V((bs + 1)K1) is

Ms =

s − 1 n − (b + 1)s − 1 bs + 1
s n − (b + 1)s − 2 2(bs + 1)
s 2(n − (b + 1)s − 1) 2bs

 ,
and the characteristic polynomial of Ms is

fs(x) = x3 + (−bs − n + 3)x2 + (2b2s2 + 3bs2
− 2bns + 3bs + 3s − 5n + 6)x − (b2 + b)s3

+ (bn + 2b2 + b − 1)s2 + (n − 2bn + 4b + 2)s + 4 − 4n.

We use y1(Ms) to denote the largest root of the equation fs(x) = 0. By Lemma 2.4, we can get µ(Gs) = y1(Ms).
Moreover, we obtain the equitable quotient matrix Mδ of Gδ = Kδ ∨ (Kn−(b+1)δ−1 + (bδ + 1)K1) by replacing s
with δ. Similarly, we can get the characteristic polynomial fδ(x) of Mδ and µ(Gδ) = y1(Mδ) is the largest root
of the equation fδ(x) = 0. By a calculation, we have

fs(x) − fδ(x) = (δ − s)[bx2 + (−2b2s − 3bs + 2bn − 2b2δ − 3bδ − 3b − 3)x

+ (b2s + bs − bn + b2δ + bδ − 2b2
− b + 1)s

+ (−bn + b2δ + bδ − 2b2
− b + 1)δ − n + 2bn − 4b − 2].
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Since Gs and Gδ are spanning subgraphs of Kn, by lemma 2.5, µ(Gs) > µ(Kn) = n−1 andµ(Gδ) > µ(Kn) = n−1.
Then we will prove that fs(x) − fδ(x) < 0 for x ∈ [n − 1,+∞). Since δ < s, we only need to prove c(x) > 0,
where

c(x) = bx2 + (−2b2s − 3bs + 2bn − 2b2δ − 3bδ − 3b − 3)x

+ (b2s + bs − bn + b2δ + bδ − 2b2
− b + 1)s

+ (−bn + b2δ + bδ − 2b2
− b + 1)δ − n + 2bn − 4b − 2.

By direct calculation, the symmetry axis of c(x) is

x̂ = −
(−2b2s − 3bs + 2bn − 2b2δ − 3bδ − 3b − 3)

2b

=
3
2b
+

3
2
+ (

3
2
+ b)δ +

3
2

s + bs − n

< 3 + (
3
2
+ b)δ + (

3
2
+ b)s − n

≤ 3 + (
3
2
+ b)δ + (

3
2
+ b)

n − 2
b + 1

− n

= 1 + (
3
2
+ b)δ +

1
2(b + 1)

n −
1

b + 1
.

Since δ ≥ 3 and n ≥ 2bδ2, we have n ≥ 2bδ2 > 2 + 2
3 (3 + 2b)δ > 2 + b+1

2b+1 (3 + 2b)δ. Note that n >

2 + b+1
2b+1 (3 + 2b)δ ⇐⇒ 1 + ( 3

2 + b)δ + 1
2(b+1) n −

1
b+1 < n − 1, we get − (−2b2s−3bs+2bn−2b2δ−3bδ−3b−3)

2b < n − 1, which
implies c(x) is increasing with respect to x ∈ [n − 1,+∞). Hence,

c(x) ≥ c(n − 1) = (b2 + b)s2 + (1 + 2b + bδ + b2δ − 4bn − 2b2n)s + 3bn2

+ b(b + 1)δ2 + (1 + 2b − 4bn − 2b2n)δ − 4n − 5bn + 1.

Let

h(s) ≜ c(n − 1) = (b2 + b)s2 + (1 + 2b + bδ + b2δ − 4bn − 2b2n)s + 3bn2

+ b(b + 1)δ2 + (1 + 2b − 4bn − 2b2n)δ − 4n − 5bn + 1.

Recall that δ < s ≤ n−2
b+1 and n ≥ 2bδ2, we obtain

dh
ds
= 2b(b + 1)s + 1 + 2b + bδ + b2δ − 4bn − 2b2n

≤ 2b(n − 2) + 1 + 2b + bδ + b2δ − 4bn − 2b2n

= −2bn + 1 − 2b + bδ + b2δ − 2b2n < 0.

Thus, h(s) is decreasing with respect to s ∈ [δ + 1, n−2
b+1 ]. By direct calculation,

h(s) ≥ h(
n − 2
b + 1

) =
1

b + 1
[b2n2

− (3 + 3b + b2 + (3b + 5b2 + 2b3)δ)n

+ b3δ2 + 2δ2b2 + bδ2 + b2δ + (b + 1)δ + b − 1]

>
1

b + 1
[b2n2

− (3 + 3b + b2 + (3b + 5b2 + 2b3)δ)n]

=
b2

b + 1
[n2
− ((

3
b
+ 5 + 2b)δ + 1 +

3(b + 1)
b2 )n].
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Note that n ≥ max{2bδ2, (
3
b
+ 5+ 2b)δ+ 1+ 3(b+1)

b2 } ≥ (
3
b
+ 5+ 2b)δ+ 1+ 3(b+1)

b2 . Hence c(x) ≥ c(n− 1) = h(s) > 0,
which implies fs(x) < fδ(x) for x ∈ [n − 1,+∞). Recall that min{µ(Gs), µ(Gδ)} > n − 1, we have µ(Gs) > µ(Gδ).
Furthermore, combining with (1) and (3), we get

µ(G) ≥ µ(G1) ≥ µ(Gs) > µ(Gδ) = µ(Kδ ∨ (Kn−(b+1)δ−1 + (bδ + 1)K1),

a contradiction.
Case 3. 1 ≤ s < δ.
Since G is a spanning subgraph of G1 = Ks ∨ (Kn1 + Kn2 + · · · + Knt ), where n1 ≥ n2 ≥ · · · ≥ nt is odd

integer, t = bs + 2 and n1 + n2 + · · · + nt = n − s. It is easy to see that δ(G1) ≥ δ(G) = δ, we have nt − 1 + s ≥ δ.
Thus, n1 ≥ n2 ≥ · · · ≥ nt ≥ δ − s + 1. Then we will proof that n1 ≥ 2(δ − s + 1). If n1 < 2(δ − s + 1), then
n1 ≤ 2δ − 2s + 1. Since n1 ≥ n2 ≥ · · · ≥ nt and 1 ≤ s < δ and δ ≥ 3, we obtain

n = s + n1 + n2 + · · · + nt

≤ s + (bs + 2)(2δ − 2s + 1)

= −2bs2 + (−3 + b + 2bδ)s + 4δ + 2

≤ −2b(
δ
2
+

1
4
−

3
4b

)2 + (−3 + b + 2bδ)(
δ
2
+

1
4
−

3
4b

) + 4δ + 2

=
bδ2

2
+

b + 5
2
δ +

b
8
+

9
8b
+

5
4

<
bδ2

2
+

b + 5
2
δ +

b
8
+ 3.

Let

l(b) = 2bδ2
− (

bδ2

2
+

b + 5
2
δ +

b
8
+ 3) =

3
2

bδ2
− (

b + 5
2
δ +

b
8
+ 3).

Note that l′(b) = 3
2δ

2
−

1
2δ −

1
8 > 0, we have l(b) ≥ l(1) = 3

2δ
2
− 3δ − 25

8 > 0. Thus n < 2bδ2. This is a
contradiction with n ≥ 2bδ2. Hence, n1 ≥ 2(δ − s + 1). Let Gs = Ks ∨ (Kn−s−(δ+1−s)(bs+1) + (bs + 1)Kδ+1−s). By
Lemma 2.7,

µ(G1) ≥ µ(Gs), (4)

where equality holds if and only if G1 � Gs. In what follows, we will discuss three subcases by classifying
the value of s.

Case 3.1. s = 1.
In this case, Gs = K1 ∨ (Kn−1−δ(b+1) + (b + 1)Kδ), and the equitable quotient matrix of its distance matrix is

M1 =

0 n − (b + 1)δ − 1 (b + 1)δ
1 n − (b + 1)δ − 2 2(b + 1)δ
1 2(n − (b + 1)δ − 1) 2bδ + δ − 1

 .
By a simple calculation, the characteristic polynomial of M1 is

f1(x) = x3 + (3 − bδ − n)x2 + (3 + 3δ + bδ + 3δ2 + 5bδ2 + 2b2δ2
− 2n − 3δn − 2bδn)x

+ (b2 + 3b + 2)δ2 + (−bn − 2n + b + 2)δ − n + 1.

Recall that in Case 2, by replacing s with δ, we can get the equitable quotient matrix Mδ of Gδ = Kδ ∨
(Kn−(b+1)δ−1 + (bδ + 1)K1). Thus, the characteristic polynomial of Mδ is

fδ(x) = x3 + (−bδ − n + 3)x2 + (2b2δ2 + 3bδ2
− 2bnδ + 3bδ + 3δ − 5n + 6)x − (b2 + b)δ3

+ (bn + 2b2 + b − 1)δ2 + (n − 2bn + 4b + 2)δ + 4 − 4n.
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Since δ ≥ 3 and n ≥ 2bδ2, for x ∈ [n − 1,+∞), we have

fδ(x) − f1(x) = [3n(δ − 1) − 2bδ2
− 3δ2 + 2bδ + 3]x

− (b2 + b)δ3 + (bn + b2
− 2b − 3)δ2 + (−bn + 3n + 3b)δ − 3n + 3

≥ [3n(δ − 1) − 2bδ2
− 3δ2 + 2bδ + 3](n − 1)

− (b2 + b)δ3 + (bn + b2
− 2b − 3)δ2 + (−bn + 3n + 3b)δ − 3n + 3

= (δ − 1)[3n2
− (bδ + 3δ + 3)n − b2δ2

− bδ2
− bδ]

≜ (δ − 1)m(n).

Observe that Gδ and Gs are spanning subgraphs of Kn, by lemma 2.5, µ(Gδ) > µ(Kn) = n − 1 and µ(Gs) >
µ(Kn) = n − 1. Then we will prove that fδ(x) − f1(x) > 0 for x ∈ [n − 1,+∞). Since δ ≥ 3, we only need to
prove m(n) > 0.

The symmetry axis of m(n) is

n̂ =
bδ + 3δ + 3

6
< 2bδ2.

Thus, m(n) is increasing with respect to n ∈ [2bδ2,+∞). By a simple calculation, we have

m(n) ≥ m(2bδ2) = bδ[12bδ3
− (2b + 6)δ2

− (7 + b)δ − 1] ≜ bδh(b).

It is easy to see that h(b) is increasing with respect to b ∈ [1,+∞). Thus h(b) ≥ h(1) = δ(12δ2
−8δ−8)−1 > 0 and

m(n) ≥ m(2bδ2) = bδh(b) > 0, which implies fδ(x) > f1(x) for x ∈ [n − 1,+∞). Note that min{µ(Gδ), µ(Gs)} >
n − 1, we have µ(Gs) > µ(Gδ). Furthermore, by (1) and (4),

µ(G) ≥ µ(G1) ≥ µ(Gs) > µ(Gδ) = µ(Kδ ∨ (Kn−(b+1)δ−1 + (bδ + 1)K1),

a contradiction.
Case 3.2. 2 ≤ s ≤ δ − 1.
Note that Gs = Ks ∨ (Kn−s−(δ+1−s)(bs+1) + (bs + 1)Kδ+1−s). The distance matrix D(Gs) of Gs is



Ks Kn−s−(δ+1−s)(bs+1) Kδ+1−s · · · Kδ+1−s

Ks J − I J J · · · J
Kn−s−(δ+1−s)(bs+1) J J − I 2J · · · 2J
Kδ+1−s J 2J J − I · · · 2J
...

...
...

...
...

...
Kδ+1−s J 2J 2J · · · J − I


,

where J denotes the all-one matrix and I denotes the identity square matrix. Then we use Ps to denote the
equitable quotient matrix of the distance matrix D(Gs) for the partition V(Ks)∪V(Kn−s−(δ+1−s)(bs+1))∪V((bs+
1)Kδ+1−s). Thus

Ps =

s − 1 n − s − (δ + 1 − s)(bs + 1) (δ + 1 − s)(bs + 1)
s n − s − (δ + 1 − s)(bs + 1) − 1 2(δ + 1 − s)(bs + 1)
s 2(n − s − (δ + 1 − s)(bs + 1)) 2bs(δ + 1 − s) + (δ − s)

 .
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and the characteristic polynomial of Ps is

fs(x) = x3 + (3 − n − bs − bδs + bs2)x2

+ [2b2s4 + (2b − 4b2
− 4b2δ)s3 + (−5b + 2b2

− 7bδ + 4b2δ + 2b2δ2 + 2bn)s2

+ (−3 + 3b − 3δ + 8bδ + 5bδ2 + 3n − 2bn − 2bδn)s − 3δn − 5n + 3δ2 + 6δ + 6]x

− b2s5 + (−b + 4b2 + 2b2δ)s4 + (5b − 5b2 + 3bδ − 6b2δ − b2δ2
− bn)s3

+ (1 − 8b + 2b2 + δ − 11bδ + 4b2δ − 2bδ2 + 2b2δ2
− n + 3bn + bδn)s2

+ (−4 + 4b − 5δ + 9bδ − δ2 + 5bδ2 + 4n − 2bn + δn − 2bδn)s

− 3δn − 4n + 3δ2 + 6δ + 4.

We use y1(Ms) to denote the largest real root of the equation fs(x) = 0. By Lemma 2.4, we have that
µ(Gs) = y1(Ms). Recall that in Case 3.1, we can get the equitable quotient matrix Mδ of Gδ = Kδ ∨
(Kn−(b+1)δ−1 + (bδ + 1)K1). Thus, the characteristic polynomial of Mδ is

fδ(x) = x3 + (−bδ − n + 3)x2 + (2b2δ2 + 3bδ2
− 2bnδ + 3bδ + 3δ − 5n + 6)x − (b2 + b)δ3

+ (bn + 2b2 + b − 1)δ2 + (n − 2bn + 4b + 2)δ + 4 − 4n,

and

fδ(x) − fs(x) = (δ − s)[(−b + bs)x2 + (−3 + 3b − 3δ + 3bδ + 2b2δ + 3n − 2bn

+ (−5b + 2b2
− 5bδ + 2bn)s + (2b − 4b2

− 2b2δ)s2 + 2b2s3)x

− b2s4 + (−b + 4b2 + b2δ)s3 + (5b − 5b2 + 2bδ − 2b2δ − bn)s2

+ (1 − 8b + 2b2 + δ − 6bδ − b2δ − n + 3bn)s

+ (bδ − 2b + 4)n − (b2 + b)δ2 + (2b2 + b − 4)δ + 4b − 4]
≜ (δ − s)H(x).

Since s ≤ δ − 1, then we will prove that H(x) > 0. In what follows, we will show H(x) > 0 in two steps.
Step 1. H(n − 1) > 0.

H(n − 1) = 3(1 − b + bs)n2

+ (2b2s3 + (b − 4b2
− 2b2δ)s2 + (−1 − 6b + 2b2

− 5bδ)s + (2b2 + 4b − 3)δ + 5b − 2)n

− b2s4 + (−b + 2b2 + b2δ)s3 + (3b − b2 + 2bδ)s2 + (1 − 2b + δ − bδ − b2δ)s

− (b2 + b)δ2
− (2b + 1)δ − 1.

Let q(n) ≜ H(n − 1), then the symmetry axis of q(n) is

n̂ = −
2b2s3 + (b − 4b2

− 2b2δ)s2 + (−1 − 6b + 2b2
− 5bδ)s + (2b2 + 4b − 3)δ + 5b − 2

6(1 − b + bs)
.

Note that

− (2b2s3 + (b − 4b2
− 2b2δ)s2 + (−1 − 6b + 2b2

− 5bδ)s + (2b2 + 4b − 3)δ + 5b − 2)

= 2 + 3δ − 4bδ + s + 5bδs + b(s − 1)(5 − s) − 2b2s(s − 1)2 + 2b2δ(s2
− 1)

= 2 + 3δ − 4bδ + s + 5bδs + b(s − 1)[2bs(δ − s) + 2bδ + 2bs − s + 5] > 0.
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Since 2 ≤ s ≤ δ − 1, we have

n̂ = −
2b2s3 + (b − 4b2

− 2b2δ)s2 + (−1 − 6b + 2b2
− 5bδ)s + (2b2 + 4b − 3)δ + 5b − 2

6(1 − b + bs)

<
2 + 3δ − 4bδ + s + 5bδs + b(s − 1)[2bs(δ − s) + 2bδ + 2bs − s + 5]

6b(s − 1)

=
2 + 3δ − 4bδ + s + 5bδs

6b(s − 1)
+

5 − s + 2bs(δ − s) + 2bδ + 2bs
6

<
2 + 5bδs

6b
+

3 + 2bsδ + 2bδ + 2bs
6

<
2 + 5bδ2

6b
+

3 + 2bδ2 + 2bδ + 2bδ
6

< 1 +
2
3

bδ + (
5
6
+

b
3

)δ2.

Note that δ ≥ 3, it can be checked that 1 + 2
3 bδ + ( 5

6 +
b
3 )δ2 < 2bδ2, which implies that q(n) is increasing with respect to

n ∈ [2bδ2,+∞). By a simple calculation,

q(n) ≥ q(2bδ2)

= 12b2(1 + b(s − 1))δ4 + (−6b + 8b2 + 4b3
− 10b2s − 4b3s2)δ3

+ (−5b + 9b2 + (−2b − 12b2 + 4b3)s + (2b2
− 8b3)s2 + 4b3s3)δ2

+ (−1 − 2b + (1 − b − b2)s + 2bs2 + b2s3)δ

− 1 + (1 − 2b)s + (3b − b2)s2 + (−b + 2b2)s3
− b2s4.

Next, we will prove that q(2bδ2) > 0 progressively scaling. Since δ ≥ s + 1 and s ≥ 2, we have

12b2(1 + b(s − 1))δ4 + (−6b + 8b2 + 4b3
− 10b2s − 4b3s2)δ3

= δ3[12b2(1 + b(s − 1))δ + (−6b + 8b2 + 4b3
− 10b2s − 4b3s2)]

≥ δ3[12b2(1 + b(s − 1))(s + 1) + (−6b + 8b2 + 4b3
− 10b2s − 4b3s2)]

= δ3(−6b + 20b2
− 8b3 + 2b2s + 8b3s2) > 0.

Then

δ2[(−6b + 20b2
− 8b3 + 2b2s + 8b3s2)δ + (−5b + 9b2 + (−2b − 12b2 + 4b3)s

+ (2b2
− 8b3)s2 + 4b3s3)]

≥ δ2[(−6b + 20b2
− 8b3 + 2b2s + 8b3s2)(s + 1)

+ (−5b + 9b2 + (−2b − 12b2 + 4b3)s + (2b2
− 8b3)s2 + 4b3s3)]

= δ2(−11b + 29b2
− 8b3 + (−8b + 10b2

− 4b3)s + 4b2s2 + 12b3s3).

Therefore

δ[(−11b + 29b2
− 8b3 + (−8b + 10b2

− 4b3)s + 4b2s2 + 12b3s3)δ

+ (−1 − 2b + (1 − b − b2)s + 2bs2 + b2s3)]

≥ δ[(−11b + 29b2
− 8b3 + (−8b + 10b2

− 4b3)s + 4b2s2 + 12b3s3)(s + 1)

+ (−1 − 2b + (1 − b − b2)s + 2bs2 + b2s3)]

= δ[−1 − 13b + 29b2
− 8b3 + (1 − 20b + 38b2

− 12b3)s

+ (−6b + 14b2
− 4b3)s2 + (5b2 + 12b3)s3 + 12b3s4].
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Finally, we get

δ[−1 − 13b + 29b2
− 8b3 + (1 − 20b + 38b2

− 12b3)s + (−6b + 14b2
− 4b3)s2 + (5b2 + 12b3)s3 + 12b3s4]

+ (−1 + (1 − 2b)s + (3b − b2)s2 + (−b + 2b2)s3
− b2s4)

> −1 − 13b + 29b2
− 8b3 + (1 − 20b + 38b2

− 12b3)s + (−6b + 14b2
− 4b3)s2 + (5b2 + 12b3)s3 + 12b3s4

+ (−1 + (1 − 2b)s + (3b − b2)s2 + (−b + 2b2)s3
− b2s4)

= −2 − 13b + 29b2
− 8b3 + (2 − 22b + 38b2

− 12b3)s + (−3b + 13b2
− 4b3)s2

+ (−b + 7b2 + 12b3)s3 + (−b2 + 12b3)s4

> 11b3s4 + 12b3s3
− 4b3s2

− 12b3s − 8b3 > 0.

According to the above calculation process, we obtain q(n) ≥ q(2bδ2) > 0, which implies that H(n − 1) > 0.
Step 2. H′(x) > 0 for x ∈ [n − 1,+∞).
Recall that

H(x) = (−b + bs)x2 + (−3 + 3b − 3δ + 3bδ + 2b2δ + 3n − 2bn

+ (−5b + 2b2
− 5bδ + 2bn)s + (2b − 4b2

− 2b2δ)s2 + 2b2s3)x

− b2s4 + (−b + 4b2 + b2δ)s3 + (5b − 5b2 + 2bδ − 2b2δ − bn)s2

+ (1 − 8b + 2b2 + δ − 6bδ − b2δ − n + 3bn)s

+ (bδ − 2b + 4)n − (b2 + b)δ2 + (2b2 + b − 4)δ + 4b − 4.

Then

H′(x) = 2(−b + bs)x + (−3 + 3b − 3δ + 3bδ + 2b2δ + 3n − 2bn

+ (−5b + 2b2
− 5bδ + 2bn)s + (2b − 4b2

− 2b2δ)s2 + 2b2s3)

≥ 2(−b + bs)(n − 1) + (−3 + 3b − 3δ + 3bδ + 2b2δ + 3n − 2bn

+ (−5b + 2b2
− 5bδ + 2bn)s + (2b − 4b2

− 2b2δ)s2 + 2b2s3)

= 2b2s3 + (2b − 4b2
− 2b2δ)s2 + (−7b + 2b2

− 5bδ + 4bn)s

+ 2b2δ + (5 + 3δ − 4n)b + 3(n − δ − 1)

≜ 1(s).

Next we prove that 1(s) > 0 for 2 ≤ s ≤ δ − 1. By direct calculation, we deduce that

1′(s) = 6b2s2 + b(4 − 4b(2 + δ))s + b(−7 + 2b − 5δ + 4n),

and the symmetry axis of 1′(s) is ŝ = δ3 +
2
3 −

1
3b .

Since n ≥ 2bδ2 and δ ≥ 3,

1′(s) ≥ 1′(
δ
3
+

2
3
−

1
3b

) = 4bn −
1
3

(2 + 13b + 11bδ + 2b2(1 + 4δ + δ2)).

Note that

1′(s) ≥ 4bn −
1
3

(2 + 13b + 11bδ + 2b2(1 + 4δ + δ2))

≥
1
3

[24b2δ2
− (2 + 13b + 11bδ + 2b2(1 + 4δ + δ2))]

=
1
3

[22b2δ2
− 2 − 13b − 11bδ − 2b2

− 8b2δ]

≜
1
3

v(b).

For b ∈ [1,+∞), we have
v′(b) = 44bδ2

− 13 − 11δ − 4b − 16bδ > 0,

Thus, v′(b) > 0 and v(b) ≥ v(1) = 22δ2
− 17 − 19δ > 0.
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Therefore, 1′(s) > 0 and 1(s) is increasing with respect to s ∈ [2, δ − 1]. Hence

1(s) ≥ 1(2) = (3 + 4b)n + 4(2b − 4b2
− 2b2δ) + (2b2

− 7b − 3)δ + 20b2
− 9b − 3.

Since δ ≥ 3, it can be checked that

1(2) = (3 + 4b)n + 4(2b − 4b2
− 2b2δ) + (2b2

− 7b − 3)δ + 20b2
− 9b − 3

> (3 + 4b)2bδ2
− 4(4b2 + 2b2δ) − (7b + 3)δ

> 6bδ2 + 8b2δ2
− 24b2δ − 10bδ

> 18bδ + 24b2δ − 24b2δ − 10bδ
= 8bδ > 0.

Thus, we have that H′(x) > 0 for x ∈ [n − 1,+∞).
Combining with Step 1 and Step 2, we get H(x) > 0 for x ∈ [n−1,+∞), which implies fδ(x) > fs(x) for x ∈ [n−1,+∞).

Observe that min{µ(Gδ), µ(Gs)} > n − 1, we have µ(Gs) > µ(Gδ).
Furthermore, by (1) and (4),

µ(G) ≥ µ(G1) ≥ µ(Gs) > µ(Gδ) = µ(Kδ ∨ (Kn−(b+1)δ−1 + (bδ + 1)K1),

a contradiction. This completes the proof.

Note that a perfect matching is a special odd [1, b]-factor when b = 1. Let b = 1, then we can obtain a
condition in terms of distance spectral radius about perfect matching with given minimum degree.

Corollary 4.2. Let G be a connected graph of even order n ≥ max{2δ2, 10δ + 7} with minimum degree δ ≥ 3. If
µ(G) ≤ µ(Kδ ∨ (Kn−2δ−1 + (δ + 1)K1)), then G has a perfect matching unless G � Kδ ∨ (Kn−2δ−1 + (δ + 1)K1).

Statements and Declarations

The authors declare that they have no conflict of interest.

Data availability

No data was used for the research described in the paper.

Acknowledgement

The authors would like to express their gratitude to the anonymous referee whose valuable comments
and suggestions resulted in the improvement of the presentation of the paper.

References

[1] A. Amahashi, On factors with all degrees odd, Graphs Combin. 1 (1985), 111–114.
[2] D.D. Fan, H.Q. Lin, H.L. Lu, Spectral radius and [a, b]-factors in graphs, Discrete Math. 345 (2022) 112892.
[3] L.H. Feng, G.H. Yu, X.D. Zhang, Spectral radius of graphs with given matching number, Linear Algebra Appl. 422 (2007) 133–1382.
[4] C.D. Godsil, Algebraic Combinatorics, Chapman and Hall Mathematics Series, New York, 1993.
[5] M.Y. Guo, H.L. Lu, X.X. Ma, X. Ma, Spectral radius and rainbow matchings of graphs, Linear Algebra Appl. 679 (2023) 30–37.
[6] Y.F. Hao, S.C. Li, X.C. Li, Vertex cut, eigenvalues, [a, b]-factors and toughness of connected bipartite graphs, Discrete Math. 347 (2024)

114118.
[7] Y.F. Hao, S.C. Li, Q. Zhao, On the Aα-spectral radius of graphs without large matchings, Bull. Malays. Math. Sci. Soc. 45 (2022)

3131–3156
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