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Abstract. For a connected graph G, let u(G) denote the distance spectral radius of G. A matching in a
graph G is a set of disjoint edges of G. The maximum size of a matching in G is called the matching number
of G, denoted by a(G). An odd [1, b]-factor of a graph G is a spanning subgraph Gy such that the degree
dg,(v) of vin Gy is odd and 1 < dg,(v) < b for every vertex v € V(G). In this paper, we give a sharp upper
bound in terms of the distance spectral radius to guarantee a(G) > %5 in an n-vertex t-connected graph G,

where 2 < k < n — 2 is an integer. We also present a sharp upper bound in terms of distance spectral radius
for the existence of an odd [1, b]-factor in a graph with given minimum degree 6.

1. Introduction

All graphs considered are finite, simple, and connected throughout this paper. For a graph G, we
use V(G) = {v1,v2,...,v,} and E(G) to denote the vertex set and the edge set of G, respectively. The set
of neighbors of the vertex v; is denoted by N¢(v;), which is defined as the set of vertices adjacent to v;.
The degree of the vertex v; in G is the number of its neighbours, denoted by d¢(v;) (or simply d(v;)), i.e.,
dg(v;) = INg(v;)|l. The minimum degree of G is denoted by 6(G) (or simply 0). For any two graphs G; and
Ga, we use G + G; to denote the disjoint union of G; and G,. The join of G; and G,, denoted by G1 V Gy, is
the graph obtained from G; + G, by adding all possible edges between V(G1) and V(G,). For S C V(G), we
use G — S to denote the subgraph obtained from G by deleting the vertices in S together with their incident
edges. For E’ C E(G), we use G — E’ to denote the subgraph obtained from G by deleting the edges in E’. Let
K, denote an n-vertex complete graph. The connectivity of G is the minimum number of vertices whose
deletion induces a non-connected graph or a single vertex. For ¢t > 0, a graph G is called t-connected if the
connectivity of G is at least ¢.

For a connected graph G of order 1, the distance between vertices v; and v; denoted by d;;, is the length of
the shortest path between v; and 0. The distance matrix of G is defined as D(G) = (dij)nxn, where (i, j)-entry
is d;;. The distance spectral radius of G is the largest eigenvalues of D(G), denoted by u(G).
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For a graph G, a matching of G is a set of pairwise nonadjacent edges of G. The maximum size of a
matching in G is called matching number of G, denoted by a(G). A vertex v is said to be M-saturated
if v is incident to some edge of M. A matching M is called perfect matching if every vertex of G is M-
saturated. Therefore, if a graph G contains a perfect matching, it must have an even number of vertices and
a(G) = Mo,

One of our results is to characterize the matching number of a graph using the distance spectral radius.
Studying the matching of graphs using the spectral radius has received a lot of attention of researchers in
recent years. For example, Feng et al. [3] gave a spectral radius condition for a graph with given matching
number. O [14] proved a lower bound for the spectral radius in an n-vertex graph to guarantee the existence
of a perfect matching. Zhang [18] characterized the extremal graphs with maximum spectral radius among
all t-connected graphs on n vertices with matching number at most %%, where 2 < k < n — 2 is an integer.
Liu et al. [11] extended some results of [14] and [18], they proved sharp upper bounds for spectral radius
of A,(G) in an n-vertex t-connected graph with the matching number at most *. Zhang and van Dam
[19] gave a sufficient condition in terms of distance spectral radius for the k-extendability of a graph and
completely characterized the corresponding extremal graphs. Guo et al. [5] gave a spectral condition for
a graph to have a rainbow matching. For more literature on studying the matching of graphs using the
spectral radius, please refer to [7-9, 16, 20].

Inspired by [11] and [18], in this paper we firstly investigate the relation between the distance spectral
radius of an n-vertex t-connected graph and its matching number.

[a, b]-factor plays important roles in solving the graph decomposability problem. An [a, b]-factor of
a graph G is defined as a spanning subgraph Gy such that a < dg,(v) < b for each v € V(G). An odd
[1, b]-factor of a graph G is defined as a spanning subgraph Gy such that d¢,(v) is odd and 1 < dg,(v) < b for
each v € V(G). Obviously, a perfect matching is a special odd [1, b]-factor when b = 1.

Recently, the existence of an [a, b]-factor in a graph has been investigated by many researchers. In [15],
O provided some conditions for the existence of an [4, b]-factor in an #-edge-connected r-regular graph. In
[2], Fan et al. provided spectral conditions for the existence of an odd [1, b]-factor in a connected graph
with minimum degree 6 and the existence of an [a, b]-factor in a graph, respectively. In [10], Li and Miao
considered the edge condition for a connected graph to contain an odd [1, b]-factor. For more literature on
[a, b]-factor, please refer to [6, 22, 23]

Motivated by [2], in this paper we provide a condition in terms of distance spectral radius for the
existence of an odd [1, b]-factor in a graph with given minimum degree.

The rest of the paper is structured as follows. In Section 2, we recall some important known concepts
and lemmas to prove the theorems in the following sections. In Section 3, we give a sharp upper bound
in terms of the distance spectral radius to guarantee a(G) > ”T*k in an n-vertex t-connected graph G, where
2 <k < n-2isaninteger. In Section 4, we provide a sharp upper bound in terms of distance spectral radius
for the existence of an odd [1, b]-factor in a graph with given minimum degree 0.

2. Preliminaries
In this section, we give some concepts and useful lemmas which will be used in the follows. First
of all, we give some known lemmas about matching number and [1, b]-factor in a graph G. Moreover, for

any S € V(G) of a graph G, o(G — S) denotes the number of odd components in graph G — S.

Lemma 2.1. ([13]) Let G be a graph of order n. Then
a(G) = %(n —max{o(G - 5) =S| : forall S C V(G)}).
Lemma 2.2. ([1]) Let G be a graph and b be a positive odd integer. Then G contains an odd [1, b]-factor if and only

if for every S C V(G),
o(G = S) < blS].
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Equitable quotient matrix plays an important role in the study of spectral graph theory. Thus, we will
give the definition of the equitable quotient matrix and its some useful properties.

Definition 2.3. ([17]) Let M be a complex matrix of order n described in the following block form

My -+ My
My - My

where the blocks M;j are the n; X nj matrices forany 1 < i,j <tandn =mny+ny+---+mn. For 1 <i,j <t, let
bij denote the average row sum of M;j, i.e. bjj is the sum of all entries in M;; divided by the number of rows. Then
B(M) = (bij)(or simply B) is called the quotient matrix of M. If, in addition, for each pair i, j, M;; has a constant row
sum, then B is called the equitable quotient matrix of M.

Lemma 2.4. ([17]) Let B be the equitable quotient matrix of M, where M is as shown in Definition 2.3. In addition,
let M be a nonnegative matrix. Then the spectral radius relation satisfies p(B) = p(M), where p(B) and p(M) denote
the spectral radii of B and M respectively.

Finally, we give some known results of the change of distance spectral radius caused by graph transfor-
mation.

Lemma 2.5. ([4]) Let e be an edge of G such that G — e is connected. Then u(G) < u(G —e).

Lemma 2.6. ([21]) Let n, ¢, s and ni(1 < i < c) be positive integers with ny > ny > --- > n. > 1 and
nm+ny+---+n.=n-s. Then

U(KS \ (Km + an +oet Knc)) = ‘U(Ks \ (Kn—s—(c—l) + (C - 1)K1))/
with equality if and only if (ny,nz,--- ,nc)=m—-s—-(c-1),1,---,1).

Lemma 2.7. ([12]) Let n, ¢, s, p and n;(1 < i < c) be positive integers with ny > 2p, ny =2 np > -+ > n, > p and
m+ny+---+n.=n-s.Then

p(Ks V (K, + Ky, + -+ Kpp ) 2 p(Ks V (Kyy—s—p(e-1) + (¢ = 1)K})),

with equality if and only if (ny,ny,--- ,n;) =(m—s—plc—1),p,--,p).

3. Matching number and distance spectral radius of t-connected graphs
First of all, we give a lemma which was proposed by Zhang [18].

Lemma 3.1. ([18]) Let G be a connected graph on n vertices with connectivity t(G) and matching number a(G) < | 5|
(implying that n — 2a(G) > 2). Then t(G) < a(G).

Let G be a t-connected graph on n vertices with a(G) < 5%, where 2 < k < n — 2 is an integer, and
let S € V(G) be a vertex subset such that a(G) = %(n — (0o(G — S) — |5])). Based on Lemma 3.1, we have
t <|S| < a(G) < . It is natural to consider the following question.

Question 3.2: Can we find a condition in terms of distance spectral radius that makes the matching
number of an n-vertex t-connected graph G more than 5, where 2 < k < n — 2 is an integer? In addition,
can we characterize the corresponding spectral extremal graphs?

Based on the question, we give the following theorem.

Theorem 3.2. Let n, t and k be three positive integers, where2 < k <n—-2,1 <t < ”T_k and n = k(mod 2).
Let G be a t-connected graph of order n > 9k + 10t — 11, and let a(G) be the matching number of G. If u(G) <
u(Ke V (Kyp1-2t— + (t + k = 1)Ky)), then a(G) > ”T‘k unless G = K; V (Ky1-2t— + (t + k = 1)Ky). (see Figure 1)
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t+k-1

Figure 1: The extremal graph of Theorem 3.2.

Before we prove Theorem 3.2, we will prove the following lemmas.

Lemma 3.3. Let n, t and k be three positive integers, where2 <k <n-2,1 <t < ”T_k andn = k(mod 2). Let G bea t-
connected graph of order n with matching number a(G). If 2(G) < ”T‘k, then u(G) > p(Ks Vv (Kys1-2s—k + (s +k=1)Ky)),
wheret <s < ”T_k Equality holds if and only if G = K V (Kpt1-25—k + (s + k = 1)K3).

Proof. Suppose that the distance spectral radius of G is as small as possible among all t-connected graph
on n vertices with matching number a < ’%k By Lemma 2.1, there exists a vertex subset S C V(G) such
that a(G) = %(n — (0o(G = S) = |S])). Then, by Lemma 2.5, we can claim that all components of G — S are odd
components. Otherwise, we can randomly remove one vertex from each even component of G — S to the set
S until all components of G — S are odd components. In this process, it can be checked that the number of
vertices in set S and the number of odd components G — S have the same increase. Therefore, the equality
o(G = S) — |S| = n — 2a(G) always holds.

Lets =S| and g = o(G - S). Since o(G — S) — |S| = n — 2a(G) > k, we have g > s + k. Then we will prove
the following claims.

Claim 1. Let G; = Ks V (K, + Ky, ++- + an), where 1y > 1, > --- > n, are positive odd integers. Then
a(Gy) < ”T*k and p(G) > p(Gq) with the equality holds if and only if G = G;.

Proof. Obviously, G is a spanning subgraph of G;. By Lemma 2.5, 1i(G) > u(Gq), where equality holds if
and only if G = G;. Note that o(G1 — S) = o(G = S) > s + kand n — 2a(G;) = max{o(G; — K) — |[K]| : for all K C
V(G1)} > o(G1 = S) = IS| > k, we get a(Gy) < ZE.

Claim 2. Let G, = K, vV (K”i + Ky +---+ Ky ), where n] = n; + Z?=s+k+1 njand n; =n;fori=2,---,s+k.
Then a(G;) < "T_k and u(Gy) = p(Gy) with the equality holds if and only if G; = G,.

Proof. Fori=1,2,---,4q, Since n; is odd, we can take n; = 2k; + 1, where k; > 0 and k; is integer. Since
s+):?:1ni :s+q+Z?:1(2ki) =n,we have g +s =n = k(mod 2). Thusg—s—k =g+s—k—2sisevenand
ny =n+ Z?:s+k+1 n; is odd. Obviously, 0(G, —S) = 0(G1 —S)—(g—s—k) = s+kand n —2a(G;) = 0o(G, - 5) —|S|.
Hence a(Gy) < %‘ Since G; is a spanning subgraph of G,, by Lemma 2.5, 11(G1) > p(G»), where the equality
holds if and only if G; = G,.

Claim 3. Let G3 = K, V (Kj31-25—k + (s + k — 1)K3). Then a(G3) < "T_k and p(Gy) = p(Gs) with the equality
holds if and only if G, = Gs.

Proof. Obviously, 0o(G3 — S) = o(G2 — 5) = s + k and n — 2a(G3) > o(G3 — S) — |S|. Therefore a(G3) < ”T‘k
Moreover, by Lemma 2.6, 11(G2) > 1(Gs), where the equality holds if and only if G, = Gs.

Based on the above results, we can conclude that if G is a t-connected graph of order n with a(G) < %%,
then p(G) = u(Gs) = u(Ks V (Kps1-2s—k + (s + k — 1)K;)) with the equality holds if and only if G = K, V
(Ky+1-25—k + (s + k = 1)K7). This completes the proof. [J

Lemma 3.4. Let n > 9k + 10t — 11, t and k be three positive integers, where 2 < k <n—-2,1 <t < ”T_k and
n = k(mod 2). Then u(Ks V (Kys1-2-k + (s + k = 1)K7)) = u(Ks V (Kyps1—20— + (t + k = 1)Ky)), where t <s < &
Equality holds if and only if Ks V (Kyy1—ps—k + (s + k = 1)Kq) = K; V (Kypqq-04— + (£ + k — 1)K7).

4
1

Proof. For convenience, let G; = K; V (Ky41-26-k + (s + k= 1)K1) and G; = K; V (Kyy41-2¢—k + (t + k = 1)K7). Since
t <'s < = then we will discuss the proof in two ways according to the value of s.
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Casel.s=t.

Then G, = G;. Clearly, the result holds.

Case2. t+1<s< 2k

We divide V(G;) into three parts: V(K;), V(Ky+1-2s—k) and V((s + k — 1)K;). Then the distance matrix of
G;, denoted by D(G;), is

(] - I)SXS ]sx(n+1—2s—k) st(s+k—1)
Joi=2—ioxs (I = Dnsr=2s—iyx(na1-26-k) 2] (n1-2—kyx(s+k=1) |,
Js+k-1)xs 2] (s+k=1)x(n+1-25k) 2(J = D(s+k-1)x(s+k-1)

where Jix; denotes the i j all-one matrix and [;x; denotes the i Xi identity square matrix. Then the
equitable quotient matrix of the distance matrix D(G;), denoted by M;, with respect to the partition V(K;) U
V(KrH—l—Zs—k) U V((S +k- 1)Kl) is

s n—2s—k 2(s+k—-1)

s—1 n+1-2s—-k s+k—1
M; =
S 2m+1-2s—-k) 2(s+k-2)

Through a simple calculation, the characteristic polynomial of M; is
fo(x) = x> + (=s —n — k + 5)x* + (58 + (=2n + 7k — 8)s — 2kn — n + 2k* — 5k + 8)x
—25% + (n — 3k + 8)s> + (kn — 3n — k* + 9k — 8)s — 2kn + 2k* — 4k + 4.

We use y1(M;) to denote the largest root of the equation f;(x) = 0. By Lemma 2.4, u(G;) = y1(M;). What's
more, we can get the equitable quotient matrix M; of G; = K; V (Ky41-2t¢ + (t + k — 1)K;) by replacing s with
t. Similarly, we can get the characteristic polynomial f;(x) of M; and u(G;) = y1(M;) is the largest root of the
equation f;(x) = 0. By direct calculation, we have

fs(x) = fi(x) = (t = s)[x* + (2n + 8 = 5(t +5) — 7k)x + 25* + (2t — n + 3k — 8)s
+ 282 + (—n + 3k — 8)t + 3n — kn + k* — 9k + 8].

Obviously, Gs; and G; are both spanning subgraphs of K,, by Lemma 2.5, u(Gs) > u(K,) = n -1 and
w(Gy) > u(Ky,) = n — 1. Then we will give the proof that f;(x) — fi(x) < 0 for x € [n — 1, +0). Sine, t < s, thus
we only need to prove that p(x) > 0 for x € [n — 1, +00), where

p(x) = x> + (2n + 8 — 5(t + 5) — 7k)x + 25°(2t — n + 3k — 8)s + 21> + (—n + 3k — 8)t + 3n — kn + k> — 9k + 8.
Since the symmetry axis of p(x) is

5t +s)+7k—2n-8

X =

2
:gs+;t+;k—n—4
SZ(n—k)+gt+gk—n—4
=}Ln+gt+2k—4,

note that n > 9%k + 10t =11 > 3k+ Lt —4and n > 3k+ Lt -4 — In+3t+5k-4<n-1, weget
5(t+s)+7k—2n—8

3 < n — 1. Thus, p(x) is increasing with respect to x € [n — 1, +0), and

p(x) > p(n —1) = 2s* + 3k + 2t — 61 — 3)s + 3n® + 2t* + (3k — 6n — 3)t + 7n — 8kn + k* — 2k + 1.

Let
v(s) 2 p(n — 1) = 25 + (3k + 2t — 61 — 3)s + 31> + 2t* + (3k — 61 — 3)t + 7n — 8kn + k* — 2k + 1.
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Recallthatt+1 <s < %‘ and n > 9k + 10t — 11, then

d—v=4s+3k+2t—6n—3
ds

<2n-2k+3k+2t—-6n-3
=—-4n+k+2t-3<0.

Thus, v(s) is decreasing with respect to s € [t + 1, ”T_k]. Furthermore,

n=ky_ %[nz—(10t+9k—11)n+4t2+(4k—6)t—k+2]

v(s) = o(
> %[rﬁ — (10t + 9k — 11)n].

Note that nn > 10f + 9k — 11, we get v(s) > 0. Therefore, p(x) > p(n — 1) = v(s) > 0, which implies f;(x) < fi(x)
for x € [n — 1, +00). In addition, by min{u(G;), u(Gt)} > n — 1, we get that u(G;) > u(Gy). This completes the
proof. O

By Lemma 3.3 and Lemma 3.4, Theorem 3.2 clearly holds.

Let k = 2 in Theorem 3.2, we can get a condition in terms of distance spectral radius in a graph G with
order 1 and connectivity t such that a(G) > 5 — 1. In addition, the matching number of G is no more then
5. Hence, we have a(G) = 5. Then we can obtain the following corollary about the perfect matching based
on the distance spectral radius.

Corollary 3.5. Let n be an even integer. Suppose that t is a positive integer, where 1 < t < %52, Let G be a graph of
order n > 10t + 7 with connectivity t. If u(G) < u(Ks vV (Ky-2-1 + (t + 1)K1)), then G contains a perfect matching
unless G = K; V (K,—2-1 + (£ + 1)Ky).

4. Odd [1, bl-factor and distance spectral radius of graph with given minimum degree

Amabhashi [1] gave a sufficient and necessary condition for a graph contains an odd [1, b]-factor.
Therefore, it is natural to consider the following question.

Question 4.1: Can we obtain a distance spectral radius condition that makes a graph G with given
minimum degree 6 having an odd [1, b]-factor? In addition, can we characterize the corresponding spectral
extremal graphs?

Based on the question, we give the following theorem.

Theorem 4.1. Let G be a connected graph of even order n > max{2b6%, (3 +5 + 2b)5 + 1 + 3(?{1)} with minimum
degree 6 > 3, where b is a positive odd integer. If u(G) < p(Ks V (Ku—@p+1y5-1 + (b0 + 1)K1)), then G has an odd
[1, b]-factor unless G = Ks V (Ky—p+1)5-1 + (b0 + 1)K7).(see Figure 2)

K K,

n—(b+1)5-1 5

b+l

Figure 2: The extremal graph of Theorem 4.1.
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Proof. Let G be a connected graph of even order n > max{2b6%, (3 + 5 + 2b)6 + 1 + 3“2:1)}, where 0 is the

minimum degree of G and 6 > 3, b is a positive odd integer. Suppose to the contrary that G has no odd
[1, b]-factor. Then by Lemma 2.2, there exists a vertex subset S C V(G) such that o(G — S) > b|S|. Let |S| = s
and o(G — S) = g. Since n is even, it is easy to see that s and g have the same parity. Since b is odd, we have
that bs and g have the same parity. Thus g = o(G—S) > bs + 2. Lett = bs + 2. Since s + ¢ <5+ q < n, we have
s < #=2. Obviously, G is a spanning subgraph of K; V (Ky, + K, + -+ + K;,) for some positive odd integer
m=ny > >mwith Y n+s=n Let G = K V (K, + Ky, + -+ + Kp,,). By Lemma 2.5,

#(G) =z u(Gy), 1)

where equality holds if and only if G = G;. Let Gs = K5 V (K;—p+1)5-1 + (b6 + 1)K1). Let S1 be the vertex set of
K;. Since there exists a vertex subset S; C V(Gy) such that o(Gy — S1) =t = bs + 2 > bs = b|S4|, we have that
G contains no odd [1, b]-factor. Recall that s < ZT_%/ then we will discuss the proof in three ways according
to the value of s.

Case1.s=0.

In this case, we have G; = K; V (Kyp, + Ky, + -+ + Kp,) = Ks V (K, + Ky, + -+ + Ky, )-

By Lemma 2.6,

w(Gs) = u(Ks V (Ky—@p+1y5-1 + (b0 + 1)K1)) < u(Gy), )

with equality if and only if Gs = G;.
Furthermore, combining with (1) and (2),

w(G) = w(Gs) = u(Ks vV (Ky—pr1y5-1 + (b6 + 1)Ky)),

with equality if and only if G5 = G.

Moreover, according to the assumed condition u(G) < p(Ks V (Ky—@p+1)5-1 + (b6 + 1)K1)), we have u(G) =
p(Ks V (Ki—@+1)5-1 + (b6 + 1)K7)).

Based on the above results, we conclude that G = K5 V (Ky—p+1y5-1 + (b6 + 1)Kj)). In addition, take
S = V(Ks), then o(G — S) = b0 + 2 = bs + 2 > bs = b|S|, which implies G does not have an odd [1, b]-factor.

Case2. 6+1<s< ZT_%

Let Gy = K Vv (Kn—(b+1)s—1 + (bs + 1)Ky). By Lemma 2.6,

w(Gs) = u(Ks V (Ky—ps1)s-1 + (bs + 1)Ky)) < u(Gy), 3)

with equality if and only if G; = G;. For the graph G;, let D(G;) denote the distance matrix of G;. Then
the equitable quotient matrix of D(G;), denoted by M;, with respect to the partition V(Ks) U V(K,_p11ys-1) U
V((bs + 1)K;) is
s—=1 n-@b+1)s-1 bs+1
M;=| s n—b+1)s-2 2(bs+1)|,
s 2m-(b+1)s-1) 2bs

and the characteristic polynomial of M; is
fo(x) = x> + (=bs — n + 3)x* + (2b*s* + 3bs® — 2bns + 3bs + 35 — 51 + 6)x — (b* + b)s®
+(bn +20% +b—1)s* + (n — 2bn + 4b + 2)s + 4 — 4n.
We use y1(M;) to denote the largest root of the equation f;(x) = 0. By Lemma 2.4, we can get 1(G;) = y1(M;).
Moreover, we obtain the equitable quotient matrix M; of G5 = Ks V (Ky—p+1)5-1 + (b0 + 1)K;) by replacing s

with 6. Similarly, we can get the characteristic polynomial f5(x) of Ms and u(Gs) = y1(Ms) is the largest root
of the equation fs(x) = 0. By a calculation, we have

fs(x) = fs(x) = (6 — 8)[bx* + (=2b%s — 3bs + 2bn — 2b*6 — 3bd — 3b — 3)x
+ (W +bs—bn+ b0 +bd—2b*> —b+ 1)s
+ (=bn +b*6 + bd — 2b* — b+ 1)6 — n + 2bn — 4b - 2].
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Since G, and G; are spanning subgraphs of K,;, by lemma 2.5, u(G;) > u(K,) = n—1and u(Gs) > p(K,) = n—1.

Then we will prove that f;(x) — fs(x) < 0 for x € [n —1,+00). Since 0 < s, we only need to prove c(x) > 0,
where

c(x) = bx* + (=2b%s — 3bs + 2bn — 2b*5 — 3bd — 3b — 3)x
+(W*s +bs —bn+ V0 +bd — 20> —b + 1)s
+(=bn+b*0+ b5 -2 —b+1)5 —n +2bn — 4b — 2.

By direct calculation, the symmetry axis of c(x) is

_ (=20 = 3bs + 2bn — 2b%5 — 365 - 30 - 3)

=

2b
—2%+3+( +b)5+§s+bs—n
<3+(§+b)6+(§+b)s—n
§3+(§+b)6+(§+b)ZT_f—n
=1+(§+b)‘5+2(b1+1)”_b11'

Since 6 > 3 and n > 2b&?, we have n > 2b5* > 2 + 2(3 +2b)6 > 2 + 2L(3 + 2b)5. Note that n >

_9h2e_ —h25— —3h— .
2+ 2L@B+20)0 = 1+(3+b)o+ 2(b+1 — g <n-1,we get — 205 3bs+2b”2b2bb 03073 <y — 1, which

implies c(x) is increasing with respect to x € [n — 1, +o0). Hence,

c(x) > c(n — 1) = (b* + b)s® + (1 + 2b + bd + b*5 — 4bn — 2b*n)s + 3bn®
+ b +1)5* + (1 +2b — 4bn — 2b*n)5 — 4n — 5bn + 1.

Let

h(s) £ c(n — 1) = (b* + b)s? + (1 + 2b + bd + b*6 — 4bn — 2b*n)s + 3bn>
+b(b + 1)6% + (1 + 2b — 4bn — 2b*n)6 — 4n — 5bn + 1.

Recall that 6 < s < %% and n > 2b6%, we obtain

%:2b(b+1)s+1+2b+b6+b26—4bn—2b2n

< 2b(n—2)+1+2b+bd+ b*5 — 4bn — 2b*n
= 2bn+1-2b+bd+b*5—2*n < 0.

Thus, h(s) is decreasing with respect to s € [6 + 1, =2]. By direct calculation,

h(s) > h(—) = [b2 2 _(3+3b+b*+ (3b+5b* + 2b%)d)n
+ b352 + 200 + b + o+ (b+1)0 + b —1]

> b—[b2 2 _ (34 3b+ b+ (3b + 5b% + 2b°))n]

b? 3(b+1)
b+1[n —(( +5+2b)0+1+ =

.
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Note that n > max{2b5?, ( +5+2b)o+1+ thl)} > ( +5+2b)0+1+ bﬂ) . Hence c¢(x) = c(n—1) = h(s) > 0,

which implies f;(x) < fb(x Yforx € [n—1,+00). Recall that min{u(Gs), ‘u(Gb)} >n -1, we have u(G;) > u(Gs).
Furthermore, combining with (1) and (3), we get

(G) = w(G1) = w(Gs) > w(Gs) = Ky V (Ky—p+1)6-1 + (b6 + 1)Ky),

a contradiction.

Case3.1<s<)d.

Since G is a spanning subgraph of G; = K; V (Ky; + Ky, + -+ + K,,), where ny > 15 > --- > n; is odd
integer, t = bs+2and ny + 1y +--- + 1, = n —s. It is easy to see that 6(G1) > 6(G) = 6, wehaven; —1+s > 0.
Thus, ny > np > -+ > n; > 6 —s+ 1. Then we will proof that n; > 2(6 —s +1). If ny < 2(6 —s + 1), then
n <20—-2s+1.Sincen; >np, >--->n;and 1 <s < 6 and 6 > 3, we obtain

n=s+mnm+ny+---+mn
<s+(bs+2)(20—2s+1)
:—2b52+(—3+b+2b6)s+46+2

6 1 3., 1

_—Zb(—+Z—E) + (- 3+b+2b6)( sta1~ 4b)+46+2

b b+56 b,9.5

2 T

bs? b+5 b

<7+T(S+8+3
Let b2 . b

0 b b
1) = 265° - (- + L56 Iy 3)=gb52—(i5 +3).

Note that I'(b) = 26> — 36 — 3 > 0, we have I(b) > I(1) = 36> —= 36— 2 > 0. Thus n < 2b5*>. This is a

contradiction with n > 2b5*>. Hence, n; > 2(6 —s +1). Let G, = K, V (Ki—s—(6+1-s)(ps+1) + (bs + 1)Ks11-). By
Lemma 2.7,

1(G1) = w(Gy), (4)

where equality holds if and only if G = G,. In what follows, we will discuss three subcases by classifying
the value of s.

Case 3.1. s = 1.
In this case, G; = K; V (Ky—1-50+1) + (b + 1)K;), and the equitable quotient matrix of its distance matrix is

0 n-G+1)5-1  (B+1)5
Mi=|1 n-@+1)5-2 20b+1)5
1 2m—-(b+1)0-1) 266+6-1

By a simple calculation, the characteristic polynomial of M; is

fi(x) = x> + (3= b6 — n)x* + (3 + 35 + b6 + 36° + 5b5° + 2b*6* — 21 — 36m — 2bdn)x
+ (PP +30+2)0%+(~bn —2n+b+2)0—n+1.

Recall that in Case 2, by replacing s with 6, we can get the equitable quotient matrix Ms of G5 = K5 V
(Ky—@+1)5-1 + (b0 + 1)K7). Thus, the characteristic polynomial of M is

fo(x) = x> + (=bd — n + 3)x* + (2b?6% + 3b6* — 2bnd + 3b6 + 36 — 51 + 6)x — (b* + b)5®
+(bn+ 2% + b —1)6° + (n — 2bn + 4b + 2)5 + 4 — 4n.
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Since 6 > 3 and n > 2bd?, for x € [n — 1, +0), we have

fs(x) — fi(x) = [3n(5 — 1) — 2b6* — 36% + 2b6 + 3]x
— (b + b)6° + (bn + b* — 2b — 3)6* + (=bn + 3n + 3b)d — 3n + 3
> [3n(6 — 1) — 2b6* — 36* + 2b6 + 3](n — 1)
—(B* + )% + (bn + b* = 2b - 3)8% + (=bn + 3n + 3b)6 — 3n + 3
(6 = 1)[3n* = (b5 + 35 + 3)n — b*6* — bd* — bo]
(6 — V)ym(n).

1> 1l

Observe that Gs and G, are spanning subgraphs of K, by lemma 2.5, u(Gs) > u(K,) = n — 1 and u(Gs) >
p(Ky) = n — 1. Then we will prove that f5(x) — fi(x) > 0 for x € [n — 1,+00). Since 6 > 3, we only need to
prove m(n) > 0.

The symmetry axis of m(n) is

A= W’% < b2

Thus, m(n) is increasing with respect to n € [2b5?, +0). By a simple calculation, we have
m(n) > m(2bd?) = bo[12b5° — (2b + 6)6* — (7 + b)d — 1] £ boh(b).
Itis easy to see that (D) is increasing with respect to b € [1, +c0). Thus h(b) > h(1) = 5(126*—~86—8)—1 > 0 and

m(n) > m(2b6%) = bdh(b) > 0, which implies f5(x) > fi(x) for x € [n — 1,+0). Note that min{u(Gs), p(G;)} >
n —1, we have u(G;) > u(Gs). Furthermore, by (1) and (4),

w(G) = w(Gr) = w(Gs) > u(Gs) = p(Ks vV (Ky—ps1y5-1 + (b6 + 1)Ky),

a contradiction.
Case3.2.2<s<6-1.
Note that Gs = K; V (Ky—s—(5+1-s)(ps+1) *+ (b5 + 1)Ks41-5). The distance matrix D(G;) of G; is

Ks Kn—s—((‘>+1—s)(bs+1) K6+1—5 e Ké+1—s
K J-1 J J o J
Ki—s—(5+1-s)(bs+1) J J-1 2] - 2]
Ksi1-s J 2] J-1r - 2
Ks+1-5 J 2] 2] e -1

where | denotes the all-one matrix and I denotes the identity square matrix. Then we use P; to denote the
equitable quotient matrix of the distance matrix D(G;) for the partition V(K,) U V(K —s—(s+1-s)s+1)) Y V((bs +
1)K5+175)- Thus

s—1 n—s—(O+1-s)bs+1) G+1-=s)bs+1)
P,=| s n-s—0+1-=s)(bs+1)-1 200+1-s)bs+1) |.
s 2n—s—(0+1-=s)(bs+1)) 2bs(0+1—5)+(0—5)
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and the characteristic polynomial of P; is

fs(x) = x> + (3 — n — bs — bds + bs?)x?
+ [20%s* + (2b — 4b* — 4b%6)s® + (=5b + 2b* — 7bd + 4b*5 + 2b76% + 2bn)s*
+ (=34 3b — 35 + 8b0 + 5b5* + 3n — 2bn — 2bdn)s — 36n — 5n + 36> + 66 + 6]x
— 025° + (=b + 4b* + 2b%6)s* + (5b — 5b* + 306 — 6b>6 — b>65° — bn)s®
+ (1 = 8b+2b% + 6 — 1155 + 4b*6 — 2b5* + 2b*6* — n + 3bn + bon)s>
+ (=4 + 4b — 55 + 9b5 — 6% + 5bd* + 4n — 2bn + dn — 2bdn)s
—36m —4n + 36> + 60 + 4.

We use y1(M;) to denote the largest real root of the equation fi(x) = 0. By Lemma 2.4, we have that
u(Gs) = y1(Ms). Recall that in Case 3.1, we can get the equitable quotient matrix Ms of G5 = K5 V
(Ky—@+1)5-1 + (b0 + 1)K7). Thus, the characteristic polynomial of M; is

fs(x) = 23 + (=b6 — n + 3)x* + (26?6 + 3b6* — 2bnd + 3b6 + 36 — 51 + 6)x — (b* + b)5°
+(bn+20% +b—1)0%* + (n— 2bn + 4b + 2)6 + 4 — 4n,

and

fo(x) = fo(x) = (0 = s)[(-b + bs)x® + (=3 + 3b — 36 + 3b5 + 2b%6 + 3n — 2bn
+ (=5b + 2b* — 5b5 + 2bn)s + (2b — 4b* — 2b76)s> + 2b°s%)x
— b?s* + (=b + 4b* + b*5)s® + (5b — 5b° + 2b6 — 2b*6 — bn)s>
+(1—8b+2V% + 06— 6bd — b*6 — n + 3bn)s
+ (b6 =2b +4)n — (b* + b)6* + (2b* + b — 4)5 + 4b — 4]
2 (6 — s)H(x).

Since s < 6 — 1, then we will prove that H(x) > 0. In what follows, we will show H(x) > 0 in two steps.
Step 1. H(n - 1) > 0.

H(n—-1)=3(1—b+ bs)n?
+ (2V%s® + (b — 4b* — 20%6)s® + (=1 — 6b + 21> — 5b6)s + (2b* + 4b — 3)d + 5b — 2)n
— D2t 4 (=b + 20 + b*6)s® + (3b — b* + 2b5)s? + (1 — 2b + 6 — bd — b*6)s
— P +b)o*—(2b+1)6 - 1.

Let g(n) £ H(n — 1), then the symmetry axis of g(n) is

202s% + (b — 4b? — 2b%8)s? + (=1 — 6b + 2b% — 5b0)s + (2b + 4b — 3)6 + 5b — 2
6(1—Db+bs) '

fl=—

Note that

— (2b%53 + (b — 4b% — 2b%5)s? + (=1 — 6b + 2b* — 5bd)s + (2b* + 4b — 3)5 + 5b — 2)
=2 435 —4bd + s + 5bds + b(s — 1)(5 — ) — 2b%s(s — 1) + 2b%5(s*> — 1)
=2+30—4bb + s + 5bds + b(s — 1)[2bs(6 — s) + 2b6 + 2bs —s + 5] > 0.
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Since2 <s <0 -1, we have

2b%5% + (b — 4b% — 2b%6)s? + (=1 — 6b + 2b — 5b0)s + (20 + 4b — 3)6 + 5b — 2
6(1 — b + bs)
<2+35—4b<3+s+5bés+b(s—1)[2bs(6—s)+2b6+2bs—s+5]
6b(s — 1)
_2+35—4b5+s+5b65+5—s+2bs(6—s)+2b6+2bs
6b(s — 1) 6
2 4+5bd6s 3+ 2bsd + 2bd + 2bs
< +
6b 6
2 + 5b5? N 3 + 2b6% + 2b5 + 2b6
6b 6
2 5 b .,
<1+§b6+(g+§)6.

fl=—

Note that 6 > 3, it can be checked that 1 + %bé + (g + g)é2 < 2b&*, which implies that q(n) is increasing with respect to
n € [2b5?, +0). By a simple calculation,

q(n) = q(2b&%)
=120%(1 + b(s — 1))6* + (—6b + 8b* + 4b° — 10bs — 4b°5%)6°
+ (=5b + 91 + (=2b — 12b* + 4b%)s + (2b* — 8b%)s? + 4b°5°)6*
+ (=1 =20+ (1 = b —b?)s + 2bs® + b*s%)d
— 14 (1 =2b)s + (3b — b»)s? + (=b + 2b%)s® — b2s*.

Next, we will prove that §(2b5%) > 0 progressively scaling. Since 6 > s + 1 and s > 2, we have

126%(1 + b(s — 1))6* + (—6b + 8b* + 4b° — 10b°s — 4b°5%)5°
= 8°[120%(1 + b(s — 1))0 + (—6b + 8V + 41> — 10b%s — 4b%s?)]
> 6°[126*(1 + b(s — 1))(s + 1) + (=6b + 8b + 4b° — 10b%s — 4b°5?)]
= 8%(—6b + 200% — 8b° + 2b%s + 8b%s2) > 0.

Then
8%[(=6b + 200 — 8b° + 2bs + 8b°5%)6 + (=5b + 9b* + (—2b — 121* + 4b°)s
+ (2b% — 86%)s? + 41°5°)]
> 6%[(—6b + 200> — 8b° + 2b%s + 8b%s%)(s + 1)
+ (=5b + 9% + (=2b — 120* + 4b%)s + (2b* — 8b%)s? + 4b°5”)]
= 0*(—11b + 29V — 8b° + (8D + 100° — 4b°)s + 4b°s* + 12b°5°).
Therefore

S[(=11b + 291> — 8b° + (—8b + 106 — 4b°%)s + 4b%s% + 120°5°)6
+ (=1 =2b+ (1 = b—b%s +2bs? + 1?s°)]
> 8[(—11b + 290 — 8b° + (=8b + 100> — 4b%)s + 4b?s* + 12b°s%)(s + 1)
+(=1=2b+ (1 —b—b*s + 2bs* + b*s%)]
= 5[~1 - 13b + 296* — 8b° + (1 — 20b + 38b% — 12b%)s
+ (—6b + 141 — 4b°)s* + (5b* + 12b°)s® + 12b%s%].
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Finally, we get

8[=1—13b + 291> — 8L + (1 — 20b + 38b> — 12b°)s + (—6b + 14b> — 4b>)s* + (5b* + 12b°)s® + 12b%s%]
+ (=1 + (1 =2b)s + (3b — b*)s* + (=b + 2b%)s° — b*s*)
> —1—13b + 296> — 8b° + (1 — 20b + 38> — 12b%)s + (—6b + 14b? — 4b°)s® + (5b + 12b°)s® + 12b%s*
+(=1+ (1 =2b)s + (38b — b?)s? + (=b + 2b%)s® — 1?s*)
= —2—13b + 29b* — 8b° + (2 — 22b + 38b* — 12b%)s + (=3b + 131? — 4b°)s?
+ (=b + 7% + 12b%)s® + (—=b* + 12b°)s*
> 116%s* + 12b%s° — 4b%s* — 12b%s — 8b° > 0.
According to the above calculation process, we obtain g(1) > q(2b6%) > 0, which implies that H(rn — 1) > 0.
Step 2. H'(x) > O for x € [n — 1, 4+00).
Recall that
H(x) = (b + bs)x® + (=3 + 3b — 36 + 3b + 2b6 + 3n — 2bn
+ (=5b + 21> — 5b5 + 2bn)s + (2b — 4b* — 2b26)s + 2b*s%)x
— D%t + (b + 41 + b*6)s® + (5b — 5b? + 2b6 — 2125 — bn)s®
+ (1 —8b+2b* + 6 —6b5 — b*6 — n + 3bn)s
+ (b6 —2b + 4)n — (b* + b)5* + (2% + b — 4)6 + 4b — 4.
Then
H'(x) = 2(=b + bs)x + (=3 + 3b — 30 + 3b0 + 206 + 3n — 2bn
+ (=5b + 2b* — 5b6 + 2bn)s + (2b — 4b> — 2b75)s? + 2b%°)
> 2(=b + bs)(n — 1) + (=3 + 3b — 36 + 3b5 + 2b%5 + 3n — 2bn
+ (=5b + 2b* — 5b5 + 2bn)s + (2b — 41> — 2b26)s? + 2b°s°%)
= 20%s® + (2b — 4b% — 2b%6)s? + (=7b + 2b* — 5b5 + 4bn)s
+20%5 + (5+36—4n)b+3(n—06-1)
= 9(9)-
Next we prove that g(s) > 0 for 2 < s < 6 — 1. By direct calculation, we deduce that
g'(s) = 6b°s% + b(4 — 4b(2 + 8))s + b(=7 + 2b — 56 + 4n),
and the symmetry axis of g'(s)is § = 3 + 2 — .
Since n > 2b5%* and 6 > 3,
7(s) > g’(g + ; - —)=4bn- %(2 + 13D + 1156 + 20%(1 + 46 + 62)).

Note that

g'(s) > 4bn — %(z +13b + 1166 + 2b%(1 + 46 + 6%))

> %[2419252 — (24 13b + 1156 + 2b*(1 + 46 + 6%))]
= %[221#52 —2—13b - 11b6 — 2b* — 8b%6]
2 %v(b).

For b € [1,+0), we have
v’ (b) = 44b5* — 13 — 116 — 4b — 16b5 > 0,
Thus, v'(b) > 0 and v(b) > v(1) = 226*> — 17 — 196 > 0.
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Therefore, g’(s) > 0 and g(s) is increasing with respect to s € [2,6 — 1]. Hence
g(s) = 9(2) = (3 + 4b)n + 4(2b — 4b* — 2b%6) + (2b* — 7b — 3)5 + 20b> — 9b — 3.
Since 6 > 3, it can be checked that

g(2) = (3 + 4b)n + 4(2b — 4b* — 2b5) + (2b* — 7b — 3)5 + 200> — 9b — 3
> (3 + 4b)2b5% — 4(4b* + 2b%8) — (7b + 3)6
> 6b5° + 8b26% — 24b75 — 10b6
> 18b6 + 24b%6 — 24b*6 — 1066
= 8b6 > 0.

Thus, we have that H'(x) > 0 for x € [n — 1, +00).

Combining with Step 1 and Step 2, we get H(x) > 0 for x € [n—1, +00), which implies f5(x) > fi(x) forx € [n—1, +00).
Observe that min{u(Gs), u(Gs)} > n — 1, we have p(Gs) > u(Gs).

Furthermore, by (1) and (4),

H(G) = p(Gr) 2 p(Gs) > p(Ge) = p(Ks V (Ky—enyo-1 + (b6 + 1)Ky),
a contradiction. This completes the proof. [J

Note that a perfect matching is a special odd [1, b]-factor when b = 1. Let b = 1, then we can obtain a
condition in terms of distance spectral radius about perfect matching with given minimum degree.

Corollary 4.2. Let G be a connected graph of even order n > max{262,106 + 7} with minimum degree & > 3. If
w(G) < u(Ks v (Ky=2s-1 + (6 + 1)K1)), then G has a perfect matching unless G = Ks V (Ky—25-1 + (0 + 1)Kj).
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