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Abstract. Combinatorial properties of some ideals related to n-partite graphs are examined. A description
of the integral closure expressed through the log set of edge ideals of complete n-partite graphs is illustrated
together with the fact that edge ideals of a strong quasi-n-partite graph are not integrally closed. Moreover,
we are able to determine the structure and the invariants of the integral closure of the ideals of vertex covers
for the edge ideals associated to a strong quasi-n-partite graph.

1. Introduction

In the present paper we consider classes of monomial ideals that can arise from graph theory [1, 4–6].
More precisely, we consider classes of n-partite graphs and study combinatorial properties of them.

Let G be a graph on the vertex set V(G). A quasi-n-partite graph is an n-partite graph with vertex set V(G)
partitioned into V1 ∪ V2 ∪ · · · ∪ Vn such that Vi = {xi1, . . . , ximi } for i = 1, . . . ,n, and some vertices in V(G)
have loops. A strong quasi-n-partite graph is a complete n-partite graph having loops in all its vertices. When
n = 2 these are the strong quasi-bipartite graphs. A great deal of knowledge on the strong quasi-bipartite
graphs is accumulated in several papers [11–13].

Algebraic objects attached to G are the edge ideals I(G). If G is a bipartite graph having bipartition
{V1,V2}, edge ideals are monomial ideals of a polynomial ring in two sets of variables associated to such
bipartition.

In detail, we are interested to handle the integral closure of edge ideals of strong quasi-n-partite graphs
and to study algebraic aspects of it. Let K be a field and S = K[x1, . . . , xn] the polynomial ring in n variables
over K with each xi of degree 1. Next we consider the polynomial ring T over K in the variables

x11, . . . , x1m1 , x21, . . . , x2m2 , . . . , xn1, . . . , xnmn ,

and let L be a monomial ideal of T.
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We use the notation X for the set {x11, . . . , x1m1 , x21, . . . , x2m2 , . . . , xn1, . . . , xnmn }. The integral closure L of L
is the set of all elements of T which are integral over L. The integral closure of a monomial ideal is again a
monomial ideal,

L = ( f | f is a monomial in T and f k
∈ Lk, for some k ≥ 1).

Then L is integrally closed, if L = L. Put

a j = (a j11 , . . . , a j1m1
, . . . , a jn1 , . . . , a jnmn

) ∈Nm1 ⊕ · · · ⊕Nmn .

If L is generated by monomials Xa1 , . . . ,Xaq , a combinatorial description of the integral closure of L is the
following:

L = (X⌈α⌉ | α ∈ conv(a1, . . . , aq)),

where α ∈ Qm1+···+mn
+ , conv(a1, . . . , aq) is the set of all convex combinations of a1, . . . , aq, and ⌈ ⌉ denotes the up-

per integer. When Xa = xa11
11 · · · x

a1m1
1m1
· · · xan1

n1 · · · x
anmn
nmn

, we write log(Xa) to indicate a = (a11, . . . , a1m1 , . . . , an1, . . . ,

anmn ) ∈ Zm1+···+mn
+ . Given a set F of monomials, the log set of F , denoted by log(F ), consists of all log(Xa)

such that Xa
∈ F .

The present paper is organized as follows. In Section 2 we are able to give a description of the integral
closure of an ideal L expressed by its log set for some classes of ideals associated to complete n-partite
graphs. In Proposition 2.15 we prove that the integral closure of I(G) of a strong quasi-n-partite graph G is
generated by binomials of degree 2. Furthermore, we prove that the edge ideal of a strong quasi-n-partite
graph G is not integrally closed and we give an expression for its integral closure, see Corollary 2.16 and
Theorem 2.18.

In Section 3 algebraic and homological invariants of the integral closure of I(G) related to a strong
quasi-n-partite graph G are studied. There is a one to one correspondence between minimal vertex covers
of any graph and minimal prime ideals of its edge ideal; we generalize to a complete n-partite graph with
loops the notion of ideal of (minimal) vertex covers and determine the structure of the ideals of vertex
covers Ic(G) for the edge ideals associated to G.

In Corollary 3.2 we show that the integral closure of I(G) associated to a strong quasi-n-partite graph
G has a linear resolution. We also give formulae for invariants of T/I(G) and T/Ic(G) for the classes of
edge ideals associated to a strong quasi-n-partite graph G such as dimension, projective dimension, depth,
Castelnuovo-Mumford regularity.

2. Integral closure of edge ideals

Let K be a field, and let S = K[x1, . . . , xn] be the polynomial ring in n variables over K with each xi of
degree 1.

We use the notation X for the set {x11, . . . , x1m1 , x21, . . . , x2m2 , . . . , xn1, . . . , xnmn }. Let T = K[X] be the poly-
nomial ring over a field K in m1 + · · · +mn variables, and let L ⊂ T be a monomial ideal which is generated
by monomials Xa1 , . . . ,Xaq . Here

Xa j = x
a j11
11 · · · x

a j1m1
1m1

x
a j21
21 · · · x

a j2m2
2m2
· · · x

a jn1
n1 · · · x

a jnmn
nmn

for a j = (a j11 , . . . , a j1m1
, a j21 , . . . , a j2m2

, . . . , a jn1 , . . . , a jnmn
) ∈Nm1 ⊕ · · · ⊕Nmn .

The integral closure of L is the set of all elements of T which are integral over T. Since the integral closure
of a monomial ideal is again a monomial ideal [7, Theorem 1.4.2], one has the following description of the
integral closure of L:

L = ( f | f is a monomial in T and f k
∈ Lk, for some k ≥ 1).

The ideal L is integrally closed, if L = L.
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Let β ∈ Qn
+, where Q+ is the set of nonnegative rational numbers. We define the upper integer or ceiling

of β as the vector ⌈β⌉whose entries are given by ⌈β⌉i, where

⌈β⌉i =

{
βi if βi ∈N

⌊βi⌋ + 1 if βi <N

and where ⌊βi⌋ stands for the integer part of βi. In addition, we denote the set {xi1, . . . , ximi } by Xi for
i = 1, . . . ,n. Then the integral closure of L is the monomial ideal:

L = (X⌈α⌉ | α ∈ conv(a1, . . . , aq)),

where

conv(a1, . . . , aq) =


q∑

j=1

λ ja j

∣∣∣∣∣ q∑
j=1

λ j = 1, λ j ∈ Q+


is the set of all convex combinations of a1, . . . , aq.

Example 2.1. Let T = K[x11, x12, x13, x21, x22] be the polynomial ring over a field K, and let L = (x2
11x12x21, x12x13x2

22, x13x2
21)

be the monomial ideal of T. By using Normalize [14], we obtain that

L = (Xα1 Xα
′

2 | (α, α
′) ∈ conv((2, 1, 0, 1, 0), (0, 1, 1, 0, 2), (0, 0, 1, 2, 0)))

= (Xα1 Xα
′

2 | (α, α
′) ∈ {λ1(2, 1, 0, 1, 0) + λ2(0, 1, 1, 0, 2) + λ3(0, 0, 1, 2, 0),

λ1, λ2, λ3 ∈ Q+, λ1 + λ2 + λ3 = 1})
= (x2

11x12x21, x12x13x2
22, x13x2

21, x12x13x21x22).

The purpose of this section is to study the integral closure of monomial ideals in the polynomial ring
T = K[X].

We recall the notions that come from the general theory for monomial ideals (see for instance [15]).

Definition 2.2. Let T = K[X] be a polynomial ring over a field K in the variables x11, . . . , x1m1 , . . . , xn1, . . . , xnmn .
If Xa = xa11

11 · · · x
a1m1
1m1
· · · xan1

n1 · · · x
anmn
nmn

, we set

log(Xa) = a = (a11, . . . , a1m1 , . . . , an1, . . . , anmn ) ∈ Zm1+···+mn
+ .

Given a set F of monomials, the log set of F , denoted by log(F ), consists of all log(Xa), with Xa
∈ F ,

log(F ) = {log(Xa) = a ∈ Zm1+···+mn
+ | Xa

∈ F }.

Example 2.3. LetF = {x2
11x21, x3

11x2
21, x12x22}be a set of monomials in the polynomial ring T = K[x11, x12, x21, x22].

The log set of F is log(F ) = {(2, 0, 1, 0), (3, 0, 2, 0), (0, 1, 0, 1)}.

Definition 2.4. Let L be an ideal of T = K[X] generated by the set of monomials of F . We define log(L) =
{log(Xa) = a ∈ Zm1+···+mn

+ | Xa
∈ L}.

Proposition 2.5. Let L be a monomial ideal of T = K[X]. Then

L = (Xα | α ∈ conv(log(L)) ∩Zm1+···+mn ).

Proof. See ([15]).

Now we introduce the following
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Definition 2.6. Let T = K[X], and let L = (X
a11
1 · · ·X

a1n
n ,X

a21
1 · · ·X

a2n
n , . . . ,X

aq1
1 · · ·X

aqn
n ) be a monomial ideal of T,

where X
a j1
1 · · ·X

a jn
n stands for

x
a j11
11 · · · x

a j1m1
1m1

x
a j21
21 · · · x

a j2m2
2m2
· · · x

a jn1
n1 · · · x

a jnmn
nmn

for j = 1, . . . , q. Then for all i = 1, . . . ,n we set Fi =
{
X

a ji
i

∣∣∣∣∣ j = 1, . . . , q
}
.We define a monomial ideal L∗ of T

as

L∗ =
(
Xαi

i Xαi′

i′

∣∣∣∣∣ αi ∈ conv(log(Fi)) ∩Zmi , αi′ ∈ conv(log(Fi′ )) ∩Zmi′

)
for all 1 ≤ i , i′ ≤ n.

Some good results about the inclusion relation between the integral closure and the log set of a monomial
ideal are given for the edge ideals of n-partite graphs. Let G be a graph on the vertex set V(G) = {v1, . . . , vn}.
We put

E(G) = {{vi, v j} | vi , v j, vi, v j ∈ V(G)}

the set of edges of G and L(G) = {{vi, vi} | vi ∈ V(G)} the set of loops of G. Furthermore we set W(G) =
L(G) ∪ E(G).

An algebraic object attached to G is the edge ideal I(G) = (xix j | {vi, v j} ∈ W(G)), a monomial ideal of S.
If L(G) = ∅, the graph G is said simple or loopless, otherwise, if L(G) , ∅, G is a graph with loops.

Definition 2.7. A simple graph G is said to be n-partite if its vertex set V(G) can be partitioned into n
pairwise disjoint subsets such that no two vertices in the same subset are adjacent in G. When n = 2 these
are the bipartite graphs.

Definition 2.8. A simple graph G is called complete n-partite if its vertex set can be partitioned into disjoint
independent subsets V1, . . . ,Vn such that for all u and u′ in different sets, uu′ ∈ E(G).

The following result gives a description of the integral closure expressed by its log set for the edge ideals
of n-partite graphs.

Proposition 2.9. Let T = K[X] be the polynomial ring over a field K, and I(G) be the edge ideal associated to an
n-partite graph G. Then I(G) = I(G).

Proof. Let G be be an n-partite graph on the vertex set V(G) = V1 ∪ V2 ∪ · · · ∪ Vn, where Vi = {xi1, . . . , ximi }

for i = 1, . . . ,n. Furthermore, let I(G) be the edge ideal of G generated by the monomials Xa1 , . . . ,Xap , where

Xa j = x
a j11
11 · · · x

a j1m1
1m1

x
a j21
21 · · · x

a j2m2
2m2
· · · x

a jn1
n1 · · · x

a jnmn
nmn

for a j = (a j11 , . . . , a j1m1
, a j21 , . . . , a j2m2

, . . . , a jn1 , . . . , a jnmn
) ∈Nm1 ⊕ · · · ⊕Nmn . Then by definition,

I(G) = ({X⌈α⌉ | α ∈ conv(a1, . . . , ap)})

and α =
∑p

j=1 λ ja j ∈ Qm1+···+mn with
∑p

j=1 λ j = 1.
Since G is a loopless graph on m1 + · · · + mn vertices, I(G) = (xihxi′h′ | {xih, xi′h′ } ∈ E(G)) for 1 ≤ i , i′ ≤ n

and 1 ≤ h, h′ ≤ mi. Hence we set Xa j = x
a jih
ih x

a ji′h′

i′h′ , where a jih = a ji′h′ = 1. By using the definition of integral
closure we have the following situations:

if λ j = 1 and λr = 0 for any 1 ≤ j , r ≤ p, then

α = (a j11 , . . . , a j1m1
, . . . , a jn1 , . . . , a jnmn

) ∈Nm1 ⊕ · · · ⊕Nmn , X⌈α⌉ = Xa j , 1 ≤ j ≤ p;

if λ j ∈ Q+, then X⌈α⌉ = X⌊α⌋+1. Therefore the generators of I(G) as Xa j and X⌊α⌋+1, and hence I(G) = I(G).

Corollary 2.10. Let T and I(G) be as in Proposition 2.9. Then I(G) ⊆ I∗(G).
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Proof. Let xihxi′h′ ∈ I(G); since Fi = {xi1, . . . , ximi } and Fi′ = {xi′1, . . . , xi′mi′ }, it follows from Definition 2.6 that
xihxi′h′ ∈ I∗(G).

For complete n-partite graphs the equality holds.

Proposition 2.11. Let T = K[X] be the polynomial ring over a field K, and I(G) be the edge ideal associated to a
complete n-partite graph G. Then I(G) = I∗(G).

Proof. We consider I(G) = (xihxi′h′ , for all 1 ≤ i , i′ ≤ n, 1 ≤ h, h′ ≤ mi) and

I∗(G) =
(
Xαi

i Xαi′

i′

∣∣∣∣∣ αi ∈ conv(log(Fi)) ∩Zmi , αi′ ∈ conv(log(Fi′ )) ∩Zmi′

)
,

where Fi = {xi1, . . . , ximi }, Fi′ = {xi′1, . . . , xi′mi′ } for 1 ≤ i , i′ ≤ n.
From Corollary 2.10, it is enough to prove that I(G) ⊇ I∗(G). Let Xαi

i Xαi′

i′ ∈ I∗(G) with

αi =

q∑
j=1

λ ja ji ∈ Z
mi ,

q∑
j=1

λ j = 1, λ j ∈ Q+, a ji ∈ log(Fi),

and

αi′ =

q∑
j=1

ϑ ja ji′ ∈ Z
mi′ ,

q∑
j=1

ϑ j = 1, ϑ j ∈ Q+, a ji′ ∈ log(Fi′ ).

This implies that Xαi
i = xih for all 1 ≤ i ≤ n and Xαi′

i′ = xi′h′ for all 1 ≤ i′ ≤ n. By choosing k ∈ N+ such
that kλl ∈ N and kϑl ∈ N for all 1 ≤ l ≤ q, we have Xkαi

i Xkαi′

i′ = xk
ihxk

i′h′ ∈ I(G)k, for all 1 ≤ i , i′ ≤ n and
1 ≤ h, h′ ≤ mi. Therefore, Xαi

i Xαi′

i′ ∈ I(G), and hence I(G) = I∗(G).

Example 2.12. Let T = K[x11, x12, x21, x22, x31, x32] be the polynomial ring over a field K, and let

I(G) = (x11x21, x11x22, x12x21, x12x22, x11x31, x11x32, x12x31, x12x32, x21x31,

x21x32, x22x31, x22x32)

be the edge ideal associated to complete 3-partite graph G with vertices x11, x12, x21, x22, x31, x32. Then
Proposition 2.11 implies that I(G) = I∗(G).

Next we consider graphs with loops which edge ideals are not integrally closed and we compute the
integral closure.

Definition 2.13. A quasi-n-partite graph is an n-partite graph with vertex set V(G) partitioned into V1∪V2∪

· · · ∪ Vn such that Vi = {xi1, . . . , ximi } for i = 1, . . . ,n, and some vertices in V(G) have loops.

Definition 2.14. A quasi-n-partite graph G is called strong if it is a complete n-partite graph and all its
vertices have loops.

Proposition 2.15. Let T = K[X] be the polynomial ring over a field K, and I(G) be the edge ideal of a strong
quasi-n-partite graph G. Then I(G) is generated by binomials of degree 2.

Proof. Let G be a strong quasi-n-partite with the vertex set X, let I(G) be its edge ideal. Let Xa1 , . . . ,Xap be
the generators of I(G), where

Xa j = x
a j11
11 · · · x

a j1m1
1m1

x
a j21
21 · · · x

a j2m2
2m2
· · · x

a jn1
n1 · · · x

a jnmn
nmn

for a j = (a j11 , . . . , a j1m1
, a j21 , . . . , a j2m2

, . . . , a jn1 , . . . , a jnmn
) ∈Nm1 ⊕ · · · ⊕Nmn .

Using the geometric description of the integral closure of a monomial ideal ([15, Proposition 12.1.4]),
we have

I(G) = ({X⌈α⌉ | α ∈ conv(a1, . . . , ap)}),
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with

conv(a1, . . . , ap) =


p∑

j=1

λ ja j

∣∣∣∣∣ p∑
j=1

λ j = 1, λ j ∈ Q+

 .
Let f be a generator of I(G). Then f = X⌈α⌉ with α =

∑p
j=1 λ ja j ∈ conv(a1, . . . , ap),

∑p
j=1 λ j = 1, λ j ∈ Q+.

Therefore,

α =

 p∑
j=1

λ ja j11 , . . . ,

p∑
j=1

λ ja j1m1
, . . . ,

p∑
j=1

λ ja jn1 , . . . ,

p∑
j=1

λ ja jnmn

 ∈ Qm1+···+mn
+

with
a j = (a j11 , . . . , a j1m1

, a j21 , . . . , a j2m2
, . . . , a jn1 , . . . , a jnmn

) ∈Nm1 ⊕ · · · ⊕Nmn

and a jih ∈ {0, 1, 2}. The generic element of α, αih, 1 ≤ i ≤ n, 1 ≤ h ≤ mi, is
p∑

j=1

λ ja jih = λ1a1ih + λ2a2ih + · · · + λr.2 + · · · + λpapih

= 2λr + (1 − λr)
= λr + 1 ≤ 2,

as desired.

Corollary 2.16. Let G be a strong quasi-n-partite and I(G) ⊂ T the edge ideal associated to G. Then I(G) is not
integrally closed.

Proof. Let G be a graph on the vertex set V(G), and let I(G) be the edge ideal of a strong quasi-n-partite
graph G. Let Xa1 , . . . ,Xap be the generators of I(G), where

Xa j = x
a j11
11 · · · x

a j1m1
1m1

x
a j21
21 · · · x

a j2m2
2m2
· · · x

a jn1
n1 · · · x

a jnmn
nmn

for a j = (a j11 , . . . , a j1m1
, a j21 , . . . , a j2m2

, . . . , a jn1 , . . . , a jnmn
) ∈Nm1 ⊕ · · · ⊕Nmn .

Now we may assume that a jir = alir′ = 2 for some 1 ≤ j, l ≤ p, where r , r′. Then Proposition 2.15 implies
that x2

ir, x
2
ir′ are generators of I(G). We consider the obtained convex hull placing λ j =

1
2 and λl =

1
2 and

λt = 0 ∀t , j, l. Therefore,

α = (0, . . . , 1︸︷︷︸
αir

, . . . , 1︸︷︷︸
αir′

, . . . , 0) ∈ conv(a1, . . . , ap),

hence xirxir′ is a generator of the integral closure of I(G). Therefore I(G) is not integrally closed, and
I(G) , I(G).

Example 2.17. Let G be a strong quasi-3-partite graph on the vertex set

V(G) = {x11, x12, x21, x22, x31, x32}.

Then the edge ideal of G is the ideal:

I(G) = (x2
11, x

2
12, x

2
21, x

2
22, x

2
31, x

2
32, x11x21, x11x22, x12x21, x12x22, x11x31, x11x32,

x12x31, x12x32, x21x31, x21x32, x22x31, x22x32) ⊂ K[x11, x12, x21, x22, x31, x32].

A computation with Normalize ([14]) gives

I(G) = (x2
11, x

2
12, x

2
21, x

2
22, x

2
31, x

2
32, x11x21, x11x22, x12x21, x12x22, x11x12, x11x31,

x11x32, x12x31, x12x32, x21x22, x21x31, x21x32, x22x31, x22x32, x31x32).

Therefore, I(G) , I(G), and hence I(G) is not integrally closed.
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The structure of the integral closure of I(G) associated to a strong quasi-n-partite graph G is given in the
following result.

Theorem 2.18. Let T = K[X] be the polynomial ring over a field K and G be a strong quasi-n-partite graph. Then

I(G) =
∑

li≥0,
∑n

i=1 li=2

I1l1 I2l2 . . . Inln ,

where the ideals Iili = (xi1, . . . , ximi )
li are the monomial ideals generated by all monomials of degree li in the variables

Xi = {xi1, . . . , ximi }.

Proof. Let G be a strong quasi-n-partite graph on the vertex set V(G) = V1∪V2∪· · ·∪Vn and Vi = {xi1, . . . , ximi }

for i = 1, . . . ,n. Let Xa1 , . . . ,Xaq be the generators of I(G), where Xa j is a monomial ideal of degree 2, namely
x2

ir or xirxi′r′ for all 1 ≤ i , i′ ≤ n.
By the geometric description of the integral closure of a monomial ideal in [15, Proposition 12.1.4], we

have
I(G) = ({X⌈α⌉ | α ∈ conv(a1, . . . , aq)}),

where

conv(a1, . . . , aq) =


q∑

j=1

λ ja j

∣∣∣∣∣ q∑
j=1

λ j = 1, λ j ∈ Q+

 .
Now let f = X⌈α⌉ be a generator of I(G) with α =

∑q
j=1 λ ja j ∈ conv(a1, . . . , aq),

∑q
j=1 λ j = 1, λ j ∈ Q+. It then

follows that

α =

 q∑
j=1

λ ja j11 , . . . ,

q∑
j=1

λ ja j1m1
, . . . ,

q∑
j=1

λ ja jn1 , . . . ,

q∑
j=1

λ ja jnmn

 ∈ Qm1+···+mn
+ ,

with a j = (a j11 , . . . , a j1m1
, a j21 , . . . , a j2m2

, . . . , a jn1 , . . . , a jnmn
) ∈ Nm1 ⊕ · · · ⊕ Nmn . By definition of I(G), in each

generator Xa j we have a jip = 0, 1, 2. We set

M[i] = m1 + · · · +mi−1 +mi+1 + · · · +mn

for every i = 1, . . . ,n. Thus
q∑

j=1

λ ja jih = λ jit1 + · · · + λ jit
M[i]
+ 2λ jih ,

such that 1 ≤ {it1} < {it2} < · · · < {itM[i]} ≤ q and {ih} , {it1}, {it2}, . . . , {itM[i]}.
If λ j ∈ N with

∑q
j=1 λ j = 1 we obtain that X⌈α⌉ = Xa j , ∀1 ≤ j ≤ q, that is X⌈α⌉ = x2

ir or X⌈α⌉ = xirxi′r′′ for
1 ≤ i , i′ ≤ n.

On the other hand, if λ jih =
1
2 with

∑
j λ j = 1, it follows that the monomials X⌈α⌉ match xirxir′ , where r < r′

for all 1 ≤ r ≤ mr and 1 ≤ r′ ≤ mr′ .
Otherwise, if λ j ∈ Q+\N one obtains a monomial X⌈α⌉ with ⌈α⌉ ≥ a j, that is αir ≥ a jir . Hence the minimal

system of generators of I(G) is {x2
ir, xirxir′ , xirxi′r′′ } for all 1 ≤ i , i′ ≤ n, where r , r′. Then the assertion

follows.

Definition 2.19. Let T = K[X], and let L be a monomial ideal of T generated by the monomials

X
a11
1 · · ·X

a1n
n ,X

a21
1 · · ·X

a2n
n , . . . ,X

aq1
1 · · ·X

aqn
n ,

where X
a j1
1 · · ·X

a jn
n stands for x

a j11
11 · · · x

a j1m1
1m1

x
a j21
21 · · · x

a j2m2
2m2
· · · x

a jn1
n1 · · · x

a jnmn
nmn

for j = 1, . . . , q. We define the integral
bi-closure of L as the following monomial ideal of T:

L =
({

X⌈α1⌉

1 · · ·X⌈αn⌉
n

∣∣∣ αi ∈ conv(a1i , . . . , aqi ) for i = 1, . . . ,n
})

with αi ∈ Q
mi
+ .
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Proposition 2.20. Let T = K[X] be the polynomial ring over a field K and G be a strong quasi-n-partite graph. Then

I(G) ⊆ I(G).

Proof. Let G be a strong quasi-n-partite graph on the vertex set V(G) = V1∪V2∪· · ·∪Vn and Vi = {xi1, . . . , ximi }

for i = 1, . . . ,n. Let I(G) be the edge ideal of G generated by the monomials X
a11
1 · · ·X

a1n
n ,X

a21
1 · · ·X

a2n
n , . . . ,X

aq1
1 · · ·X

aqn
n ,

where X
a j1
1 · · ·X

a jn
n stands for

x
a j11
11 · · · x

a j1m1
1m1

x
a j21
21 · · · x

a j2m2
2m2
· · · x

a jn1
n1 · · · x

a jnmn
nmn

for j = 1, . . . , q. Then the integral closure of I(G) is the ideal:

I(G) =

 n∏
i=1

X⌈αi⌉

i

∣∣∣∣∣ (α1, . . . , αn) ∈ conv((a11 , . . . , a1n ), . . . , (aq1 , . . . , aqn )

 .
By definition

I(G) =
({

X⌈α1⌉

1 · · ·X⌈αn⌉
n

∣∣∣∣∣ αi ∈ conv(a1i , . . . , aqi ) for i = 1, . . . ,n
})

and let f = X⌈α1⌉

1 · · ·X⌈αn⌉
n be a generator of I(G).

By hypothesisαi =
∑q

j=1 λ ja ji ∈ conv(a1i , . . . , aqi ) with
∑q

j=1 λ j = 1, 1 ≤ i ≤ n. Thenαi = (
∑q

j=1 λ ja ji1 , . . . ,
∑q

j=1 λ ja jimi
).

Furthermore, we putM[i] = m1 + · · · +mi−1 +mi+1 + · · · +mn for every i = 1, . . . ,n. Hence

q∑
j=1

λ ja jir = λ jip1
+ · · · + λ jip

M[i]
+ 2λ jir ,

1 ≤ {ip1} < {ip2} < · · · < {ipM[i]} ≤ q and {ir} , {ip1}, {ip2}, . . . , {ipM[i]}.
If λ j ∈Nwith

∑m
j=1 λ j = 1 we obtain that X⌈αi⌉

i = xip or X⌈αi⌉

i = x2
ip ∀1 ≤ i ≤ n or X⌈αi⌉

i = 1.

On the other hand, if λ j ∈ Q+ \N it follows that X⌈αi⌉

i = xi1 · · · ximi . Therefore, I(G) is generated by all the
products of monomials X⌈αi⌉

i before defined. Hence the assertion follows.

3. Regularity and projective dimension

Let as before, K be a field and T = K[X] be the polynomial ring over K in the variables

x11, . . . , x1m1 , x21, . . . , x2m2 , . . . , xn1, . . . , xnmn ,

and let L ⊂ T be a monomial ideal. We denote by G(L) its unique minimal set of monomial generators.
In this section we study the regularity, depth, dim and projective dimension of monomial ideals corre-

sponding to quasi-n-partite graphs with loops.
A monomial ideal L is said to have linear quotients if there is an ordering f1, . . . , fq of monomials belonging

to G(L) with deg( f1) ≤ · · · ≤ deg( fq) such that the colon ideal ( f1, . . . , f j−1) : ( f j) is generated by a subset of X
for each 2 ≤ j ≤ q. Let r j denote the number of variables which is required to generate ( f1, . . . , f j−1) : ( f j), set
r(L) = max2≤ j≤q r j. For this topic we refer the reader to [15, Definition 6.3.45].

Proposition 3.1. Let T = K[X] be the polynomial ring over a field K and G be a strong quasi-n-partite graph. Then
I(G) has linear quotients.

Proof. Let G be a strong quasi-n-partite on the vertex set V(G) = V1 ∪V2 ∪ · · · ∪Vn, where Vi = {xi1, . . . , ximi }

for i = 1, . . . ,n. Then G is a complete n-partite graph and all its vertices have loops.
Let I(G) be the integral closure of I(G) with a set of minimal monomial generators G(I(G)) = { f11, . . . , f1m1 , . . . , fq1, . . . , fqmq }.

We claim that I(G) has linear quotients with respect to the ordering

f11, . . . , f1m1 , . . . , fq1, . . . , fqmq (1)
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of G(I(G)), where fi1 <Lex · · · <Lex fimi by the ordering

x11 > · · · > x1i1 > · · · > xn1 > · · · > xnin

for all i.
Now let u, v ∈ G(I(G)) be two monomials such that in (1) the monomial u appears before v. In order to

show that I(G) has linear quotients with respect to the above mentioned order, we must show that there
exists a variable xi j and a monomial w ∈ G(I(G)) such that xi j|(u/gcd(u, v)), in (1) the monomial w comes
before v, and xi j = w/gcd(w, v).

We define a K-algebra homomorphism φ : T → S by φ(xi j) = xi for all i, j. We suppose that φ(u) = φ(v),
and xi j is the greatest variable with respect to the given order on the variables such that xi j|(u/gcd(u, v)).
Let w ∈ G(I(G)) be the monomial ideal with φ(w) = φ(v) and w = xi j gcd(v,w). Since the order of monomials
in (1) are given by the lexicographical order, it then follows that w comes before v in (1).

Next assume that φ(u) , φ(v). Let xi j be the variable which divides u/gcd(u, v). Hence there exists
a monomial w ∈ G(I(G)) such that φ(w) coming before φ(v). Then there exists a variable xi such that
xi|(φ(u)/gcd(φ(u), φ(v)) and xi = φ(w)/gcd(φ(w), φ(v)). Therefore, the monomial w before v in (1) and

w = xi j gcd(w, v),

as desired.

As an immediate consequence we obtain the following important result

Corollary 3.2. Let T = K[X] be the polynomial ring over a field K and G be a strong quasi-n-partite graph. Then
I(G) has a linear resolution.

Proof. Follows from the general fact that the ideals generated in the same degree with linear quotients have
a linear resolution (see [7, Proposition 8.2.1]).

A vertex cover of a monomial ideal L ⊂ T is a subset C of X such that each u ∈ G(L) is divided by some
xi j on C. The vertex cover C is called minimal if no proper subset of C is a vertex cover of L.

Now we investigate algebraic and homological invariants of T/I(G).

Lemma 3.3. Let I(G) ⊂ T be the edge ideal of a strong quasi-n-partite graph G. Then height(I(G)) = m1 + · · ·+mn.

Proof. Let G be a strong quasi-n-partite on the vertex set V(G) and I(G) be its edge ideal. In fact, P
is a minimal prime ideal of I(G) if and only if P = (C), for some minimal vertex cover C of G ([15,
Proposition 6.1.16]). The minimal cardinality of the vertex covers of I(G) is height(I(G)) = m1 + · · · + mn

being C = {x11, . . . , x1m1 , x21, . . . , x2m2 , . . . , xn1, . . . , xnmn } a minimal vertex cover of I(G) by construction.

Consider the minimal graded free resolution of M = T/L as an T-module:

F : 0→
⊕

j

T(− j)b1 j → · · ·

⊕
j

T(− j)b1 j → T→ T/L→ 0.

The Castelnuovo-Mumford regularity of M is defined as:

reg(M) = max{ j − i | bi j , 0}.

The numbers bi j = dim Tori(K,M) j are called the graded Betti numbers of M, and bi =
∑

j bi j is called the ith
Betti number of M.

Theorem 3.4. Let T = K[X] be the polynomial ring over a field K and G be a strong quasi-n-partite graph. Then
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(i) dim(T/I(G)) = 0;

(ii) proj dim(T/I(G)) = m1 + · · · +mn;

(iii) depth(T/I(G)) = 0;

(iv) reg(T/I(G)) = 1.

Proof. (i) Let G be a strong quasi-n-partite graph on the vertex set V(G) and let I(G) be its edge ideal. By [15,
Corollary 7.2.5] we have dim(T/I(G)) = dim T−height(I(G)).Hence Lemma 3.3 implies that dim(T/I(G)) = 0.

(ii) The length of the minimal free resolution of T/I(G) over T is equal to r(I(G)) + 1 ([10, Corollary 1.6]).
Then Proposition 3.1 yields proj dim(T/I(G)) = m1 + · · · +mn.

(iii) By Lemma 3.3 we conclude that height(I(G)) = m1+ · · ·+mn. Therefore I(G) is Cohen-Macaulay, and
hence dim(T/I(G)) = depth(T/I(G)) = 0.

(iv) It follows from Theorem 3.2 that I(G) has a linear resolution. Then reg(I(G)) = 2, the assertion
follows.

Example 3.5. Let T = K[x11, x12, x13, x21, x22, x23] be a polynomial ring over a field K. Let G be a strong
quasi-bipartite graph on the vertex set V(G) = {x11, x12, x13, x21, x22, x23}. Then

I(G) = (x2
11, x

2
12, x

2
13, x

2
21, x

2
22, x

2
23, x11x21, x11x22, x11x23, x12x21, x12x22, x12x23,

x13x21, x13x22, x13x23).

A computation with Normalize ([14]) gives

I(G) = (x2
11, x

2
12, x

2
13, x

2
21, x

2
22, x

2
23, x11x12, x11x13, x11x21, x11x22, x11x23, x12x21, x12x22,

x12x23, x12x13, x21x22, x21x23, x22x23, x13x21, x13x22, x13x23).

There exists a one to one correspondence between the minimal vertex covers of G and the minimal prime
ideals of I(G). Then the irredundant primary decomposition of I(G) is

I(G) = (x11, x12, x13, x2
21, x

2
22, x

2
23, x21x22, x21x23, x22x23)

∩(x2
11, x

2
12, x

2
13, x21, x22, x23, x11x12, x11x13, x12x13).

Hence Lemma 3.3 implies that height(I(G)) = 6.
By [10, Corollary 1.6] it follows that the length of the minimal free resolution of T/I(G) over T is equal

to r(I(G)) + 1 = 6 ([10, Corollary 1.6]). Therefore, Theorem 3.4 yields

(i) dim(T/I(G)) = 0;

(ii) proj dim(T/I(G)) = 6;

(iii) depth(T/I(G)) = 0;

(iv) reg(T/I(G)) = 1.

In the following, we compute the Betti numbers of the integral closure of I(G).

Theorem 3.6. Let T = K[X] be the polynomial ring over a field K and G be a strong quasi-n-partite graph. Then for
i ≥ 0, we have

bi(I(G)) =
(

m1 + · · · +mn + 1
m1 + · · · +mn − i − 1

)(
i + 1

i

)
.
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Proof. Let G be a strong quasi-n-partite on the vertex set V(G), and let I(G) be its edge ideal. Corollary
3.2 implies that I(G) has a linear resolution. Then Eagon-Northcatt complex resolving I(G) gives the Betti
numbers; see for example [2]. Alternatively one can use the Herzog-Kühl formula to obtain the Betti
numbers [8, Theorem 1]. Next by Auslander-Buchsbaum formula, one has proj dim(I(G)) = m1+ · · ·+mn−1.
Therefore, by Herzog-Kühl formula one obtains that

bi(I(G)) =
(m1 + · · · +mn + 1)!

(m1 + · · · +mn − i − 1)!(2 + i)!
×

(i + 1)!
i!

=

(
m1 + · · · +mn + 1

m1 + · · · +mn − i − 1

)(
i + 1

i

)
,

as desired.

Let I ⊂ S = K[x1, . . . , xn] be a graded ideal. We consider S/I as a standard graded K-algebra. We have
the following (see [15]):

Proposition 3.7. Let S/I be a Cohen-Macaulay ring then the type of S/I is equal to the last Betti number in the
minimal free resolution of S/I as an S-module.

Proposition 3.8. Let G be a strong quasi-n-partite graph and I(G) ⊂ T its edge ideal. Then

type(T/I(G)) = m1 + · · · +mn.

Proof. By Theorem 3.4, we have T/I(G) is Cohen-Macaulay, then dim(T/I(G)) = 0. By Auslander-Buchsbaum
formula we obtain that proj dim(T/I(G)) = m1 + · · · +mn. Hence Theorem 3.6 together with Proposition 3.7
now yields

bm1+···+mn−1(I(G)) =

(
m1 + · · · +mn + 1

0

)(
m1 + · · · +mn − 1 + 1

m1 + · · · +mn − 1

)
= m1 + · · · +mn.

Then the assertion follows.

Next we want to study the ideals of vertex covers for the class of edge ideals associated to quasi-n-partite
graphs.

Let I ⊂ S = K[x1, . . . , xn] be a monomial ideal. The ideal of (minimal) covers of I, denoted by Ic, is the ideal
of S generated by all monomials xi1 · · · xir such that (xi1 , . . . , xir ) is an associated (minimal) prime ideal of I.
Let G be a graph and let I(G) be its edge ideal. We define Ic(G) the ideal of vertex covers of I(G). Then

Ic(G) =
( ⋂
{vi,v j}∈E(G),i, j

(xi, x j)
)
∩

(
xp | {vp, vp} ∈ L(G), p , i, j

)
.

Proposition 3.9. Let G be a graph with loops, and let Ic(G) be the ideal of vertex covers of I(G). Then for all k ≥ 1
we have

Ic(G)k =
({

x⌈α⌉
∣∣∣∣∣ α ∈ conv(k log(Ic(G))

})
.

Proof. Let G be a graph on the vertex set V(G) = {x1, . . . , xn}, and let Ic(G) be the ideal of vertex covers of
I(G) generated by the monomials xv1 , . . . , xvq . We put log(Ic(G)) = {v1, . . . ,vq} ⊂Nn and we define the set

k log(Ic(G)) = {vp1 + vp2 + · · · + vpk | 1 ≤ p1 ≤ · · · ≤ pk ≤ q}.
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We assume that k log(Ic(G)) = {v1, . . . , vr}, where vp = vp1 + vp2 + · · · + vpk , with 1 ≤ p1 ≤ · · · ≤ pk ≤ q. Then

there are r =
(
k + q − 1

k

)
elements in k log(Ic(G)), and hence

conv(k log(Ic(G))) =

 r∑
i=1

λivi

∣∣∣∣∣ r∑
i=1

λi = 1, λi ∈ Q+


is the convex hull of k log(Ic(G)).

Now let α =
∑r

i=1 λivi with vi ∈ k log(Ic(G)),
∑r

i=1 λi = 1, λi ∈ Q+. We know that ⌈α⌉ ≥ α, there is β ∈ Qn
+

such that ⌈α⌉ = α + β. Then there is 0 , h ∈N so that hβ ∈Nn and hλi ∈N for all i. Therefore

xh⌈α⌉ = xhβxhα = xhβ(xv1 )hλ1 · · · (xvr )hλr ∈ (Ic(G)k)h
⇒ x⌈α⌉ ∈ Ic(G)k.

Conversely, let xγ ∈ Ic(G)k, that is xhγ
∈ (Ic(G)k)h for some 0 , h ∈N. There are nonnegative integers a1, . . . , ar

such that
xhγ = xϑ(xv1 )a1 · · · (xvr )ar and a1 + · · · + ar = h.

It then follows that γ = (ϑ/h) +
∑r

i=1(ai/h)vi. In addition, we set α =
∑r

i=1(ai/h)vi. By dividing the entries of
ϑ by h we can write γ = β + ξ + α, where 0 ≤ ξi < 1 for all i and β ∈Nn. Note that ξ + α ∈Nn. This implies
that ⌈α⌉ = ξ + α. Therefore xγ = xβx⌈α⌉, where α ∈ conv(v1, . . . , vr) as desired.

Let L be a monomial ideal of T = K[X]. The big height of L, denoted by bight(L), is the maximum among
the heights of the associated primes of L, namely

bight(L) = max{height(P) | P ∈ Ass(T/L)}.

Lemma 3.10. Let G be a strong quasi-n-partite graph on the vertex set V(G). Then

bight(Ic(G)) = 1.

Proof. Let G be a strong quasi-n-partite graph on the vertex set V(G) = V1∪V2∪· · ·∪Vn and Vi = {xi1, . . . , ximi }

for i = 1, . . . ,n. Let I(G) be the edge ideal of G generated by the monomials X
a11
1 · · ·X

a1n
n ,X

a21
1 · · ·X

a2n
n , . . . ,X

aq1
1 · · ·X

aqn
n ,

where X
a j1
1 · · ·X

a jn
n stands for

x
a j11
11 · · · x

a j1m1
1m1

x
a j21
21 · · · x

a j2m2
2m2
· · · x

a jn1
n1 · · · x

a jnmn
nmn

for j = 1, . . . , q. We assume that v = (1, . . . , 1︸  ︷︷  ︸
m1−times

, . . . , 1, . . . , 1︸  ︷︷  ︸
mn−times

) ∈ Nm1 ⊕ · · · ⊕Nmn be a vector. Later by using [15,

Proposition 12.1.4]) it turns out that Ic(G) = ({X⌈α⌉ | α ∈ conv(v)}),with

conv(v) = λ jv with λ j ∈ Q+.

Let f be a generator of Ic(G). Then f = X⌈α⌉ with α = (λ j, . . . , λ j), λ j = 1. Then X⌈α⌉ = Xv, that is
X⌈α⌉ = x11 · · · x1m1 · · · xn1 · · · xnmn . Therefore Ic(G) is integrally closed, and Ic(G) = Ic(G). The maximal
cardinality of the vertex covers of I(G) is bight(Ic(G)) = 1 being {xi j} a maximal vertex cover of I(G) by
construction.

Theorem 3.11. Let T = K[X] be the polynomial ring over a field K and G be a strong quasi-n-partite graph. Then

(i) dim(T/Ic(G)) = m1 + · · · +mn − 1;

(ii) proj dim(T/Ic(G)) = 1;

(iii) depth(T/Ic(G)) = m1 + · · · +mn − 1;
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(iv) reg(T/Ic(G)) = m1 + · · · +mn − 1.

Proof. (i) Let G be a strong quasi-n-partite graph on the vertex set V(G), and let I(G) be its edge ideal. The
minimal cardinality of the vertex covers of Ic(G) is height(Ic(G)) = 1 being C = {xil} a minimal vertex cover
of Ic(G) by construction. Therefore, [15, Corollary 7.2.5] implies that

dim(T/Ic(G)) = m1 + · · · +mn − 1.

(ii) Using Lemma 3.10 and [7, Theorem 12.6.7], together with [15, Corollary 6.4.20] now yield

proj dim(T/Ic(G)) = bight(Ic(G)) = 1.

(iii) By the Auslander-Buchsbaum formula (see [15, Theorem 3.5.13]), one has the equality

depth(T/Ic(G)) = dim T − proj dim(T/Ic(G)) = m1 + · · · +mn − 1.

(iv) The ideal Ic(G) generated in degree m1 + · · ·+mn. Then [7, Proposition 8.2.1] and [7, Theorem 12.6.2]
says that Ic(G) has a m1 + · · · +mn-linear resolution. Therefore, reg(Ic(G)) = m1 + · · · +mn, as desired.
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