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Combinatorics of the integral closure of
edge ideals related to n-partite graphs
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Abstract. Combinatorial properties of some ideals related to n-partite graphs are examined. A description
of the integral closure expressed through the log set of edge ideals of complete n-partite graphs is illustrated
together with the fact that edge ideals of a strong quasi-n-partite graph are not integrally closed. Moreover,
we are able to determine the structure and the invariants of the integral closure of the ideals of vertex covers
for the edge ideals associated to a strong quasi-n-partite graph.

1. Introduction

In the present paper we consider classes of monomial ideals that can arise from graph theory [1, 4-6].
More precisely, we consider classes of n-partite graphs and study combinatorial properties of them.

Let G be a graph on the vertex set V(G). A quasi-n-partite graph is an n-partite graph with vertex set V(G)
partitioned into V; U V, U --- UV, such that V; = {xj1,..., %} fori = 1,...,n, and some vertices in V(G)
have loops. A strong quasi-n-partite graph is a complete n-partite graph having loops in all its vertices. When
n = 2 these are the strong quasi-bipartite graphs. A great deal of knowledge on the strong quasi-bipartite
graphs is accumulated in several papers [11-13].

Algebraic objects attached to G are the edge ideals I(G). If G is a bipartite graph having bipartition
{V1, V2}, edge ideals are monomial ideals of a polynomial ring in two sets of variables associated to such
bipartition.

In detail, we are interested to handle the integral closure of edge ideals of strong quasi-n-partite graphs
and to study algebraic aspects of it. Let K be a field and S = K[xy, ..., x,] the polynomial ring in n variables
over K with each x; of degree 1. Next we consider the polynomial ring T over K in the variables

X11, - - ‘rxl‘ml/ler .. ‘/xzﬂlzl ceesXnly .. "xnmnl

and let L be a monomial ideal of T.
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We use the notation X for the set {x11,..., X1, X21, - - -, X2y, - - - Xn1, - - -, Xnm, }. The integral closure LofL
is the set of all elements of T which are integral over L. The integral closure of a monomial ideal is again a
monomial ideal,

L= (f| f isamonomialinT and fk e L¥, for some k> 1).
Then L is integrally closed, if L = L. Put
aj = (ajn,.. .,a]'lml,. e e .,ajnmn) eN"@---@IN™.

If L is generated by monomials X*, ..., X%, a combinatorial description of the integral closure of L is the
following:

L=X"aeconv(a,... ,ag)),

wherea € QT1+"'+"’", conv(ay, ..., a,)is the set of all convex combinations of ay, ..., a;, and [ ] denotes the up-

a a . . .
1}1';’11 . 'xZ"ll S Xy, we write log(X?) to indicate a = (@11, ..., 1my, -+ -, An1, -,

Aym,) € ZVT™ . Given a set F of monomials, the log set of F, denoted by log(¥), consists of all log(X?)
such that X* € 7.

The present paper is organized as follows. In Section 2 we are able to give a description of the integral
closure of an ideal L expressed by its log set for some classes of ideals associated to complete n-partite
graphs. In Proposition 2.15 we prove that the integral closure of I(G) of a strong quasi-n-partite graph G is
generated by binomials of degree 2. Furthermore, we prove that the edge ideal of a strong quasi-n-partite
graph G is not integrally closed and we give an expression for its integral closure, see Corollary 2.16 and
Theorem 2.18.

In Section 3 algebraic and homological invariants of the integral closure of I(G) related to a strong
quasi-n-partite graph G are studied. There is a one to one correspondence between minimal vertex covers
of any graph and minimal prime ideals of its edge ideal; we generalize to a complete n-partite graph with
loops the notion of ideal of (minimal) vertex covers and determine the structure of the ideals of vertex
covers I.(G) for the edge ideals associated to G.

In Corollary 3.2 we show that the integral closure of I(G) associated to a strong quasi-n-partite graph

per integer. When X* = &} -+ x

G has a linear resolution. We also give formulae for invariants of T/m and T/I.(G) for the classes of
edge ideals associated to a strong quasi-n-partite graph G such as dimension, projective dimension, depth,
Castelnuovo-Mumford regularity.

2. Integral closure of edge ideals

Let K be a field, and let S = K][x, ..., x,] be the polynomial ring in n variables over K with each x; of
degree 1.

We use the notation X for the set {x11,..., Xtm, X21, -+, X2, - - » Xuts - -, Xnm, |- Let T = K[X] be the poly-
nomial ring over a field K in m; + - - - + m, variables, and let L C T be a monomial ideal which is generated
by monomials X*, ..., X%. Here

X = it jﬂff X ;ﬁf{f O ST g
fora; = @iy, Ajy Aoy Ajpyr -+ 1 Ajis - -1 j,,) €N B - @IN

The integral closure of L is the set of all elements of T which are integral over T. Since the integral closure
of a monomial ideal is again a monomial ideal [7, Theorem 1.4.2], one has the following description of the
integral closure of L:

L= (flf isamonomialinT and fk € LF, for some k> 1).

The ideal L is integrally closed, if L = L.
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Let g € Q}, where Q. is the set of nonnegative rational numbers. We define the upper integer or ceiling
of f as the vector [$] whose entries are given by [f],, where

_ ﬁ,‘ if ‘BiEN
FﬁL—{ Bil+1 if Big¢N

and where |f;] stands for the integer part of ;. In addition, we denote the set {x;;,...,x;»,} by X; for
i=1,...,n. Then the integral closure of L is the monomial ideal:

L= (Xr‘” | @ € conv(ay,...,ay)),

where

q q
Conv(al,...,aq): Z/\]-a]- ZAj:l'Aj€Q+
j=1 j=1

is the set of all convex combinations of ay, ..., a,.

Example 2.1. Let T = K[x11, X12, X13, 21, X22] be the polynomial ring overa field K, and let L = (x2, x12X21, X12X13X3,, X13X3,)
be the monomial ideal of T. By using Normalize [14], we obtain that

L = (X?Xg’ | (¢, &) € conv((2,1,0,1,0),(0,1,1,0,2),(0,0,1,2,0)))
= (XTXLZY, | (a/ a’) € {Al(zl 1/ 0/ ]-/ 0) + AZ(OI ]-/ 1/ O/ 2) + /\3(0/ O/ 1/ 2/ 0)/
A, A2, A3 € QA+ A+ A3 = 1))

2 2 2
= (x11x12x21/x12x13x22/x13x21/x12x13x21x22)-

The purpose of this section is to study the integral closure of monomial ideals in the polynomial ring
T = K[X].
We recall the notions that come from the general theory for monomial ideals (see for instance [15]).

Definition 2.2. Let T = K[X] be a polynomial ring over a field K in the variables x11, ..., X1y, - - -, Xu1, - - -, X, -

ai a
If X* = x| - '-xln”l'll --~x‘;”11 o X!, We set

IOg(Xa) —a= (011, ce s Mgy e, Ay - '/anm,,) c ZT]+-~-+mVI.
Given a set ¥ of monomials, the log set of ¥, denoted by log(F), consists of all log(X?*), with X* € F,
10g(7_') — {log(xa) —ac ZT1+-..+mn | X2 e /@}

Example2.3. Let ¥ = {x2 x51, X3 X3, X12X2,} be a set of monomials in the polynomial ring T = K[x11, X12, 21, ¥22].

The log set of ¥ is log(#) = {(2,0,1,0),(3,0,2,0),(0,1,0,1)}.

Definition 2.4. Let L be an ideal of T = K[X] generated by the set of monomials of #. We define log(L) =
{log(X?) =a€Z"""" | X2 € L}.

Proposition 2.5. Let L be a monomial ideal of T = K[X]. Then
L= (X* | a € conv(log(L)) N Z™ oty
Proof. See ([15]). O

Now we introduce the following
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g

R X™) be a monomial ideal of T,

Definition 2.6. Let T = K[X], and let L = (X;" --- X", X{" -+ X, ..., X
where Xi“ .- X} stands for

ulnmn

Aj1q iy _Ajy Ao, a1
. x DI e x nr”n

X1 X X1 21my nl

..;x
forj=1,...,9. Thenforalli=1,...,n weset F; = {X?ii ']: 1,...,q}.We define a monomial ideal L* of T
as

4

L= (x;‘fx“f’

a; € conv(log(F7)) N Z™, ay € conv(log(¥F#)) N Z”’"’)
foralll1 <i#i <n.

Some good results about the inclusion relation between the integral closure and the log set of a monomial
ideal are given for the edge ideals of n-partite graphs. Let G be a graph on the vertex set V(G) = {vy, ..., v,}.
We put

E(G) = {{v;, U]'} | v; # vj, 0, 0j€ V(G)}

the set of edges of G and L(G) = {{v;,vi} | v; € V(G)} the set of loops of G. Furthermore we set W(G) =
L(G) VE(G).

An algebraic object attached to G is the edge ideal I(G) = (x;x; | {v;, v;} € W(G)), a monomial ideal of S.
If £L(G) = 0, the graph G is said simple or loopless, otherwise, if L(G) # 0, G is a graph with loops.

Definition 2.7. A simple graph G is said to be n-partite if its vertex set V(G) can be partitioned into n
pairwise disjoint subsets such that no two vertices in the same subset are adjacent in G. When n = 2 these
are the bipartite graphs.

Definition 2.8. A simple graph G is called complete n-partite if its vertex set can be partitioned into disjoint
independent subsets V7, ..., V, such that for all # and u’ in different sets, uu’ € E(G).

The following result gives a description of the integral closure expressed by its log set for the edge ideals
of n-partite graphs.

Proposition 2.9. Let T = K[X] be the polynomial ring over a field K, and I(G) be the edge ideal associated to an
n-partite graph G. Then I(G) = I(G).

Proof. Let G be be an n-partite graph on the vertex set V(G) = ViUV, U --- UV, where V; = {xi1, ..., Xjn,}
fori=1,...,n. Furthermore, let I(G) be the edge ideal of G generated by the monomials X%, ..., X%, where

. aj . aj, .
X% = x”m L im x”m Sy 2 xulnl o 2
11 1m 721 2my nl nimy

foraj =@, ..., 4y, Ajps -/ Ajpyy s+ -/ Ajys - - - 14, ) € N @& - @ IN". Then by definition,
I(G) = (X" | a € conv(ay, ..., ap)})

and a = Z?:] A]a] € Qm1+~~+mn with Z?:l A] =1.
Since G is a loopless graph on m; + - - - + my vertices, I(G) = (xiXiw | {xin, Xiw} € E(G)) for1 <i# i <n

) aj, ai,,
and 1 < h, 1" < m;. Hence we set X¥ = x,"x,"
closure we have the following situations:

ifA\j=1and A, =0forany1 < j# r <p, then

, where aj, = aj,, = 1. By using the definition of integral
a= (ajll,...,ahml,...,a]'nl,...,a]"”ml) eN"@---@IN™, X[l = X%, 1<j<p;
if A; € Q., then X'*1 = X!#/*1 Therefore the generators of I(G) as X¥ and X\*/*!, and hence I(G) = I(G). [

Corollary 2.10. Let T and I(G) be as in Proposition 2.9. Then @ c I'(G).
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Proof. Let xipxy € I(G); since F; = {xi1, ..., Xim,} and Fi = {xp1,...,Xirm, }, it follows from Definition 2.6 that
XinXirw € I*(G) [l

For complete n-partite graphs the equality holds.

Proposition 2.11. Let T = K[X] be the polynomial ring over a field K, and 1(G) be the edge ideal associated to a
complete n-partite graph G. Then I(G) = I'(G).

Proof. We consider I(G) = (xyx;y, forall 1<i#i<n,1<hh <m;)and

I*(G) — (X?ix?fj/

a; € conv(log(¥)) N Z™, a; € conv(log(Fi)) N Z’"f/),

where F; = {xﬂ,...,ximi}, Fir = {x,-/l,...,xi,mi,} forl<i#i <n.

From Corollary 2.10, it is enough to prove that I(G) 2 I'(G). Let X;""Xff"’ € I'(G) with

q q
a=Y A€z, Y Ai=1, A;€Q,a; €log(F),
=1 =1
and

q q

ap =Y S, ez, Y 8;=1, $;€Q,a; clog(Fi).

=1 =1
This implies that X;"f =xjy forall 1 <i < nand X?,"’ = xypy for all 1 < i < n. By choosing k € IN. such
that kA; € N and k8; € N for all 1 < I < g, we have X[ X, = X2 € I(G)f, forall 1 < i # i < nand

it irw
1 <h, I < m;. Therefore, X?"Xff"' € I(G), and hence I(G) = I'(G). O

Example 2.12. Let T = K[x11, X12, X21, X22, X31, X32] be the polynomial ring over a field K, and let

I(G) = (x11X21, X11%22, X12X21, X12X22, X11X31, X11X32, X12X31, X12X32, X21X31,

X21X32, X20X31, X22X32)

be the edge ideal associated to complete 3-partite graph G with vertices x11, X12, X21, X22, X31, X32. Then

Proposition 2.11 implies that I(G) = I'(G).

Next we consider graphs with loops which edge ideals are not integrally closed and we compute the
integral closure.

Definition 2.13. A quasi-n-partite graph is an n-partite graph with vertex set V(G) partitioned into V; UV, U
---U V,such that V; = {xj1,..., X} fori =1,...,n, and some vertices in V(G) have loops.

Definition 2.14. A quasi-n-partite graph G is called strong if it is a complete n-partite graph and all its
vertices have loops.

Proposition 2.15. Let T = K[X] be the polynomial ring over a field K, and I(G) be the edge ideal of a strong
quasi-n-partite graph G. Then I(G) is generated by binomials of degree 2.

Proof. Let G be a strong quasi-n-partite with the vertex set X, let I(G) be its edge ideal. Let X*,..., X% be
the generators of I(G), where
. a; i, a; Ao aj, Ay,
X% = xljln N 1m11 x2]121 N mezz cen xnal . n/m,,
for aj = (ajn, R S VR SRR S RYRR ,ajnm") eEN™"@---@IN",
Using the geometric description of the integral closure of a monomial ideal ([15, Proposition 12.1.4]),

we have —
I(G) = (X" | a € conv(ay, ..., ap)}),
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with

P p
conv(al,...,ap): ZA]'a]' Z/\j=1,/\j€Q+
j=1 j=1

Let f be a generator of I(G). Then f = X/*1 with a = ’;:1 Ajaj € conv(ay, ..., ay), ?21 Aj=1,1A; € Q..

4 4 4 4
_ q. . . . 1M+,
a= Z/\]am,...,Z/\]ahml,...,Z/\]am,...,Z/\]umm € Q)
=1 j=t =1 j=1

Therefore,

with
aj = (ahl,...,Cljlml,a]'21,...,ﬂhmz,...,ﬂjnl,...,ﬂjnmn) eN"@---@IN™

and a;, € {0,1,2}. The generic element of &, aj, 1 <i<n,1<h<m,is
p
Y A, = May, + A, 4 A2 Aty
=

20, + (1 - Ay)
Ar+1<2,

as desired. O

Corollary 2.16. Let G be a strong quasi-n-partite and I(G) C T the edge ideal associated to G. Then 1(G) is not
integrally closed.

Proof. Let G be a graph on the vertex set V(G), and let I(G) be the edge ideal of a strong quasi-n-partite
graph G. Let X*, ..., X% be the generators of I(G), where

: a; . aj . :
X% = xajn ey I i el X Jamy xa/"l N xa]""’”
11 1m; 721 2my nl nmy

foraj =@, ..., 4y, Ajps -/ Ajpys ooy Ajys -+ -4, ) €N O - - @IN™™
Now we may assume thata;, =a;, =2 forsome 1 < j,I < p, where r # r’. Then Proposition 2.15 implies

that x2,x2, are generators of I(G). We consider the obtained convex hull placing A; = 1 and A; = 1 and
Ay =0Vt # j, . Therefore,

a=0,..., 1 ,..., 1 ,...,0)€conv(ay,...,a),
——
Qir Q!

hence x;x; is a generator of the integral closure of I(G). Therefore I(G) is not integrally closed, and
I(G) # I(G). O

Example 2.17. Let G be a strong quasi-3-partite graph on the vertex set
V(G) = {x11, X12, X21, X22, X31, X32}.
Then the edge ideal of G is the ideal:
2 .2 .2 .2 .2 .2
I(G) = (xn,xlz,x21,xzz,xsl,x32,x11x21,x11xzz,xlzle,xlzxzz,x11x31,x11x32,
X12X31, X12X32, X21X31, X21X32, X22X31, X22X32) C K[X11, X12, X21, X22, X31, X32].
A computation with Normalize ([14]) gives
— 2 .2 .2 .2 2 .2
I(G) = (x11rx12/x21/x221x31rx32/x11x21rx11x22/x12x21/x12x221x11x121x11x31/
X11X32, X12X31, X12X32, X21X22, X21X31, X21X32, X22X31, X22X32, X31X32).

Therefore, I(G) # I(G), and hence I(G) is not integrally closed.
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The structure of the integral closure of I(G) associated to a strong quasi-n-partite graph G is given in the
following result.

Theorem 2.18. Let T = K[X] be the polynomial ring over a field K and G be a strong quasi-n-partite graph. Then
G =Y, hyby. L,

liZO,Zflzl ;=2

where the ideals I, = (xq, ..., ximi)’f are the monomial ideals generated by all monomials of degree I; in the variables
Xi = {xilr e rxim,-}-

Proof. Let Gbe astrong quasi-n-partite graph on the vertexset V(G) = VoUV,U---UV,and V; = {xj1, ..., Xjm,}
fori=1,...,n. Let X*,..., X% be the generators of I(G), where X% is a monomial ideal of degree 2, namely
x2 or xpxpp forall1 <i# i’ <n.
By the geometric description of the integral closure of a monomial ideal in [15, Proposition 12.1.4], we
have L
I(G) = (X" | a € conv(ay, ..., a,)}),

where

q q
conv(ay,...,a;) = Z/\jaj ZAj=1,Aj€Q+
=1 j=1

Now let f = X[*1 be a generator of I(G) with & = Z?zl Ajaj € conv(ay, ..., a,), Z?zl Aj=1,A; € Q,. It then

follows that
q q 9
M+ +mn
a = Z /\ja]-n,. . .,Z )\]‘a]‘lml,. . .,Z A]ﬂ]}m Z A a]nmn c Q 1
j=1 j=1 j=1

with a; = @}y, @ Ajprs ooy By s ooy Bjps -+ 4Gy, ) € N™ @ --- @ IN™. By definition of I(G), in each
generator X% we have a iy = 0,1,2. We set

Ml =my +---+mi_g + Mg + -+ my

foreveryi=1,...,n. Thus

q
Z Ajaj, = )L]-”l Foeee gt AjitM[i] +2A),,
j=1
such that 1 < {it1} < {itz} < --- <{itpp) < gand {ik} # {it1}, {it2}, .. ., {iEpqa )
If A; € N with Z'}zl /\]- =1 we obta1 that XMl = X%, V1 < j < g, that is X1 = x2 or X1 = x;,x;, for
1<i#i <n.
On the other hand, if A;, = 5 L with Z Aj =1, it follows that the monomials X' match x;,x;-, where r < v’
foralll<r<my,and1 <7 <m,.
Otherwise, if A; € Q;\IN one obtains a monomial XM with [a] > aj, that is a;, > a;,. Hence the minimal
system of generators of I(G) is {xl.zy,x,-rxirr,x,-yxirrr/} forall1 <i # i <n, where r # . Then the assertion
follows. O

Definition 2.19. Let T = K[X], and let L be a monomial ideal of T generated by the monomials

a1y a‘ln 29 azn gy Ay
XX, X XX,

2y Ajn A iy iy iy Bt oM
where X X" stands for x}}" ---x; "X, P, T X

bi-closure of L as the following monomial ideal of T:

for j = 1,...,9. We define the integral

fz ({XE"’” X e conv(ay,...,a;) for i= 1,...,n})

with a; € Q.
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Proposition 2.20. Let T = K[X] be the polynomial ring over a field K and G be a strong quasi-n-partite graph. Then
1C) c1C).

Proof. Let Gbe astrong quasi-n-partite graph on the vertexset V(G) = VoUV,U---UV,and V; = {xj1, ..., Xim,}
fori=1,...,n. Let](G) be the edge ideal of G generated by the monomials Xil‘ X0 X‘;ZT XL, XZ”” X0
where X;* -+ X} stands for

) a ) a; )
A 4 Jim x”m o 2m x”]nl R

X1 X, %ot 21 nl ity

for j=1,...,9. Then the integral closure of I(G) is the ideal:

n

@ — {H Xl[aﬂ

i=1

(a1,...,a4) € conv((all,...,aln),...,(aql,...,a%)].

By definition

1) = ({xgaﬂ v

a; € conv(ay,...,a5) for i= 1,...,n})

and let f = Xg‘m -+ X[%1 pe a generator of I(G).
By hypothesisa; = 2?:1 Ajaj, € conv(ay,,...,a,)with Z?zl Aj=1,1<i<n Thena; = (Z?z1 Ajdj,, ..., Z?zl Ajaj,, ).
Furthermore, we put M[i] = mq + -+ + mj_1 + mjq + -+ + m, foreveryi=1,...,n. Hence

9
Z /\jﬁl]',.y = /\jipl + -+ AjipM[;] + 2/\]'”,
=1

1 < {ip1} < {ip2} < - <Aipmp} £ g and {ir} # {ip1}, {ip2), - .., {ipaagy)-

If A; € N with Y24 A; = 1 we obtain that X[D‘” = Xj Or XEO"] = x?p V1<i<nor Xl[a"] =1

On the other hand, if A; € Q, \ N it follows that X][“"] = Xj1 * - Xim;- Therefore, @ is generated by all the
products of monomials XE“J before defined. Hence the assertion follows. [

3. Regularity and projective dimension
Let as before, K be a field and T = K[X] be the polynomial ring over K in the variables

X11, -+ ‘rxl‘ml/ler' . */x2m2/ ceesXnly .. "xnmnl

and let L € T be a monomial ideal. We denote by G(L) its unique minimal set of monomial generators.

In this section we study the regularity, depth, dim and projective dimension of monomial ideals corre-
sponding to quasi-n-partite graphs with loops.

A monomial ideal L is said to have linear quotients if there is an ordering fi, .. ., f; of monomials belonging
to G(L) with deg(f1) < - -+ < deg(f;) such that the colon ideal (fi, ..., fi-1) : (fj) is generated by a subset of X
for each 2 < j < ¢. Let rj denote the number of variables which is required to generate (f1,..., fi-1) : (f;), set
(L) = maxy<j<, 7. For this topic we refer the reader to [15, Definition 6.3.45].

Proposition 3.1. Let T = K[X] be the polynomial ring over a field K and G be a strong quasi-n-partite graph. Then
I(G) has linear quotients.

Proof. Let G be a strong quasi-n-partite on the vertex set V(G) = ViUV, U---UV,, where V; = {xi, ..., Xin,}

fori=1,...,n. Then G is a complete n-partite graph and all its vertices have loops.
LetI(G) be the integral closure of I(G) with a set of minimal monomial generators G(I(G)) = {f11, .-, fimy, -+, fg1, -+, fqmq 1.

We claim that I(G) has linear quotients with respect to the ordering

fll/-"/flml/-"/fqlr"-/fqm,] (1)
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of G(I(G)), where fi1 <pex - ** <rex fim; Dy the ordering
X110 > X1y > e > X >t > Xy,

for all i.
Now let u, v € G(I(G)) be two monomials such that in (1) the monomial u appears before v. In order to

show that I(G) has linear quotients with respect to the above mentioned order, we must show that there

exists a variable x;; and a monomial w € G(@) such that x;j|(u/ ged(u, v)), in (1) the monomial w comes
before v, and x;; = w/ ged(w, v).

We define a K-algebra homomorphism ¢ : T — S by ¢(x;;) = x; for all i, j. We suppose that p(u) = ¢(v),
and x;; is the greatest variable with respect to the given order on the variables such that x;;|(u/ ged(u, v)).

Letw € G(@) be the monomial ideal with ¢(w) = ¢(v) and w = x;; gcd(v, w). Since the order of monomials
in (1) are given by the lexicographical order, it then follows that w comes before v in (1).
Next assume that ¢(u) # ¢(v). Let x;; be the variable which divides u/ gcd(u,v). Hence there exists

a monomial w € G(I(_G)) such that ¢(w) coming before ¢(v). Then there exists a variable x; such that
xil(p(u)/ ged(p(u), p(v)) and x; = p(w)/ ged(p(w), p(v)). Therefore, the monomial w before v in (1) and

w = x;; ged(w, v),
as desired. [J
As an immediate consequence we obtain the following important result

Corollary 3.2. Let T = K[X] be the polynomial ring over a field K and G be a strong quasi-n-partite graph. Then
TG) has a linear resolution.

Proof. Follows from the general fact that the ideals generated in the same degree with linear quotients have
a linear resolution (see [7, Proposition 8.2.1]). O

A vertex cover of a monomial ideal L C T is a subset C of X such that each u € G(L) is divided by some
x;j on C. The vertex cover C is called minimal if no proper subset of C is a vertex cover of L.

Now we investigate algebraic and homological invariants of T/I(G).
Lemma 3.3. Let I(G) C T be the edge ideal of a strong quasi-n-partite graph G. Then height(m) =my+--+my.

Proof. Let G be a strong quasi-n-partite on the vertex set V(G) and I(G) be its edge ideal. In fact, P
is a minimal prime ideal of I(G) if and only if P = (C), for some minimal vertex cover C of G ([15,

Proposition 6.1.16]). The minimal cardinality of the vertex covers of 1(G) is height(I(_G)) =m 4+ +my
being C = {x11, ..., X1my, X21, - -, X2y, - - - X1, - - - , X, } @ Minimal vertex cover of I(G) by construction. [

Consider the minimal graded free resolution of M = T/L as an T-module:
F: o 0> PTp)" - @ T > T—>T/L—0.
i j

The Castelnuovo-Mumford regularity of M is defined as:
reg(M) = max{j —i| b;; # O}.

The numbers b;; = dim Tor;(K, M); are called the graded Betti numbers of M, and b; = }. i bij is called the ith
Betti number of M.

Theorem 3.4. Let T = K[X] be the polynomial ring over a field K and G be a strong quasi-n-partite graph. Then
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(i) dim(T/I(G)) = 0;
(ii) projdim(T/I(G)) = my + - -+ + my;

(iii) depth(T/I(G)) = 0;
(iv) reg(T/1(G)) = 1.
Proof. (i) Let G be a strong quasi-n-partite graph on the vertex set V(G) and let I(G) be its edge ideal. By [15,
Corollary 7.2.5] we have dim(T'/ TG)) = dim T—height(I(_G)). Hence Lemma 3.3 implies that dim(7T/ @) =0.
(ii) The length of the minimal free resolution of T/@ over T is equal to r(@) +1 ([10, Corollary 1.6]).
Then Proposition 3.1 yields proj dim(T/I(G)) = my + - -- + m,,.
(iii) By Lemma 3.3 we conclude that height(m) =mq +---+m,. Therefore I(_G) is Cohen-Macaulay, and
hence dim(T/I(G)) = depth(T/I(G)) = 0.
(iv) It follows from Theorem 3.2 that I(G) has a linear resolution. Then reg(m) = 2, the assertion
follows. [

Example 3.5. Let T = K[x1,x12, X13, X21, X22, X23] be a polynomial ring over a field K. Let G be a strong
quasi-bipartite graph on the vertex set V(G) = {x11, x12, X13, X21, X22, X23}. Then

_ 2 2 .2 .2 2 .2
I(G) = (x11/x121x131x21/x22rx231x11x21/x11x22/x11x23/x12x211x12x221x12x23/

X13X21, X13X22, X13X23).

A computation with Normalize ([14]) gives

_ 2 .2 .2 .2 .2 .2
I(G) = (xn,xu,x13,x21,x22,x23,xnxu,x11x13,x11x21,x11x22,x11x23,x12x21,x12x22,

X12X23, X12X13, X21X22, X21X23, X22X23, X13X21, X13X22, X13X23).

There exists a one to one correspondence between the minimal vertex covers of G and the minimal prime

ideals of I(G). Then the irredundant primary decomposition of I(G) is

— 2 .2 .2
I(G) = (Xll,xu,x13,X21/X221X23,x219€22,x21x23,x22X23)
2 .2 .2
ﬂ(xn,xlz,xl3,le,xzz,X23,x11x12,x11x13,x12x13).
Hence Lemma 3.3 implies that height(I(G)) = 6.

By [10, Corollary 1.6] it follows that the length of the minimal free resolution of T/ I(_G) over T is equal
to r(I(G)) + 1 = 6 ([10, Corollary 1.6]). Therefore, Theorem 3.4 yields

(i) dim(T/I(G)) = 0;
(ii) projdim(T/I(G)) = 6;
(iii) depth(T/I(G)) = 0;
(iv) reg(T/I(G)) = 1.
In the following, we compute the Betti numbers of the integral closure of I(G).

Theorem 3.6. Let T = K[X] be the polynomial ring over a field K and G be a strong quasi-n-partite graph. Then for
i > 0, we have

bi(I(G)) =

mp+--+my+1 \[i+1
my 4 Amy—i—10\ i )
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Proof. Let G be a strong quasi-n-partite on the vertex set V(G), and let I(G) be its edge ideal. Corollary

3.2 implies that I(G) has a linear resolution. Then Eagon-Northcatt complex resolving I(G) gives the Betti
numbers; see for example [2]. Alternatively one can use the Herzog-Kiihl formula to obtain the Betti

numbers [8, Theorem 1]. Next by Auslander-Buchsbaum formula, one has proj dim(@) =my+---+m,—1.
Therefore, by Herzog-Kiihl formula one obtains that

(my+---+my, +1)! @+ 1!
(my + -+ my, —i— D12 + i) il
my+-+my, +1 )(i+1)

bi(I(G))

my ey —i—1)\ i

as desired. O

LetI ¢ S = K[x1,...,x,] be a graded ideal. We consider S/I as a standard graded K-algebra. We have
the following (see [15]):

Proposition 3.7. Let S/I be a Cohen-Macaulay ring then the type of S/I is equal to the last Betti number in the
minimal free resolution of S/I as an S-module.

Proposition 3.8. Let G be a strong quasi-n-partite graph and I(G) C T its edge ideal. Then
type(T/@) =my+ -+ my,.

Proof. By Theorem 3.4, we have T/ I(_G) is Cohen-Macaulay, then dim(T'/ m) = 0. By Auslander-Buchsbaum

formula we obtain that proj dim(T/ I(G)) = my + - - + m,. Hence Theorem 3.6 together with Proposition 3.7
now yields

— my+--+my+1\(mg+-4+my—1+1
B 1,1 (I(G)) (1 0 )( b 1
n

= Myt +my.

Then the assertion follows. [

Next we want to study the ideals of vertex covers for the class of edge ideals associated to quasi-n-partite
graphs.

Let] ¢ S = K[xy,...,x,] be amonomial ideal. The ideal of (minimal) covers of I, denoted by I, is the ideal
of S generated by all monomials x;, - - - x;, such that (x;,...,x;) is an associated (minimal) prime ideal of I.
Let G be a graph and let I(G) be its edge ideal. We define I.(G) the ideal of vertex covers of I(G). Then

LG =( () @x)n(wllonoleLG), pi))
{vi,0;}€E(G)i#]

Proposition 3.9. Let G be a graph with loops, and let 1.(G) be the ideal of vertex covers of I(G). Then for all k > 1
we have

I(G)k = ({XW

a € convi(k log(IC(G))}).

Proof. Let G be a graph on the vertex set V(G) = {x1,...,x,}, and let I.(G) be the ideal of vertex covers of
I(G) generated by the monomials x"1, ..., x"7. We put log(I.(G)) = {vy,...,v,;} C IN" and we define the set

klog(I(G)) = {vy, + vy, +---+ v, [1<p1 <--- <pp < q).
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We assume that klog(I.(G)) = {vy,..., 0/}, where v, = v, +v,, +--- + v, with1 <p; <--- < pr < g. Then
k+g-1

h ) elements in klog(I.(G)), and hence

there are r = (

conv(klog(I(G))) = {Z A,
i=1

)
Y Ai=1A€ Q+}
i=1

is the convex hull of klog(I.(G)).
Now let a = Yi_; Aiv; with v; € klog(I.(G)), Y.iz; Ai = 1, A; € Q4. We know that [a] > a, there is f € Q"
such that [a] = a + . Then there is 0 # & € IN so that i € IN" and hA; € N for all i. Therefore

xhl’a'\ — Xhﬁxha — xhﬁ(xnl )hA1 .. (xn,)h/\, e (IC(G)k)h = xl'of\ e IC(G)k

Conversely, let X’ € I.(G), thatis X € (I.(G)")" for some 0 # h € IN. There are nonnegative integers as, .. ., 4,
such that

X7 = x5 (x) and a1+ - +4a, = h
It then follows that y = (8/h) + Y.i_;(ai/h)v;. In addition, we set a = }7_;(a;/h)v;. By dividing the entries of
9 by h we can write y = f+ £ + a, where 0 < &; < 1 for all i and € IN". Note that £ + @ € N". This implies
that [a] = & + a. Therefore x’ = x*x/*1, where a € conv(vy,...,1,) as desired. [

Let L be a monomial ideal of T = K[X]. The big height of L, denoted by bight(L), is the maximum among
the heights of the associated primes of L, namely

bight(L) = max{height(P) | P € Ass(T/L)}.

Lemma 3.10. Let G be a strong quasi-n-partite graph on the vertex set V(G). Then

bight(I.(G)) = 1.

Proof. Let Gbe a strong quasi-n-partite graph on the vertexset V(G) = ViUV,U---UV, and V; = {xi1, .. ., Xi,}

. . . ay a1, 712 az, a n
fori = 1,a.’. ., N }etI(G) be the edge ideal of G generated by the monomials X, ! - X, X! X ,X1”1 Xﬁ” ,
where X[ - -+ X;/" stands for

T e uilml Tin e ajsz e Bim oo Ajnmy
1 1my %21 2y nl i,
forj=1,...,9. Weassume thatv=(1,...,1,...,1,...,1) e N @ -- - ® IN"" be a vector. Later by using [15,
N——— N ——
my—times m,—times

Proposition 12.1.4]) it turns out that I.(G) = ({X/*1 | a € conv(v)}), with
conv(v) = A;v with A;€Q;,.

Let f be a generator of I.(G). Then f = X*l with @ = (4j,...,4), A; = 1. Then X/*1 = XV, that is

X = xqg “Ximy ctXplc - Xpm,. Lherefore I(G) is integrally closed, and I.(G) = I.(G). The maximal
cardinality of the vertex covers of I(G) is bight(I.(G)) = 1 being {x;;} a maximal vertex cover of I(G) by
construction. [

Theorem 3.11. Let T = K[X] be the polynomial ring over a field K and G be a strong quasi-n-partite graph. Then
(i) dim(T/I(G)) =m1 +---+m, = 1;
(ii) projdim(T/L.(G)) = 1;

(iii) depth(T/I.(G)) = my + - -+ +my — 1;
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(iv) reg(T/I(G)) =my +---+m, — 1.

Proof. (i) Let G be a strong quasi-n-partite graph on the vertex set V(G), and let I(G) be its edge ideal. The
minimal cardinality of the vertex covers of I.(G) is height(I.(G)) = 1 being C = {x;} a minimal vertex cover
of I.(G) by construction. Therefore, [15, Corollary 7.2.5] implies that

dim(T/I(G)) = my + - -+ + my, — 1.
(i) Using Lemma 3.10 and [7, Theorem 12.6.7], together with [15, Corollary 6.4.20] now yield
proj dim(T/1.(G)) = bight(I.(G)) = 1.
(iii) By the Auslander-Buchsbaum formula (see [15, Theorem 3.5.13]), one has the equality
depth(T/I.(G)) = dim T — proj dim(T/I(G)) = my + -+ - + m, — 1.

(iv) The ideal I.(G) generated in degree m; + - - - + m,,. Then [7, Proposition 8.2.1] and [7, Theorem 12.6.2]
says that I.(G) has a m; + - - - + my-linear resolution. Therefore, reg(I.(G)) = my + - -+ + m,, as desired. O
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