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Coincidence points for KKM type maps and maps with a upper
semicontinuous selection property

Donal O’'Regan?

“School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland

Abstract. In this paper we present coincidence results between KKM type maps and maps which have a
upper semicontinuous selection property.

1. Introduction

In this paper using a fixed point theorem from the literature for KKM maps [5] we establish several
collectively coincidence results between two classes of set-valued maps defined on Hausdorff topological
vector spaces. One class includes KKM type maps while the other class considers maps which have an
upper semicontinuous selection type property. To obtain our coincidence results we need to present some
properties (see below) of KKM, W, HLPY and KLU maps which will then be used with various selection
theorems and a fixed point result for KKM maps defined on convex admissible subsets of Hausdorff
topological vector spaces

First we describe the maps considered in this paper. We begin with the Kautani maps. An upper
semicontinuous map ¢ : X — CK(Y) is said to be Kakutani (and we write ¢ € Kak(X,Y)); here X is
a Hausdorff topological space, Y is a Hausdorff topological vector space and CK(Y) denotes the family
of nonempty, convex, compact subsets of Y. Next we define a very general class of maps considered
in the literature [3, 4, 13]. Let X be a convex subset of a Hausdorff topological vector space and Y a
Hausdorff topological space. If S, T : X — 2 (nonempty subsets of Y) are two set valued maps such that
T(co (A)) € S(A) for each finite subset A of X then we call S a generalized KKM mapping w.r.t. T. Now the
set valued map T : X — 2¥ is said to have the KKM property if for any generalized KKM map S : X — 2V
w.r.t. T the family { S(x) : x € X} has the finite intersection property (the intersection of each finite subfamily
is nonempty). We let

KKM(X,Y) = {T : X — 2" | T has the KKM property}.

Next we recall the following result [4].

Theorem 1.1. Let X be a convex subset of a Hausdorff topological vector space and Y, Z be Hausdorff topological
spaces.
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(i). T € KKM(X,Y) iff T|» € KKM(2,Y) for each polytope A in X;

(ii). if T € KKM(X,Y) and f € C(Y, Z) then f T € KKM(X, Z);

(iii). if Y is a normal space, A a polytope of X and if T : A — 2Y is a set valued map such that for each f € C(Y, A) we
have that f T has a fixed point in A, then T € KKM(4,Y).

We also note the following properties.

Let C and X be convex subsets of a Hausdorff topological vector space E with C € X and Y a Hausdorff
topological space.

(i). If T € KKM(X, Y) then G = T|c € KKM(C, Y).

This can be seen from Theorem 1.1 (i). Note T € KKM(X, Y) so T|, € KKM(a,Y) for each polytope A in X
from Theorem 1.1 (i). Thus in particular for any polytope A in C we have T|, € KKM(A, Y) so from Theorem
1.1 (i) we have T|c € KKM(C,Y).

(ii). If T € KKM(X,Y), T(X) € Z C Y and Z is closed in Y then T € KKM(X, Z).

Let S : X — 27 be a generalized KKM map w.r.t. T ie. T(co(A)) C S(A) for each finite subset A of X.
We must show {S(x)% : x € X} has the finite intersection property. Note since S : X — 2V is a generalized
KKM map w.r.t. T then since T € KKM(X, Y) we have that (S(x) (= S(x)Y) : x € X} has the finite intersection
property. However note for x € X that

S(x)? = S NZ = S(x)" (= 5(x))
since Z is closed in Y (note S(X) € Z so S(x)¥ C Z). Thus {S(x)Z : x € X} = {S(x) (= S(x)¥) : x € X} has the
finite intersection property.

Next we recall the following fixed point result for KKM maps [3]. Recall a nonempty subset W of a
Hausdorff topological vector space E is said to be admissible if for any nonempty compact subset K of W
and every neighborhood V of 0 in E there exists a continuous map / : K — W with x — h(x) € V forall x € K
and h(K) is contained in a finite dimensional subspace of E (for example every nonempty convex subset of
a locally convex space is admissible).

Theorem 1.2. Let X be an admissible convex set in a Hausdorff topological vector space E and T € KKM(X, X) be a
closed compact map. Then T has a fixed point in X.

Next we recall some composition results from the literature [14, 15].

Theorem 1.3. Let X be a convex admissible subset of a Hausdorff topological vector space, Y a subset of a Hausdor{f
topological vector space, T € KKM(X,Y) a upper semicontinuous compact map with compact values and G €
Kak(Y, X). Then GT € KKM(X, X).

Theorem 1.4. Let X be a convex admissible subset of a Hausdorff topological vector space, Y a convex subset of a
Hausdor{f topological vector space and Y normal, T € KKM(X,Y) a upper semicontinuous compact map with compact
values and G € Kak(Y, X). Then T G € KKM(Y,Y).

Theorem 1.5. Let X be an admissible convex set in a Hausdorff topological vector space and Y be an admissible
convex set in a Hausdorff topological vector space and suppose Y is a normal space. Let Z be a subset of a Hausdorff
topological space with Z a normal space. Also assume T € KKM(X, Y) is an upper semicontinuous compact map with
compact values and H € KKM(Y, Z) is an upper semicontinuous map with compact values. Then HT € KKM(X, Z).

Next we describe the maps due to Wu [17]. Let X be a subset of a Hausdorff topological space and Y a
subset of a Hausdorff topological vector space. We say ® € W(X,Y) if ® : X — 2 and there exists a lower
semicontinuous map 0 : X — 2¥ with o (0(x)) € ®(x) for x € X. Alternatively (see Remark 1.7) we could
say @ € W(X, Y) if there exists a lower semicontinuous map 0 : X — 2¥ with closed convex values such that
0(x) € ®(x) for x € X.

Next we recall a selection theorem [1] (see the proof in Theorem 1.1) for Wu maps.
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Theorem 1.6. Let X be a paracompact subset of a Hausdorff topological space and Y a metrizable complete subset of a
Hausdorfflocally convex linear topological space. Suppose ® € W(X, Y)and let O : X — 2Y be a lower semicontinuous
map with co (8(x)) € ©(x) for x € X. Then there exists an upper semicontinuous map ¥V : X — CK(Y) (collection of
nonempty convex compact subsets of Y) with W(x) C co (6(x)) € O(x) for x € X.

Remark 1.7. (i). Let X be paracompact and Y a metrizable subset of a complete Hausdorff locally convex linear
topological space E and ® € W(X,Y) with 6 : X — 2V a lower semicontinuous map and to (0(x)) C ®(x) for x € X.
Note [12] that 06 : X — 2¥ (since co (6(x)) € ©(x) C Y for x € X) is lower semicontinuous, so from Michael’s
selection theorem there exists a continuous (single valued) map f : X — Y with f(x) € co(0(x)) for x € X, so
consequently f(x) € co (0(x)) € D(x) for x € X.

(ii). We could rephrase Theorem 1.6 (without mentioning 0) as: Let X be a paracompact subset of a Hausdorff
topological space, Y a metrizable complete subset of a Hausdorff locally convex linear topological space and ® €
W(X,Y). Then there exists an upper semicontinuous map ¥V : X — CK(Y) with W (x) € O(x) for x € X.

We now note two properties for W maps.

(). Let Fe W(X,Y) and Z C X. Then F € W(Z,Y).

To see this note there exists a lower semicontinuous map 6 : X — 2¥ with o (0(x)) C F(x) for x € X. Let
Q be a closed subset of Y. Then{x e Z: 0(x) CQ} =Zn{x e X: O0(x) € Q} which is closed in Z since
0 : X — 2V is lower semicontinuous. Thus F € W(Z,Y).

(ii). Let Fe W(X,Y)and F(X) c W C Y. Then F € W(X, W).

To see this note there exists a lower semicontinuous map 0 : X — 2 with ¢ (6(x)) C F(x) for x € X.
Let Q be a closed subset of W. Then Q = W N C for some closed set C of Y. Now since F(X) € W then
{xeX: 0(x) CQ}={xeX: 0(x) C C}whichis closed in X since 0 : X — 2" is lower semicontinuous. Thus
F e WX, W).

Let Z be a subset of a Hausdorff topological space Y7 and W a subset of a Hausdorff topological vector
space Y, and G a multifunction. We say F € HLPY(Z, W) [11] if W is convex and there existsamap S : Z - W
(i.e. S: Z — P(W) (collection of subsets of W)) with co (S(x)) € F(x) for x € Z, S(x) # 0 for each x € Z and
Z=U{intS Y (w): we W}; here S (w) = {z € Z: w € S(z)} and note S(x) # O for each x € Z is redundant
since if z € Z then there exists aw € W with z € int S™(w) € S~ (w) so w € S(z) i.e. S(z) # 0. For the selection
theorem below see [11].

Theorem 1.8. Let X be a paracompact subset of a Hausdorff topological space, Y a convex subset of a Hausdorff
topological vector space and F € HLPY (X, Y) (let S : X — 2¥ with co (S(x)) C F(x) for x € Xand X = |J {int S~ (w) :
w € Y}). Then there exists a continuous (single—valued) map f : X — Y with f(x) € co S(x) C F(x) forall x € X.

Remark 1.9. (i). These maps are related to the DKT maps in the literature and F € DKT(Z, W) [5] if W is convex
and there exists a map S : Z — W with co (S(x)) C F(x) for x € Z, S(x) # 0 for each x € Z and the fibre S~ (w) is
open (in Z) for each w € W. Note these maps were motivated from the Fan maps.

(ii). We could rephrase Theorem 1.8 (without mentioning S) as: Let X be a paracompact subset of a Hausdorff
topological space, Y a convex subset of a Hausdorff topological vector space and F € HLPY(X,Y). Then there exists a
continuous map f : X — Y with f(x) € F(x) forall x € X.

We now note two properties for HLPY maps (here Y is convex).

(i). Let F e HLPY(X,Y) and Z C X. Then F € HLPY(Z,Y).
To see this note existsamap S : X — Y with co (S(x)) € F(x) for x € Xand X = J{intS™'(y) : y € Y}. Let
S also denote the restriction of S to Z. Notice

z=znx=zn( Jtints?@: ye)=| Jiznints ) yen),

so Z € UlintzS Y (y) : y € Y} since for each y € Y we have that Z N int S~}(y) is open in Z. On the other
hand clearly | {int; S (y): y€ Y} CZ. Thus Z = U{intzS ' (y): y € Y}soF € HLPY(ZY).
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(ii). Let F € HLPY(X,Y) and F(X) € W C Y with W convex. Then F € HLPY (X, W).

To see this note exists a map S : X — Y with co(S(x)) € F(x) forx € X and X = J{intS7'(y) : y € Y}.
Now note for any x € X there exists a y € Y with x € int S7}(y) € S™(y) so y € S(x) C co(S(x)) € F(x) € W.
Thus X = J{intS7'(y): y € W}, so F € HLPY(X, W).

Let X be a subset of a Hausdorff topological space and Y a subset of a Hausdorff topological vector space.
We say T : X — 2¥ has the strong continuous inclusion property (SCIP) [10] at x € X if there exists an open
set U(x) in X containing x and a F* : U(x) — 2¥ such that F*(w) C T(w) for all w € U(x) and co F* : U(x) — 2¥
is compact valued and upper semicontinuous. We write T € KLU(X, Y) if T has the SCIP at every x € X.

In this paper our map T will usually be a compact map so T has the SCIP is equivalent (see [2, pp 465])
to T has the CIP [9].

We now note two properties for KLU maps which we will use in Section 2.

(i). Let Fe KLU(X,Y) and Z € X. Then F € KLU(Z,Y).

To see this let x € Z. Then x € X and since F € KLU(X, Y) then there exists an open set U(x) in X
containing x and a ®* : U(x) — 2¥ such that ®*(w) C F(w) for all w € U(x) and co®* : U(x) — 2V is compact
valued and upper semicontinuous. Let V(x) = Z N U(x). Note V(x) is open in Z and co®* : V(x) — 2Y is
upper semicontinuous (consider co ®* o i where i : V(x) — U(x) is the inclusion) and compact valued. Thus
F e KLU(Z,Y).

(ii). Let F € KLU(X,Y) and F(X) € W C Y. Then F € KLU(X, W).

Let x € X. Then there exists an open set U(x) in X containing x and a ®* : U(x) — 2¥ such that
®*(w) C F(w) for all w € U(x) and co® : U(x) — 2¥ is compact valued and upper semicontinuous. Let
W~ : U(x) — 2" be obtained by restricing the range of ®* and let Q) be open in W. Then Q = WN V for some
open set V of Y. Now since F(X) € W then {y € U(x) : coW*(y) € Q} = {y € U(x) : co®*(y) C V} which is
open in U(x). Thus co W* : U(x) — 2" is upper semicontinuous so F € KLU(X, W).

Next we recall a selection theorem [10].

Theorem 1.10. Let X be a paracompact subset of a Hausdor({f topological space, Y a subset of a Hausdorff topological
vector space and T € KLU(X,Y). Then there exists an upper semicontinuous map G : X — CK(Y) with G(w) C
co T(w) for all w € X.

2. Coincidence result.

Let X be a subset of a Hausdorff topological space and Y a subset of a Hausdorff topological vector space.
We say F € HYKKM(X, Y)if F : X — 2¥ and there exists an upper semicontinuous map W € KKM(X, Y) with
compact values and with W(x) C co (F(x)) for x € X. We say F € CKKM(X,Y) if F : X — 2 and there exists
an upper semicontinuous map ¥ € KKM(X, Y) with compact values and with W(x) C F(x) for x € X (in this
case we only need Y to be a subset of a Hausdorff topological space). We begin with coincidence results
between KKM type maps and KLU maps.

Theorem 2.1. Let X be a subset of a Hausdorff topological vector space and Y a convex admissible subset of a
Hausdorff topological vector space and let X be paracompact. Suppose F € KLU(X,Y) with coF a compact map and
G € HYKKM(Y, X). Then there exists a x € X with co F(x) N A™}(x) # 0; here A(w) = co G(w) for w € Y.

Proof. From Theorem 1.10 there exists an upper semicontinuous map ¥ : X — CK(Y) (i.e. ¥ € Kak(X,Y))
with W(x) C co (F(x)) for x € X and note ¥ is a compact map since co F is a compact map. Also by definition
there exists an upper semicontinuous map @ € KKM(Y, X) with compact values and with ®(y) C co (G(y))
for y € Y. From Theorem 1.3 note W ® € KKM(Y,Y) is an upper semicontinuous compact map (note
WV is a compact map) with compact values, so a closed map [2]. Now Theorem 1.2 guarantees a y € Y
with y € W P(y). Let x € O(y) with y € W(x), so y € W(x) C co(F(x)) and x € P(y) € coG(y) = A(y) (so
yeAl(x). O
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Remark 2.2. (i). One could also consider @V in the proof of Theorem 2.1 if X is a convex admissible subset of
a Hausdorff topological vector space, X is a normal space, X is paracompact and Y is a convex admissible subset
of a Hausdorff topological vector space. To see this note from Theorem 1.4 that ®W € KKM(X, X) is an upper
semicontinuous compact map (note V is a compact map and @ is upper semicontinuous with compact values). Now
apply Theorem 1.2.

(ii). We could replace “co F is a compact map” with “co G is a compact map” in the statement of Theorem 2.1. To
see this notice in the proof we just replace "\ is a compact map” with "® is a compact map”. In fact we can improve
this result (see Theorem 2.4).

(iii). In the proof of Theorem 2.1 note from Section 1 that W € Kak(X, co (F(X))) and ® € KKM(co (F(X)), X).
Thus W @ € KKM(co (F(X)), co (F(X))) is an upper semicontinuous compact map. We can now apply Theorem 1.2 if
we assume co (F(X)) is admissible instead of assuming Y is admissible.

There are obvious analogues of Theorem 2.1 and Remark 2.2 when the HYKKM map is replaced by a
CKKM map. Here is the analogue of Theorem 2.1.

Theorem 2.3. Let X be a subset of a Hausdorff topological space and Y a convex admissible subset of a Hausdorff
topological vector space and let X be paracompact. Suppose F € KLU(X,Y) with coF a compact map and G €
CKKM(Y, X). Then there exists a x € X with co F(x) N G~ (x) # 0.

Proof. Let W be as in Theorem 2.1. Now by definition there exists an upper semicontinuous map ® €
KKM(Y, X) with compact values and with ®(y) € G(y) for y € Y. From Theorem 1.3 note ¥ ® € KKM(Y,Y)
is an upper semicontinuous compact map, so Theorem 1.2 guarantees a y € Y with y € W ®(y). Let x € O(y)
with y € W(x),so y € W(x) C co(F(x)) and x € O(y) € G(y). O

Our next result improves Remark 2.2 (ii) (i.e. we remove the assumption that X is paracompact).

Theorem 2.4. Let X be a subset of a Hausdorff topological vector space and Y a convex admissible subset of a
Hausdorff topological vector space. Suppose F € KLU(X,Y) and G € HYKKM(Y, X) with co G a compact map. Then
there exists a x € X with co F(x) N A~1(x) # 0; here A(w) = co G(w) forw € Y.

Proof. By definition there exists an upper semicontinuous map ® € KKM(Y, X) with compact values and with
D(y) € co(G(y)) for y € Y and note @ is a compact map since co G is a compact map. Also note from Secton
1 that ® € KKM(Y, co (G(Y))). Next since F € KLU(X, Y) we have from Section 1 that F € KLU(co (G(Y)), Y).
Now co G(Y) is compact (since coG is a compact map) so paracompact, and Theorem 1.10 guarantees
that there exists an upper semicontinuous map ¥ : co (G(Y)) — CK(Y) (i.e. W € Kak(co (G(Y)),Y)) with
W(x) € co(F(x)) for x € co(G(Y)). From Theorem 1.3 note W ® € KKM(Y,Y) is an upper semicontinuous
compact map (note @ is a compact map and W is upper semicontinuous with compact values). Now
Theorem 1.2 guaranteesa y € Y withy e Y O(y). O

We now present the analogue of Theorem 2.4 when the HYKKM map is replaced by a CKKM map.

Theorem 2.5. Let X be a subset of a Hausdorff topological space and Y a convex admissible subset of a Hausdor{f
topological vector space. Suppose F € KLU(X,Y) and G € CKKM(Y, X) with G a compact map. Then there exists a
x € X with coF(x) N G~ (x) # 0.

Proof. By definition there exists an upper semicontinuous map ® € KKM(Y, X) with compact values and
with @(y) € G(y) for y € Y and note @ is a compact map since G is a compact map. Also note from Secton

1 that ® € KKM(Y, G(Y)) and F € KLU(G(Y), Y). Now G(Y) is compact so paracompact, and Theorem 1.10
guarantees that there exists an upper semicontinuous map W : G(Y) — CK(Y) with W(x) € co (F(x)) for

x € G(Y). From Theorem 1.3 note W ® € KKM(Y, Y) is an upper semicontinuous compact map. Now apply
Theorem 1.2. O
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Our next result, motivated in part from Theorem 2.4, considers Theorem 2.1 and the paracompactness
condition.

Theorem 2.6. Let X and Y be subsets of a Hausdorff topological vector space E and Y a convex admissible subset
of E. Suppose F € KLU(X,Y) and G € HYKKM(Y, X) and assume there exists a compact subset K of Y with
co (F(X)) € K. Let L(K) be the linear span of K (i.e. the smallest linear subspace of E that contains K) and suppose
co G(Y) € XNL(K) and X NL(K) is closed both in L(K) and in X. Then there exists a x € X with co F(x) NA™'(x) # 0;
here A(w) = co G(w) forw € Y.

Proof. From Section 1 note F € KLU(X N L(K), Y). Recall L(K) is Lindelof so paracompact [6, 7, 8] and
since X N L(K) is closed in L(K) then X N L(K) is paracompact. Now Theorem 1.10 guarantees there exists
an upper semicontinuous map ¥ : X N L(K) — CK(Y) with W(x) € co(F(x)) for x € X N L(K) and note ¥
is a compact map since co (F(X N L(K))) € co(F(X)) € K. Since G € HYKKM(Y, X) there exists an upper
semicontinuous map ® € KKM(Y, X) with compact values and with ®(y) € co (G(y)) for y € Y. Now since
co G(Y) € XN L(K) and X N L(K) is closed in X then from Section 1 we have that ® € KKM(Y, X N L(K)) is an
upper semicontinuous map. Thus W ® € KKM(Y, Y) is an upper semicontinuous compact map. Now apply
Theorem 1.2. O

Theorem 2.7. Let X and Y be subsets of a Hausdor{f topological vector space E and Y a convex admissible subset of E.
Suppose F € KLU(X, Y) and G € CKKM(Y, X) and assume there exists a compact subset K of Y with co (F(X)) € K.
Let L(K) be the linear span of K and suppose G(Y) € X N L(K) and X N L(K) is closed both in L(K) and in X. Then
there exists a x € X with co F(x) N G~ 1(x) # 0.

Proof. Let ¥ be as in Theorem 2.6. Since G € CKKM(Y, X) there exists an upper semicontinuous map
® € KKM(Y, X) with compact values and with ®(y) € G(y) for y € Y. Now since G(Y) € X N L(K) and
X N L(K) is closed in X then from Section 1 we have that ® € KKM(Y, X N L(K)) is an upper semicontinuous
map. Thus W ® € KKM(Y, Y) is an upper semicontinuous compact map. Now apply Theorem 1.2. [

Theorem 2.8. Let X and Y be subsets of a Hausdorff topological vector space E. Suppose F € KLU(X, E) and
G € HYKKM(E, X) and assume there exists a compact subset K of E with co (F(X)) € K. Let L(K) be the linear span
of K and suppose co G(L(K)) € X N L(K) and X N L(K) is closed both in L(K) and in X and L(K) is an admissible
subset of E. Then there exists a x € X with co F(x) N A71(x) # 0; here A(w) = co G(w) forw € Y.

Proof. Since co (F(X)) € K and F € KLU(X, E) from Section 1 we have F € KLU(X N L(K), L(K)) and since
X N L(K) is paracompact from Theorem 1.10 there exists an upper semicontinuous map ¥ : X N L(K) —
CK(L(K)) with W(x) C co (F(x)) for x € X N L(K) and note W is a compact map. Now since G € HYKKM(E, X)
there exists an upper semicontinuous map ® € KKM(E, X) with compact values and with ®(y) C co (G(y))
for y € E. Now since coG(L(K)) € X N L(K) and X N L(K) is closed in X then from Section 1 we have
that @ € KKM(L(K), X N L(K)) is an upper semicontinuous map. Thus W ® € KKM(L(K), L(K)) is an upper
semicontinuous compact map. Now apply Theorem 1.2. [J

In addition we have the following result (minor adjustments in the proof of Theorem 2.8).

Theorem 2.9. Let X and Y be subsets of a Hausdorff topological vector space E. Suppose F € KLU(X, E) and
G € CKKM(E, X) and assume there exists a compact subset K of E with co (F(X)) € K. Let L(K) be the linear span of
K and suppose G(L(K)) € X N L(K) and X N L(K) is closed both in L(K) and in X and L(K) is an admissible subset of
E. Then there exists a x € X with co F(x) N G (x) # 0.

We now present coincidence results between KKM type maps and W maps.

Theorem 2.10. Let X be a subset of a Hausdor(ff topological vector space and Y a convex metrizable complete subset of
a Hausdorff locally convex linear topological space and let X be paracompact. Suppose F € W(X,Y) with F a compact
map and G € HYKKM(Y, X). Then there exists a x € X with F(x) N A7} (x) # 0; here A(w) = co G(w) for w € Y.
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Proof. From Theorem 1.6 there exists an upper semicontinuousmap ¥ : X — CK(Y) (i.e. ¥ € Kak(X, Y)) with
W(x) € F(x) for x € X and note W is a compact map since F is a compact map. Also by definition there exists
an upper semicontinuous map ® € KKM(Y, X) with compact values and with ®(y) € co(G(y)) for y € Y.
From Theorem 1.3 (recall a convex subset of a locally convex space is admissible) note W @ € KKM(Y,Y)
is an upper semicontinuous compact map. Now Theorem 1.2 guarantees a y € Y with y € Wd(y). Let
x € O(y) with y € W(x), so y € W(x) C F(x) and x € D(y) C coG(y) = A(y). O

Remark 2.11. There is an obvious analogue of Remark 2.2 in this setting also.

Theorem 2.12. Let X be a subset of a Hausdorff topological space and Y a convex metrizable complete subset of a
Hausdorff locally convex linear topological space and let X be paracompact. Suppose F € W(X,Y) with F a compact
map and G € CKKM(Y, X). Then there exists a x € X with F(x) N G™'(x) # 0.

Proof. Let W be as in Theorem 2.10. Now by definition there exists an upper semicontinuous map @ €
KKM(Y, X) with compact values and with ®(y) € G(y) for y € Y. From Theorem 1.3 note ¥ ® € KKM(Y,Y)
is an upper semicontinuous compact map, so Theorem 1.2 guarantees a y € Y with y € W ®(y). Let x € O(y)
with y € W(x),so y € W(x) C F(x) and x € P(y) € G(y). O

Theorem 2.13. Let X be a subset of a Hausdorff topological vector space and Y a convex metrizable complete subset
of a Hausdorff locally convex linear topological space. Suppose F € W(X,Y) and G € HYKKM(Y, X) with coG a
compact map. Then there exists a x € X with F(x) N A7} (x) # 0; here A(w) = co G(w) for w € Y.

Proof. By definition there exists an upper semicontinuous map ® € KKM(Y, X) with compact values and with
D(y) € co(G(y)) for y € Y and note @ is a compact map. Also note from Secton 1 that ® € KKM(Y, co (G(Y))).
Next since F € W(X,Y) we have from Section 1 that F € W(co(G(Y)),Y). Now coG(Y) is compact so
paracompact, and Theorem 1.6 guarantees that there exists an upper semicontinuous map ¥ : co (G(Y)) —
CK(Y) (i.e. W € Kak(co (G(Y)), Y)) with W(x) C F(x) for x € co (G(Y)). From Theorem 1.3 note W @ € KKM(Y, Y)
is an upper semicontinuous compact map so the result follows from Theorem 1.2. [J

Theorem 2.14. Let X be a subset of a Hausdorff topological space and Y a convex metrizable complete subset of a
Hausdorff locally convex linear topological space. Suppose F € W(X,Y) and G € CKKM(Y, X) with G a compact
map. Then there exists a x € X with F(x) N G™}(x) # 0.

Proof. By definition there exists an upper semicontinuous map ® € KKM(Y, X) with compact values and
with @(y) € G(y) for y € Y and note @ is a compact map. Also note from Secton 1 that ® € KKM(Y, G(Y))
and F € W(G(Y), Y). Now G(Y) is compact so paracompact, and Theorem 1.6 guarantees that there exists

an upper semicontinuous map V¥ : G(Y) — CK(Y) with W(x) € F(x) for x € G(Y). From Theorem 1.3 note
WO € KKM(Y,Y) is an upper semicontinuous compact map. Now apply Theorem 1.2. [

There are also obvious analogues of Theorem 2.6, Theorem 2.7, Theorem 2.8, and Theorem 2.9 with
F € KLU(X,Y) replaced by F € W(X,Y). For completeness we present the analogue of Theorem 2.6 and
Theorem 2.7.

Theorem 2.15. Let X and Y be subsets of a Hausdorff locally convex linear topological space E with Y a convex
metrizable complete subset of E. Suppose F € W(X,Y) and G € HYKKM(Y, X) and assume there exists a compact
subset K of Y with F(X) € K. Let L(K) be the linear span of K and suppose co G(Y) € X N L(K) and X N L(K) is
closed both in L(K) and in X. Then there exists a x € X with F(x) N A7} (x) # 0; here A(w) = co G(w) for w € Y.

Proof. Note F € W(XNL(K), Y) and XNL(K) is paracompact (see Theorem 2.6). Now Theorem 1.6 guarantees
there exists an upper semicontinuous map ¥ : XN L(K) — CK(Y) with W(x) C F(x) for x € XN L(K) and note
W is a compact map. Since G € HYKKM(Y, X) there exists an upper semicontinuous map ® € KKM(Y, X)
with compact values and with ®(y) € co(G(y)) for y € Y. Now since co G(Y) € X N L(K) and X N L(K) is
closed in X then from Section 1 we have that @ € KKM(Y, X N L(K)) is an upper semicontinuous map. Thus
W ® e KKM(Y,Y) is an upper semicontinuous compact map. Now apply Theorem 1.2. [J
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Similarly we have the following analogue of Theorem 2.7.

Theorem 2.16. Let X and Y be subsets of a Hausdorff locally convex linear topological space E with Y a convex
metrizable complete subset of E. Suppose F € W(X,Y) and G € CKKM(Y, X) and assume there exists a compact
subset K of Y with F(X) € K. Let L(K) be the linear span of K and suppose G(Y) € X N L(K) and X N L(K) s closed
both in L(K) and in X. Then there exists a x € X with F(x) N G™1(x) # 0.

Next we present coincidence results between KKM type maps and HLPY maps.

Theorem 2.17. Let X be a subset of a Hausdorff topological vector space and Y a convex admissible subset of a
Hausdorff topological vector space and let X be paracompact. Suppose F € HLPY(X,Y) with F a compact map and
G € HYKKM(Y, X). Then there exists a x € X with F(x) N A71(x) # 0; here A(w) = co G(w) forw € Y.

Proof. From Theorem 1.8 there exists a continuous (single valued) map f : X — Y with f(x) € F(x) for
x € X and note f is a compact map since F is a compact map. Also by definition there exists an upper
semicontinuous map ® € KKM(Y, X) with compact values and with ®(y) € co(G(y)) for y € Y. From
Theorem 1.1 (ii) note f® € KKM(Y,Y) is an upper semicontinuous compact map. Now Theorem 1.2
guarantees a y € Y with y € f ®(y). Let x € O(y) with y = f(x), so y = f(x) € F(x) and x € D(y) € co G(y) =
Aly). O

Similarly we obtain the following result (analogue of Theorem 2.3 with F € KLU(X,Y) with F €
HLPY(X,Y)).

Theorem 2.18. Let X be a subset of a Hausdorff topological space and Y a convex admissible subset of a Hausdorff
topological vector space and let X be paracompact. Suppose F € HLPY(X,Y) with F a compact map and G €
CKKM(Y, X). Then there exists a x € X with F(x) N G~ (x) # 0.

There are also analogues of Theorem 2.4 and Theorem 2.5 for HLPY maps but in fact here we can obtain
a more general result.

Theorem 2.19. Let X be a subset of a Hausdorff topological vector space and Y a convex admissible subset of a
Hausdorff topological vector space. Suppose F € HLPY(X,Y) and G € HYKKM(Y, X) with co G a compact map.
Then there exists a x € X with F(x) N A~ (x) # 0; here A(w) = co G(w) for w € Y.

Proof. Since F € HLPY(X,Y) then from Section 1 we have F € HLPY(co (G(Y)), Y). In addition since co (G(Y))
is compact then Theorem 1.8 guarantees that there exists a continuous (single-valued) map f : co (G(Y)) = Y
with f(x) € F(x) for y € co (G(Y)). In fact [11] there exists a finite subset A of Y with f(co (G(Y))) € co(A), so
f € C(co (G(Y)), co(A)). Also by definition there exists an upper semicontinuous map ® € KKM(Y, X) with
compact values and with ®(y) € co(G(y)) for y € Y and note @ is a compact map. From Section 1 note
® € KKM(co (A),co (G(Y))) so from Theorem 1.1 (ii) note f & € KKM(co (A), co (A)) is a upper semicontinuous
map. Now apply Theorem 1.2 (note co (A) is a compact convex set in a finite dimensional subspace of the
Hausdorff topological vector space associated with Y) so there existsa y € Y with y € f d(y). O

Theorem 2.20. Let X be a subset of a Hausdorff topological space and Y a convex admissible subset of a Hausdorff
topological vector space. Suppose F € HLPY(X,Y) and G € CKKM(Y, X) with G a compact map. Then there exists a
x € X with F(x) N G™1(x) # 0.

Proof. Since F € HLPY(X,Y) then from Section 1 we have F € HLPY(G(Y),Y) so Theorem 1.8 guarantees
that there exists a continuous (single-valued) map f : G(Y) — Y with f(x) € F(x) for y € G(Y). Also

there exists a finite subset A of Y with f(G(Y)) € co(A), so f € C(G(Y),co(A)). Also by definition there
exists an upper semicontinuous map ® € KKM(Y, X) with compact values and with ®(y) € G(y) fory € Y

and note @ is a compact map. From Section 1 note @ € KKM(co (A), G(Y)) so from Theorem 1.1 (ii) note
f @ € KKM(co (A), co (A)) is a upper semicontinuous map. Now apply Theorem 1.2. [J
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There are also obvious analogues of Theorem 2.6, Theorem 2.7, Theorem 2.8, and Theorem 2.9 with
F € KLU(X, Y) replaced by F € HLPY(X, Y). For completeness we present the analogue of Theorem 2.6 and
Theorem 2.7.

Theorem 2.21. Let X and Y be subsets of a Hausdor{f topological vector space E with Y a convex admissible subset of
E. Suppose F € HLPY(X,Y) and G € HYKKM(Y, X) and assume there exists a compact subset K of Y with F(X) C K.
Let L(K) be the linear span of K and suppose co G(Y) € X N L(K) and X N L(K) is closed both in L(K) and in X. Then
there exists a x € X with F(x) N A71(x) # 0; here A(w) = co G(w) forw € Y.

Proof. Note F € HLPY(X N L(K),Y) and X N L(K) is paracompact (see Theorem 2.6). Now Theorem 1.8
guarantees there exists a continuous (single-valued) map f : X N L(K) — Y with f(x) € F(x) for x € X N L(K)
and note f is a compact map. Since G € HYKKM(Y, X) there exists an upper semicontinuous map ® €
KKM(Y, X) with compact values and with ®(y) € co (G(y)) for y € Y. Next note ® € KKM(Y, X N L(K)) is an
upper semicontinuous map. Thus f ® € KKM(Y,Y) is an upper semicontinuous compact map. Now apply
Theorem 1.2. O

Similarly we have the following analogue of Theorem 2.7.

Theorem 2.22. Let X and Y be subsets of a Hausdor{f topological vector space E with Y a convex admissible subset of
E. Suppose F € HLPY(X,Y) and G € CKKM(Y, X) and assume there exists a compact subset K of Y with F(X) € K.
Let L(K) be the linear span of K and suppose G(Y) € X N L(K) and X N L(K) is closed both in L(K) and in X. Then
there exists a x € X with F(x) N G~ Y(x) # 0.

Next we present coincidence results between KKM type maps and KKM type maps.

Theorem 2.23. Let X be a convex admissible subset of a Hausdorff topological vector space, Y a convex admissible
subset of a Hausdorff topological vector space and let X and Y be normal spaces. Suppose F € HYKKM(X,Y) with coF
a compact map and G € HYKKM(Y, X). Then there exists a x € X with coF(x) N A1 (x) # 0; here A(w) = co G(w)
forweY.

Proof. By definition there exists an upper semicontinuous map ¥ € KKM(X, Y) with compact values and
with W(x) C co (F(x)) for x € X and note W is a compact map, and also by definition there exists an upper
semicontinuous map ® € KKM(Y, X) with compact values and with ®(y) € co(G(y)) for y € Y. From
Theorem 1.5 note W ® € KKM(Y, Y) is an upper semicontinuous compact map. Now apply Theorem 1.2. [0

Similarly (with minor adjustments) we have the following results.

Theorem 2.24. Let X be a convex admissible subset of a Hausdorff topological vector space, Y a convex admissible
subset of a Hausdorff topological vector space and let X and Y be normal spaces. Suppose F € CKKM(X,Y) with F a
compact map and G € HYKKM(Y, X). Then there exists a x € X with F(x) N A™}(x) # 0; here A(w) = co G(w) for
weY.

Theorem 2.25. Let X be a convex admissible subset of a Hausdorff topological vector space, Y a convex admissible
subset of a Hausdorff topological vector space and let X and Y be normal spaces. Suppose F € HYKKM(X, Y) with
co F a compact map and G € CKKM(Y, X). Then there exists a x € X with co F(x) N G™1(x) # 0.

Theorem 2.26. Let X be a convex admissible subset of a Hausdorff topological vector space, Y a convex admissible
subset of a Hausdorff topological vector space and let X and Y be normal spaces. Suppose F € CKKM(X,Y) with F a
compact map and G € CKKM(Y, X). Then there exists a x € X with F(x) N G™1(x) # 0.

Finally we discuss a general class of maps [16] related to the KKM class. Let X be a convex subset of a
Hausdorff topological vector space and Y a Hausdorff topological space. Now F € BPK(X, Y)if F: X — 2Y
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and for any polytope P in X and any continuous map f : F(P) — P we have that f (F|p) : P — 2° has a fixed
point.

We also note the following properties.

Let C and X be convex subsets of a Hausdorff topological vector space E with C € X and Y a Hausdorff
topological space.

(i). If F € BPK(X,Y) then G = F|c € BPK(C, Y).

Consider any polytope P in C and any continuous map f : G(P) — P. Now since P is a polytope in X
and (note G(P) = F(P) since P € C) f : F(p) — P is a continuous map then since F € BPK(X, Y) there exists a
x € Pwithx € fFlp(x)ie. x € f G(x) since x € P C C. Thus G = F|c € BPK(C,Y).

(ii). If F € BPK(X,Y) with F(X) € Z C Y then F € BPK(X, Z).

Note F : X — 2¥ and let G : X — 27 be the map obtained by restricting the range of F. Consider any
polytope P in X and any continuous map f : G(P) — P. Now since G(P) = F(P) then f : F(P) — P is
continuous and since F € BPK(X, Y) there exists a x € P with x € f F|p (x) = f G|p (x). Thus F € BPK(X, Z).

(iii). If F € BPK(X, Y) and f € C(Y, X) then f F € BPK(X, X).

Note f F : X — 2%. Consider any polytope P in X and any continuous map g : fF(P) — P. We must show
there exists a x € P with x € g (f F)|p(x). To see thisnote g f Flp = hFlp : P — 2" where h = g f : F(p) —» Pisa
continuous map (note h(F(P)) = g (f F(P)) C P). Since F € BPK(X, Y) there exists a x € P with x € h F|p (x) i.e.
x € (9 f) Flp(x) = g (f F)lp(x). Thus f F € BPK(X, X).

From Theorem 1.1 (parts (i) and (iii)) note BPK(X, Y) € KKM(X, Y) when Y is normal. Also from Theorem
1.1 (parts (i), (ii)) and Theorem 1.2 note if F € KKM(X, Y) is closed then F € BPK(X, Y) and so the two classes
coincide for closed compact maps. Now we recall the following fixed point result [16] for BPK maps.

Theorem 2.27. Let X be an admissible convex set in a Hausdorff topological vector space and F € BPK(X, X) be a
closed compact map. Then F has a fixed point in X.

Let X be a convex subset of a Hausdorff topological vector space and Y a subset of a Hausdorff
topological vector space. We say F € HYBPK(X, Y) if F : X — 2¥ and there exists an upper semicontinuous
map ¥ € BPK(X,Y) with compact values and with W(x) C co (F(x)) for x € X. We say F € CBPK(X,Y) if
F: X — 2Y and there exists an upper semicontinuous map W € BPK(X, Y) with compact values and with
W(x) € F(x) for x € X (in this case we only need Y to be a subset of a Hausdorff topological space). Now we
present coincidence results between BPK type maps and HLPY maps. We will just consider the analogue
of Theorem 2.17 and Theorem 2.18.

Theorem 2.28. Let X be a subset of a Hausdorff topological vector space and Y a convex admissible subset of a
Hausdorff topological vector space and let X be paracompact. Suppose F € HLPY(X,Y) with F a compact map and
G € HYBPK(Y, X). Then there exists a x € X with F(x) N A™}(x) # 0; here A(w) = co G(w) forw € Y.

Proof. From Theorem 1.8 there exists a continuous (single valued) map f : X — Y with f(x) € F(x) for
x € X and note f is a compact map since F is a compact map. Also by definition there exists an upper
semicontinuous map ® € BPK(Y, X) with compact values and with ®(y) € co(G(y)) for y € Y. From the
above note f ® € BPK(Y, Y) is an upper semicontinuous compact map. Apply Theorem 2.27 to f®. [

Similarly we have the following result .

Theorem 2.29. Let X be a subset of a Hausdorff topological space and Y a convex admissible subset of a Hausdorff
topological vector space and let X be paracompact. Suppose F € HLPY(X,Y) with F a compact map and G €
CBPK(Y, X). Then there exists a x € X with F(x) N G~ (x) # 0.

Remark 2.30. Therearealso obvious analogues of Theorem 2.19 (respectively, Theorem 2.20) with G € HYKKM(Y, X)
(respectively, G € CKKM(Y, X)) replaced by G € HYBPK(Y, X) (respectively, G € CBPK(Y, X)). One only needs to
make minor adjustments in the proof of Theorem 2.19 (respectively, Theorem 2.20) or alternatively one could deduce
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it immediately from Theorem 2.19 (respectively, Theorem 2.20) if one notes that G is a compact map and consider the
comment before Theorem 2.27.

There are also obvious analogues of Theorem 2.21 and Theorem 2.22 (and also Theorem 2.8 and Theorem
2.9). For completeness we present the analogue of Theorem 2.21 and Theorem 2.22.

Theorem 2.31. Let X and Y be subsets of a Hausdorff topological vector space E with Y a convex admissible subset of
E. Suppose F € HLPY(X,Y) and G € HYBPK(Y, X) and assume there exists a compact subset K of Y with F(X) € K.
Let L(K) be the linear span of K and suppose co G(Y) € X N L(K) and X N L(K) is closed in L(K). Then there exists a
x € X with F(x) N A™Y(x) # 0; here A(w) = co G(w) for w € Y.

Proof. Note F € HLPY(XNL(K), Y) and XNL(K) is paracompact so from Theorem 1.8 there exists a continuous
(single-valued) map f : X N L(K) — Y with f(x) € F(x) for x € X N L(K) and note f is a compact map. Since
G € HBPK(Y, X) there exists an upper semicontinuous map ® € BPK(Y, X) with compact values and with
D(y) € co(G(y)) for y € Y. Next note ® € BPK(Y, X N L(K)) is an upper semicontinuous map. Thus
f® € BPK(Y, Y) is an upper semicontinuous compact map. Now apply Theorem 2.27. [

Similarly we have the following result

Theorem 2.32. Let X and Y be subsets of a Hausdorff topological vector space E with Y a convex admissible subset
of E. Suppose F € HLPY(X,Y) and G € CBPK(Y, X) and assume there exists a compact subset K of Y with F(X) C K.
Let L(K) be the linear span of K and suppose G(Y) € X N L(K) and X N L(K) is closed in L(K). Then there exists a
x € X with F(x) N G~ '(x) # 0.
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