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Abstract. In this paper, a numerical method is presented for solving fractional optimal control problems
(FOCPs) in the Caputo-Fabrizio sense using cubic B-spline functions. Operational matrices for ordinary and
fractional derivatives are constructed to facilitate the transformation of the FOCP into a nonlinear program-
ming problem. The Lagrange multiplier method is applied to obtain the optimal solution. Additionally,
the error bounds for the proposed approximations are derived to ensure the reliability of the method. The
efficiency and accuracy of the approach are demonstrated through three numerical examples, confirming
its effectiveness in solving fractional control problems.

1. Introduction

In recent years, fractional optimal control problems (FOCPs) have attracted increasing attention due to
their ability to model complex dynamical systems with memory effects and nonlocal interactions [1, 13,
23, 33]. These problems arise in various fields, including engineering, physics, biology, and economics,
particularly when classical integer-order models fail to accurately capture system dynamics [11, 22, 26].

Due to the inherent complexity of FOCPs, obtaining analytical solutions is often impractical, necessi-
tating the development of efficient numerical methods. Significant research efforts have been devoted to
this area, particularly following the introduction of the Caputo-Fabrizio (CF) fractional derivative, which
employs a nonsingular kernel [3, 8, 9, 24, 28, 34]. This definition has proven useful in diverse applications,
such as economics, chemistry, biology, physics, signal and image processing, engineering, and control
theory [12, 29, 32, 36], further motivating its study.

Several numerical approaches have been proposed for solving FOCPs in the Caputo-Fabrizio sense.
Dehestani and Ordokhani [7] utilized Gegenbauer polynomials, while Ghaderi et al. [16] applied Chebyshev
cardinal functions to derive necessary optimality conditions. The Adams Bashforth method was used in
[17] for an optimal control framework related to a Caputo-Fabrizio fractional model of the COVID-19
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pandemic. Noori et al. [31] introduced a numerical approach based on Hermite spline functions for solving
CF-FOCPs.

Other advanced techniques have also been explored. Singh et al. [35] combined the fractional integral
operational matrix with fractional Legendre wavelets to address multi-dimensional CF-FOCPs efficiently.
Kheyrandish et al. [25] proposed an artificial intelligence-based technique using a fractional power series
neural network. Ghosh et al. [19] applied a gradient-based optimization algorithm, while Mortezaee et al.
[30] introduced a fuzzy hyperbolic model supported by optimality conditions and a learning algorithm.
Yildiz et al. [37] formulated a framework for time-fractional optimal control problems using the Caputo-
Fabrizio derivative, transforming them into forward-backward fractional differential equations expressed
as Volterra integral formulations.

Among the various numerical approaches, B-spline functionsparticularly cubic B-splineshave gained
popularity due to their robustness, computational efficiency, and smooth approximation properties [2, 10,
27]. Their local support and flexibility make them especially effective for handling high-dimensional and
multi-delay problems.

This paper introduces a novel numerical approach for solving FOCPs in the Caputo-Fabrizio sense
using cubic B-spline functions. Operational matrices for both ordinary and fractional derivatives are
constructed and integrated with dual basis functions to transform the original problem into a system of
algebraic equations. This transformation allows for an efficient numerical solution, providing accurate
approximations of the optimal control and state trajectories.

The fractional optimal control systems considered in this study are formulated as follows:

min(max)J (x(t),u(t)) =
∫ T

0
V (x(t),u(t), t) dt, (1.1)

subject to the state equation

F
(
ẋ(t), CF

0 D
α

t x(t), x(t),u(t), t
)
= 0, 0 ≤ t ≤ T, 0 < α ≤ 1, (1.2)

with the initial condition

x(0) = x0, (1.3)

whereJ is the performance index, u(t) = [u1(t),u2(t), . . . ,us(t)]⊤ and x(t) = [x1(t), x2(t), . . . , xr(t)]⊤ are control
and state vector functions, respectively. The function V and the vector functions F = [f1, f2, . . . , fr]⊤ and
1(t) = [11(t), 12(t), . . . , 1r(t)]⊤ are generally nonlinear and smooth.

The structure of the paper is as follows:
Section 2 introduces the cubic B-spline basis and function expansion, along with the derivation of

operational matrices for ordinary and fractional derivatives. Section 3 outlines the proposed numerical
method for solving the problem. Section 4 presents an error analysis of the approximation method. Section
5 demonstrates the efficiency of the approach through numerical results. Lastly, the conclusion section
provides a summary and discussion of the findings and potential directions for future research.

2. Cubic B-spline Functions

B-spline functions are fundamental tools for approximating functions in L2(R). The n-th order B-
spline, represented asNn(t), is constructed using a knot sequence {. . . ,−1, 0, 1, . . .} and consists of piecewise
polynomials of degree n − 1 defined within the intervals formed by these knots. The fundamental case,
N1(t), corresponds to the characteristic function χ[0,1](t), which is 1 for t in [0, 1] and 0 otherwise. For any
integer n ≥ 2, the higher-order B-splines are formulated recursively as follows [6, 20]:

Nn(t) = (Nn−1 ∗ N1)(t) =
∫
∞

−∞

Nn−1(t − x)N1(x) dx.
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It has been established that for n ≥ 2, the n-th order B-spline can be specified using the following
expression [4]:

Nn(t) =
t

n − 1
Nn−1(t) +

n − t
n − 1

Nn−1(t − 1),

with the support of Nn(t) defined as [0,n]. For our purposes, we examine the case where n = 4, thereby
utilizing cubic B-spline functions. The explicit formulation for N4(t) can be expressed as:

N4(t) =



1
6 t3, t ∈ [0, 1],
2
3 − 2t + 2t2

−
1
2 t3, t ∈ [1, 2],

−
22
3 + 10t − 4t2 + 1

2 t3, t ∈ [2, 3],
32
3 − 8t + 2t2

−
1
6 t3, t ∈ [3, 4],

0 otherwise.

(2.1)

Note that the third derivative of N4(t) is

N
′′′

4 (t) =



1, t ∈ (0, 1),
−3, t ∈ (1, 2),
3, t ∈ (2, 3),
−1, t ∈ (3, 4),
0 t < [0, 4].

(2.2)

We define the function ϕ(t) as N4(t), and examine the family of functions ϕ j,k(t) = ϕ(2 jt − k). It can be
easily inferred that the support of ϕ j,k(t) is represented by:

suppϕ j,k(t) = [2− jk, 2− j(4 + k)].

To ensure that these functions are well-defined on the interval [0,T], we introduce the adjustment:

φ j,k(t) = ϕ j,k(t)χ[0,T](t). (2.3)

Let S j denote the set of indices k for which the condition

suppϕ j,k(t) ∩ (0,T) , ∅

holds. For instance, when T ∈ N, it yields:

S j = {−3,−2, . . . , 2 jT − 1}.

2.1. Function Approximation
Given a natural number M ∈ N, a function f (t) defined on L2[0,T] can be approximated using cubic

B-spline functions as demonstrated in [10, 27]:

f (t) ≈
∑
k∈SM

ckφM,k(t) = CTΦM(t), (2.4)

where C and ΦM(t) represent vectors of dimension S = |SM|, defined as follows:

C =


ck1

ck2

...
ck|SM |

 and ΦM(t) =


φM,k1 (t)
φM,k2 (t)
...

φM,k|SM |
(t)

 , (2.5)
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with |SM| denoting the count of elements in the set SM = {k1, k2, . . . , kS}.
The coefficients ck can be determined as follows [10, 27]:

ck =

∫ T

0
f (t)ϕ̃M,k(t) dt, k ∈ SM, (2.6)

where ϕ̃M,k(t) are the dual functions corresponding to φM,k(t). These dual functions are expressible as linear
combinations of the scaling functions φM,k(t) for k ∈ SM.

Let Φ̃M represent the vector of dual functions associated with ΦM:

Φ̃M =


ϕ̃M,k1

ϕ̃M,k2

...
ϕ̃M,k|SM |

 .
Assume that Φ̃M = PMΦM. The duality property gives rise to the following equation:

∫ T

0
Φ̃M(t)Φ⊤M(t) dt = I, (2.7)

where I denotes the S × S identity matrix. This leads to:

PM

∫ T

0
ΦM(t)Φ⊤M(t) dt = I.

Define

P̃M =

∫ T

0
ΦM(t)Φ⊤M(t) dt, (2.8)

where P̃M is a symmetric 7-diagonal matrix of size S × S as:

P̃M =
1

2M+4 × 315
×



20 129 60 1
129 1208 1062 120 1
60 1062 2396 1191 120 1
1 120 1191 2416 1191 120 1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
1 120 1191 2416 1191 120 1

1 120 1191 2396 1062 60
1 120 1062 1208 129

1 60 129 20


.

Consequently, the matrix PM can be determined as:

PM = (P̃M)−1.
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2.2. Operational Matrix of ordinary Derivative
The derivative of the vector ΦM as defined in (2.5) can be expressed as

Φ′M ≈ DΦM, (2.9)

whereD is the operational matrix of derivatives with dimensions S×S that corresponds to the cubic B-spline
functions defined over the interval [0,T].

To determine the matrix D, we consider the following expression:

D =

∫ T

0
Φ′M(t) Φ̃⊤M(t) dt =

(∫ T

0
Φ′M(t)Φ⊤M(t) dt

)
(PM)⊤ = ΩPM, (2.10)

where

Ω =

∫ T

0
Φ′M(t)Φ⊤M(t) dt. (2.11)

In equation (2.11), Ω is a S × S matrix, and its entries can be computed as:

Ωi, j =

∫ T

0
φM,k j (t)

d
dt
φM,ki (t) dt, i, j = 1, 2, . . . ,S.

By straightforward calculation, the matrix Ω can be obtained as

Ω =
1

720
×



−10 −71 −38 −1
−9 −160 −254 −56 −1
18 174 −10 −245 −56 −1
1 56 245 0 −245 −56 −1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
1 56 245 0 −245 −56 −1

1 56 245 10 −174 −18
1 56 254 160 9

1 38 71 10


. (2.12)

2.3. Operational Matrix of Fractional Derivative
Definition 2.1. Let f denote a function belonging to the Sobolev space H1(0,T). Furthermore, let M(α) represent a
normalization function satisfying M(0) = M(1) = 1. The Caputo-Fabrizio fractional derivative of order α ∈ (0, 1) is
defined as follows [15, 31]:

CF
0 D

α

t f (t) =
M(α)
1 − α

∫ t

0
e−θ(t−τ) f ′(τ)dτ, (2.13)

where θ =
α

1 − α
. Here it is assumed M(α) = 1.

The Caputo-Fabrizio fractional derivative of order α ∈ (0, 1) for the vector ΦM as defined in (2.5), can be
formulated as

C
0 D
α

t ΦM(t) ≈ DαΦM(t), (2.14)
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where Dα denotes the operational matrix of the fractional derivative, with dimension S × S, corresponding
to the cubic B-spline functions defined over the interval [0,T]. To compute the matrixDα, we first calculate
the fractional derivative of the entries of vector ΦM as follows:

CF
0 D

α

t φM,ki (t) =
1

1 − α

∫ t

0
φ′M,ki

(τ)e−θ(t−τ)dτ, α ∈ (0, 1), i = 1, 2, . . . ,S. (2.15)

By performing twice integration by parts, it yields:

CF
0 D

α

t φM,ki (t) =
1

1 − α

φ′M,ki
(t)

θ
−

φ′′M,ki
(t)

θ2 +

φ′′M,ki
(0)

θ2 −

φ′M,ki
(0)

θ

 e−θt


+

1
(1 − α)θ2

∫ t

0
φ′′′M,ki

(τ)e−θ(t−τ)dτ, α ∈ (0, 1), i = 1, 2, . . . ,S.

(2.16)

Using relation (2.2), the third derivative of φM,ki (t) will be a constant piecewise function as

φ′′′M,ki
(t) = 23M

×



1, t ∈ ( ki
2M ,

ki+1
2M ),

−3, t ∈ ( ki+1
2M ,

ki+2
2M ),

3, t ∈ ( ki+2
2M ,

ki+3
2M ),

−1, t ∈ ( ki+3
2M ,

ki+4
2M ),

0 t < [ ki
2M ,

ki+4
2M ].

(2.17)

So the integral term in relation (2.16) can be found as following:
Case 1: if t ≤ ki

2M then ∫ t

0
φ′′′M,ki

(τ)e−θ(t−τ)dτ = 0.

Case 2: if t ∈ ( ki
2M ,

ki+1
2M ) then∫ t

0
φ′′′M,ki

(τ)e−θ(t−τ)dτ = 23M
∫ t

ki
2M

e−θ(t−τ)dτ =
23M

θ
(1 − e−θ(t− ki

2M )).

Case 3: if t ∈ ( ki+1
2M ,

ki+2
2M ) then∫ t

0
φ′′′M,ki

(τ)e−θ(t−τ)dτ = 23M
∫ ki+1

2M

ki
2M

e−θ(t−τ)dτ − 3 × 23M
∫ t

ki+1

2M

e−θ(t−τ)dτ

=
23M

θ

(
4e−θ(t− ki+1

2M )
− e−θ(t− ki

2M )
− 3

)
=

23M

θ

[(
4eθ(

ki+1

2M )
− eθ(

ki
2M )

)
e−θt
− 3

]
.

Case 4: if t ∈ ( ki+2
2M ,

ki+3
2M ) then∫ t

0
φ′′′M,ki

(τ)e−θ(t−τ)dτ = 23M
∫ ki+1

2M

ki
2M

e−θ(t−τ)dτ − 3 × 23M
∫ ki+2

2M

ki+1

2M

e−θ(t−τ)dτ

+ 3 × 23M
∫ t

ki+2

2M

e−θ(t−τ)dτ

=
23M

θ

(
4e−θ(t− ki+1

2M )
− 6e−θ(t− ki+2

2M )
− e−θ(t− ki

2M ) + 3
)

=
23M

θ

[(
4eθ(

ki+1

2M )
− 6eθ(

ki+2

2M )
− eθ(

ki
2M )

)
e−θt + 3

]
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Case 5: if t ∈ ( ki+3
2M ,

ki+4
2M ) then∫ t

0
φ′′′M,ki

(τ)e−θ(t−τ)dτ = 23M
∫ ki+1

2M

ki
2M

e−θ(t−τ)dτ − 3 × 23M
∫ ki+2

2M

ki+1

2M

e−θ(t−τ)dτ

+ 3 × 23M
∫ ki+3

2M

ki+2

2M

e−θ(t−τ)dτ − 23M
∫ t

ki+3

2M

e−θ(t−τ)dτ+

=
23M

θ

(
4e−θ(t− ki+1

2M )
− 6e−θ(t− ki+2

2M ) + 4e−θ(t− ki+3

2M )
− e−θ(t− ki

2M )
− 1

)
=

23M

θ

[(
4eθ(

ki+1

2M )
− 6eθ(

ki+2

2M ) + 4eθ(
ki+3

2M )
− eθ(

ki
2M )

)
e−θt
− 1

]
.

Case 6: if t ≥ ki+4
2M then∫ t

0
φ′′′M,ki

(τ)e−θ(t−τ)dτ = 23M
∫ ki+1

2M

ki
2M

e−θ(t−τ)dτ − 3 × 23M
∫ ki+2

2M

ki+1

2M

e−θ(t−τ)dτ

+ 3 × 23M
∫ ki+3

2M

ki+2

2M

e−θ(t−τ)dτ − 23M
∫ ki+4

2M

ki+3

2M

e−θ(t−τ)dτ+

=
23M

θ

(
4e−θ(t− ki+1

2M )
− 6e−θ(t− ki+2

2M ) + 4e−θ(t− ki+3

2M )
− e−θ(t− ki

2M )
− e−θ(t− ki+4

2M )
)
.

=
23M

θ

(
4eθ(

ki+1

2M )
− 6eθ(

ki+2

2M ) + 4eθ(
ki+3

2M )
− eθ(

ki
2M )
− eθ(

ki+4

2M )
)

e−θt.

So the Caputo-Fabrizio fractional derivative of the functions φM,ki (t) can be found explicitly. Assume

ωi,α(t) = CF
0 D

α

t φM,ki (t).

Now we can expand these fractional derivaties using relation (2.4) as:

ωi,α(t) =
∑
k∈SM

dk,kiφM,k(t), i = 1, 2, . . . ,S, (2.18)

where dk,ki are the entries of matrix Dα and they can be obtained as follows.

Dα =

∫ T

0
ωα Φ̃

⊤

M(t) dt =
(∫ T

0
ωαΦ

⊤

M(t) dt
)

(PM)⊤ = ΩαPM,

where
ωα = [ωk1,α, ωk2,α, . . . , ωkS,α]

⊤,

and

Ωα =

∫ T

0
ωαΦ

⊤

M(t) dt.

3. Description of Method

Each state function xi and control function u j over the interval [0,T] can be approximated as follows:

xi ≈ X⊤i ΦM(t), i = 1, 2, . . . , r,
u j ≈ U⊤j ΦM(t), j = 1, 2, . . . , s,

(3.1)
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where Xi, i = 1, 2, . . . , r and U j, j = 1, 2, . . . , s are vectors of dimensions S.
The derivative of the state function xi(t), using relations (2.9) and (3.1), can be approximated as:

ẋi(t) = X⊤i DΦM(t), i = 1, 2, . . . , r. (3.2)

Similarly, the CF fractional derivative of the state function xi(t) of order α, using relations (2.14) and
(3.1), can be approximated as:

C
0 D
α

t xi(t) = X⊤i DαΦM(t), i = 1, 2, . . . , r. (3.3)

Consider the expression

Φ̂M,k(t) = Ik ⊗ΦM(t),

where Ik represents the identity matrix of size k × k, and ⊗ indicates the Kronecker product. Utilizing
equation (3.1), we can approximate the state and control vectors x(t) and u(t) as follows:

x(t) ≈ X⊤Φ̂M,r(t),

u(t) ≈ U⊤Φ̂M,s(t).
(3.4)

Here, X and U are vectors of dimensions rS and sS, respectively, defined by:

X =
[
X⊤1 ,X

⊤

2 , . . . ,X
⊤

r

]⊤
,

and

U =
[
U⊤1 ,U

⊤

2 , . . . ,U
⊤

s

]⊤
.

Define

Φ̂′M,r(t) = Ir ⊗DΦM(t),

and

Φ̂(α)
M,r(t) = Ir ⊗DαΦM(t).

Using the relationships (3.2), (3.3), and (3.4), the ordinary and CF fractional derivatives of the vector function
x(t) can be approximated as follows:

ẋ(t) ≈ X⊤Φ̂′M,r(t), (3.5)

and

C
0 D
α

t x(t) ≈ X⊤Φ̂(α)
M,r(t). (3.6)

Substituting equations (3.4), (3.5), and (3.6) into the problem defined by (1.1) - (1.3) transforms it into
the following optimization problem:

min(max)J(X,U) =
∫ T

0
V

(
X⊤Φ̂M,r(t),U⊤Φ̂M,r(t), t

)
dt, (3.7)

subject to

F
(
X⊤Φ̂′M,r(t),X

⊤Φ̂(α)
M,r(t),X

⊤Φ̂M,r(t),U⊤Φ̂M,r(t), t
)
= 0, (3.8)
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and

X⊤Φ̂M,r(0) = x0. (3.9)

Applying the Bole integration technique over the interval [0,T], the value of J(X,U) in relation (3.7) is
approximated as follows:

min(max)J(X,U) ≈
n∑
ℓ=0

ωℓV
(
X⊤Φ̂M,r(τℓ),U⊤Φ̂M,r(τℓ), τℓ

)
, (3.10)

where ωℓ and τℓ for ℓ = 1, 2, . . . ,n represent the weights and nodes of the Bole integration method.
By collocating the vector function F at the points t = si =

i
S T for i = 1, 2, . . . ,S, we obtain:

Fi(X,U) = F
(
X⊤Φ̂′M,r(si),X⊤Φ̂

(α)
M,r(si),X⊤Φ̂M,r(si),U⊤Φ̂M,r(si), si

)
= 0, i = 1, 2, . . . ,S. (3.11)

Let Λ and Λi ∈ R
r for i = 1, 2, . . . ,S. Define the function

J̃(X,U,Λ1, . . . ,ΛsS,Λ) = J(X,U) +
S∑

i=1

Λ⊤i Fi(X,U) + Λ⊤
(
X⊤Φ̂M,r(t0) − x0

)
.

The Lagrange multipliers associated with the optimal solution to the problem defined in (3.10), under
the constraints specified in (3.11) and (3.9), yield the following conditions:

∂J̃
∂X
= 0,

∂J̃
∂U
= 0,

∂J̃
∂Λ
= 0,

∂J̃
∂Λi
= 0, i = 1, 2, . . . ,S.

(3.12)

The system of equations resulting from (3.12) can be solved to find the vectors X and U. As a result, the
state and control functions x(t) and u(t) can be established using the relationships provided in (3.4).

4. Error Analysis

This section focuses on establishing the error bounds for the expansions discussed earlier.

Theorem 4.1. [5] Let f (t) ∈ C4(0,T). The discrepancy between the original function and its cubic B-spline approxi-
mation given in (2.4) can be bounded as follows:

| f (t) −
∑
k∈SM

ckφM,k(t)| ≤ C2−4M
∥ f (4)
∥∞ = O(2−4M),

where ∥ f (4)
∥∞ represents the maximum absolute value of the fourth derivative of f (t) across the interval (0,T), and C

is a constant.
Additionally, the derivative of the error can be controlled by:
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∣∣∣∣∣∣∣ d
dt

 f (t) −
∑
k∈SM

ckφM,k(t)


∣∣∣∣∣∣∣ ≤ C′2−3M

∥ f (4)
∥∞,

where C′ is a constant.

Lemma 4.1. Let x(t) ∈ C4(0,T). Assume that x(t) is approximated by cubic B-splines on the interval [0,T] as in
relation (3.4). Then, the error in the CF fractional derivative of x(t) of order α ∈ (0, 1) can be bounded as follows:∣∣∣CF

0 D
α

t x(t) − CF
0 D

α

t X⊤Φ̂M,r(t)
∣∣∣ ≤ C22−4M

∥x(4)
∥∞ = O(2−4M),

where C2 is a constant.

Proof. Using integration by parts in (2.13), it yields:

CF
0 D

α

t f (t) =
1

1 − α

(
f (t) − e−θt f (0) − θ

∫ t

0
f (τ)e−θ(t−τ)dτ

)
. (4.1)

So we have∣∣∣CF
0 D

α

t x(t) − CF
0 D

α

t X⊤Φ̂M,r(t)
∣∣∣ = 1

1 − α

∣∣∣∣(x(t) − X⊤Φ̂M,r(t)
)
−

(
e−θtx(0) − X⊤Φ̂M,r(0)

)
−θ

∫ t

0

(
x(τ) − X⊤Φ̂M,r(t)

)
e−θ(t−τ)dτ

∣∣∣∣∣∣ , t ∈ [0,T].

Using the Theorem 4.1 and initial condition (3.9) in the above relation, it yields∣∣∣CF
0 D

α

t x(t) − CF
0 D

α

t X⊤Φ̂M,r(t)
∣∣∣ ≤ 1

1 − α

(
C2−4M

∥x(4)
∥∞ + C2−4M

∥x(4)
∥∞θ

∫ t

0
e−θ(t−τ)dτ,

)
=

1
1 − α

(
C2−4M

∥x(4)
∥∞ + C2−4M

∥x(4)
∥∞(1 − e−θt)

)
≤

2C
1 − α

2−4M
∥x(4)
∥∞.

This concludes the proof.

Theorem 4.2. Let x(t) ∈ C4(0,T) and it is approximated by cubic B-splines on the interval [0,T]. Then, the error of
the operational matrix of CF fractional derivative for α ∈ (0, 1) is as follows:∣∣∣CF

0 D
α

t x(t) − X⊤DαΦ̂M,r(t)
∣∣∣ = O(2−4M).

Proof. In order to prove the theorem one can write:∣∣∣CF
0 D

α

t x(t) − X⊤DαΦ̂M,r(t)
∣∣∣ = ∣∣∣CF

0 D
α

t x(t) − CF
0 D

α

t X⊤Φ̂M,r(t) + CF
0 D

α

t X⊤Φ̂M,r(t) − X⊤DαΦ̂M,r(t)
∣∣∣

≤

∣∣∣CF
0 D

α

t x(t) − CF
0 D

α

t X⊤Φ̂M,r(t)
∣∣∣ + ∣∣∣CF

0 D
α

t X⊤Φ̂M,r(t) − X⊤DαΦ̂M,r(t)
∣∣∣

Using the Lemma 4.1, for the first absolute value on the right-hand side of the above relation, one can
obtain:∣∣∣CF

0 D
α

t x(t) − CF
0 D

α

t X⊤Φ̂M,r(t)
∣∣∣ = O(2−4M). (4.2)

Also, using the relation (4.1), one can find that if f ∈ C4(0,T), then CF
0 Dαt f ∈ C4(0,T). Thus, using Theorem

4.1, it yields:∣∣∣CF
0 D

α

t X⊤Φ̂M,r(t) − X⊤DαΦ̂M,r(t)
∣∣∣ = O(2−4M). (4.3)

Relations (4.2) and (4.3) conclude the proof.
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5. Numerical Experiments

In this section, we provide numerical examples to demonstrate the implementation of the method
outlined in Section 3. The computations are performed using Maple 2024 software on a personal computer.
To highlight the efficiency of our approach, we present three numerical examples and compare the obtained
results with existing findings from the literature.

Example 5.1. Consider the subsequent FOCP [14, 31]:

Min J(x(t),u(t)) =
1
2

∫ 2

0

(
x2(t) + u2(t)

)
dt

subject to dynamical system and initial condition

3
4

CF
0 D

α

t x(t) +
1
4

ẋ(t) = x(t) − u(t), t ∈ [0, 1], 0 < α ≤ 1,

x(0) = 1.

The precise solutions for this problem when α = 1 are

x(t) =
3e2t + e4e−2t

3 + e4 , u(t) =
3e4e−2t

− 3e2t

3 + e4 .

This case was examined in [14, 21, 31]. In [14], the authors employed shifted Legendre polynomials,
while in [21], the focus was on generalized shifted Chebyshev polynomials. Additionally, [31] utilized
Hermite spline functions to address the problem. Table 1 presents a comparison of the error values of J
derived from the proposed method for M = 2, 3, . . . , 7 with those obtained using the methods outlined in
[14, 21, 31]. Figures 1 and 2 illustrate the approximate solutions for the state function x(t) and the control
function u(t) , respectively, at different values of α = 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1 with J = 4. It is evident
from the figures that as α approaches 1, the solutions tend to align with the solution corresponding to α = 1.

Table 1: Approximate error value of J for α = 1, for Example 5.1
Method Absolute error of J
Shifted Legendre polynomial method [14]
M=6 6.75 × 10−11

M=8 1.55 × 10−15

generalized shifted Chebyshev polynomial method [21]
m1 = m2 = 6 3.09 × 10−12

m1 = m2 = 8 4.64 × 10−17

Hermite spline method [31]
J = 6 2.12 × 10−15

J = 7 3.26 × 10−17

Present method
M = 2 8.21 × 10−9

M = 3 3.51 × 10−11

M = 4 1.53 × 10−13

M = 5 6.46 × 10−16

M = 6 2.63 × 10−18

M = 7 1.05 × 10−20
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Figure 1: Plot of state function x(t) for α = 0.8, 0.9, 0.95, 0.99, 1 in Example 5.1

Figure 2: Plot of control function u(t) for α = 0.8, 0.9, 0.95, 0.99, 1 in Example 5.1
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Example 5.2. The dynamic equation governing a fractional order spring-mass-viscous damper system is presented
in [18] as follows:

Mẍ + B0Dαt x + Kx = u, 0 < α < 1, (5.1)

where M, B, and K denote the mass, damping coefficient, and stiffness, respectively. Here, x represents the displacement
relative to a defined reference frame, and u signifies the external force applied. By setting x1 = x, x2 = ẋ, and
normalizing B, M, and K to unity, Equation (5.1) simplifies to the following form:

Ẋ(t) + P CF
0 D

α

t X(t) = AX(t) + Bu(t), 0 < α < 1, (5.2)

where

X =
[

x1
x2

]
,P =

[
0 0
1 0

]
,A =

[
0 1
−1 0

]
,B =

[
0
1

]
.

We will now examine the optimization challenge defined as follows. The objective is to determine the optimal control
u that minimizes the performance index given by:

J =
1
2

∫ 1

0

(
x2

1(t) + x2
2(t) + u2(t)

)
dt.

This is subject to the dynamic constraint specified in (5.2) and the initial condition X(0) = [1, 0]⊤, where the final
state is unconstrained.

Tables 2 and 3 present the results obtained from the methods described, comparing them with the approach
outlined in [15, 31]. Figure 3 illustrates the plots of x1, x2, and u derived from the present method for values
of α = 0.7, 0.8, and 0.9.

Table 2: Approximate solutions of x1 for a = 0.7, 0.8, and 0.9 for Example 5.2
t Method [15] Method [31] Present method

α = 0.7
0.2 0.97853919 0.97856232 0.97856206
0.4 0.92118394 0.92111669 0.92111851
0.6 0.83878727 0.83873176 0.83873164
0.8 0.74141242 0.74144543 0.74144664
1.0 0.63682516 0.63682688 0.63682826
α = 0.8

0.2 0.97849372 0.97852801 0.97852801
0.4 0.92161605 0.92149909 0.92150257
0.6 0.84085916 0.84076232 0.84076388
0.8 0.74640627 0.74644330 0.74644679
1.0 0.64544454 0.64543344 0.64543716
α = 0.9

0.2 0.97866088 0.97868398 0.97868686
0.4 0.92317218 0.92297994 0.92299204
0.6 0.84523603 0.84508932 0.84510166
0.8 0.75422193 0.75421750 0.75423367
1.0 0.65606892 0.65599923 0.65601553
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Figure 3: Plots of x1 (left), x2 (middle), and u (right) for α = 0.7, 0.8, 0.9 with M = 4 in Example 5.2

Table 3: Approximate solutions of x2 for a = 0.7, 0.8, and 0.9 for Example 5.2
t Method [15] Method [31] Present method

α = 0.7
0.2 -0.20603646 -0.20627474 -0.20626893
0.4 -0.35834621 -0.35870747 -0.35871876
0.6 -0.45710883 -0.45667346 -0.45665892
0.8 -0.51004250 -0.50985911 -0.50986323
1.0 -0.53240402 -0.53240382 0.53240302
α = 0.8

0.2 -0.20566034 -0.20610149 -0.20609048
0.4 -0.35339900 -0.35397345 -0.35398529
0.6 -0.44554326 -0.44485639 -0.44483677
0.8 -0.49285573 -0.49259949 -0.49260267
1.0 -0.51453427 -0.51454358 -0.51454289
α = 0.9

0.2 -0.20251882 -0.20337756 -0.20333582
0.4 -0.34252493 -0.34315214 -0.34315192
0.6 -0.42893714 -0.42807526 -0.42804696
0.8 -0.47616318 -0.47599650 -0.47599180
1.0 -0.50409967 -0.50412524 -0.50412517

Example 5.3. Examine the subsequent problem involving linear time-invariant systems:

minJ =
1
2

∫ 1

0

(
(x(t) − xd(t))2 + u2(t)

)
dt,

subject to
CF
0 D

α

t x(t) + x(t) − u(t) = f (t), t ∈ (0, 1], x(0) = 2,

where

f (t) = −2 ·
−e−θt + e−2t

(1 − α)(θ − 2)
+ 1 + e−2t + et

− e

and

xd(t) =
et
− eθt−θ+1

(1 − α)(θ − 1)
+ 1 + e−2t

− et + e
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The precise solution to this problem is given by x(t) = 1 + e−2t and u(t) = e − et. Tables 4 and 5 show the
maximum values of errors for x(t) and u(t), respectively, with α = 0.6, 0.7, 0.8, 0.9 for different values of M
and compare the results with those obtained by [30, 37]. These tables show that the presented method
provides more accurate results than the others. Table 6 shows the absolute values of errors for J obtained
for M = 2, 3, 4, 5 with different values of α = 0.6, 0.7, 0.8, 0.9.

Table 4: Maximum values of the errors for x(t), for Example 5.3
Methods α = 0.6 α = 0.7 α = 0.8 α = 0.9
Method [37]
M=400 1.1 × 10−3 1.1 × 10−3 1.8 × 10−3 6.4 × 10−3

M=800 5.6 × 10−4 5.3 × 10−4 8.9 × 10−4 3.2 × 10−3

Method [30] 8.4 × 10−4 3.0 × 10−4 3.3 × 10−4 3.5 × 10−4

Present method
M=1 6.2 × 10−4 6.6 × 10−4 6.8 × 10−4 7.3 × 10−4

M=2 4.5 × 10−5 4.7 × 10−5 4.9 × 10−5 5.1 × 10−5

M=3 3.8 × 10−6 3.9 × 10−6 3.9 × 10−6 4.1 × 10−6

M=4 2.9 × 10−7 2.9 × 10−7 2.8 × 10−7 2.8 × 10−7

M=5 2.0 × 10−8 2.0 × 10−8 2.1 × 10−8 2.0 × 10−8

Table 5: Maximum values of the errors for u(t), for Example 5.3
Methods α = 0.6 α = 0.7 α = 0.8 α = 0.9
Method [37]
M=400 3.0 × 10−3 5.1 × 10−3 9.5 × 10−3 2.3 × 10−2

M=800 1.5 × 10−3 2.6 × 10−3 4.7 × 10−3 1.2 × 10−2

Method [30] 2.9 × 10−4 1.7 × 10−4 1.7 × 10−3 4.1 × 10−4

Present method
M=1 3.2 × 10−3 3.8 × 10−3 5.3 × 10−3 8.4 × 10−3

M=2 1.2 × 10−4 1.6 × 10−4 2.0 × 10−4 3.3 × 10−4

M=3 6.1 × 10−6 7.3 × 10−6 9.5 × 10−6 1.4 × 10−5

M=4 3.1 × 10−7 3.7 × 10−7 5.2 × 10−7 8.5 × 10−7

M=5 1.6 × 10−8 2.0 × 10−8 2.5 × 10−8 4.6 × 10−8

Table 6: Absolute errors of J obtained for Example 5.3
α M = 2 M = 3 M = 4 M = 5 Exact value of J

0.6 2.79 × 10−9 1.50 × 10−11 5.95 × 10−14 2.74 × 10−16 4.4151171302848869118
0.7 2.33 × 10−8 1.36 × 10−10 6.27 × 10−13 2.63 × 10−15 4.6517758226956862035
0.8 3.20 × 10−7 2.37 × 10−9 1.25 × 10−11 5.54 × 10−14 4.7683500427567263086
0.9 2.62 × 10−5 1.87 × 10−7 1.43 × 10−9 7.87 × 10−12 4.6467453161908688040

Conclusion

In this study, a numerical framework was developed for solving CF-FOCPs using cubic B-spline func-
tions. The problem was discretized by constructing operational matrices for ordinary and fractional deriva-
tives, allowing its transformation into a nonlinear programming problem. The Lagrange multiplier method
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was employed to determine the optimal solution. Furthermore, the error bounds ware established to assess
the accuracy of the approximations. The effectiveness of the proposed method was verified through nu-
merical experiments, demonstrating its capability in solving fractional control problems. Future research
can focus on extending this approach to FOCPs involving other definitions of fractional derivatives.
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