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On the positive cone of rings of measurable functions
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Abstract. For a measurable space (X, A), let M* (X, A) be the commutative semiring of non-negative real-
valued measurable functions with pointwise addition and pointwise multiplication. We show that there is
a lattice isomorphism between the ideal lattice of M*(X, A) and the ideal lattice of its ring of differences
M(X, A). Moreover, we infer that each ideal of M*(X, A) is a semiring z-ideal. We investigate the duality
between cancellative congruences on M*(X, A) and Zz-filters on X. We observe that every o-algebra is
a completely regular o-frame, so compactness and pseudocompactness coincide in o-algebras, and we
provide a new characterization for compact measurable spaces via algebraic properties of M*(X, A). It is
shown that the space of (real) maximal congruences on M*(X, A) is homeomorphic to the space of (real)
maximal ideals of the M(X, A). We solve the isomorphism problem for the semirings of the form M*(X, A)
for compact and realcompact measurable spaces.

1. Introduction

In what follows, the pair (X, A) stands for a nonempty set X with a o-algebra A on X. We call (X, A) a
measurable space. A o-algebra A is said to separate points if for any two distinct points x, y € X, we get
A € Asuch that x € A and y ¢ A. Unless otherwise stated, by a measurable space we shall always mean a
T-measurable space ([11]), that is, A separates points of X. A function f: X — R s said to be A-measurable
(or measurable) if f~}(D) € A, where O is any open set in R. The collection of all real-valued measurable
functions on (X, A), denoted by M(X, A), with pointwise addition and pointwise multiplication, forms a
commutative lattice-ordered ring with unity.

In this paper, we initiate a study of the positive cone (the set of all non-negative elements) of the ring
M(X, A), which we denote by M*(X, A). The set M* (X, A) forms a commutative lattice-ordered semiring
with the usual operations. One of the main objectives of this paper is to construct various bridges between
the ideals and congruences of the ring M(X, A) and congruences of the semiring M*(X, A).

In some recent papers like [1, 4, 11], the ring M(X, A) has been studied extensively. Itis easy to show that
M(X, A) is always a von Neumann regular ring. Therefore each ideal of M(X, A) is a z-ideal in the sense
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of Mason [13]. Estaji et. al. [11] gave a complete description of the maximal ideals in M(X, A) in terms of
the lattice-theoretic aspects of A. They have solved the isomorphism problem of rings like M(X, A) in the
category of compact measurable spaces. Acharyya et. al. [4] provided an alternative method to describe
the maximal ideals via the space of all Z z-ultrafilters on X. They showed that the structure space of the ring
M(X, A) is zero-dimensional. In [1], a proof of the isomorphism problem for rings like M(X, A) is given,
in the category of realcompact measurable spaces. In this paper, we try to embark on an alternative study
of compact measurable spaces and realcompact measurable spaces in a more congruence-theoretic slant.

In section 3, we provide a complete description of ideals of the semiring M* (X, A). A major achievement
of this section is an isomorphism between the ideal lattices of the semiring M* (X, A) and the ring M(X, A).
Whence each ideal in M*(X, A) is of the form I N M* (X, A), for some ideal I of the ring M(X, A). Under
this circumstance, each ideal of M*(X, A) turns out to be a z-ideal in the sense of [7].

In section 4 we study the interplay between cancellative congruences on M*(X, A) and Zx-filters on
X. We define z-congruence on both M*(X, A) and M(X, A), which are heavily related to the concept of
zero-sets. As anticipated, it turns out that in the ring M(X, A), there is a one-one correspondence between
z-ideals and z-congruences. Consequently, we give a purely algebraic description of z-congruences on
M (X, A).

In section 5, by exploiting the duality of maximal congruences and Z#-ultrafilters we show that the
structure space of the semiring M* (X, A) is homeomorphic to the structure space of the ring M(X, A). In
Theorem 5.7 we unify Theorem 2.13 of [4] and Proposition 4.11 of [11] by showing that (X, A) is a compact
measurable space if and only if A is a finite o-algebra if and only if each maximal congruence on M*(X, A)
is fixed. In Remark 5.8 we observe an interesting fact that in the case of o-algebras (viz. o-frames), the
concepts of compactness and pseudocompactness coincide.

In section 6 our purpose is twofold. First, we initiate a study on quotients of the semiring M*(X, A).
We show that M*(X, A)/p is a totally ordered semiring if p is a maximal congruence and the quotient
semiring M*(X, A)/p is either isomorphic to or, it properly contains the semifield of non-negative reals.
This leads us to the definition of real maximal congruences. We observe that the collection of all real maximal
congruences, denoted by RMCong(M* (X, A)), can be perceived dually as a topological space with the Stone
topology and as T-measurable space. In both cases RMCong(M™* (X, A)) is homeomorphic to RMax(X, A)
(set of all real maximal ideals of M(X, A)) as a topological space and as a measurable space. Lastly, we solve
the isomorphism problem for the semiring of the form M* (X, A) in the category of realcompact measurable
spaces.

2. Preliminaries

To make this article self-contained, we recall some basics from semiring theory.

A semiring S is a non-empty set with two binary operations + and - such that (S, +) and (S,-) are
commutative monoids and (a+b)-c=a-c+b-canda-0=0, foralla,b,c €S.

A semiring S is said to be an additively cancellative semiring (or simply cancellative) if a + ¢ = b + c implies
a=0>b,foralla,b,ceS.

For a cancellative semiring (S, +:), we define D(S) = {a — b: a,b € S}. Then (D(S),+,) forms a ring
containing the formal differences of elements from S. We call D(S) the ring of differences of the cancellative
semiring S (cf. Chapter II, Theorem 5.11, [12]).

An ideal I of S is a submonoid of (S, +) such thats-t €I, for alls € S and for all ¢ € I.

Semiring, being a more general algebraic structure than a ring, contains more classes of ideals than a
ring. Anideal ] is said to be a k-ideal if a + b €  and b € I implies a € I. The class of k-ideals behaves more
like ring ideals. Lastly, we call an ideal I a strong ideal ifa + b € I, thenbotha € I and b € .

Unlike rings, the factor objects of semirings are not determined by ideals. Instead of ideals, congruence
plays an important role in the quotient of semirings.

Definition 2.1. A congruence k is an equivalence relation on S, which is also a subsemiring of the product semiring
SxS.
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Equivalently, a congruence is an equivalence relation on S which is compatible with the binary opera-
tions. By compatibility, we mean:

1. a,b)ekand (c,d)ek = (a+c,b+d)ek.
2. (a,b)ekand (c,d)ek = (a-c,b-d)ek.

A congruence k on S is said to be a cancellative congruence if (a +c, b +c) € k implies (a,b) € k, foralla,b,c € S.
A cancellative congruence p on S is said to be a regular congruence if there exist elements e; and e; in S
such that foralla € S, (a + e1a,e:a) € p and (a + aey, ae;) € p.
Evidently, if S is a commutative semiring with unity then the class of all regular congruences coincides
with the class of all cancellative congruences.

Definition 2.2. A semiring S with a partial order “ < " is called a partially ordered semiring if the following
conditions are satisfied: for alla,b,c,d € S,

1) a<boa+c<b+c
2) a<cb<d=ad+bc<ab+cd.

Definition 2.3. A congruence p on a partially ordered semiring S is called convex if for all a,b,c,d € S,(a,b) €
pa<c<d<b=(cd)ep.

The following theorem is noted in [3].

Theorem 2.4. Let S be a partially ordered semiring and p be a reqular congruence on S. Then S/p is a partially
ordered semiring, according to the definition p(a) < p(b) if and only if there exists x,y € S such that (x,y) € p and
a+x < b+y, it is necessary and sufficient that p is convex.

For any two elements (x1, x2) and (v1, y») of the semiring SX S, we define the twisted product (x1, x2)-+(y1, Y2)
as follows:

(x1,x2) *t (Y1, ¥2) = (X1y1 + X2Y2, X1Y2 + X2Y1)

Definition 2.5. A congruence p on S is called prime congruence if for all a,b,c,d € S, (x1,x2) -+ (1, Y2) € p implies
(x1,%2) € por (y1,42) € p-

The family Cong(S) of all congruences on a semiring S forms a complete lattice with the following
operations:

1. For any nonempty family § of congruences on S, AF is defined by (4, b) € AF if and only if (a,b) € p
for every p in §.

2. For any nonempty family & of congruences on S, V is defined by (a,b) € V¥ if and only if there exist
elements a = cp, ¢y, ,¢, = b of S and congruences p1, p2,- -+, pn of § such that (ci_1,¢;) € p; for all
1<i<n.

3. The Semiring M*(X, A) and its ideals

In this section, we focus on the nature of the semiring M* (X, A), which is the positive cone (set of all
non-negative elements) of the ring M(X, A). It is easy to observe that whenever f + g = f + h, then g = h,
for any f, g,h in M*(X, A). Therefore M*(X,A) is an additively cancellative semiring. Since M*(X, A) is
the positive cone of the von Neumann regular ring M(X, A), so the semiring M*(X, A) is a von Neumann
regular semiring.

For f,g € M*(X, A), define f < g if and only if f(x) < g(x) for all x € X. Then M*(X, A) is a partially
ordered semiring with respect to the relation’ <’.

Also for f,g € M*(X, A), define (f V g)(x) = max{f(x), g(x)} and (f A g)(x) = min{f(x), g(x)} for all x € X.
Then f Vv g, f A g € M*(X, A). Therefore M*(X, A) is a latticed ordered semiring with respect to vV and A.
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3.1. Ideals of M*(X, A)
For any f € M(X, A), define

o] f(x), f(x)=0. —.v_10, f(x)=0.
f(x)‘{o, f(x)<0.’f(x)_{f(x), fx) <0.

then f = f*+ f~ = f*—(=f)and |f| = f* — f~. Clearly f* and —f~ belongs to M*(X, A). Therefore
M(X, A) is the ring of differences of the semiring M*(X, A). The following lemma manifests divisibility in
the semiring M*(X, A).

Lemma 3.1. Let f,g € M*(X, A) and f < g’, for some r > 1. Then f is a multiple of g.
Proof. If f, g € M* (X, A) be such that f < g, for some r > 1. Then clearly Z(f) 2 Z(g). Define

fo)
o= { i rezo
0, x € Z(9).

then, both h|z(; and h|x\z(, are measurable. Hence by pasting lemma, i € M*(X, A) and clearly f = gh. O

It is easy to observe that in a partially ordered semiring, the class of /-ideals coincides with the class of
strong ideals.

Corollary 3.2. Every ideal of M* (X, A) is a strong ideal.

Proof. LetIbeanideal of M*(X, A)andlet f+g €l Then f < f+gand g < f+g. By Lemma3.1, f = (f+g)h
and g = (f + f)k for some h, k € M* (X, A). Therefore f and g are in I. Hence I is a strong ideal. [

Remark 3.3. One of the contrasting features between the semiring M*(X, A) and the semiring C*(X) (viz. the
semiring of non-negative real-valued continuous functions on a topological space X) is the nature of their ideals. There
can exist many non-k-ideals in C*(X). Moreover, each ideal of C*(X) is a strong ideal (equivalently a k-ideal) if and
only if X is an F-space (cf. Theorem 2.1, [15]). Moreover, the lattice of ideals of M* (X, A) is always modular (cf.
Proposition 6, [5]), whereas the lattice of ideals of C*(X) is modular if and only if X is an F-space.

By (8(M*(X, A)), V, A) we mean the lattice of all ideals of the semiring M*(X, A) withIV | =1+ ] and
IAJ=1N]. Similarly (2(M(X, A)), V, A) is the lattice of all ideals of M(X, A) with obvious join and meet.
We define two maps a: LM(X, A)) = LM* (X, A)) and B: LM (X, A)) = LM(X, A)) as follows:

a)=INnM(X,A) and B)=1{f-g: f,gell.
Lemma 3.4. The following statements hold.
1. The map B is an onto lattice homomorphism.

2. The map « is an onto lattice homomorphism.

Proof. 1. The equality (I + J) = B(I) + B(J) and the inclusion (I N J) € B(I) N B(]) easily follows. For the
reverse inequality, let f € B(I) N B(J). Then f = g1 —hy € B(I) and f = g» — hy € B(]), for some g1,h; € [ and
g2, My € J. Therefore g1 + g2 = h1 +hy € IN ] and from Corollary 3.2 g1, g2, h1, by € IN ]. Therefore f € f(IN]),
so B N J) 2 B(I) N B(J). We conclude that f is a lattice homomorphism.

Moreover, we show that every ideal of M(X, A) is a difference ideal. Let f € I, where I is an ideal in
M(X, A). Clearly f = f* — (—f") with f* <|fland —f~ < [f]. Therefore f*,—f~ e INn M*(X, A) = a(I) and
B(a(l)) = I. Hence f is an onto map.

2. The equality a(I N J) = a(l) N a(J) and a(l) + a(J) € a(l + J) are obvious. Now suppose f € a(l + ]).
Then f = g+ hand f <|g| + |h|. Applying Riesz decomposition theorem (cf. Proposition 1.1.4 of [6]) we get
f =s+t, for somes,t € M (X, A)such that 0 <s <|g| and 0 < ¢ < |h|. Recall that each ideal of M(X, A) is



P. Biswas et al. / Filomat 39:22 (2025), 7877-7891 7881

an [-ideal. Therefore s € I N M(X, A) = a(l) and t € ] N M(X, A). Hence f € a(l) + a(J), which validates the
equality a(I + J) = a(l) + a(J). Thus we have proved that «a is a lattice homomorphism.
In addition, for any ideal I of M* (X, A), I € a(B(I)). Let f € a(B(I)). Then f = g — h, for some f,g € .
Then f € I. Indeed I is a strong ideal and hence a k-ideal. Therefore a(8(I)) = I. Hence « is an onto map.
|

Proposition 3.5. The lattice {(M*(X, A)) is isomorphic to LIM(X, A)).

Proof. For any two ideals I and | of M*(X, A), if (I) = B(J), then by Lemma 3.4 I = a(B(1)) = a(B())) = J.
Which shows f is injective. Similarly, « is also injective. [

Corollary 3.6. Each ideal of M*(X, A) is of the form I N M*(X, A) for some ideal I of M(X, A).

Corollary 3.7. Each prime ideal (maximal ideal) of M* (X, A) is of the form P N M*(X, A) for some prime ideal
(maximal ideal) P of M(X, A).

Remark 3.8. Asadirect consequence of the above discussion and Theorem 2.11 of [4], we achieve a complete description
of maximal ideals in M*(X, A). Each maximal ideal of M* (X, A) is of the form M, = {f € M*(X, A): p € clxZ(f)},
where X is the space of all ultrafilters of the measurable space (X, A) under Stone-topology.

Definition 3.9. ([7]) An ideal I of a semiring (S, +,-,0, 1) is said to be a z-ideal if M} C I for everya € L.

Here M = (1 M and M™(a) is the set of all maximal ideals of S containing a.
MeM*(a)

Lemma 3.10. For any f € M*(X, A), M;{ ={g e MY(X, A): Z(f) € Z(g)}.

The proof relies on Lemma 3.1 and Remark 3.8. As an easy consequence of Lemma 3.10, we have the
following.

Corollary 3.11. Each ideal of M*(X, A) is a z-ideal.

Remark 3.12. It is evident that for any f € M(X, A), Z(f) = Z(|fl). Therefore ZIM(X, A)] = ZIM (X, A)]. In
other words, the collections of zero-sets of the ring M(X, A) and the semiring M* (X, A) are the same. Moreover, let
I be an ideal of the ring M(X, A), then f € Lifand only if |f] € I, so Z[I] = Z[I N M*(X, A)]. Now since each ideal of
the semiring M* (X, A) is of the form I N M* (X, A), where I is an ideal of the ring M(X, A) (cf. Corollary 3.6). We
conclude that Z[I N M* (X, A)] is a Za-filter on X. In the next section, we deal with the question of whether we can
extend this ideal-filter connection to a congruence-filter connection between Cong(M* (X, A)) and Z #-filters on X.

4. Congruences on M*(X, A)

For any congruence p on M*(X, A), we define

E(p) =1{E(f,9): (f,9) € p},
where E(f, g) = {x € X: f(x) = g(x)}, is the agreement set of f and g. Itis clear that E(f, g) = Z(f — 9).

Theorem 4.1. For a measurable space (X, A), A € A if and only if it is the agreement set of some functions f, g in
M (X, A).

Proof. Let A € A. Then A = Z(f), where f = xa € M*(X, A). Therefore A = E(f,0).
Conversely, let A be an agreement set of f, gin M*(X, A). ThenA=Z(f —g) e A. O

Likewise, in the case of ideals, it is customary to ask questions about the structure of congruences on
M*(X, A). The following generic example shows that not all congruences on M* (X, A) are cancellative.

Example 4.2. Let S = M*(X, A) \ {0}. Then k = (S X S) U Ap+(x.) is a non-trivial congruence on M*(X, A),
where Ay = {(f, f): f € ME(X, A)). Then (f +1, f) € k forany f € S, but (1,0) ¢ k because zero-class of k is
a singleton set, that is, [0]x = {(0, 0)}.
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An easy conclusion we can make from the above example is that, unlike the connection of ideals and
Z g-filters, we cannot create congruences and Z g-filters connection. Indeed, E(f + 1, f) = ¢ € E(k), where
k, is the congruence defined in Example 4.2. We observe the following important correlations. Compare
with the semiring C*(X); see Theorem 3.2 and Theorem 3.3 of [2].

Proposition 4.3. The following statements hold for any measurable space (X, A).
1. If p. is a cancellative congruence on M*(X, A), then E(p+) = {E(f,9) : (f, 9) € p+} is a Za-filter on X.
2. If & is a Za-filter on X, then ETNF) = {(f,9) € M (X, A) x MY (X, A) : E(f,g) € §} is a cancellative
congruence on M* (X, A).
4.1. On z-congruences of M*(X, A)
Likewise in the case of the semiring C*(X), it is natural to consider z-congruences on M* (X, A).

Definition 4.4. A congruence p on M*(X, A) is called z-congruence if for all f, g in M*(X, A), E(f,9) € E(p)
implies that (f, g) € p.

Therefore for each z-congruence p on M*(X, A), E"}(E(p)) = p. Each z-congruence is a cancellative
congruence. The set of all z-congruences on M* (X, A) is denoted by ZCong. Let us denote the collection
of all A-filters on X by Z 4. Both ZCong and Z # are partially ordered by inclusions.

Theorem 4.5. The map E: (ZCong, C) — (Za, C) is an order-isomorphism.

The proof relies on the fact that both E and E~! are order preserving maps and E"'(E(p) = p and
E(E7X(®)) = F for any z-congruence p and Z g-filter F respectively. The following class of z-congruences can
be easily obtained by Theorem 4.5.

Corollary 4.6. Every maximal congruence on M*(X, A) is a z-congruence.
Theorem 4.7. An intersection of an arbitrary non-empty family of z-congruences on M* (X, A) is a z-congruence.

Therefore (ZCong, A) can be regarded as a complete A-semilattice, where p1 A po = p1 N po. We define
join of two z-congruences as

p1Vzp2=(p1V p2)

where p; V p is the usual join of two congruences and (p1 V p») is the smallest z-congruence containing
p1V p2. In view of Theorem 4.7 and Theorem 2.31 of [10] we have the following result.

Corollary 4.8. The lattice (ZCong, V., A) is a complete lattice.

We have given a complete description of ideals of M*(X, A) (cf. Corollary 3.6). Now we investigate
if there is a complete description of cancellative congruences on M*(X, A) in terms of the congruences on
the ring M(X, A). For that we define &(f,g) = {x € X: f(x) = g(x)}, the agreement set of f,g € M(X, A).
There is a one-one correspondence between the set of the ideals of M(X, A) and the set of all congruences
on M(X, A). Indeed, for a ring R, we know that there is a one-one correspondence between the class
of congruences on R and the class of ideals in R (cf. Chapter I, Remark 7.6(iii), [12]). Therefore for any
congruence k on M(X, A), E(k) = {E(f, 9): (f, 9) € k} = Z[Ix], where I = {s —t: (s, t) € k} is the corresponding
ideal of the congruence k. For any ideal I, the corresponding congruence is k; = {(h,k): h — k € I}. Observe
that k;, = k for any congruence k.

Definition 4.9. A congruence k on M(X, A) is said to be a z-congruence if E(f, g) € E(k) implies (f, g) € k.
Theorem 4.10. Each congruence k on M(X, A) is a z-congruence.

Corollary 4.11. There is a one-one correspondence between z-ideals and z-congruences in the ring M(X, A).
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Since M(X, A) is the difference ring of the cancellative semiring M*(X, A), we can define a map V as
follows

V: Cong(M(X, A)) = Cong(M*(X, A))
pr—op’

where p¥ = p N (M*(X, A) x M*(X, A)). Also, there exists a map A in the opposite direction, defined as
follows

A: Cong(M*(X, A)) — Cong(M(X, A))

P = ph
where p2 = {(f,9): f — g = h—k for some (h,k) € p.}.

Proposition 4.12. Each z-congruence of M*(X, A) is of the form kN (M*(X, A) x M*(X, A)) for some congruence
kon M(X, A).

Proof. Since every congruence M(X, A) is a z-congruence, it is easy to show that pV is a z-congruence
on M*(X, A) for any congruence p on M(X, A). Now suppose p. is a z-congruence on M*(X, A). Let
&(f,9) € E(p}). Then defineh = f — (f Ag)and k = g— (g A f). Clearly, h,k € M*(X,A). Also, we have
&(f,9) = E(h,k) € py and (h, k) € p,. But from the construction of h and k, it is clear that f —g = h — k.
Therefore (f,g) € p} and hence p% is a z-congruence on M(X,A). Also, since every z-congruence is a
cancellative congruence on M*(X, A), we have p{V = p, by Chapter II, Theorem 7.1 of [12]. This completes
the proof. O

Due to Corollary 3.11, Theorem 4.10 and Corollary 4.11, we arrive at the following remarkable corre-
spondence theorem for z-ideals and z-congruences in M* (X, A).

Proposition 4.13. There is a one-one correspondence between z-ideals and z-congruences in the semiring M* (X, A).

Proof. Let k be a z-congruence on M*(X, A). Then the corresponding ideal (zeroth class), denoted by
I = {f: (f,0) € k} is again a z-ideal of M* (X, A). We denote this map from ZCong(M*(X, A)) to LIM* (X, A))
by I ,. For any z-congruence k we can easily observe that 7, (k) = a(Z(k*)). The following diagram captures
the essence of our goal.

K(I)=ki
LIM(X, A)) Cong(M(X, A))
o B I(k)=Ik \Y A

LM (X, A) — 3 ZCong(M*(X, A))

I,

Now we define a map K, : {M*(X, A)) — ZCong(M*(X, A)) by K.(J) = 7(;(1). Since each ideal | of

M*(X, A) is a strong ideal, we immediately have 7([?([) ={(f,9): f+s =g+t forsomes,t € I}, which is
again a z-congruence on M*(X, A) corresponding to the z-ideal I. Moreover 7, (K. (I)) = I for any ideal I
and K, (I (k)) = k for any z-congruence k on M*(X, A). This completes the proof.

O
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4.2. Prime z-congruences

Definition 4.14. A Zg-filter & on X is said to be prime if A,B € A, AUB € § implies A € For B € §.

Lemma 4.15. For any fi, f2, g1 and ga in M*(X, A), E(f1, 1) U E(f2, 92) = E(f1fa + 9192, f192 + fagn)-
Theorem 4.16. If p is a prime z-congruence on M* (X, A), then E(p) is a prime z-filter on X.

The next theorem gives us a picture of the relation between prime congruences and z-congruences to
some extent.

Theorem 4.17. For a z-congruence p on M* (X, A) the following are equivalent:
1. pis prime.
2. p contains a prime congruence.

3. Forall fi, fo, 91,92 € M (X, A), fifo + 9192 = fo92 + fog1 implies that either (f1,g1) € p or (f2,92) € p.
4. Forall f,g € M*(X, A) there exists A € E(p) such that either f > gor g > f on A.

Proof. (1) = (2) : Trivial.

(2) = (3) : Let p contain a prime congruence ¢ and fi, f2, 41,92 € M*(X, A), such that fif; + g192 =
f292 + f2g1. Then (fi 2 + 9192, f292 + f241) is a member of the diagonal congruence and hence a member of
o. Since ¢ is prime, then either (fi, 1) € p1 or (f2, 2) € 0. Since 0 C p, so either (fi, g1) € p or (f2, g2) € p.

(3) = (4) : Let f,g € M*(X, A). Wedefinehy = f —(f Ag)and hy = g — (g A f). Then Iy, h, € M*(X, A)
and hihy = 0. Thus (11, 0) € p or (0, 1) € p by (3). This implies that E(h11,0) € E(p) or E(0, h;) € E(p). Clearly,
f>gonE(h;,0)and g > f on E(hy,0).

(4) = (1) . Let f1,f2,gl,gz S MJr(X,ﬂ) such that (f1f2 + gng/fng + fzg1) € p. Let A = E(f1f2 +
9192, fige + f291) € E(p). Set hy = |fi — g1l and hy = |fo — go|. Then hy, hy € M*(X, A), E(f1,91) = E(h1,0) and
E(f2,92) = E(h,0).

By (4) there exists A; € E(p) such that iy < hy or hy < hy on A;. We assume that i; < hy on A;. Then
hi <h,onANA;. Now E(f1f2 + 79192, fng +f291) = E(fl,g1) UE(fz, 92) Therefore ANA; C E(hl, 0) = E(fl,gl).
Then E(f1,91) € E(p) as AN Ay € E(p) and E(p) is an A-filter on X. Thus (f1,g1) € p as p is a z-congruence.

Similarly h; < h; on A; implies that (f,, g2) € p. Hence, p is a prime congruence. [

Corollary 4.18. If p is a prime congruence on M*(X, A), then E(p) is a prime A-filter on X.

Proof. Let 0 = E"Y(E(p)). Then o is a z-congruence and p C p. So o is prime by Theorem 4.17. Hence
E(p) = E(0) is a prime Z #-filter on X by Theorem 4.17. [J

Theorem 4.19. If § is a prime Z a-filter on X, then E~X(§) is a prime congruence on M*(X, A).

Proof. EN(F) is a congruence on M*(X, A) by Proposition 4.3. Let fi,g1, f,9. € M*(X,A) such that

(fl!]l +f292,flgz +f291) € E_l(g)- Then E(flgl +f292,f192 +f2g1) = E(flr!]l) UE(fz, gz) € §. Since Fis a prime
A-filter, therefore either E(f, 1) € & or E(f2, 92) € &. Thus either (f1, g1) € E"X(F) or (f2, 92) € E~X(F). Hence
E~Y(%) is a prime congruence on M*(X, A). [

We have the following result as an easy consequence of Proposition 4.3 and Theorem 4.5.
Theorem 4.20. The following statements hold for a measurable space (X, A).

a) If p is a maximal congruence on M*(X, A) then E(p) is a Z#-ultrafilter on X.

b) If U is a Za-ultrafilter on X then E7Y(U) is a maximal congruence on M* (X, A).

Theorem 4.21. Every maximal congruence on M*(X, A) is a prime congruence.
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Theorem 4.22. Every prime Za-filter on X is a Z z-ultrafilter.
Theorem 4.23. Let p be a z-congruence on M* (X, A). Then p is maximal if and only if it is prime.

Proof. If p is a maximal congruence, then it is prime by Theorem 4.21.

Conversely let, p be prime. Then E(p) is a prime Z #-filter by Theorem 4.18. By Theorem 4.22, E(p) is an
A-ultrafilter. So E71(E(p)) is a maximal congruence on M* (X, A) by Theorem 4.20. Since p is a z-congruence,
hence E™Y(E(p)) = p is maximal. [J

We denote the intersection of all maximal congruences containing (f,g) as M(f, g). clearly, M(f,g) is
a z-congruence, for any f,g € M*(X, A) Next we give an algebraic characterization of z-congruences on
MH (X, A).

Proposition 4.24. A congruence p on M*(X, A) is a z-congruence if and only if M(f, g) C p for every (f, g) € p.

Proof. First, we observe that if (i, k) belongs to every maximal congruence that (f,g) belongs to, then
E(f,9) € E(h, k). Indeed, if we have x € E(f, g) and x ¢ E(h, k), then for this fixed point x, consider the fixed
maximal ideal M, of M(X, A). Which forces E™}(Z[M,]) to be a maximal congruence (cf. Theorem 4.20),
where Z[M,]is a Za-ultrafilter (cf. Theorem 2.7, [4]). Then clearly (f, g) € E"}(Z[M,]) but (h, k) ¢ E"1(Z[M,]).
Which is a contradiction. Therefore we have E(f, g) € E(h, k).

Now let p be a z-congruence on M*(X, A) and (f, g) € p. For any (h, k) € M(f, g) we have E(f, g) € E(h, k),
which implies (1, k) € p. Indeed, this follows from that fact that E(p) is a Z#-filter and p is a z-congruence.
Therefore Mi(f, g) < p.

Conversely, it follows easily since each maximal congruence is a z-congruence. []

Corollary 4.25. Any z-congruence p on M*(X, A) is of the form p = \/, M(f, 9).
(fpep

5. Structure space of M* (X, A)

Let Max(X, A) be the set of all maximal ideals of M(X, A) and for f € M(X, A) set My = {M € Max(X, A) :
f € M}. Then {M; : f € M(X, A)} is base for closed sets for some topology on Max(X, A). Max(X, A) with
this topology is called structure space of the ring M(X, A); See [4].

Let S be a semiring and MCong(S) be the set of all maximal congruences on S. For a,b € S, set
m(a, b) = {p € MCong(S) : (a,b) € p}. Fora,b,c,d € S, m(a,b) Um(c,d) € m(ac + bd, ad + bc). If every maximal
congruence on S is prime, then the equality holds. Using this fact, we have the following theorem.

Theorem 5.1 (Theorem 2.9, [2]). If each maximal congruence on S is prime, then {m(a, b) : (a,b) € S X S} is a base
for closed sets of some topology on MCong(S).

The set MCong(S) with this topology is said to be the structure space of S, defined in [14]. We now show
that Max(X, A) can be achieved via the positive cone of the ring M(X, A).

Theorem 5.2. MCong(M*(X, A)) is homeomorphic to Max(X, A).

Proof. Let p € MCong(M*(X,A)). Then E(p) is a Zg-ultrafilter on X (cf. Theorem 4.20). Then Z'[E(p)]
is a maximal ideal in M(X, A) by Theorem 2.7 of [4]. Define 1 : MCong(M*(X, A)) — Max(X, A) by
1n(p) = Z7YE(p)] for every p € MCong(M* (X, A)).

Let p1, p2 € MCong(M* (X, A)) such that n(p1) = 1(p2). Then Z7[E(p1)] = Z7'[E(p2)]. For any Z#-filter
%, ZZHE] = §, so we have E(p1) = E(p2). Also p1, p2 are z-congruences, therefore we have p; = p,. Hence
7 is injective.

Let M be a maximal ideal of M(X, A). Then Z[M] is a Zz-ultrafilter by Theorem 2.7 of [4]. By Theorem
4.20, E7'Z[M] is a maximal congruence on M*(X, A). Let p = E"1Z[M]. Then 1(p) = Z*E(p) = M. Hence n
is onto.
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Let m(f, g) be a basic closed set in MCong(M*(X, A)), where f,g € M*(X, A). Then M € n(n(f, g)) ©
M =n(p),p € m(f,g) & M = Z"'E(p),(f,9) € p & ZIM] = E(p),(f,9) € p & E(f,9) = Z(f - g) € E(p) =
ZIM] & f-g € MasMisaz-ideal & M € My_,. Hence n(m(f, g)) = M;_, is a basic closed set in Max(X, A).
Let M; be a basic closed set in Max(X, A), where f € M(X,A). Then p € n7'(My) & n(p) € My &
fenlp) =ZE(p) © Z(f) = Z(If]) = E(If1,0) € E(p) & (If],0) € p as p is a z-congruence < p € m(|f],0).
Therefore n~1(M r) = m(|f],0) is a basic closed set in MCong(M*(X, A)). Hence n is a homeomorphism. [

Definition 5.3. A congruence p on M*(X, A) is called fixed if ({E(f,g) : (f,g) € p} is nonempty and free
otherwise.

Theorem 5.4. For a measurable space (X, A), the set of all fixed maximal congruences of M*(X,A) is the set
{px : x € X}, where py = {(f,9) € M"(X, A) x M*(X, A) : f(x) = g(x)}. Moreover, for two distinct points x,y € X
we have py # py.

Next, we try to characterize the measurable space (X, A) for which each maximal congruence on
M*(X, A) is fixed. We need the following definitions.

Definition 5.5. (cf. Definition 7.15 of [10]) Let L be a complete lattice, and let a be an element of L. Then a is called
compact ifa < \/ X, for some X C L, implies that a < \/ S for some finite S C X. In particular, if the top element of
L is compact, then we call L a compact lattice.

Definition 5.6. ([11]) A measurable space (X, A) is said to be a compact measurable space if A is a compact
lattice.

Theorem 5.7. Let (X, A) be a measurable space. Then the following are equivalent.
1) Each maximal ideal of M(X, A) is fixed.
2) Each maximal congruence on M*(X, A) is fixed.
3) Ais a finite o-algebra on X.
4) (X, A) is a compact measurable space.
5) MX,A) = M*(X, A) = {f € M(X, A): f is bounded on X}.

Proof. (1) & (3) & (5) : Follows from Theorem 2.13 of [4].

(1) © (4) Follows from Proposition 4.11 of [11].

(1) = (2) : Let p be a maximal congruence on M*(X, A). Then E(p) is an Z g-ultrafilter on X. So Z![E(p)]
is a maximal ideal of M(X, A). Thus Z'[E(p)] = {h € M(X,A) : h(x) = 0} for some x € X. Let (f,g) € p.
Then E(f, 9) = Z(f — g) € E(p). Therefore f — g € Z7[E(p)]. So (f — g)(x) = Oi.e., x € E(f,g). Hence p is a
fixed congruence on M*(X, A).

(2) = (1) : Let M be any maximal ideal of M(X, A). Then Z[M] is a Z gz-ultrafilter on X. Thus E"1(Z[M])
is a maximal congruence on M*(X, A). By (2) E"{(Z[M]) is fixed. So by Theorem 5.4 E~}(Z[M]) = px
for some x € X. Let f € M. Then Z(f) = E(|f],0) € Z[M]. Thus (|f],0) € E"Y(Z[M]) = py. Therefore
f(x) =|fl(x) = 0(x) = 0. Hence M is a fixed maximal ideal of M(X, A).

(3) = (4) Trivially true.

(4) = (3) Suppose A is an infinite g-algebra on X. For each x € X, we define x¥ = (\{B € A: x € B}.
Since A is a complete lattice, we have x¥ € A for all x € X. It is easy to see that x¥ N y" =P or x¥ = y",
for two distinct points x,y € X. Let X = {x': x € X}. Itis clear that any B € A can be written as unions of
elements of X. Since A is infinite, then X has infinite cardinality. Now let, {x],x;, - - -} be a countable infinite
subset of X. Let A = |J;x). Then A € A. By our hypothesis, (X, A) is a compact measurable space. Then
there exists a finite subcollection {xi}’} j of {x}; such that A = | i xi}’. This contradicts the fact that any two

members of the family {x\'}; is pairwise disjoint. [J
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Remark 5.8. From the definition of a 0-algebra, it is clear that a o-algebra is a o-frame (A o-frame L is a lattice with
countable joins \/,,, finite meets A, a top element T and a bottom element L such that x A\, x, = V,(x A xy,), for
n €N, forall x,x, € L). A o-frame S is said to be pseudocompact if every o-frame maps ¢: L(R) — S is a bounded
map (cf. Definition 3, [9]). Here L(IR) is the o-frame (frame) of real numbers, which is isomorphic to O(R), the lattice
of open sets of R. Therefore a g-algebra A is pseudocompact if every f: O(R) — A is bounded. Unlike the classical
case of rings of continuous functions, that is, a space X is pseudocompact if and only if C(X) = C*(X), Theorem 5.7
is unable to capture pseudocompactness of (X, A). Now, we argue why this phenomenon occurs. We show that any
o-algebra is a reqular o-frame (for definition, see the Background section of [9]). Consider any nonempty element B
of A. If B is an atom, then vacuously B is a regular element of the o-frame A. Now let B be a non-atom of ‘A. Then
there exists {E,: n € IN}, a pairwise disjoint countable nonempty members of A defined as in Lemma 2.12 of [4]. It
is easy to see that Eiyy < Ejand B = \/;E;, i = 1,2,---. Therefore every non-atom is also a reqular element. We
conclude that A is a regular o-frame. Now under the Axiom of countable dependent choice, any regular o-frame is
completely reqular. Then by Corollary 2 of [9], compactness and pseudocompactness coincide in A.

Proposition 5.9. For every compact measurable space (X, A),
(MCong(M*(X, A), {m(f, 9): f,g € M (X, A)})
is T-measurable.

Proof. We know from Theorem 5.7 that each maximal congruence on M*(X, A) is of the form p, for
each x € X (cf. Theorem 5.4). It follows that m(f,g) = {px: (f,9) € px} = {px: x € E(f,9)}. Therefore
m(frg)c = {Px: X e Ec(frg)} = {Px: X e E(XE(f,g)r 0)} = m(XE(f,g)r 0)- Moreover Une]N m(fn/.qn) = Une]N{px: X e
E(fu, g} = {px: X € Unen E(fa, gn)} = M(Xn,exEe (90, 0)- Therefore

(MCong(M* (X, ), (m(f, 9): f,g € M*(X, A)))
is a measurable space and by Theorem 5.4 it is a T-measurable space. [J

Definition 5.10. ([11]) Let (X, A) and (Y, B) be two measurable spaces. We say that (X, A) and (Y, B) are homeo-
morphic if there exists a one-one and onto function f: X — Y such that A € A if and only if f(A) € B, for every
AeA

When (X, A) is homeomorphic to (Y, B) we will simply write X = Y.
Theorem 5.11. For every compact measurable space (X, A), X = MCong(M*(X, A)) as measurable spaces.

Proof. We define ¢: X — MCong(M*(X, A)) by ¢(x) = py. From Theorem 5.7 it is clear that ¢ is one-one
and onto, Moreover ¢(E(f,9)) = {px: x € E(f,9)} = m(f,9) and ¢~'(n(f,9)) = E(f,g). Therefore, ¢ is a
homeomorphism. [

The following corollary is a direct consequence of Theorem 5.2 and Theorem 5.11.

Corollary 5.12. If (X, A) and (Y, B) are two compact measurable spaces, then X = Y as measurable spaces if and
only if M*(X, A) = M*(Y, B) as semirings.

6. Real maximal congruences on M* (X, A)

Here we initiate a study of quotients of M*(X, A) via some important class of congruences on it. Our
goal is to give an alternative description of realcompact measurable spaces, in view of M*(X, A). The
following lemma infers that the class of z-congruences is ideal to consider while sculpting quotients of
M (X, A).

Lemma 6.1. Every z-congruence on M*(X, A) is convex.

Proof. Let p be a z-congruence on M*(X, A). Let f,g, fi,91 € M"(X, A) such that f < f; < g1 < g and

(f,9) € p. Then E(f,9) € E(f1,91), E(f,9) € E(p) and E(p) is a Zx-filter = E(f1,41) € E(p). Also E(p) is a
z-congruence. Therefore (f1, 1) € p. Hence p is a convex congruence. [
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Theorem 6.2. Let p be a z-congruence on M* (X, A) and f,g € M*(X, A). Then p(f) < p(g) if and only if f < g
on some member of E(p).

Proof. Let f,g9 € M*(X, A) such that p(f) < p(g). Then by Theorem 2.4 and Lemma 6.1, there exists (I, k) € p
such that f +h < g+ k. We have f < gon E(h, k) € E(p).

Conversely, let f < g on some A € E(p). Then A = E(f1, g1) for some (f1,41) € p. Seth = (f —g) V 0. Then
h e M*(X,A) and A C E(h,0). Since E(p) is a Zg-filter, therefore E(h, 0) € E(p). This implies that (i,0) € p
as p is a z-congruence. Also f + 0 < g + h. Hence p(f) < p(g). O

Theorem 6.3. Let f,g € M* (X, A) and p be a maximal congruence on M* (X, A). Then p(f) < p(g) if and only if
there exists Z € E(p) such that f < gon Z.

Proof. Let f < gonsome Z € E(p). Then E(f, g) N Z = 0. Therefore E(f, g) ¢ E(p). This implies that (f, g) ¢ p.
So, p(f) # p(g). By the above theorem, we get p(f) < p(9).

Conversely let, p(f) < p(g). Since every maximal congruence is a z-congruence, then by Theorem 6.2
we have f < gonsome Z; € E(p). Again p(f) # p(g), this implies (f, g) ¢ p. Therefore E(f,g) ¢ E(p) as pisa
z-congruence. As E(p) is an Zg-ultrafilter then there exists Z, € E(p) such that E(f,g) N Z, = 0. Then f < g
on Z1 N Z; € E(p). This completes the proof. [J

Theorem 6.4. Let p be a congruence on M* (X, A). Then the quotient semiring M* (X, A)/p is totally ordered if
and only if p is maximal.

Proof. First suppose p is a maximal congruence. Let f,g € M*(X,A). Set A1 = {x € X : f(x) < g(x)},
Ay = {x € X : g(x) < f(x)}. Then A1, A> € Aand Ay U Ay = X. Since p is a maximal congruence, it is prime.
Therefore E(p) is a prime Z z-filter. Thus either A; € E(p) or A, € E(p). Now f < gon Aj and g < f on A;.
Then by Theorem 6.2 either p(f) < p(g) or p(g) < p(f). Hence M*(X, A)/p is totally ordered semiring.

Conversely, let the quotient semiring M* (X, A)/p be a totally ordered semiring. Then it follows from
Chapter II, Theorem 7.1 of [12] that the difference ring of M*(X, A)/p is of the form M(X, A)/k, where kis a
congruence on M(X, A)and k¥ = p. Again M(X, A)/kis a totally ordered ring and M(X, A)/k = M(X, A)/L,
where I is the corresponding ideal to the congruence k in M(X, A). Then it follows that M(X, A)/Ix is a
totally ordered ring. Hence, I is a maximal ideal by Theorem 3.5 of [4]. Therefore, the corresponding
congruence k of Iy on M(X, A) is a maximal congruence, so the congruence p on M*(X, A) is a maximal
congruence. [

We can easily prove the following result.

Theorem 6.5. Let p be maximal congruence on M*(X,A). then the mapping ¢ : Ry — M*(X, A)/p, defined by
¢(r) = p(r) is an order preserving isomorphism from R, into M* (X, A)/p.

Definition 6.6. Let p be a maximal congruence on M*(X, A). Then p is called real if ¢ is onto where ¢ is defined
in Theorem 6.5. A maximal congruence is said to be hyper-real if it is not real.

Theorem 6.7. A maximal congruence p on M*(X, A) is real if and only if M*(X, A)/p is isomorphic to R,.

Proof. If p is real then by the definition of real congruence M* (X, A)/p is isomorphic to R,.

Conversely let, M*(X, A)/p be isomorphic to R, and ¢ is an isomorphism form M*(X, A)/p onto R,.
Then ¢ o ¢ is an isomorphism from IR, into R,. But only non-zero isomorphism from IR, into IR, is the
identity map. Therefore ¢ o ¢ is the identity map. So ¢ is onto. Hence p is a real maximal congruence. [

Theorem 6.8. For each x € X, the fixed congruence py = {(f,9) € M*(X, A) x MY (X, A) : f(x) = g(x)} on
MH(X, A) is real.

Proof. Follows from Theorem 5.4 and Theorem 6.7. [J

Lemma 6.9, Theorem 6.10, Theorem 6.11, 6.12 follows arguing similarly as in the proof of Lemma 4.9,
Theorem 4.8, Theorem 4.10, and Theorem 4.11 respectively in [3].
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Lemma 6.9. For any maximal congruence p on M* (X, A) each non-zero element in M* (X, A)/p has multiplicative
inverse.

Theorem 6.10. A maximal congruence p on M* (X, A) is real if and only if the set {p(n) : n € IN} is cofinal in

An element a in a totally ordered semiring S is called infinitely large if a > n for all n € IN.

Theorem 6.11. Let p be a maximal congruence on M*(X, A) and f € M*(X, A). Then the following statements
are equivalent:

1) p(f) is infinitely large.

2) ForallneN,Z, = {x € X: f(x) > n} € E(p).
3) Foralln e N, (f An,n) € p.

4) f is unbounded on each member of E(p).

Theorem 6.12. A maximal congruence p is real if and only if E(p) is closed under countable intersection.

Theorem 6.13. A maximal congruence p on M*(X, A) is real if and only if Z~'[E(p)] is a real maximal ideal in
M(X, A).

Proof. A maximal ideal M in M(X, A) is real if and only if Z[M] is closed under countable intersection by
Theorem 2.2[1]. Therefore the maximal ideal Z~![E(p)] is real if and only if ZZ'E(p) = E(p) is closed under
countable intersection if and only if p is real by Theorem 6.12. This completes the proof. [

Let RMCong(M* (X, A)) = {p € MCong(M* (X, A)) : p is a real maximal congruence} and RMax(X, A)
be the set of all real maximal ideals of M(X, A)). Topologically, RMCong(M*(X, A)) is a subspace of

MCong(M*(X, A)) with basic closed sets

mR(f, g) = {p € RMCong(M*(X, A)): (f,9) € p}.
Theorem 6.14. The map 7} : RMCong(M*(X, A)) — RMax(X, A) is a homeomorphism, where 1] is the restriction
map Mg mcongm+(x,2 (cf. Theorem 5.2).
Proof. For p € RMCong(M* (X, A)),i(p) € RMax(X, A) by Theorem 6.13. In view of Theorem 5.2 it is only
to show that 7j is onto. Let M € RMax(X, A). Then Z[M] is an Z z-ultrafilter. Then Z[M] = E(p) for a unique
maximal congruence p on M*(X, A). Since M is real, Z[M] = E(p) is closed under countable intersection.
Then by Theorem 6.12 p is real i.e., p € RMCong(M* (X, A)). Also fi(p) = Z'E(p) = Z*Z[M] = M. Thus 7
is onto. Moreover if Miﬁ is a basic closed set in RM(X, A), then j(m~(f, 9)) = M’;_g for f,g € M*(X, A) and

17_1(/\/(5) = mR&(|n], 0) for h € M(X, A). This completes the proof. []
The collection RMCong(M* (X, A)) can be made into a measurable space also.
Theorem 6.15. For a measurable space (X, A),
(RMCong(M* (X, A)), (m*(f, 9): f, 9 € M*(X, A)})
forms a T-measurable space.

Proof. To show that {mR(f, g): f,g € M*(X, A)} is a o-algebra on RMCong(M* (X, A). First we observe that
mR(1,0) = 0. Indeed, no proper congruence contains the identity pair (1,0). Next, for any m&(f, ), the
complement is

mR(f,9)° = RMCong(M*(X, A) \ {mR(f, 9)} = mR(xz(puz),0). Indeed the twisted product (f,g) -
(Xz(Huz(g), 0) € p, forall p € mR(f, g)° and p does not contain (f, g). Since every maximal congruence is prime,
(Xz(puz(y),0) € p. Hence mR( f,9)° <€ mR()(Z(f)UZ(g),O) and reverse inclusion follows easily. Finally, let p €
Unen M*(fu, gn). Then p € mR(f,, g,) for some n € IN, s0 (fu, gu) € p. Therefore E(xr,_ E(fo90,0) 2 E(fu, gn)-
Hence U,.en MR (fr, 9n) € MR (X, (90, 0)- The reverse inclusion follows easily. Therefore {m*(f, 9): f,g €
M*(X, A)} is a o-algebra on RMCong(M*(X, A). Moreover, since all fixed maximal congruences are real
(cf. Theorem 6.8), the o-algebra {mR(f, g): f,g € M*(X, A)} separates points (cf. Theorem 5.4). [J
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In view of Theorem 6.14, we can define realcompacitness as follows: A measurable space (X, A) is said
to be realcompact if every real maximal congruence on M*(X, A) is fixed.

Let us denote the set of all fixed maximal congruences as # MCong(M*(X, A)).Then by Theorem 6.8,
F MCong(M*(X, A)) € RMCong(M* (X, A)). Equality holds for realcompact spaces.

Lemma 6.16. For any measurable space (X, A), we have F MCong(M* (X, A) = X.
Proof. Follows from Proposition 5.9 and Theorem 5.11. [J

Theorem 6.17. For a realcompact space (X, A) the measurable spaces (RMax(X, A), {Blf{: fefeMXA) (.
Theorem 2.4, [1]) and (RMCong(M* (X, A)), (mR(f, 9): f, 9 € M*(X, A)}) are homeomorphic.

Proof. Since (X, A) is a realcompact space, RMCong(M* (X, A)) = F MCong(M*(X, A)) and RMax(X, A) =
FMax(X, A), where FMax(X, A) is the set of all fixed maximal ideals of M(X, A). By Lemma 6.16 and
Theorem 2.6 of [1], we conclude that RMCong(M* (X, A)) = X = RMax(X, A). O

Theorem 6.18. Two realcompact measurable spaces (X, A) and (Y, B) are homeomorphic if and only if M* (X, A)
and M*(Y, B) are isomorphic as semirings.

Proof. If (X, A) and (Y, B) are homeomorphic, then M(X, A) and M(Y, B) are isomorphic as semirings.
Since every ring homomorphism ¢ between M(X, A) and M(Y, B) is also a lattice homomorphism, the
homomorphism preserves order. Indeed, if f < g in M(X, A), then g — f is a square and so ¢(g — f) is a
square in M(Y, B). Hence ¢(f) < ¢(g). Therefore any isomorphism between M(X, A) and M(Y, B) gives
rise to an isomorphism of the positive cones M*(X, A) and M*(Y, B).

Conversely, if there is a semiring isomorphism ¢: M* (X, A) — M*(Y,B), then there is a homeo-
morphism ¢: (RMCong(M* (X, A)), {mR(f,9): f,g € MY (X, A)}) - (RMCong(M*(Y, B)), {mR(h,k): hk €
M*H(Y, B)}) defined as ¥(mR(f, 9)) = mR(¢(f), p(g)). For realcompact measurable spaces (X, A) and (Y, B)
we have, RMCong(M* (X, A) = X = RMax(X, A) and RMCong(M*(Y, B)) = Y = RMax(Y, B) (cf. Theorem
6.17). Therefore X = Y as measurable spaces. [J

By Meas, we denote the category of measurable spaces and measurable functions. In particular, we
are interested in the subcategory RCTMeas, consisting of realcompact T-measurable spaces. Theorem 6.18
solves the isomorphism problem for the semirings of the form M*(X, A). We arrive at the following easy
proposition.

Proposition 6.19. The category RCTMeas is dual to the full subcategory of CRig (the category of commutative
semirings and semiring homomorphisms) consisting of the semirings of the form M* (X, A).
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