

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On the positive cone of rings of measurable functions

Pronay Biswasa, Sagarmoy Bagb, Sujit Kumar Sardara,*

^aDepartment of Mathematics, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Kolkata 700032, West Bengal ^bDepartment of Mathematics, Bankim Sardar College, Tangrakhali, West Bengal 743329, India

Abstract. For a measurable space (X, \mathcal{A}) , let $\mathcal{M}^+(X, \mathcal{A})$ be the commutative semiring of non-negative real-valued measurable functions with pointwise addition and pointwise multiplication. We show that there is a lattice isomorphism between the ideal lattice of $\mathcal{M}^+(X, \mathcal{A})$ and the ideal lattice of its ring of differences $\mathcal{M}(X, \mathcal{A})$. Moreover, we infer that each ideal of $\mathcal{M}^+(X, \mathcal{A})$ is a semiring z-ideal. We investigate the duality between cancellative congruences on $\mathcal{M}^+(X, \mathcal{A})$ and $Z_{\mathcal{A}}$ -filters on X. We observe that every σ -algebra is a completely regular σ -frame, so compactness and pseudocompactness coincide in σ -algebras, and we provide a new characterization for compact measurable spaces via algebraic properties of $\mathcal{M}^+(X, \mathcal{A})$. It is shown that the space of (real) maximal congruences on $\mathcal{M}^+(X, \mathcal{A})$ is homeomorphic to the space of (real) maximal ideals of the $\mathcal{M}(X, \mathcal{A})$. We solve the isomorphism problem for the semirings of the form $\mathcal{M}^+(X, \mathcal{A})$ for compact and realcompact measurable spaces.

1. Introduction

In what follows, the pair (X,\mathcal{A}) stands for a nonempty set X with a σ -algebra \mathcal{A} on X. We call (X,\mathcal{A}) a measurable space. A σ -algebra \mathcal{A} is said to separate points if for any two distinct points $x,y\in X$, we get $A\in\mathcal{A}$ such that $x\in A$ and $y\notin A$. Unless otherwise stated, by a measurable space we shall always mean a T-measurable space ([11]), that is, \mathcal{A} separates points of X. A function $f\colon X\to\mathbb{R}$ is said to be \mathcal{A} -measurable (or measurable) if $f^{-1}(\mathfrak{D})\in\mathcal{A}$, where \mathfrak{D} is any open set in \mathbb{R} . The collection of all real-valued measurable functions on (X,\mathcal{A}) , denoted by $\mathcal{M}(X,\mathcal{A})$, with pointwise addition and pointwise multiplication, forms a commutative lattice-ordered ring with unity.

In this paper, we initiate a study of the *positive cone* (the set of all non-negative elements) of the ring $\mathcal{M}(X,\mathcal{A})$, which we denote by $\mathcal{M}^+(X,\mathcal{A})$. The set $\mathcal{M}^+(X,\mathcal{A})$ forms a commutative lattice-ordered semiring with the usual operations. One of the main objectives of this paper is to construct various bridges between the ideals and congruences of the ring $\mathcal{M}(X,\mathcal{A})$ and congruences of the semiring $\mathcal{M}^+(X,\mathcal{A})$.

In some recent papers like [1, 4, 11], the ring $\mathcal{M}(X, \mathcal{A})$ has been studied extensively. It is easy to show that $\mathcal{M}(X, \mathcal{A})$ is always a von Neumann regular ring. Therefore each ideal of $\mathcal{M}(X, \mathcal{A})$ is a *z*-ideal in the sense

²⁰²⁰ Mathematics Subject Classification. Primary 28A20, 16Y60; Secondary 54C40, 46E30, 06D22.

*Keywords. z-*congruence, maximal congruence, prime *z-*congruence, compact measurable space, real maximal congruence Received: 04 March 2025; Revised: 02 July 2025; Accepted: 11 July 2025

Communicated by Pratulananda Das

^{*} Corresponding author: Sujit Kumar Sardar

Email addresses: pronayb.math.rs@jadavpuruniversity.in, pronaybiswas1729@gmail.com (Pronay Biswas), sagarmoy.bag01@gmail.com (Sagarmoy Bag), sksardarjumath@gmail.com, sujitk.sardar@jadavpuruniversity.in (Sujit Kumar Sandar)

ORCID iDs: https://orcid.org/0009-0008-2710-1748 (Pronay Biswas), https://orcid.org/0009-0007-7235-0180 (Sagarmoy Bag), https://orcid.org/0000-0001-7837-0835 (Sujit Kumar Sardar)

of Mason [13]. Estaji et. al. [11] gave a complete description of the maximal ideals in $\mathcal{M}(X,\mathcal{A})$ in terms of the lattice-theoretic aspects of \mathcal{A} . They have solved the isomorphism problem of rings like $\mathcal{M}(X,\mathcal{A})$ in the category of compact measurable spaces. Acharyya et. al. [4] provided an alternative method to describe the maximal ideals via the space of all $Z_{\mathcal{A}}$ -ultrafilters on X. They showed that the structure space of the ring $\mathcal{M}(X,\mathcal{A})$ is zero-dimensional. In [1], a proof of the isomorphism problem for rings like $\mathcal{M}(X,\mathcal{A})$ is given, in the category of realcompact measurable spaces. In this paper, we try to embark on an alternative study of compact measurable spaces and realcompact measurable spaces in a more congruence-theoretic slant.

In section 3, we provide a complete description of ideals of the semiring $\mathcal{M}^+(X, \mathcal{A})$. A major achievement of this section is an isomorphism between the ideal lattices of the semiring $\mathcal{M}^+(X, \mathcal{A})$ and the ring $\mathcal{M}(X, \mathcal{A})$. Whence each ideal in $\mathcal{M}^+(X, \mathcal{A})$ is of the form $I \cap \mathcal{M}^+(X, \mathcal{A})$, for some ideal I of the ring $\mathcal{M}(X, \mathcal{A})$. Under this circumstance, each ideal of $\mathcal{M}^+(X, \mathcal{A})$ turns out to be a z-ideal in the sense of [7].

In section 4 we study the interplay between cancellative congruences on $\mathcal{M}^+(X,\mathcal{A})$ and $Z_{\mathcal{A}}$ -filters on X. We define z-congruence on both $\mathcal{M}^+(X,\mathcal{A})$ and $\mathcal{M}(X,\mathcal{A})$, which are heavily related to the concept of zero-sets. As anticipated, it turns out that in the ring $\mathcal{M}(X,\mathcal{A})$, there is a one-one correspondence between z-ideals and z-congruences. Consequently, we give a purely algebraic description of z-congruences on $\mathcal{M}^+(X,\mathcal{A})$.

In section 5, by exploiting the duality of maximal congruences and $Z_{\mathcal{A}}$ -ultrafilters we show that the structure space of the semiring $\mathcal{M}^+(X,\mathcal{A})$ is homeomorphic to the structure space of the ring $\mathcal{M}(X,\mathcal{A})$. In Theorem 5.7 we unify Theorem 2.13 of [4] and Proposition 4.11 of [11] by showing that (X,\mathcal{A}) is a compact measurable space if and only if \mathcal{A} is a finite σ -algebra if and only if each maximal congruence on $\mathcal{M}^+(X,\mathcal{A})$ is fixed. In Remark 5.8 we observe an interesting fact that in the case of σ -algebras (viz. σ -frames), the concepts of compactness and pseudocompactness coincide.

In section 6 our purpose is twofold. First, we initiate a study on quotients of the semiring $\mathcal{M}^+(X,\mathcal{A})$. We show that $\mathcal{M}^+(X,\mathcal{A})/\rho$ is a totally ordered semiring if ρ is a maximal congruence and the quotient semiring $\mathcal{M}^+(X,\mathcal{A})/\rho$ is either isomorphic to or, it properly contains the semifield of non-negative reals. This leads us to the definition of real maximal congruences. We observe that the collection of all real maximal congruences, denoted by $\mathcal{RMCong}(\mathcal{M}^+(X,\mathcal{A}))$, can be perceived dually as a topological space with the Stone topology and as T-measurable space. In both cases $\mathcal{RMCong}(\mathcal{M}^+(X,\mathcal{A}))$ is homeomorphic to $\mathcal{RMax}(X,\mathcal{A})$ (set of all real maximal ideals of $\mathcal{M}(X,\mathcal{A})$) as a topological space and as a measurable space. Lastly, we solve the isomorphism problem for the semiring of the form $\mathcal{M}^+(X,\mathcal{A})$ in the category of realcompact measurable spaces.

2. Preliminaries

To make this article self-contained, we recall some basics from semiring theory.

A *semiring* S is a non-empty set with two binary operations + and \cdot such that (S, +) and (S, \cdot) are commutative monoids and $(a + b) \cdot c = a \cdot c + b \cdot c$ and $a \cdot 0 = 0$, for all $a, b, c \in S$.

A semiring *S* is said to be an *additively cancellative semiring* (or simply *cancellative*) if a + c = b + c implies a = b, for all $a, b, c \in S$.

For a cancellative semiring $(S, +\cdot)$, we define $D(S) = \{a - b : a, b \in S\}$. Then $(D(S), +, \cdot)$ forms a ring containing the formal differences of elements from S. We call D(S) the *ring of differences* of the cancellative semiring S (cf. Chapter II, Theorem 5.11, [12]).

An *ideal I* of *S* is a submonoid of (S, +) such that $s \cdot t \in I$, for all $s \in S$ and for all $t \in I$.

Semiring, being a more general algebraic structure than a ring, contains more classes of ideals than a ring. An ideal I is said to be a k-ideal if $a + b \in I$ and $b \in I$ implies $a \in I$. The class of k-ideals behaves more like ring ideals. Lastly, we call an ideal I a strong ideal if $a + b \in I$, then both $a \in I$ and $b \in I$.

Unlike rings, the factor objects of semirings are not determined by ideals. Instead of ideals, congruence plays an important role in the quotient of semirings.

Definition 2.1. A congruence k is an equivalence relation on S, which is also a subsemiring of the product semiring $S \times S$.

Equivalently, a congruence is an equivalence relation on *S* which is compatible with the binary operations. By compatibility, we mean:

- 1. $(a,b) \in k$ and $(c,d) \in k \implies (a+c,b+d) \in k$.
- 2. $(a,b) \in k$ and $(c,d) \in k \implies (a \cdot c, b \cdot d) \in k$.

A congruence k on S is said to be a *cancellative congruence* if $(a+c,b+c) \in k$ implies $(a,b) \in k$, for all $a,b,c \in S$. A cancellative congruence ρ on S is said to be a *regular congruence* if there exist elements e_1 and e_2 in S such that for all $a \in S$, $(a+e_1a,e_2a) \in \rho$ and $(a+ae_1,ae_2) \in \rho$.

Evidently, if *S* is a commutative semiring with unity then the class of all regular congruences coincides with the class of all cancellative congruences.

Definition 2.2. A semiring S with a partial order " \leq " is called a partially ordered semiring if the following conditions are satisfied: for all $a, b, c, d \in S$,

- 1) $a \le b \Leftrightarrow a + c \le b + c$.
- 2) $a \le c, b \le d \Rightarrow ad + bc \le ab + cd$.

Definition 2.3. A congruence ρ on a partially ordered semiring S is called convex if for all $a, b, c, d \in S$, $(a, b) \in \rho$, $a \le c \le d \le b \Rightarrow (c, d) \in \rho$.

The following theorem is noted in [3].

Theorem 2.4. Let S be a partially ordered semiring and ρ be a regular congruence on S. Then S/ρ is a partially ordered semiring, according to the definition $\rho(a) \le \rho(b)$ if and only if there exists $x, y \in S$ such that $(x, y) \in \rho$ and $a + x \le b + y$, it is necessary and sufficient that ρ is convex.

For any two elements (x_1, x_2) and (y_1, y_2) of the semiring $S \times S$, we define the *twisted product* $(x_1, x_2) \cdot_t (y_1, y_2)$ as follows:

$$(x_1, x_2) \cdot_t (y_1, y_2) = (x_1y_1 + x_2y_2, x_1y_2 + x_2y_1)$$

Definition 2.5. A congruence ρ on S is called prime congruence if for all $a, b, c, d \in S$, $(x_1, x_2) \cdot_t (y_1, y_2) \in \rho$ implies $(x_1, x_2) \in \rho$ or $(y_1, y_2) \in \rho$.

The family Cong(S) of all congruences on a semiring S forms a complete lattice with the following operations:

- 1. For any nonempty family \mathfrak{F} of congruences on S, $\wedge \mathfrak{F}$ is defined by $(a,b) \in \wedge \mathfrak{F}$ if and only if $(a,b) \in \rho$ for every ρ in \mathfrak{F} .
- 2. For any nonempty family \mathfrak{F} of congruences on S, $\vee \mathfrak{F}$ is defined by $(a,b) \in \vee \mathfrak{F}$ if and only if there exist elements $a = c_0, c_1, \dots, c_n = b$ of S and congruences $\rho_1, \rho_2, \dots, \rho_n$ of \mathfrak{F} such that $(c_{i-1}, c_i) \in \rho_i$ for all $1 \le i \le n$.

3. The Semiring $\mathcal{M}^+(X,\mathcal{A})$ and its ideals

In this section, we focus on the nature of the semiring $\mathcal{M}^+(X,\mathcal{A})$, which is the positive cone (set of all non-negative elements) of the ring $\mathcal{M}(X,\mathcal{A})$. It is easy to observe that whenever f+g=f+h, then g=h, for any f,g,h in $\mathcal{M}^+(X,\mathcal{A})$. Therefore $\mathcal{M}^+(X,\mathcal{A})$ is an additively cancellative semiring. Since $\mathcal{M}^+(X,\mathcal{A})$ is the positive cone of the von Neumann regular ring $\mathcal{M}(X,\mathcal{A})$, so the semiring $\mathcal{M}^+(X,\mathcal{A})$ is a von Neumann regular semiring.

For $f, g \in \mathcal{M}^+(X, \mathcal{A})$, define $f \leq g$ if and only if $f(x) \leq g(x)$ for all $x \in X$. Then $\mathcal{M}^+(X, \mathcal{A})$ is a partially ordered semiring with respect to the relation $' \leq '$.

Also for $f, g \in \mathcal{M}^+(X, \mathcal{A})$, define $(f \vee g)(x) = max\{f(x), g(x)\}$ and $(f \wedge g)(x) = min\{f(x), g(x)\}$ for all $x \in X$. Then $f \vee g$, $f \wedge g \in \mathcal{M}^+(X, \mathcal{A})$. Therefore $\mathcal{M}^+(X, \mathcal{A})$ is a latticed ordered semiring with respect to \vee and \wedge . 3.1. Ideals of $\mathcal{M}^+(X, \mathcal{A})$

For any $f \in \mathcal{M}(X, \mathcal{A})$, define

$$f^{+}(x) = \begin{cases} f(x), & f(x) \ge 0. \\ 0, & f(x) < 0. \end{cases}, f^{-}(x) = \begin{cases} 0, & f(x) \ge 0. \\ f(x), & f(x) \le 0. \end{cases}$$

then $f = f^+ + f^- = f^+ - (-f^-)$ and $|f| = f^+ - f^-$. Clearly f^+ and $-f^-$ belongs to $\mathcal{M}^+(X, \mathcal{A})$. Therefore $\mathcal{M}(X, \mathcal{A})$ is the ring of differences of the semiring $\mathcal{M}^+(X, \mathcal{A})$. The following lemma manifests divisibility in the semiring $\mathcal{M}^+(X, \mathcal{A})$.

Lemma 3.1. Let $f, g \in \mathcal{M}^+(X, \mathcal{A})$ and $f \leq g^r$, for some $r \geq 1$. Then f is a multiple of g.

Proof. If $f, g \in \mathcal{M}^+(X, \mathcal{A})$ be such that $f \leq g^r$, for some $r \geq 1$. Then clearly $Z(f) \supseteq Z(g)$. Define

$$h(x) = \left\{ \begin{array}{ll} \frac{f(x)}{g(x)}, & x \notin Z(g). \\ 0, & x \in Z(g). \end{array} \right.,$$

then, both $h|_{Z(g)}$ and $h|_{X\setminus Z(g)}$ are measurable. Hence by pasting lemma, $h\in \mathcal{M}^+(X,\mathcal{A})$ and clearly f=gh. \square

It is easy to observe that in a partially ordered semiring, the class of *l*-ideals coincides with the class of strong ideals.

Corollary 3.2. Every ideal of $\mathcal{M}^+(X, \mathcal{A})$ is a strong ideal.

Proof. Let *I* be an ideal of $\mathcal{M}^+(X, \mathcal{A})$ and let $f+g \in I$. Then $f \leq f+g$ and $g \leq f+g$. By Lemma 3.1, f=(f+g)h and g=(f+f)k for some $h,k \in \mathcal{M}^+(X,\mathcal{A})$. Therefore f and g are in I. Hence I is a strong ideal. \square

Remark 3.3. One of the contrasting features between the semiring $\mathcal{M}^+(X,\mathcal{A})$ and the semiring $C^+(X)$ (viz. the semiring of non-negative real-valued continuous functions on a topological space X) is the nature of their ideals. There can exist many non-k-ideals in $C^+(X)$. Moreover, each ideal of $C^+(X)$ is a strong ideal (equivalently a k-ideal) if and only if X is an Y-space (cf. Theorem 2.1, [15]). Moreover, the lattice of ideals of Y-(Y) is always modular (cf. Proposition 6, [5]), whereas the lattice of ideals of Y-(Y) is modular if and only if Y is an Y-space.

By $(\mathfrak{L}(\mathcal{M}^+(X,\mathcal{A})), \vee, \wedge)$ we mean the lattice of all ideals of the semiring $\mathcal{M}^+(X,\mathcal{A})$ with $I \vee J = I + J$ and $I \wedge J = I \cap J$. Similarly $(\mathfrak{L}(\mathcal{M}(X,\mathcal{A})), \vee, \wedge)$ is the lattice of all ideals of $\mathcal{M}(X,\mathcal{A})$ with obvious join and meet. We define two maps $\alpha \colon \mathfrak{L}(\mathcal{M}(X,\mathcal{A})) \to \mathfrak{L}(\mathcal{M}^+(X,\mathcal{A}))$ and $\beta \colon \mathfrak{L}(\mathcal{M}^+(X,\mathcal{A})) \to \mathfrak{L}(\mathcal{M}(X,\mathcal{A}))$ as follows:

$$\alpha(I) = I \cap \mathcal{M}^+(X, \mathcal{A})$$
 and $\beta(I) = \{f - g : f, g \in I\}.$

Lemma 3.4. *The following statements hold.*

- 1. The map β is an onto lattice homomorphism.
- 2. The map α is an onto lattice homomorphism.

Proof. 1. The equality $\beta(I + J) = \beta(I) + \beta(J)$ and the inclusion $\beta(I \cap J) \subseteq \beta(I) \cap \beta(J)$ easily follows. For the reverse inequality, let $f \in \beta(I) \cap \beta(J)$. Then $f = g_1 - h_1 \in \beta(I)$ and $f = g_2 - h_2 \in \beta(J)$, for some $g_1, h_1 \in I$ and $g_2, h_2 \in J$. Therefore $g_1 + g_2 = h_1 + h_2 \in I \cap J$ and from Corollary 3.2 $g_1, g_2, h_1, h_2 \in I \cap J$. Therefore $f \in \beta(I \cap J)$, so $\beta(I \cap J) \supseteq \beta(I) \cap \beta(J)$. We conclude that β is a lattice homomorphism.

Moreover, we show that every ideal of $\mathcal{M}(X,\mathcal{A})$ is a difference ideal. Let $f \in I$, where I is an ideal in $\mathcal{M}(X,\mathcal{A})$. Clearly $f = f^+ - (-f^-)$ with $f^+ \leq |f|$ and $-f^- \leq |f|$. Therefore $f^+, -f^- \in I \cap \mathcal{M}^+(X,\mathcal{A}) = \alpha(I)$ and $\beta(\alpha(I)) = I$. Hence β is an onto map.

2. The equality $\alpha(I \cap J) = \alpha(I) \cap \alpha(J)$ and $\alpha(I) + \alpha(J) \subseteq \alpha(I+J)$ are obvious. Now suppose $f \in \alpha(I+J)$. Then f = g + h and $f \le |g| + |h|$. Applying Riesz decomposition theorem (cf. Proposition 1.1.4 of [6]) we get f = s + t, for some $s, t \in \mathcal{M}^+(X, \mathcal{A})$ such that $0 \le s \le |g|$ and $0 \le t \le |h|$. Recall that each ideal of $\mathcal{M}(X, \mathcal{A})$ is

an l-ideal. Therefore $s \in I \cap \mathcal{M}(X, \mathcal{A}) = \alpha(I)$ and $t \in J \cap \mathcal{M}(X, \mathcal{A})$. Hence $f \in \alpha(I) + \alpha(J)$, which validates the equality $\alpha(I + J) = \alpha(I) + \alpha(J)$. Thus we have proved that α is a lattice homomorphism.

In addition, for any ideal I of $\mathcal{M}^+(X,\mathcal{A})$, $I\subseteq\alpha(\beta(I))$. Let $f\in\alpha(\beta(I))$. Then f=g-h, for some $f,g\in I$. Then $f\in I$. Indeed I is a strong ideal and hence a k-ideal. Therefore $\alpha(\beta(I))=I$. Hence α is an onto map.

Proposition 3.5. The lattice $\mathfrak{L}(\mathcal{M}^+(X,\mathcal{A}))$ is isomorphic to $\mathfrak{L}(\mathcal{M}(X,\mathcal{A}))$.

Proof. For any two ideals I and J of $\mathcal{M}^+(X,\mathcal{A})$, if $\beta(I) = \beta(J)$, then by Lemma 3.4 $I = \alpha(\beta(I)) = \alpha(\beta(J)) = J$. Which shows β is injective. Similarly, α is also injective. \square

Corollary 3.6. *Each ideal of* $\mathcal{M}^+(X, \mathcal{A})$ *is of the form* $I \cap \mathcal{M}^+(X, \mathcal{A})$ *for some ideal I of* $\mathcal{M}(X, \mathcal{A})$.

Corollary 3.7. Each prime ideal (maximal ideal) of $\mathcal{M}^+(X, \mathcal{A})$ is of the form $P \cap \mathcal{M}^+(X, \mathcal{A})$ for some prime ideal (maximal ideal) $P \cap \mathcal{M}(X, \mathcal{A})$.

Remark 3.8. As a direct consequence of the above discussion and Theorem 2.11 of [4], we achieve a complete description of maximal ideals in $\mathcal{M}^+(X,\mathcal{A})$. Each maximal ideal of $\mathcal{M}^+(X,\mathcal{A})$ is of the form $M_+^p = \{f \in \mathcal{M}^+(X,\mathcal{A}): p \in cl_{\hat{X}}Z(f)\}$, where \hat{X} is the space of all ultrafilters of the measurable space (X,\mathcal{A}) under Stone-topology.

Definition 3.9. ([7]) An ideal I of a semiring $(S, +, \cdot, 0, 1)$ is said to be a z-ideal if $\mathcal{M}_a^+ \subseteq I$ for every $a \in I$.

Here $\mathcal{M}_a^+ = \bigcap_{M \in \mathcal{M}^+(a)} M$ and $\mathcal{M}^+(a)$ is the set of all maximal ideals of S containing a.

Lemma 3.10. For any $f \in \mathcal{M}^+(X, \mathcal{A})$, $\mathcal{M}_f^+ = \{g \in \mathcal{M}^+(X, \mathcal{A}) \colon Z(f) \subseteq Z(g)\}$.

The proof relies on Lemma 3.1 and Remark 3.8. As an easy consequence of Lemma 3.10, we have the following.

Corollary 3.11. *Each ideal of* $\mathcal{M}^+(X, \mathcal{A})$ *is a z-ideal.*

Remark 3.12. It is evident that for any $f \in \mathcal{M}(X,\mathcal{A})$, Z(f) = Z(|f|). Therefore $Z[\mathcal{M}(X,\mathcal{A})] = Z[\mathcal{M}^+(X,\mathcal{A})]$. In other words, the collections of zero-sets of the ring $\mathcal{M}(X,\mathcal{A})$ and the semiring $\mathcal{M}^+(X,\mathcal{A})$ are the same. Moreover, let I be an ideal of the ring $\mathcal{M}(X,\mathcal{A})$, then $f \in I$ if and only if $|f| \in I$, so $Z[I] = Z[I \cap \mathcal{M}^+(X,\mathcal{A})]$. Now since each ideal of the semiring $\mathcal{M}^+(X,\mathcal{A})$ is of the form $I \cap \mathcal{M}^+(X,A)$, where I is an ideal of the ring $\mathcal{M}(X,\mathcal{A})$ (cf. Corollary 3.6). We conclude that $Z[I \cap \mathcal{M}^+(X,\mathcal{A})]$ is a $Z_{\mathcal{A}}$ -filter on X. In the next section, we deal with the question of whether we can extend this ideal-filter connection to a congruence-filter connection between $Cong(\mathcal{M}^+(X,\mathcal{A}))$ and $Z_{\mathcal{A}}$ -filters on X.

4. Congruences on $\mathcal{M}^+(X,\mathcal{A})$

For any congruence ρ on $\mathcal{M}^+(X,\mathcal{A})$, we define

$$E(\rho) = \{ E(f, g) : (f, g) \in \rho \},$$

where $E(f,g) = \{x \in X : f(x) = g(x)\}$, is the agreement set of f and g. It is clear that E(f,g) = Z(f-g).

Theorem 4.1. For a measurable space (X, \mathcal{A}) , $A \in \mathcal{A}$ if and only if it is the agreement set of some functions f, g in $\mathcal{M}^+(X, \mathcal{A})$.

Proof. Let $A \in \mathcal{A}$. Then A = Z(f), where $f = \chi_{A^c} \in \mathcal{M}^+(X, \mathcal{A})$. Therefore $A = E(f, \mathbf{0})$. Conversely, let A be an agreement set of f, g in $\mathcal{M}^+(X, \mathcal{A})$. Then $A = Z(f - g) \in \mathcal{A}$. □

Likewise, in the case of ideals, it is customary to ask questions about the structure of congruences on $\mathcal{M}^+(X,\mathcal{A})$. The following generic example shows that not all congruences on $\mathcal{M}^+(X,\mathcal{A})$ are cancellative.

Example 4.2. Let $S = \mathcal{M}^+(X, \mathcal{R}) \setminus \{\mathbf{0}\}$. Then $k = (S \times S) \cup \Delta_{\mathcal{M}^+(X, \mathcal{R})}$ is a non-trivial congruence on $\mathcal{M}^+(X, \mathcal{R})$, where $\Delta_{\mathcal{M}^+(X, \mathcal{R})} = \{(f, f) : f \in \mathcal{M}^+(X, \mathcal{R})\}$. Then $(f + \mathbf{1}, f) \in k$ for any $f \in S$, but $(\mathbf{1}, \mathbf{0}) \notin k$ because zero-class of k is a singleton set, that is, $[0]_k = \{(\mathbf{0}, \mathbf{0})\}$.

An easy conclusion we can make from the above example is that, unlike the connection of ideals and $Z_{\mathcal{A}}$ -filters, we cannot create congruences and $Z_{\mathcal{A}}$ -filters connection. Indeed, $E(f + 1, f) = \phi \in E(k)$, where k_+ is the congruence defined in Example 4.2. We observe the following important correlations. Compare with the semiring $C^+(X)$; see Theorem 3.2 and Theorem 3.3 of [2].

Proposition 4.3. The following statements hold for any measurable space (X, \mathcal{A}) .

- 1. If ρ_+ is a cancellative congruence on $\mathcal{M}^+(X,\mathcal{A})$, then $E(\rho_+) = \{E(f,g) : (f,g) \in \rho_+\}$ is a $Z_{\mathcal{A}}$ -filter on X.
- 2. If \mathfrak{F} is a $Z_{\mathcal{A}}$ -filter on X, then $E^{-1}(\mathfrak{F}) = \{(f,g) \in \mathcal{M}^+(X,\mathcal{A}) \times \mathcal{M}^+(X,\mathcal{A}) : E(f,g) \in \mathfrak{F}\}$ is a cancellative congruence on $\mathcal{M}^+(X,\mathcal{A})$.
- 4.1. On z-congruences of $\mathcal{M}^+(X,\mathcal{A})$

Likewise in the case of the semiring $C^+(X)$, it is natural to consider z-congruences on $\mathcal{M}^+(X,\mathcal{A})$.

Definition 4.4. A congruence ρ on $\mathcal{M}^+(X, \mathcal{A})$ is called z-congruence if for all f, g in $\mathcal{M}^+(X, \mathcal{A})$, $E(f, g) \in E(\rho)$ implies that $(f, g) \in \rho$.

Therefore for each *z*-congruence ρ on $\mathcal{M}^+(X,\mathcal{A})$, $E^{-1}(E(\rho)) = \rho$. Each *z*-congruence is a cancellative congruence. The set of all *z*-congruences on $\mathcal{M}^+(X,\mathcal{A})$ is denoted by $\mathbb{Z}Cong$. Let us denote the collection of all \mathcal{A} -filters on X by $\mathcal{Z}_{\mathcal{A}}$. Both $\mathcal{Z}Cong$ and $\mathcal{Z}_{\mathcal{A}}$ are partially ordered by inclusions.

Theorem 4.5. The map $E: (\mathcal{Z}Cong, \subseteq) \to (\mathcal{Z}_{\mathcal{A}}, \subseteq)$ is an order-isomorphism.

The proof relies on the fact that both E and E^{-1} are order preserving maps and $E^{-1}(E(\rho) = \rho)$ and $E(E^{-1}(\mathfrak{F})) = F$ for any z-congruence ρ and $Z_{\mathcal{A}}$ -filter F respectively. The following class of z-congruences can be easily obtained by Theorem 4.5.

Corollary 4.6. Every maximal congruence on $\mathcal{M}^+(X, \mathcal{A})$ is a z-congruence.

Theorem 4.7. An intersection of an arbitrary non-empty family of z-congruences on $\mathcal{M}^+(X,\mathcal{R})$ is a z-congruence.

Therefore ($\mathbb{Z}Cong$, \wedge) can be regarded as a complete \wedge -semilattice, where $\rho_1 \wedge \rho_2 = \rho_1 \cap \rho_2$. We define join of two *z*-congruences as

$$\rho_1 \vee_z \rho_2 = (\rho_1 \vee \rho_2)_z,$$

where $\rho_1 \vee \rho_2$ is the usual join of two congruences and $(\rho_1 \vee \rho_2)_z$ is the smallest *z*-congruence containing $\rho_1 \vee \rho_2$. In view of Theorem 4.7 and Theorem 2.31 of [10] we have the following result.

Corollary 4.8. *The lattice* ($\mathbb{Z}Cong$, \vee_z , \wedge) *is a complete lattice.*

We have given a complete description of ideals of $\mathcal{M}^+(X,\mathcal{A})$ (cf. Corollary 3.6). Now we investigate if there is a complete description of cancellative congruences on $\mathcal{M}^+(X,\mathcal{A})$ in terms of the congruences on the ring $\mathcal{M}(X,\mathcal{A})$. For that we define $\mathcal{E}(f,g)=\{x\in X\colon f(x)=g(x)\}$, the agreement set of $f,g\in \mathcal{M}(X,\mathcal{A})$. There is a one-one correspondence between the set of the ideals of $\mathcal{M}(X,\mathcal{A})$ and the set of all congruences on $\mathcal{M}(X,\mathcal{A})$. Indeed, for a ring R, we know that there is a one-one correspondence between the class of congruences on R and the class of ideals in R (cf. Chapter I, Remark 7.6(iii), [12]). Therefore for any congruence k on $\mathcal{M}(X,\mathcal{A})$, $\mathcal{E}(k)=\{\mathcal{E}(f,g)\colon (f,g)\in k\}=Z[I_k]$, where $I_k=\{s-t\colon (s,t)\in k\}$ is the corresponding ideal of the congruence k. For any ideal I, the corresponding congruence is $k_I=\{(h,k)\colon h-k\in I\}$. Observe that $k_{I_k}=k$ for any congruence k.

Definition 4.9. A congruence k on $\mathcal{M}(X,\mathcal{A})$ is said to be a z-congruence if $\mathcal{E}(f,g) \in \mathcal{E}(k)$ implies $(f,g) \in k$.

Theorem 4.10. *Each congruence k on* $\mathcal{M}(X, \mathcal{A})$ *is a z-congruence.*

Corollary 4.11. There is a one-one correspondence between z-ideals and z-congruences in the ring $\mathcal{M}(X,\mathcal{A})$.

Since $\mathcal{M}(X,\mathcal{A})$ is the difference ring of the cancellative semiring $\mathcal{M}^+(X,\mathcal{A})$, we can define a map ∇ as follows

$$\nabla \colon Cong(\mathcal{M}(X,\mathcal{A})) \to Cong(\mathcal{M}^+(X,\mathcal{A}))$$
$$\rho \longmapsto \rho^{\nabla}$$

where $\rho^{\nabla} = \rho \cap (\mathcal{M}^+(X, \mathcal{A}) \times \mathcal{M}^+(X, \mathcal{A}))$. Also, there exists a map Δ in the opposite direction, defined as follows

$$\Delta \colon Cong(\mathcal{M}^+(X,\mathcal{A})) \to Cong(\mathcal{M}(X,\mathcal{A}))$$

 $\rho_+ \longmapsto \rho_+^{\Delta}$

where $\rho_{+}^{\Delta} = \{(f, g) : f - g = h - k \text{ for some } (h, k) \in \rho_{+} \}.$

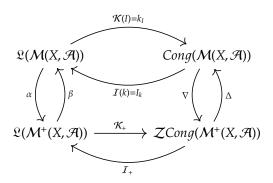
Proposition 4.12. *Each z-congruence of* $\mathcal{M}^+(X, \mathcal{A})$ *is of the form* $k \cap (\mathcal{M}^+(X, \mathcal{A}) \times \mathcal{M}^+(X, \mathcal{A}))$ *for some congruence* k *on* $\mathcal{M}(X, \mathcal{A})$.

Proof. Since every congruence $\mathcal{M}(X,\mathcal{A})$ is a z-congruence, it is easy to show that ρ^{∇} is a z-congruence on $\mathcal{M}^+(X,\mathcal{A})$ for any congruence ρ on $\mathcal{M}(X,\mathcal{A})$. Now suppose ρ_+ is a z-congruence on $\mathcal{M}^+(X,\mathcal{A})$. Let $\mathcal{E}(f,g)\in\mathcal{E}(\rho_+^{\Delta})$. Then define $h=f-(f\wedge g)$ and $k=g-(g\wedge f)$. Clearly, $h,k\in\mathcal{M}^+(X,\mathcal{A})$. Also, we have $\mathcal{E}(f,g)=E(h,k)\in\rho_+$ and $(h,k)\in\rho_+$. But from the construction of h and k, it is clear that f-g=h-k. Therefore $(f,g)\in\rho_+^{\Delta}$ and hence ρ_+^{Δ} is a z-congruence on $\mathcal{M}(X,\mathcal{A})$. Also, since every z-congruence is a cancellative congruence on $\mathcal{M}^+(X,\mathcal{A})$, we have $\rho_+^{\Delta\nabla}=\rho_+$ by Chapter II, Theorem 7.1 of [12]. This completes the proof. \square

Due to Corollary 3.11, Theorem 4.10 and Corollary 4.11, we arrive at the following remarkable correspondence theorem for *z*-ideals and *z*-congruences in $\mathcal{M}^+(X, \mathcal{A})$.

Proposition 4.13. There is a one-one correspondence between z-ideals and z-congruences in the semiring $\mathcal{M}^+(X,\mathcal{A})$.

Proof. Let k be a z-congruence on $\mathcal{M}^+(X,\mathcal{A})$. Then the corresponding ideal (zeroth class), denoted by $I_k = \{f : (f,\mathbf{0}) \in k\}$ is again a z-ideal of $\mathcal{M}^+(X,\mathcal{A})$. We denote this map from $\mathbb{Z}Cong(\mathcal{M}^+(X,\mathcal{A}))$ to $\mathfrak{L}(\mathcal{M}^+(X,\mathcal{A}))$ by I_+ . For any z-congruence k we can easily observe that $I_+(k) = \alpha(I(k^\Delta))$. The following diagram captures the essence of our goal.



Now we define a map \mathcal{K}_+ : $\mathfrak{L}(\mathcal{M}^+(X,\mathcal{A})) \mapsto \mathcal{Z}Cong(\mathcal{M}^+(X,\mathcal{A}))$ by $\mathcal{K}_+(J) = \mathcal{K}_{\beta(I)}^{\nabla}$. Since each ideal J of $\mathcal{M}^+(X,\mathcal{A})$ is a strong ideal, we immediately have $\mathcal{K}_{\beta(I)}^{\nabla} = \{(f,g) \colon f+s=g+t, \text{ for some } s,t\in I\}$, which is again a z-congruence on $\mathcal{M}^+(X,\mathcal{A})$ corresponding to the z-ideal I. Moreover $I_+(\mathcal{K}_+(I)) = I$ for any ideal I and $\mathcal{K}_+(I_+(k)) = k$ for any z-congruence k on $\mathcal{M}^+(X,\mathcal{A})$. This completes the proof.

4.2. Prime z-congruences

Definition 4.14. $A Z_{\mathcal{A}}$ -filter \mathfrak{F} on X is said to be prime if $A, B \in \mathcal{A}$, $A \cup B \in \mathfrak{F}$ implies $A \in \mathfrak{F}$ or $B \in \mathfrak{F}$.

Lemma 4.15. For any f_1 , f_2 , g_1 and g_2 in $\mathcal{M}^+(X, \mathcal{A})$, $E(f_1, g_1) \cup E(f_2, g_2) = E(f_1f_2 + g_1g_2, f_1g_2 + f_2g_1)$.

Theorem 4.16. *If* ρ *is a prime z-congruence on* $\mathcal{M}^+(X, \mathcal{A})$ *, then* $E(\rho)$ *is a prime z-filter on* X.

The next theorem gives us a picture of the relation between prime congruences and *z*-congruences to some extent.

Theorem 4.17. For a z-congruence ρ on $\mathcal{M}^+(X, \mathcal{A})$ the following are equivalent:

- 1. ρ is prime.
- 2. ρ contains a prime congruence.
- 3. For all $f_1, f_2, g_1, g_2 \in \mathcal{M}^+(X, \mathcal{A}), f_1 f_2 + g_1 g_2 = f_2 g_2 + f_2 g_1$ implies that either $(f_1, g_1) \in \rho$ or $(f_2, g_2) \in \rho$.
- 4. For all $f, g \in \mathcal{M}^+(X, \mathcal{A})$ there exists $A \in E(\rho)$ such that either $f \geq g$ or $g \geq f$ on A.

Proof. $(1) \Rightarrow (2)$: Trivial.

- (2) \Rightarrow (3) : Let ρ contain a prime congruence σ and $f_1, f_2, g_1, g_2 \in \mathcal{M}^+(X, \mathcal{A})$, such that $f_1f_2 + g_1g_2 = f_2g_2 + f_2g_1$. Then $(f_1f_2 + g_1g_2, f_2g_2 + f_2g_1)$ is a member of the diagonal congruence and hence a member of σ . Since σ is prime, then either $(f_1, g_1) \in \rho_1$ or $(f_2, g_2) \in \sigma$. Since $\sigma \subseteq \rho$, so either $(f_1, g_1) \in \rho$ or $(f_2, g_2) \in \rho$.
- (3) \Rightarrow (4): Let $f, g \in \mathcal{M}^+(X, \mathcal{A})$. We define $h_1 = f (f \wedge g)$ and $h_2 = g (g \wedge f)$. Then $h_1, h_2 \in \mathcal{M}^+(X, \mathcal{A})$ and $h_1h_2 = \mathbf{0}$. Thus $(h_1, \mathbf{0}) \in \rho$ or $(\mathbf{0}, h_2) \in \rho$ by (3). This implies that $E(h_1, \mathbf{0}) \in E(\rho)$ or $E(\mathbf{0}, h_2) \in E(\rho)$. Clearly, $f \geq g$ on $E(h_1, \mathbf{0})$ and $g \geq f$ on $E(h_2, \mathbf{0})$.
- (4) \Rightarrow (1) : Let $f_1, f_2, g_1, g_2 \in \mathcal{M}^+(X, \mathcal{A})$ such that $(f_1f_2 + g_1g_2, f_1g_2 + f_2g_1) \in \rho$. Let $A = E(f_1f_2 + g_1g_2, f_1g_2 + f_2g_1) \in E(\rho)$. Set $h_1 = |f_1 g_1|$ and $h_2 = |f_2 g_2|$. Then $h_1, h_2 \in \mathcal{M}^+(X, \mathcal{A})$, $E(f_1, g_1) = E(h_1, \mathbf{0})$ and $E(f_2, g_2) = E(h_2, \mathbf{0})$.
- By (4) there exists $A_1 \in E(\rho)$ such that $h_1 \le h_2$ or $h_2 \le h_1$ on A_1 . We assume that $h_1 \le h_2$ on A_1 . Then $h_1 \le h_2$ on $A \cap A_1$. Now $E(f_1f_2 + g_1g_2, f_1g_2 + f_2g_1) = E(f_1, g_1) \cup E(f_2, g_2)$. Therefore $A \cap A_1 \subseteq E(h_1, \mathbf{0}) = E(f_1, g_1)$. Then $E(f_1, g_1) \in E(\rho)$ as $A \cap A_1 \in E(\rho)$ and $E(\rho)$ is an \mathcal{A} -filter on X. Thus $(f_1, g_1) \in \rho$ as ρ is a z-congruence. Similarly $h_2 \le h_1$ on A_1 implies that $(f_2, g_2) \in \rho$. Hence, ρ is a prime congruence. \square

Corollary 4.18. *If* ρ *is a prime congruence on* $\mathcal{M}^+(X, \mathcal{A})$ *, then* $E(\rho)$ *is a prime* \mathcal{A} *-filter on* X.

Proof. Let $\sigma = E^{-1}(E(\rho))$. Then σ is a *z*-congruence and $\rho \subseteq \rho$. So σ is prime by Theorem 4.17. Hence $E(\rho) = E(\sigma)$ is a prime $Z_{\mathcal{A}}$ -filter on X by Theorem 4.17. \square

Theorem 4.19. If \mathfrak{F} is a prime $Z_{\mathcal{A}}$ -filter on X, then $E^{-1}(\mathfrak{F})$ is a prime congruence on $\mathcal{M}^+(X,\mathcal{A})$.

Proof. $E^{-1}(\mathfrak{F})$ is a congruence on $\mathcal{M}^+(X,\mathcal{A})$ by Proposition 4.3. Let $f_1,g_1,f_2,g_2 \in \mathcal{M}^+(X,\mathcal{A})$ such that $(f_1g_1+f_2g_2,f_1g_2+f_2g_1)\in E^{-1}(\mathfrak{F})$. Then $E(f_1g_1+f_2g_2,f_1g_2+f_2g_1)=E(f_1,g_1)\cup E(f_2,g_2)\in \mathfrak{F}$. Since \mathfrak{F} is a prime \mathcal{A} -filter, therefore either $E(f_1,g_1)\in \mathfrak{F}$ or $E(f_2,g_2)\in \mathfrak{F}$. Thus either $(f_1,g_1)\in E^{-1}(\mathfrak{F})$ or $(f_2,g_2)\in E^{-1}(\mathfrak{F})$. Hence $E^{-1}(\mathfrak{F})$ is a prime congruence on $\mathcal{M}^+(X,\mathcal{A})$. □

We have the following result as an easy consequence of Proposition 4.3 and Theorem 4.5.

Theorem 4.20. The following statements hold for a measurable space (X, \mathcal{A}) .

- a) If ρ is a maximal congruence on $\mathcal{M}^+(X,\mathcal{A})$ then $E(\rho)$ is a $Z_{\mathcal{A}}$ -ultrafilter on X.
- b) If \mathcal{U} is a $\mathbb{Z}_{\mathcal{A}}$ -ultrafilter on X then $E^{-1}(\mathcal{U})$ is a maximal congruence on $\mathcal{M}^+(X,\mathcal{A})$.

Theorem 4.21. Every maximal congruence on $\mathcal{M}^+(X, \mathcal{A})$ is a prime congruence.

Theorem 4.22. Every prime $Z_{\mathcal{A}}$ -filter on X is a $Z_{\mathcal{A}}$ -ultrafilter.

Theorem 4.23. Let ρ be a z-congruence on $\mathcal{M}^+(X,\mathcal{A})$. Then ρ is maximal if and only if it is prime.

Proof. If ρ is a maximal congruence, then it is prime by Theorem 4.21.

Conversely let, ρ be prime. Then $E(\rho)$ is a prime $Z_{\mathcal{A}}$ -filter by Theorem 4.18. By Theorem 4.22, $E(\rho)$ is an \mathcal{A} -ultrafilter. So $E^{-1}(E(\rho))$ is a maximal congruence on $\mathcal{M}^+(X,\mathcal{A})$ by Theorem 4.20. Since ρ is a z-congruence, hence $E^{-1}(E(\rho)) = \rho$ is maximal. \square

We denote the intersection of all maximal congruences containing (f,g) as $\mathfrak{M}(f,g)$. clearly, $\mathfrak{M}(f,g)$ is a *z*-congruence, for any $f,g \in \mathcal{M}^+(X,\mathcal{A})$ Next we give an algebraic characterization of *z*-congruences on $\mathcal{M}^+(X,\mathcal{A})$.

Proposition 4.24. A congruence ρ on $\mathcal{M}^+(X,\mathcal{A})$ is a z-congruence if and only if $\mathfrak{M}(f,g) \subseteq \rho$ for every $(f,g) \in \rho$.

Proof. First, we observe that if (h,k) belongs to every maximal congruence that (f,g) belongs to, then $E(f,g) \subseteq E(h,k)$. Indeed, if we have $x \in E(f,g)$ and $x \notin E(h,k)$, then for this fixed point x, consider the fixed maximal ideal M_x of $\mathcal{M}(X,\mathcal{A})$. Which forces $E^{-1}(Z[M_x])$ to be a maximal congruence (cf. Theorem 4.20), where $Z[M_x]$ is a $Z_{\mathcal{A}}$ -ultrafilter (cf. Theorem 2.7, [4]). Then clearly $(f,g) \in E^{-1}(Z[M_x])$ but $(h,k) \notin E^{-1}(Z[M_x])$. Which is a contradiction. Therefore we have $E(f,g) \subseteq E(h,k)$.

Now let ρ be a z-congruence on $\mathcal{M}^+(X,\mathcal{A})$ and $(f,g) \in \rho$. For any $(h,k) \in \mathfrak{M}(f,g)$ we have $E(f,g) \subseteq E(h,k)$, which implies $(h,k) \in \rho$. Indeed, this follows from that fact that $E(\rho)$ is a $Z_{\mathcal{A}}$ -filter and ρ is a z-congruence. Therefore $\mathfrak{M}(f,g) \subseteq \rho$.

Conversely, it follows easily since each maximal congruence is a z-congruence. \Box

Corollary 4.25. Any z-congruence ρ on $\mathcal{M}^+(X,\mathcal{A})$ is of the form $\rho = \bigvee_{\substack{(f,g) \in \rho}} \mathfrak{M}(f,g)$.

5. Structure space of $\mathcal{M}^+(X,\mathcal{A})$

Let $Max(X, \mathcal{A})$ be the set of all maximal ideals of $\mathcal{M}(X, \mathcal{A})$ and for $f \in \mathcal{M}(X, \mathcal{A})$ set $\mathcal{M}_f = \{M \in Max(X, \mathcal{A}) : f \in M\}$. Then $\{\mathcal{M}_f : f \in \mathcal{M}(X, \mathcal{A})\}$ is base for closed sets for some topology on $Max(X, \mathcal{A})$. $Max(X, \mathcal{A})$ with this topology is called structure space of the ring $\mathcal{M}(X, \mathcal{A})$; See [4].

Let *S* be a semiring and $\mathcal{M}Cong(S)$ be the set of all maximal congruences on *S*. For $a,b \in S$, set $\mathfrak{m}(a,b) = \{\rho \in \mathcal{M}Cong(S) : (a,b) \in \rho\}$. For $a,b,c,d \in S$, $\mathfrak{m}(a,b) \cup \mathfrak{m}(c,d) \subseteq \mathfrak{m}(ac+bd,ad+bc)$. If every maximal congruence on *S* is prime, then the equality holds. Using this fact, we have the following theorem.

Theorem 5.1 (Theorem 2.9, [2]). *If each maximal congruence on S is prime, then* $\{\mathfrak{m}(a,b):(a,b)\in S\times S\}$ *is a base for closed sets of some topology on* $\mathcal{M}Cong(S)$.

The set $\mathcal{M}Cong(S)$ with this topology is said to be the structure space of S, defined in [14]. We now show that $Max(X, \mathcal{A})$ can be achieved via the positive cone of the ring $\mathcal{M}(X, \mathcal{A})$.

Theorem 5.2. $\mathcal{M}Cong(\mathcal{M}^+(X,\mathcal{A}))$ is homeomorphic to $Max(X,\mathcal{A})$.

Proof. Let $\rho \in \mathcal{M}Cong(\mathcal{M}^+(X,\mathcal{A}))$. Then $E(\rho)$ is a $Z_{\mathcal{A}}$ -ultrafilter on X (cf. Theorem 4.20). Then $Z^{-1}[E(\rho)]$ is a maximal ideal in $\mathcal{M}(X,\mathcal{A})$ by Theorem 2.7 of [4]. Define $\eta : \mathcal{M}Cong(\mathcal{M}^+(X,\mathcal{A})) \to \mathcal{M}ax(X,\mathcal{A})$ by $\eta(\rho) = Z^{-1}[E(\rho)]$ for every $\rho \in \mathcal{M}Cong(\mathcal{M}^+(X,\mathcal{A}))$.

Let $\rho_1, \rho_2 \in \mathcal{M}Cong(\mathcal{M}^+(X,\mathcal{A}))$ such that $\eta(\rho_1) = \eta(\rho_2)$. Then $Z^{-1}[E(\rho_1)] = Z^{-1}[E(\rho_2)]$. For any $Z_{\mathcal{A}}$ -filter \mathfrak{F} , $ZZ^{-1}[\mathfrak{F}] = \mathfrak{F}$, so we have $E(\rho_1) = E(\rho_2)$. Also ρ_1, ρ_2 are z-congruences, therefore we have $\rho_1 = \rho_2$. Hence η is injective.

Let M be a maximal ideal of $\mathcal{M}(X,\mathcal{A})$. Then Z[M] is a $Z_{\mathcal{A}}$ -ultrafilter by Theorem 2.7 of [4]. By Theorem 4.20, $E^{-1}Z[M]$ is a maximal congruence on $\mathcal{M}^+(X,\mathcal{A})$. Let $\rho=E^{-1}Z[M]$. Then $\eta(\rho)=Z^{-1}E(\rho)=M$. Hence η is onto.

Let $\mathfrak{m}(f,g)$ be a basic closed set in $\mathcal{M}Cong(\mathcal{M}^+(X,\mathcal{A}))$, where $f,g\in\mathcal{M}^+(X,\mathcal{A})$. Then $M\in\eta(\mathfrak{m}(f,g))\Leftrightarrow M=\eta(\rho), \rho\in\mathfrak{m}(f,g)\Leftrightarrow M=Z^{-1}E(\rho), (f,g)\in\rho\Leftrightarrow Z[M]=E(\rho), (f,g)\in\rho\Leftrightarrow E(f,g)=Z(f-g)\in E(\rho)=Z[M]\Leftrightarrow f-g\in\mathcal{M}$ as M is a z-ideal $\Leftrightarrow M\in\mathcal{M}_{f-g}$. Hence $\eta(\mathfrak{m}(f,g))=\mathcal{M}_{f-g}$ is a basic closed set in $\mathcal{M}ax(X,\mathcal{A})$. Let \mathcal{M}_f be a basic closed set in $\mathcal{M}ax(X,\mathcal{A})$, where $f\in\mathcal{M}(X,\mathcal{A})$. Then $\rho\in\eta^{-1}(\mathcal{M}_f)\Leftrightarrow\eta(\rho)\in\mathcal{M}_f\Leftrightarrow f\in\eta(\rho)=Z^{-1}E(\rho)\Leftrightarrow Z(f)=Z(|f|)=E(|f|,\mathbf{0})\in E(\rho)\Leftrightarrow (|f|,\mathbf{0})\in\rho$ as ρ is a z-congruence $\Leftrightarrow\rho\in\mathcal{M}(|f|,\mathbf{0})$. Therefore $\eta^{-1}(\mathcal{M}_f)=\mathcal{M}(|f|,\mathbf{0})$ is a basic closed set in $\mathcal{M}Cong(\mathcal{M}^+(X,\mathcal{A}))$. Hence η is a homeomorphism. \square

Definition 5.3. A congruence ρ on $\mathcal{M}^+(X,\mathcal{A})$ is called fixed if $\bigcap \{E(f,g): (f,g) \in \rho\}$ is nonempty and free otherwise.

Theorem 5.4. For a measurable space (X, \mathcal{A}) , the set of all fixed maximal congruences of $\mathcal{M}^+(X, \mathcal{A})$ is the set $\{\rho_x : x \in X\}$, where $\rho_x = \{(f, g) \in \mathcal{M}^+(X, \mathcal{A}) \times \mathcal{M}^+(X, \mathcal{A}) : f(x) = g(x)\}$. Moreover, for two distinct points $x, y \in X$ we have $\rho_x \neq \rho_y$.

Next, we try to characterize the measurable space (X, \mathcal{A}) for which each maximal congruence on $\mathcal{M}^+(X, \mathcal{A})$ is fixed. We need the following definitions.

Definition 5.5. (cf. Definition 7.15 of [10]) Let L be a complete lattice, and let a be an element of L. Then a is called compact if $a \le \bigvee X$, for some $X \subseteq L$, implies that $a \le \bigvee S$ for some finite $S \subseteq X$. In particular, if the top element of L is compact, then we call L a compact lattice.

Definition 5.6. ([11]) A measurable space (X, \mathcal{A}) is said to be a compact measurable space if \mathcal{A} is a compact lattice.

Theorem 5.7. Let (X, \mathcal{A}) be a measurable space. Then the following are equivalent.

- 1) Each maximal ideal of $\mathcal{M}(X, \mathcal{A})$ is fixed.
- 2) Each maximal congruence on $\mathcal{M}^+(X, \mathcal{A})$ is fixed.
- 3) \mathcal{A} is a finite σ -algebra on X.
- 4) (X, \mathcal{A}) is a compact measurable space.
- 5) $\mathcal{M}(X,\mathcal{A}) = \mathcal{M}^*(X,\mathcal{A}) = \{ f \in \mathcal{M}(X,\mathcal{A}) : f \text{ is bounded on } X \}.$

Proof. (1) \Leftrightarrow (3) \Leftrightarrow (5) : Follows from Theorem 2.13 of [4].

- $(1) \Leftrightarrow (4)$ Follows from Proposition 4.11 of [11].
- (1) \Rightarrow (2) : Let ρ be a maximal congruence on $\mathcal{M}^+(X,\mathcal{A})$. Then $E(\rho)$ is an $Z_{\mathcal{A}}$ -ultrafilter on X. So $Z^{-1}[E(\rho)]$ is a maximal ideal of $\mathcal{M}(X,\mathcal{A})$. Thus $Z^{-1}[E(\rho)] = \{h \in \mathcal{M}(X,\mathcal{A}) : h(x) = 0\}$ for some $x \in X$. Let $(f,g) \in \rho$. Then $E(f,g) = Z(f-g) \in E(\rho)$. Therefore $f-g \in Z^{-1}[E(\rho)]$. So (f-g)(x) = 0 i.e., $x \in E(f,g)$. Hence ρ is a fixed congruence on $\mathcal{M}^+(X,\mathcal{A})$.
- $(2) \Rightarrow (1)$: Let M be any maximal ideal of $\mathcal{M}(X,\mathcal{A})$. Then Z[M] is a $Z_{\mathcal{A}}$ -ultrafilter on X. Thus $E^{-1}(Z[M])$ is a maximal congruence on $\mathcal{M}^+(X,\mathcal{A})$. By (2) $E^{-1}(Z[M])$ is fixed. So by Theorem 5.4 $E^{-1}(Z[M]) = \rho_x$ for some $x \in X$. Let $f \in M$. Then $Z(f) = E(|f|, \mathbf{0}) \in Z[M]$. Thus $(|f|, \mathbf{0}) \in E^{-1}(Z[M]) = \rho_x$. Therefore $f(x) = |f|(x) = \mathbf{0}(x) = 0$. Hence M is a fixed maximal ideal of $\mathcal{M}(X,\mathcal{A})$.
 - $(3) \Rightarrow (4)$ Trivially true.
- $(4) \Rightarrow (3)$ Suppose \mathcal{A} is an infinite σ -algebra on X. For each $x \in X$, we define $x^{\vee} = \bigcap \{B \in \mathcal{A} : x \in B\}$. Since \mathcal{A} is a complete lattice, we have $x^{\vee} \in \mathcal{A}$ for all $x \in X$. It is easy to see that $x^{\vee} \cap y^{\vee} = \emptyset$ or $x^{\vee} = y^{\vee}$, for two distinct points $x, y \in X$. Let $\mathfrak{X} = \{x^{\vee} : x \in X\}$. It is clear that any $B \in \mathcal{A}$ can be written as unions of elements of \mathfrak{X} . Since \mathcal{A} is infinite, then \mathfrak{X} has infinite cardinality. Now let, $\{x_1^{\vee}, x_2^{\vee}, \cdots\}$ be a countable infinite subset of \mathfrak{X} . Let $A = \bigcup_i x_i^{\vee}$. Then $A \in \mathcal{A}$. By our hypothesis, (X, \mathcal{A}) is a compact measurable space. Then there exists a finite subcollection $\{x_{i_j}^{\vee}\}_j$ of $\{x_i^{\vee}\}_i$ such that $A = \bigcup_j x_{i_j}^{\vee}$. This contradicts the fact that any two members of the family $\{x_i^{\vee}\}_i$ is pairwise disjoint. \square

Remark 5.8. From the definition of a σ -algebra, it is clear that a σ -algebra is a σ -frame (A σ -frame L is a lattice with countable joins \bigvee_n , finite meets \land , a top element \top and a bottom element \bot such that $x \land \bigvee_n x_n = \bigvee_n (x \land x_n)$, for $n \in \mathbb{N}$, for all $x, x_n \in L$). A σ -frame S is said to be pseudocompact if every σ -frame maps $\phi \colon \mathfrak{L}(\mathbb{R}) \to S$ is a bounded map (cf. Definition 3, [9]). Here $\mathfrak{L}(\mathbb{R})$ is the σ -frame (frame) of real numbers, which is isomorphic to $O(\mathbb{R})$, the lattice of open sets of \mathbb{R} . Therefore a σ -algebra \mathcal{A} is pseudocompact if every $f \colon O(\mathbb{R}) \to \mathcal{A}$ is bounded. Unlike the classical case of rings of continuous functions, that is, a space X is pseudocompact if and only if $C(X) = C^*(X)$, Theorem 5.7 is unable to capture pseudocompactness of (X, \mathcal{A}) . Now, we argue why this phenomenon occurs. We show that any σ -algebra is a regular σ -frame (for definition, see the Background section of [9]). Consider any nonempty element B of B. If B is an atom, then vacuously B is a regular element of the σ -frame B. Now let B be a non-atom of B. Then there exists B is a pairwise disjoint countable nonempty members of B defined as in Lemma 2.12 of [4]. It is easy to see that B is a regular B is a regular B of B is a regular B is a regular B of B is a regular B is a regular B of B is a regular B is a regular

Proposition 5.9. For every compact measurable space (X, \mathcal{A}) ,

$$(\mathcal{M}Cong(\mathcal{M}^+(X,\mathcal{A}), \{\mathfrak{m}(f,g): f,g \in \mathcal{M}^+(X,\mathcal{A})\})$$

is T-measurable.

Proof. We know from Theorem 5.7 that each maximal congruence on $\mathcal{M}^+(X,\mathcal{A})$ is of the form ρ_x for each $x \in X$ (cf. Theorem 5.4). It follows that $\mathfrak{m}(f,g) = \{\rho_x \colon (f,g) \in \rho_x\} = \{\rho_x \colon x \in E(f,g)\}$. Therefore $\mathfrak{m}(f,g)^c = \{\rho_x \colon x \in E^c(f,g)\} = \{\rho_x \colon x \in E(\chi_{E(f,g)},\mathbf{0})\} = \mathfrak{m}(\chi_{E(f,g)},\mathbf{0})$. Moreover $\bigcup_{n \in \mathbb{N}} \mathfrak{m}(f_n,g_n) = \bigcup_{n \in \mathbb{N}} \{\rho_x \colon x \in E(f_n,g_n)\} = \mathfrak{m}(\chi_{\bigcap_{n \in \mathbb{N}} E^c(f_n,g_n)},\mathbf{0})$. Therefore

$$(\mathcal{M}Cong(\mathcal{M}^+(X,\mathcal{A}), \{\mathfrak{m}(f,g): f,g \in \mathcal{M}^+(X,\mathcal{A})\})$$

is a measurable space and by Theorem 5.4 it is a T-measurable space. \Box

Definition 5.10. ([11]) Let (X, \mathcal{A}) and (Y, \mathcal{B}) be two measurable spaces. We say that (X, \mathcal{A}) and (Y, \mathcal{B}) are homeomorphic if there exists a one-one and onto function $f: X \to Y$ such that $A \in \mathcal{A}$ if and only if $f(A) \in \mathcal{B}$, for every $A \in \mathcal{A}$.

When (X, \mathcal{A}) is homeomorphic to (Y, \mathcal{B}) we will simply write $X \cong Y$.

Theorem 5.11. For every compact measurable space (X, \mathcal{A}) , $X \cong \mathcal{M}Cong(\mathcal{M}^+(X, \mathcal{A}))$ as measurable spaces.

Proof. We define $\phi: X \to \mathcal{M}Cong(\mathcal{M}^+(X,\mathcal{A}))$ by $\phi(x) = \rho_x$. From Theorem 5.7 it is clear that ϕ is one-one and onto, Moreover $\phi(E(f,g)) = \{\rho_x : x \in E(f,g)\} = \mathfrak{m}(f,g)$ and $\phi^{-1}(\mathfrak{m}(f,g)) = E(f,g)$. Therefore, ϕ is a homeomorphism. \square

The following corollary is a direct consequence of Theorem 5.2 and Theorem 5.11.

Corollary 5.12. If (X, \mathcal{A}) and (Y, \mathcal{B}) are two compact measurable spaces, then $X \cong Y$ as measurable spaces if and only if $\mathcal{M}^+(X, \mathcal{A}) \cong \mathcal{M}^+(Y, \mathcal{B})$ as semirings.

6. Real maximal congruences on $\mathcal{M}^+(X,\mathcal{A})$

Here we initiate a study of quotients of $\mathcal{M}^+(X,\mathcal{A})$ via some important class of congruences on it. Our goal is to give an alternative description of realcompact measurable spaces, in view of $\mathcal{M}^+(X,\mathcal{A})$. The following lemma infers that the class of *z*-congruences is ideal to consider while sculpting quotients of $\mathcal{M}^+(X,\mathcal{A})$.

Lemma 6.1. Every z-congruence on $\mathcal{M}^+(X, \mathcal{A})$ is convex.

Proof. Let ρ be a z-congruence on $\mathcal{M}^+(X,\mathcal{A})$. Let $f,g,f_1,g_1 \in \mathcal{M}^+(X,\mathcal{A})$ such that $f \leq f_1 \leq g_1 \leq g$ and $(f,g) \in \rho$. Then $E(f,g) \subseteq E(f_1,g_1)$, $E(f,g) \in E(\rho)$ and $E(\rho)$ is a $Z_{\mathcal{A}}$ -filter $\Rightarrow E(f_1,g_1) \in E(\rho)$. Also $E(\rho)$ is a z-congruence. Therefore $(f_1,g_1) \in \rho$. Hence ρ is a convex congruence. \square

Theorem 6.2. Let ρ be a z-congruence on $\mathcal{M}^+(X,\mathcal{A})$ and $f,g \in \mathcal{M}^+(X,\mathcal{A})$. Then $\rho(f) \leq \rho(g)$ if and only if $f \leq g$ on some member of $E(\rho)$.

Proof. Let $f, g \in \mathcal{M}^+(X, \mathcal{A})$ such that $\rho(f) \leq \rho(g)$. Then by Theorem 2.4 and Lemma 6.1, there exists $(h, k) \in \rho$ such that $f + h \leq g + k$. We have $f \leq g$ on $E(h, k) \in E(\rho)$.

Conversely, let $f \le g$ on some $A \in E(\rho)$. Then $A = E(f_1, g_1)$ for some $(f_1, g_1) \in \rho$. Set $h = (f - g) \vee \mathbf{0}$. Then $h \in \mathcal{M}^+(X, \mathcal{A})$ and $A \subseteq E(h, \mathbf{0})$. Since $E(\rho)$ is a $Z_{\mathcal{A}}$ -filter, therefore $E(h, \mathbf{0}) \in E(\rho)$. This implies that $(h, \mathbf{0}) \in \rho$ as ρ is a z-congruence. Also $f + \mathbf{0} \le g + h$. Hence $\rho(f) \le \rho(g)$. \square

Theorem 6.3. Let $f, g \in \mathcal{M}^+(X, \mathcal{A})$ and ρ be a maximal congruence on $\mathcal{M}^+(X, \mathcal{A})$. Then $\rho(f) < \rho(g)$ if and only if there exists $Z \in E(\rho)$ such that f < g on Z.

Proof. Let f < g on some $Z \in E(\rho)$. Then $E(f,g) \cap Z = \emptyset$. Therefore $E(f,g) \notin E(\rho)$. This implies that $(f,g) \notin \rho$. So, $\rho(f) \neq \rho(g)$. By the above theorem, we get $\rho(f) < \rho(g)$.

Conversely let, $\rho(f) < \rho(g)$. Since every maximal congruence is a *z*-congruence, then by Theorem 6.2 we have $f \leq g$ on some $Z_1 \in E(\rho)$. Again $\rho(f) \neq \rho(g)$, this implies $(f,g) \notin \rho$. Therefore $E(f,g) \notin E(\rho)$ as ρ is a *z*-congruence. As $E(\rho)$ is an $Z_{\mathcal{R}}$ -ultrafilter then there exists $Z_2 \in E(\rho)$ such that $E(f,g) \cap Z_2 = \emptyset$. Then f < g on $Z_1 \cap Z_2 \in E(\rho)$. This completes the proof. \square

Theorem 6.4. Let ρ be a congruence on $\mathcal{M}^+(X, \mathcal{A})$. Then the quotient semiring $\mathcal{M}^+(X, \mathcal{A})/\rho$ is totally ordered if and only if ρ is maximal.

Proof. First suppose ρ is a maximal congruence. Let $f,g \in \mathcal{M}^+(X,\mathcal{A})$. Set $A_1 = \{x \in X : f(x) \leq g(x)\}$, $A_2 = \{x \in X : g(x) \leq f(x)\}$. Then $A_1, A_2 \in \mathcal{A}$ and $A_1 \cup A_2 = X$. Since ρ is a maximal congruence, it is prime. Therefore $E(\rho)$ is a prime $Z_{\mathcal{A}}$ -filter. Thus either $A_1 \in E(\rho)$ or $A_2 \in E(\rho)$. Now $f \leq g$ on A_1 and $g \leq f$ on A_2 . Then by Theorem 6.2 either $\rho(f) \leq \rho(g)$ or $\rho(g) \leq \rho(f)$. Hence $\mathcal{M}^+(X,\mathcal{A})/\rho$ is totally ordered semiring.

Conversely, let the quotient semiring $\mathcal{M}^+(X,\mathcal{R})/\rho$ be a totally ordered semiring. Then it follows from Chapter II, Theorem 7.1 of [12] that the difference ring of $\mathcal{M}^+(X,\mathcal{R})/\rho$ is of the form $\mathcal{M}(X,\mathcal{R})/k$, where k is a congruence on $\mathcal{M}(X,\mathcal{R})$ and $k^{\nabla} = \rho$. Again $\mathcal{M}(X,\mathcal{R})/k$ is a totally ordered ring and $\mathcal{M}(X,\mathcal{R})/k \cong \mathcal{M}(X,\mathcal{R})/I_k$, where I_k is the corresponding ideal to the congruence k in $\mathcal{M}(X,\mathcal{R})$. Then it follows that $\mathcal{M}(X,\mathcal{R})/I_k$ is a totally ordered ring. Hence, I_k is a maximal ideal by Theorem 3.5 of [4]. Therefore, the corresponding congruence k of I_k on $\mathcal{M}(X,\mathcal{R})$ is a maximal congruence, so the congruence ρ on $\mathcal{M}^+(X,\mathcal{R})$ is a maximal congruence. \square

We can easily prove the following result.

Theorem 6.5. Let ρ be maximal congruence on $\mathcal{M}^+(X, \mathcal{A})$. then the mapping $\phi : \mathbb{R}_+ \to \mathcal{M}^+(X, \mathcal{A})/\rho$, defined by $\phi(r) = \rho(r)$ is an order preserving isomorphism from \mathbb{R}_+ into $\mathcal{M}^+(X, \mathcal{A})/\rho$.

Definition 6.6. Let ρ be a maximal congruence on $\mathcal{M}^+(X,\mathcal{A})$. Then ρ is called real if ϕ is onto where ϕ is defined in Theorem 6.5. A maximal congruence is said to be hyper-real if it is not real.

Theorem 6.7. A maximal congruence ρ on $\mathcal{M}^+(X, \mathcal{A})$ is real if and only if $\mathcal{M}^+(X, \mathcal{A})/\rho$ is isomorphic to \mathbb{R}_+ .

Proof. If ρ is real then by the definition of real congruence $\mathcal{M}^+(X,\mathcal{A})/\rho$ is isomorphic to \mathbb{R}_+ .

Conversely let, $\mathcal{M}^+(X,\mathcal{A})/\rho$ be isomorphic to \mathbb{R}_+ and ψ is an isomorphism form $\mathcal{M}^+(X,\mathcal{A})/\rho$ onto \mathbb{R}_+ . Then $\phi \circ \psi$ is an isomorphism from \mathbb{R}_+ into \mathbb{R}_+ . But only non-zero isomorphism from \mathbb{R}_+ into \mathbb{R}_+ is the identity map. Therefore $\phi \circ \psi$ is the identity map. So ϕ is onto. Hence ρ is a real maximal congruence. \square

Theorem 6.8. For each $x \in X$, the fixed congruence $\rho_x = \{(f,g) \in \mathcal{M}^+(X,\mathcal{A}) \times \mathcal{M}^+(X,\mathcal{A}) : f(x) = g(x)\}$ on $\mathcal{M}^+(X,\mathcal{A})$ is real.

Proof. Follows from Theorem 5.4 and Theorem 6.7. □

Lemma 6.9, Theorem 6.10, Theorem 6.11, 6.12 follows arguing similarly as in the proof of Lemma 4.9, Theorem 4.8, Theorem 4.10, and Theorem 4.11 respectively in [3].

Lemma 6.9. For any maximal congruence ρ on $\mathcal{M}^+(X, \mathcal{A})$ each non-zero element in $\mathcal{M}^+(X, \mathcal{A})/\rho$ has multiplicative inverse.

Theorem 6.10. A maximal congruence ρ on $\mathcal{M}^+(X, \mathcal{A})$ is real if and only if the set $\{\rho(\mathbf{n}) : \mathbf{n} \in \mathbb{N}\}$ is cofinal in $\mathcal{M}^+(X, \mathcal{A})/\rho$.

An element a in a totally ordered semiring S is called *infinitely large* if $a \ge n$ for all $n \in \mathbb{N}$.

Theorem 6.11. Let ρ be a maximal congruence on $\mathcal{M}^+(X, \mathcal{A})$ and $f \in \mathcal{M}^+(X, \mathcal{A})$. Then the following statements are equivalent:

- 1) $\rho(f)$ is infinitely large.
- 2) For all $n \in \mathbb{N}$, $Z_n = \{x \in X : f(x) \ge n\} \in E(\rho)$.
- 3) For all $n \in \mathbb{N}$, $(f \land n, n) \in \rho$.
- 4) f is unbounded on each member of $E(\rho)$.

Theorem 6.12. A maximal congruence ρ is real if and only if $E(\rho)$ is closed under countable intersection.

Theorem 6.13. A maximal congruence ρ on $\mathcal{M}^+(X,\mathcal{A})$ is real if and only if $Z^{-1}[E(\rho)]$ is a real maximal ideal in $\mathcal{M}(X,\mathcal{A})$.

Proof. A maximal ideal M in $\mathcal{M}(X,\mathcal{A})$ is real if and only if Z[M] is closed under countable intersection by Theorem 2.2[1]. Therefore the maximal ideal $Z^{-1}[E(\rho)]$ is real if and only if $ZZ^{-1}E(\rho) = E(\rho)$ is closed under countable intersection if and only if ρ is real by Theorem 6.12. This completes the proof. \square

Let $\mathcal{RMCong}(\mathcal{M}^+(X,\mathcal{A})) = \{ \rho \in \mathcal{MCong}(\mathcal{M}^+(X,\mathcal{A})) : \rho \text{ is a real maximal congruence} \}$ and $\mathcal{RMax}(X,\mathcal{A})$ be the set of all real maximal ideals of $\mathcal{M}(X,\mathcal{A})$). Topologically, $\mathcal{RMCong}(\mathcal{M}^+(X,\mathcal{A}))$ is a subspace of $\mathcal{MCong}(\mathcal{M}^+(X,\mathcal{A}))$ with basic closed sets $\mathfrak{m}^R(f,g) = \{ \rho \in \mathcal{RMCong}(\mathcal{M}^+(X,\mathcal{A})) : (f,g) \in \rho \}.$

Theorem 6.14. The map $\tilde{\eta} : \mathcal{RMCong}(\mathcal{M}^+(X,\mathcal{A})) \to \mathcal{RMax}(X,\mathcal{A})$ is a homeomorphism, where $\tilde{\eta}$ is the restriction map $\eta|_{\mathcal{RMCong}(\mathcal{M}^+(X,\mathcal{A}))}$ (cf. Theorem 5.2).

Proof. For $\rho \in \mathcal{RMCong}(\mathcal{M}^+(X,\mathcal{A}))$, $\tilde{\eta}(\rho) \in \mathcal{RMax}(X,\mathcal{A})$ by Theorem 6.13. In view of Theorem 5.2 it is only to show that $\tilde{\eta}$ is onto. Let $M \in \mathcal{RMax}(X,\mathcal{A})$. Then Z[M] is an $Z_{\mathcal{A}}$ -ultrafilter. Then $Z[M] = E(\rho)$ for a unique maximal congruence ρ on $\mathcal{M}^+(X,\mathcal{A})$. Since M is real, $Z[M] = E(\rho)$ is closed under countable intersection. Then by Theorem 6.12 ρ is real i.e., $\rho \in \mathcal{RMCong}(\mathcal{M}^+(X,\mathcal{A}))$. Also $\tilde{\eta}(\rho) = Z^{-1}E(\rho) = Z^{-1}Z[M] = M$. Thus $\tilde{\eta}$ is onto. Moreover if \mathcal{M}_f^R is a basic closed set in $\mathcal{RM}(X,\mathcal{A})$, then $\tilde{\eta}(\mathfrak{m}^R(f,g)) = \mathcal{M}_{f-g}^R$ for $f,g \in \mathcal{M}^+(X,\mathcal{A})$ and $\tilde{\eta}^{-1}(\mathcal{M}_h^R) = \mathfrak{m}^R(|h|,\mathbf{0})$ for $h \in \mathcal{M}(X,\mathcal{A})$. This completes the proof. □

The collection $\mathcal{RMCong}(\mathcal{M}^+(X,\mathcal{A}))$ can be made into a measurable space also.

Theorem 6.15. For a measurable space (X, \mathcal{A}) ,

$$(\mathcal{RMCong}(\mathcal{M}^+(X,\mathcal{A})), \{\mathfrak{m}^R(f,g): f,g \in \mathcal{M}^+(X,\mathcal{A})\})$$

forms a T-measurable space.

Proof. To show that { $\mathfrak{m}^R(f,g)$: $f,g \in \mathcal{M}^+(X,\mathcal{A})$ } is a σ -algebra on $\mathcal{RMCong}(\mathcal{M}^+(X,\mathcal{A}))$. First we observe that $\mathfrak{m}^R(\mathbf{1},\mathbf{0}) = \emptyset$. Indeed, no proper congruence contains the identity pair (**1**, **0**). Next, for any $\mathfrak{m}^R(f,g)$, the complement is

 $\mathfrak{m}^R(f,g)^c = \mathcal{RMCong}(\mathcal{M}^+(X,\mathcal{A})) \setminus \{\mathfrak{m}^R(f,g)\} = \mathfrak{m}^R(\chi_{Z(f)\cup Z(g)},\mathbf{0}).$ Indeed the twisted product $(f,g)\cdot_t(\chi_{Z(f)\cup Z(g)},\mathbf{0})\in \rho$, for all $\rho\in\mathfrak{m}^R(f,g)^c$ and ρ does not contain (f,g). Since every maximal congruence is prime, $(\chi_{Z(f)\cup Z(g)},\mathbf{0})\in \rho$. Hence $\mathfrak{m}^R(f,g)^c\subseteq\mathfrak{m}^R(\chi_{Z(f)\cup Z(g)},\mathbf{0})$ and reverse inclusion follows easily. Finally, let $\rho\in\bigcup_{n\in\mathbb{N}}\mathfrak{m}^R(f_n,g_n).$ Then $\rho\in\mathfrak{m}^R(f_n,g_n)$ for some $n\in\mathbb{N}$, so $(f_n,g_n)\in\rho$. Therefore $E(\chi_{\bigcap_{k\in\mathbb{N}}E^c(f_k,g_k)},\mathbf{0})\supseteq E(f_n,g_n).$ Hence $\bigcup_{n\in\mathbb{N}}\mathfrak{m}^R(f_n,g_n)\subseteq\mathfrak{m}^R(\chi_{\bigcap_{k\in\mathbb{N}}E^c(f_k,g_k)},\mathbf{0}).$ The reverse inclusion follows easily. Therefore $\mathfrak{m}^R(f,g)\colon f,g\in\mathcal{M}^+(X,\mathcal{A})$ } is a σ -algebra on $\mathcal{RMCong}(\mathcal{M}^+(X,\mathcal{A}).$ Moreover, since all fixed maximal congruences are real (cf. Theorem 6.8), the σ -algebra $\mathfrak{m}^R(f,g)\colon f,g\in\mathcal{M}^+(X,\mathcal{A})$ } separates points (cf. Theorem 5.4). \square

In view of Theorem 6.14, we can define realcompactness as follows: A measurable space (X, \mathcal{A}) is said to be realcompact if every real maximal congruence on $\mathcal{M}^+(X, \mathcal{A})$ is fixed.

Let us denote the set of all fixed maximal congruences as $\mathcal{F}MCong(\mathcal{M}^+(X,\mathcal{A}))$. Then by Theorem 6.8, $\mathcal{F}MCong(\mathcal{M}^+(X,\mathcal{A})) \subseteq \mathcal{R}MCong(\mathcal{M}^+(X,\mathcal{A}))$. Equality holds for realcompact spaces.

Lemma 6.16. For any measurable space (X, \mathcal{A}) , we have $\mathcal{F}MCong(\mathcal{M}^+(X, \mathcal{A})) \cong X$.

Proof. Follows from Proposition 5.9 and Theorem 5.11. □

Theorem 6.17. For a realcompact space (X, \mathcal{A}) the measurable spaces $(RMax(X, \mathcal{A}), \{\mathcal{B}_f^R : f \in \mathcal{M}(X, \mathcal{A})\})$ (cf. Theorem 2.4, [1]) and $(RMCong(\mathcal{M}^+(X, \mathcal{A})), \{\mathfrak{m}^R(f, g) : f, g \in \mathcal{M}^+(X, \mathcal{A})\})$ are homeomorphic.

Proof. Since (X, \mathcal{A}) is a realcompact space, $\mathcal{RMCong}(\mathcal{M}^+(X, \mathcal{A})) = \mathcal{FMCong}(\mathcal{M}^+(X, \mathcal{A}))$ and $\mathcal{RMax}(X, \mathcal{A}) = \mathcal{FMax}(X, \mathcal{A})$, where $\mathcal{FMax}(X, \mathcal{A})$ is the set of all fixed maximal ideals of $\mathcal{M}(X, \mathcal{A})$. By Lemma 6.16 and Theorem 2.6 of [1], we conclude that $\mathcal{RMCong}(\mathcal{M}^+(X, \mathcal{A})) \cong X \cong \mathcal{RMax}(X, \mathcal{A})$.

Theorem 6.18. Two realcompact measurable spaces (X, \mathcal{A}) and (Y, \mathcal{B}) are homeomorphic if and only if $\mathcal{M}^+(X, \mathcal{A})$ and $\mathcal{M}^+(Y, \mathcal{B})$ are isomorphic as semirings.

Proof. If (X, \mathcal{A}) and (Y, \mathcal{B}) are homeomorphic, then $\mathcal{M}(X, \mathcal{A})$ and $\mathcal{M}(Y, \mathcal{B})$ are isomorphic as semirings. Since every ring homomorphism ϕ between $\mathcal{M}(X, \mathcal{A})$ and $\mathcal{M}(Y, \mathcal{B})$ is also a lattice homomorphism, the homomorphism preserves order. Indeed, if $f \leq g$ in $\mathcal{M}(X, \mathcal{A})$, then g - f is a square and so $\phi(g - f)$ is a square in $\mathcal{M}(Y, \mathcal{B})$. Hence $\phi(f) \leq \phi(g)$. Therefore any isomorphism between $\mathcal{M}(X, \mathcal{A})$ and $\mathcal{M}(Y, \mathcal{B})$ gives rise to an isomorphism of the positive cones $\mathcal{M}^+(X, \mathcal{A})$ and $\mathcal{M}^+(Y, \mathcal{B})$.

Conversely, if there is a semiring isomorphism $\phi \colon \mathcal{M}^+(X,\mathcal{A}) \to \mathcal{M}^+(Y,\mathcal{B})$, then there is a homeomorphism $\psi \colon (\mathcal{RMCong}(\mathcal{M}^+(X,\mathcal{A})), \{\mathfrak{m}^R(f,g) \colon f,g \in \mathcal{M}^+(X,\mathcal{A})\}) \to (\mathcal{RMCong}(\mathcal{M}^+(Y,\mathcal{B})), \{\mathfrak{m}^R(h,k) \colon h,k \in \mathcal{M}^+(Y,\mathcal{B})\})$ defined as $\psi(\mathfrak{m}^R(f,g)) = \mathfrak{m}^R(\phi(f),\phi(g))$. For realcompact measurable spaces (X,\mathcal{A}) and (Y,\mathcal{B}) we have, $\mathcal{RMCong}(\mathcal{M}^+(X,\mathcal{A}) \cong X \cong \mathcal{RMax}(X,\mathcal{A})$ and $\mathcal{RMCong}(\mathcal{M}^+(Y,\mathcal{B})) \cong Y \cong \mathcal{RMax}(Y,\mathcal{B})$ (cf. Theorem 6.17). Therefore $X \cong Y$ as measurable spaces. \square

By **Meas**, we denote the category of measurable spaces and measurable functions. In particular, we are interested in the subcategory **RCTMeas**, consisting of realcompact T-measurable spaces. Theorem 6.18 solves the isomorphism problem for the semirings of the form $\mathcal{M}^+(X,\mathcal{A})$. We arrive at the following easy proposition.

Proposition 6.19. The category *RCTMeas* is dual to the full subcategory of *CRig* (the category of commutative semirings and semiring homomorphisms) consisting of the semirings of the form $\mathcal{M}^+(X, \mathcal{A})$.

Acknowledgement

The authors thank the anonymous referees for their valuable comments, which greatly improved the original version of this article. The first author gratefully acknowledges the University Grants Commission (India) for the award of a Senior Research Fellowship (ID: 211610013222 / Joint CSIR-UGC NET June 2021). The authors are also thankful to the DST-FIST Purse Scheme (Scheme no. SR/FST/MS-II/2021/101(C)) of the Department of Mathematics, Jadavpur University, Kolkata, India.

References

- [1] S. Acharyya, S. K. Acharyya, S. Bag, J. Sack, Recent progress in rings and subrings of real valued measurable functions, Quaest. Math. 43 (2019), 959–973.
- [2] S. K. Acharyya, K. C. Chattopadhyay and G. G. Ray, Hemirings, congruences and the Stone-Čech compactification, Simon Stevin 67 (1993), 21–35.
- [3] S. K. Acharyya, K. C. Chattopadhyay and G. G. Ray, Hemirings, congruences and the Hewitt realcompactification, Bull. Belg. Math. Soc. Simon Stevin 2 (1995), no. 1, 47–58.
- [4] S. K. Acharyya, S. Bag and J. Sack, *Ideals in rings and intermediate rings of measurable functions*, J. Algebra Appl. **19** (2020), no. 2, 2050038, 19 pp.

- [5] F. E. Alarcón, *The lattice of ideals of a semiring*, ProQuest LLC, Ann Arbor, MI, 1992.
- [6] M. Anderson and T. H. Feil, Lattice-ordered groups, Reidel Texts in the Mathematical Sciences, Reidel, Dordrecht, 1988.
- [7] P. Biswas, S. Bag and S. K. Sardar, z-congruences and topologies on C+(X), Positivity 28 (2024), no. 3, Paper No. 32, 20 pp.
- [8] P. Biswas, S. Bag and S. K. Sardar, Some new class of ideals in semirings and their applications, Filomat 38 (2024), no. 29, 10223–10237.
- [9] J. Clarke and C. R. A. Gilmour, *Pseudocompact \sigma-frames*, Math. Slovaca **65** (2015), no. 2, 301–312.
- [10] B. A. Davey and H. A. Priestley, Introduction to lattices and order, second edition, Cambridge Univ. Press, New York, 2002.
- [11] A. A. Estaji, A. M. Darghadam and H. Yousefpour, Maximal ideals in rings of real measurable functions, Filomat 32 (2018), no. 15, 5191–5203.
- [12] U. Hebisch and H. J. Weinert, Semirings: algebraic theory and applications in computer science, translated from the 1993 German original, Series in Algebra, 5, World Sci. Publ., River Edge, NJ, 1998.
- [13] G. Mason, z-ideals and prime ideals, J. Algebra 26 (1973), 280–297.
- [14] M. K. Sen and S. Bandyopadhyay, Structure space of a semialgebra over a hemiring, Kyungpook Math. J. 33 (1993), no. 1, 25–36.
- [15] V. I. Varankina, E. M. Vechtomov and I. A. Semënova, Semirings of continuous nonnegative functions: divisibility, ideals, congruences, Fundam. Prikl. Mat. 4 (1998), no. 2, 493–510.