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Abstract. For a measurable space (X,A), letM+(X,A) be the commutative semiring of non-negative real-
valued measurable functions with pointwise addition and pointwise multiplication. We show that there is
a lattice isomorphism between the ideal lattice of M+(X,A) and the ideal lattice of its ring of differences
M(X,A). Moreover, we infer that each ideal ofM+(X,A) is a semiring z-ideal. We investigate the duality
between cancellative congruences on M+(X,A) and ZA-filters on X. We observe that every σ-algebra is
a completely regular σ-frame, so compactness and pseudocompactness coincide in σ-algebras, and we
provide a new characterization for compact measurable spaces via algebraic properties ofM+(X,A). It is
shown that the space of (real) maximal congruences onM+(X,A) is homeomorphic to the space of (real)
maximal ideals of theM(X,A). We solve the isomorphism problem for the semirings of the formM+(X,A)
for compact and realcompact measurable spaces.

1. Introduction

In what follows, the pair (X,A) stands for a nonempty set X with a σ-algebraA on X. We call (X,A) a
measurable space. A σ-algebra A is said to separate points if for any two distinct points x, y ∈ X, we get
A ∈ A such that x ∈ A and y < A. Unless otherwise stated, by a measurable space we shall always mean a
T-measurable space ([11]), that is,A separates points of X. A function f : X → R is said to beA-measurable
(or measurable) if f−1(O) ∈ A, where O is any open set in R. The collection of all real-valued measurable
functions on (X,A), denoted byM(X,A), with pointwise addition and pointwise multiplication, forms a
commutative lattice-ordered ring with unity.

In this paper, we initiate a study of the positive cone (the set of all non-negative elements) of the ring
M(X,A), which we denote byM+(X,A). The setM+(X,A) forms a commutative lattice-ordered semiring
with the usual operations. One of the main objectives of this paper is to construct various bridges between
the ideals and congruences of the ringM(X,A) and congruences of the semiringM+(X,A).

In some recent papers like [1, 4, 11], the ringM(X,A) has been studied extensively. It is easy to show that
M(X,A) is always a von Neumann regular ring. Therefore each ideal ofM(X,A) is a z-ideal in the sense
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of Mason [13]. Estaji et. al. [11] gave a complete description of the maximal ideals inM(X,A) in terms of
the lattice-theoretic aspects ofA. They have solved the isomorphism problem of rings likeM(X,A) in the
category of compact measurable spaces. Acharyya et. al. [4] provided an alternative method to describe
the maximal ideals via the space of all ZA-ultrafilters on X. They showed that the structure space of the ring
M(X,A) is zero-dimensional. In [1], a proof of the isomorphism problem for rings likeM(X,A) is given,
in the category of realcompact measurable spaces. In this paper, we try to embark on an alternative study
of compact measurable spaces and realcompact measurable spaces in a more congruence-theoretic slant.

In section 3, we provide a complete description of ideals of the semiringM+(X,A). A major achievement
of this section is an isomorphism between the ideal lattices of the semiringM+(X,A) and the ringM(X,A).
Whence each ideal inM+(X,A) is of the form I ∩M+(X,A), for some ideal I of the ringM(X,A). Under
this circumstance, each ideal ofM+(X,A) turns out to be a z-ideal in the sense of [7].

In section 4 we study the interplay between cancellative congruences on M+(X,A) and ZA-filters on
X. We define z-congruence on both M+(X,A) and M(X,A), which are heavily related to the concept of
zero-sets. As anticipated, it turns out that in the ringM(X,A), there is a one-one correspondence between
z-ideals and z-congruences. Consequently, we give a purely algebraic description of z-congruences on
M
+(X,A).
In section 5, by exploiting the duality of maximal congruences and ZA-ultrafilters we show that the

structure space of the semiringM+(X,A) is homeomorphic to the structure space of the ringM(X,A). In
Theorem 5.7 we unify Theorem 2.13 of [4] and Proposition 4.11 of [11] by showing that (X,A) is a compact
measurable space if and only ifA is a finite σ-algebra if and only if each maximal congruence onM+(X,A)
is fixed. In Remark 5.8 we observe an interesting fact that in the case of σ-algebras (viz. σ-frames), the
concepts of compactness and pseudocompactness coincide.

In section 6 our purpose is twofold. First, we initiate a study on quotients of the semiringM+(X,A).
We show that M+(X,A)/ρ is a totally ordered semiring if ρ is a maximal congruence and the quotient
semiring M+(X,A)/ρ is either isomorphic to or, it properly contains the semifield of non-negative reals.
This leads us to the definition of real maximal congruences. We observe that the collection of all real maximal
congruences, denoted byRMCon1(M+(X,A)), can be perceived dually as a topological space with the Stone
topology and as T-measurable space. In both cases RMCon1(M+(X,A)) is homeomorphic to RMax(X,A)
(set of all real maximal ideals ofM(X,A)) as a topological space and as a measurable space. Lastly, we solve
the isomorphism problem for the semiring of the formM+(X,A) in the category of realcompact measurable
spaces.

2. Preliminaries

To make this article self-contained, we recall some basics from semiring theory.
A semiring S is a non-empty set with two binary operations + and · such that (S,+) and (S, ·) are

commutative monoids and (a + b) · c = a · c + b · c and a · 0 = 0, for all a, b, c ∈ S.
A semiring S is said to be an additively cancellative semiring (or simply cancellative) if a + c = b + c implies

a = b, for all a, b, c ∈ S.
For a cancellative semiring (S,+·), we define D(S) = {a − b : a, b ∈ S}. Then (D(S),+, ·) forms a ring

containing the formal differences of elements from S. We call D(S) the ring of differences of the cancellative
semiring S (cf. Chapter II, Theorem 5.11, [12]).

An ideal I of S is a submonoid of (S,+) such that s · t ∈ I, for all s ∈ S and for all t ∈ I.
Semiring, being a more general algebraic structure than a ring, contains more classes of ideals than a

ring. An ideal I is said to be a k-ideal if a + b ∈ I and b ∈ I implies a ∈ I. The class of k-ideals behaves more
like ring ideals. Lastly, we call an ideal I a strong ideal if a + b ∈ I, then both a ∈ I and b ∈ I.

Unlike rings, the factor objects of semirings are not determined by ideals. Instead of ideals, congruence
plays an important role in the quotient of semirings.

Definition 2.1. A congruence k is an equivalence relation on S, which is also a subsemiring of the product semiring
S × S.
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Equivalently, a congruence is an equivalence relation on S which is compatible with the binary opera-
tions. By compatibility, we mean:

1. (a, b) ∈ k and (c, d) ∈ k =⇒ (a + c, b + d) ∈ k.

2. (a, b) ∈ k and (c, d) ∈ k =⇒ (a · c, b · d) ∈ k.

A congruence k on S is said to be a cancellative congruence if (a+ c, b+ c) ∈ k implies (a, b) ∈ k, for all a, b, c ∈ S.
A cancellative congruence ρ on S is said to be a regular congruence if there exist elements e1 and e2 in S

such that for all a ∈ S, (a + e1a, e2a) ∈ ρ and (a + ae1, ae2) ∈ ρ.
Evidently, if S is a commutative semiring with unity then the class of all regular congruences coincides

with the class of all cancellative congruences.

Definition 2.2. A semiring S with a partial order “ ≤ ” is called a partially ordered semiring if the following
conditions are satisfied: for all a, b, c, d ∈ S,

1) a ≤ b⇔ a + c ≤ b + c.

2) a ≤ c, b ≤ d⇒ ad + bc ≤ ab + cd.

Definition 2.3. A congruence ρ on a partially ordered semiring S is called convex if for all a, b, c, d ∈ S, (a, b) ∈
ρ, a ≤ c ≤ d ≤ b⇒ (c, d) ∈ ρ.

The following theorem is noted in [3].

Theorem 2.4. Let S be a partially ordered semiring and ρ be a regular congruence on S. Then S/ρ is a partially
ordered semiring, according to the definition ρ(a) ≤ ρ(b) if and only if there exists x, y ∈ S such that (x, y) ∈ ρ and
a + x ≤ b + y, it is necessary and sufficient that ρ is convex.

For any two elements (x1, x2) and (y1, y2) of the semiring S×S, we define the twisted product (x1, x2)·t(y1, y2)
as follows:

(x1, x2) ·t (y1, y2) = (x1y1 + x2y2, x1y2 + x2y1)

Definition 2.5. A congruence ρ on S is called prime congruence if for all a, b, c, d ∈ S, (x1, x2) ·t (y1, y2) ∈ ρ implies
(x1, x2) ∈ ρ or (y1, y2) ∈ ρ.

The family Con1(S) of all congruences on a semiring S forms a complete lattice with the following
operations:

1. For any nonempty family F of congruences on S, ∧F is defined by (a, b) ∈ ∧F if and only if (a, b) ∈ ρ
for every ρ in F.

2. For any nonempty family F of congruences on S, ∨F is defined by (a, b) ∈ ∨F if and only if there exist
elements a = c0, c1, · · · , cn = b of S and congruences ρ1, ρ2, · · · , ρn of F such that (ci−1, ci) ∈ ρi for all
1 ≤ i ≤ n.

3. The SemiringM+(X,A) and its ideals

In this section, we focus on the nature of the semiringM+(X,A), which is the positive cone (set of all
non-negative elements) of the ringM(X,A). It is easy to observe that whenever f + 1 = f + h, then 1 = h,
for any f , 1, h inM+(X,A). ThereforeM+(X,A) is an additively cancellative semiring. SinceM+(X,A) is
the positive cone of the von Neumann regular ringM(X,A), so the semiringM+(X,A) is a von Neumann
regular semiring.

For f , 1 ∈ M+(X,A), define f ≤ 1 if and only if f (x) ≤ 1(x) for all x ∈ X. ThenM+(X,A) is a partially
ordered semiring with respect to the relation ′ ≤′.

Also for f , 1 ∈ M+(X,A), define ( f ∨ 1)(x) = max{ f (x), 1(x)} and ( f ∧ 1)(x) = min{ f (x), 1(x)} for all x ∈ X.
Then f ∨ 1, f ∧ 1 ∈ M+(X,A). ThereforeM+(X,A) is a latticed ordered semiring with respect to ∨ and ∧.
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3.1. Ideals ofM+(X,A)

For any f ∈ M(X,A), define

f+(x) =
{

f (x), f (x) ≥ 0.
0, f (x) < 0. , f−(x) =

{
0, f (x) ≥ 0.
f (x), f (x) ≤ 0. ,

then f = f+ + f− = f+ − (− f−) and | f | = f+ − f−. Clearly f+ and − f− belongs toM+(X,A). Therefore
M(X,A) is the ring of differences of the semiringM+(X,A). The following lemma manifests divisibility in
the semiringM+(X,A).

Lemma 3.1. Let f , 1 ∈ M+(X,A) and f ≤ 1r, for some r ≥ 1. Then f is a multiple of 1.

Proof. If f , 1 ∈ M+(X,A) be such that f ≤ 1r, for some r ≥ 1. Then clearly Z( f ) ⊇ Z(1). Define

h(x) =
{ f (x)
1(x) , x < Z(1).
0, x ∈ Z(1).

,

then, both h|Z(1) and h|X\Z(1) are measurable. Hence by pasting lemma, h ∈ M+(X,A) and clearly f = 1h.

It is easy to observe that in a partially ordered semiring, the class of l-ideals coincides with the class of
strong ideals.

Corollary 3.2. Every ideal ofM+(X,A) is a strong ideal.

Proof. Let I be an ideal ofM+(X,A) and let f +1 ∈ I. Then f ≤ f +1 and 1 ≤ f +1. By Lemma 3.1, f = ( f +1)h
and 1 = ( f + f )k for some h, k ∈ M+(X,A). Therefore f and 1 are in I. Hence I is a strong ideal.

Remark 3.3. One of the contrasting features between the semiring M+(X,A) and the semiring C+(X) (viz. the
semiring of non-negative real-valued continuous functions on a topological space X) is the nature of their ideals. There
can exist many non-k-ideals in C+(X). Moreover, each ideal of C+(X) is a strong ideal (equivalently a k-ideal) if and
only if X is an F-space (cf. Theorem 2.1, [15]). Moreover, the lattice of ideals ofM+(X,A) is always modular (cf.
Proposition 6, [5]), whereas the lattice of ideals of C+(X) is modular if and only if X is an F-space.

By (L(M+(X,A)),∨,∧) we mean the lattice of all ideals of the semiringM+(X,A) with I ∨ J = I + J and
I ∧ J = I ∩ J. Similarly (L(M(X,A)),∨,∧) is the lattice of all ideals ofM(X,A) with obvious join and meet.
We define two maps α : L(M(X,A))→ L(M+(X,A)) and β : L(M+(X,A))→ L(M(X,A)) as follows:

α(I) = I ∩M+(X,A) and β(I) = { f − 1 : f , 1 ∈ I}.

Lemma 3.4. The following statements hold.

1. The map β is an onto lattice homomorphism.

2. The map α is an onto lattice homomorphism.

Proof. 1. The equality β(I + J) = β(I) + β(J) and the inclusion β(I ∩ J) ⊆ β(I) ∩ β(J) easily follows. For the
reverse inequality, let f ∈ β(I) ∩ β(J). Then f = 11 − h1 ∈ β(I) and f = 12 − h2 ∈ β(J), for some 11, h1 ∈ I and
12, h2 ∈ J. Therefore 11 + 12 = h1 + h2 ∈ I∩ J and from Corollary 3.2 11, 12, h1, h2 ∈ I∩ J. Therefore f ∈ β(I∩ J),
so β(I ∩ J) ⊇ β(I) ∩ β(J). We conclude that β is a lattice homomorphism.

Moreover, we show that every ideal of M(X,A) is a difference ideal. Let f ∈ I, where I is an ideal in
M(X,A). Clearly f = f+ − (− f−) with f+ ≤ | f | and − f− ≤ | f |. Therefore f+,− f− ∈ I ∩M+(X,A) = α(I) and
β(α(I)) = I. Hence β is an onto map.

2. The equality α(I ∩ J) = α(I) ∩ α(J) and α(I) + α(J) ⊆ α(I + J) are obvious. Now suppose f ∈ α(I + J).
Then f = 1 + h and f ≤ |1| + |h|. Applying Riesz decomposition theorem (cf. Proposition 1.1.4 of [6]) we get
f = s + t, for some s, t ∈ M+(X,A) such that 0 ≤ s ≤ |1| and 0 ≤ t ≤ |h|. Recall that each ideal ofM(X,A) is
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an l-ideal. Therefore s ∈ I ∩M(X,A) = α(I) and t ∈ J ∩M(X,A). Hence f ∈ α(I) + α(J), which validates the
equality α(I + J) = α(I) + α(J). Thus we have proved that α is a lattice homomorphism.

In addition, for any ideal I ofM+(X,A), I ⊆ α(β(I)). Let f ∈ α(β(I)). Then f = 1 − h, for some f , 1 ∈ I.
Then f ∈ I. Indeed I is a strong ideal and hence a k-ideal. Therefore α(β(I)) = I. Hence α is an onto map.

Proposition 3.5. The lattice L(M+(X,A)) is isomorphic to L(M(X,A)).

Proof. For any two ideals I and J ofM+(X,A), if β(I) = β(J), then by Lemma 3.4 I = α(β(I)) = α(β(J)) = J.
Which shows β is injective. Similarly, α is also injective.

Corollary 3.6. Each ideal ofM+(X,A) is of the form I ∩M+(X,A) for some ideal I ofM(X,A).

Corollary 3.7. Each prime ideal (maximal ideal) of M+(X,A) is of the form P ∩M+(X,A) for some prime ideal
(maximal ideal) P ofM(X,A).

Remark 3.8. As a direct consequence of the above discussion and Theorem 2.11 of [4], we achieve a complete description
of maximal ideals inM+(X,A). Each maximal ideal ofM+(X,A) is of the form Mp

+ = { f ∈ M+(X,A) : p ∈ clX̂Z( f )},
where X̂ is the space of all ultrafilters of the measurable space (X,A) under Stone-topology.

Definition 3.9. ([7]) An ideal I of a semiring (S,+, ·, 0, 1) is said to be a z-ideal ifM+
a ⊆ I for every a ∈ I.

HereM+
a =

⋂
M∈M+(a)

M andM+(a) is the set of all maximal ideals of S containing a.

Lemma 3.10. For any f ∈ M+(X,A),M+
f = {1 ∈ M

+(X,A) : Z( f ) ⊆ Z(1)}.

The proof relies on Lemma 3.1 and Remark 3.8. As an easy consequence of Lemma 3.10, we have the
following.

Corollary 3.11. Each ideal ofM+(X,A) is a z-ideal.

Remark 3.12. It is evident that for any f ∈ M(X,A), Z( f ) = Z(| f |). Therefore Z[M(X,A)] = Z[M+(X,A)]. In
other words, the collections of zero-sets of the ringM(X,A) and the semiringM+(X,A) are the same. Moreover, let
I be an ideal of the ringM(X,A), then f ∈ I if and only if | f | ∈ I, so Z[I] = Z[I∩M+(X,A)]. Now since each ideal of
the semiringM+(X,A) is of the form I ∩M+(X,A), where I is an ideal of the ringM(X,A) (cf. Corollary 3.6). We
conclude that Z[I ∩M+(X,A)] is a ZA-filter on X. In the next section, we deal with the question of whether we can
extend this ideal-filter connection to a congruence-filter connection between Con1(M+(X,A)) and ZA-filters on X.

4. Congruences onM+(X,A)

For any congruence ρ onM+(X,A), we define

E(ρ) = {E( f , 1) : ( f , 1) ∈ ρ},

where E( f , 1) = {x ∈ X : f (x) = 1(x)}, is the agreement set of f and 1. It is clear that E( f , 1) = Z( f − 1).

Theorem 4.1. For a measurable space (X,A), A ∈ A if and only if it is the agreement set of some functions f , 1 in
M
+(X,A).

Proof. Let A ∈ A. Then A = Z( f ), where f = χAc ∈ M
+(X,A). Therefore A = E( f , 0).

Conversely, let A be an agreement set of f , 1 inM+(X,A). Then A = Z( f − 1) ∈ A.

Likewise, in the case of ideals, it is customary to ask questions about the structure of congruences on
M
+(X,A). The following generic example shows that not all congruences onM+(X,A) are cancellative.

Example 4.2. Let S = M+(X,A) \ {0}. Then k = (S × S) ∪ ∆M+(X,A) is a non-trivial congruence on M+(X,A),
where ∆M+(X,A) = {( f , f ) : f ∈ M+(X,A)}. Then ( f + 1, f ) ∈ k for any f ∈ S, but (1, 0) < k because zero-class of k is
a singleton set, that is, [0]k = {(0, 0)}.
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An easy conclusion we can make from the above example is that, unlike the connection of ideals and
ZA-filters, we cannot create congruences and ZA-filters connection. Indeed, E( f + 1, f ) = ϕ ∈ E(k), where
k+ is the congruence defined in Example 4.2. We observe the following important correlations. Compare
with the semiring C+(X); see Theorem 3.2 and Theorem 3.3 of [2].

Proposition 4.3. The following statements hold for any measurable space (X,A).

1. If ρ+ is a cancellative congruence onM+(X,A), then E(ρ+) = {E( f , 1) : ( f , 1) ∈ ρ+} is a ZA-filter on X.

2. If F is a ZA-filter on X, then E−1(F) = {( f , 1) ∈ M+(X,A) × M+(X,A) : E( f , 1) ∈ F} is a cancellative
congruence onM+(X,A).

4.1. On z-congruences ofM+(X,A)

Likewise in the case of the semiring C+(X), it is natural to consider z-congruences onM+(X,A).

Definition 4.4. A congruence ρ onM+(X,A) is called z-congruence if for all f , 1 inM+(X,A), E( f , 1) ∈ E(ρ)
implies that ( f , 1) ∈ ρ.

Therefore for each z-congruence ρ on M+(X,A), E−1(E(ρ)) = ρ. Each z-congruence is a cancellative
congruence. The set of all z-congruences onM+(X,A) is denoted by ZCon1. Let us denote the collection
of allA-filters on X byZA. BothZCon1 andZA are partially ordered by inclusions.

Theorem 4.5. The map E : (ZCon1,⊆)→ (ZA,⊆) is an order-isomorphism.

The proof relies on the fact that both E and E−1 are order preserving maps and E−1(E(ρ) = ρ and
E(E−1(F)) = F for any z-congruence ρ and ZA-filter F respectively. The following class of z-congruences can
be easily obtained by Theorem 4.5.

Corollary 4.6. Every maximal congruence onM+(X,A) is a z-congruence.

Theorem 4.7. An intersection of an arbitrary non-empty family of z-congruences onM+(X,A) is a z-congruence.

Therefore (ZCon1,∧) can be regarded as a complete ∧-semilattice, where ρ1 ∧ ρ2 = ρ1 ∩ ρ2. We define
join of two z-congruences as

ρ1 ∨z ρ2 = (ρ1 ∨ ρ2)z,

where ρ1 ∨ ρ2 is the usual join of two congruences and (ρ1 ∨ ρ2)z is the smallest z-congruence containing
ρ1 ∨ ρ2. In view of Theorem 4.7 and Theorem 2.31 of [10] we have the following result.

Corollary 4.8. The lattice (ZCon1,∨z,∧) is a complete lattice.

We have given a complete description of ideals of M+(X,A) (cf. Corollary 3.6). Now we investigate
if there is a complete description of cancellative congruences onM+(X,A) in terms of the congruences on
the ring M(X,A). For that we define E( f , 1) = {x ∈ X : f (x) = 1(x)}, the agreement set of f , 1 ∈ M(X,A).
There is a one-one correspondence between the set of the ideals ofM(X,A) and the set of all congruences
on M(X,A). Indeed, for a ring R, we know that there is a one-one correspondence between the class
of congruences on R and the class of ideals in R (cf. Chapter I, Remark 7.6(iii), [12]). Therefore for any
congruence k onM(X,A), E(k) = {E( f , 1) : ( f , 1) ∈ k} = Z[Ik], where Ik = {s− t : (s, t) ∈ k} is the corresponding
ideal of the congruence k. For any ideal I, the corresponding congruence is kI = {(h, k) : h − k ∈ I}. Observe
that kIk = k for any congruence k.

Definition 4.9. A congruence k onM(X,A) is said to be a z-congruence if E( f , 1) ∈ E(k) implies ( f , 1) ∈ k.

Theorem 4.10. Each congruence k onM(X,A) is a z-congruence.

Corollary 4.11. There is a one-one correspondence between z-ideals and z-congruences in the ringM(X,A).
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SinceM(X,A) is the difference ring of the cancellative semiringM+(X,A), we can define a map ∇ as
follows

∇ : Con1(M(X,A))→ Con1(M+(X,A))
ρ 7−→ ρ∇

where ρ∇ = ρ∩ (M+(X,A)×M+(X,A)). Also, there exists a map ∆ in the opposite direction, defined as
follows

∆ : Con1(M+(X,A))→ Con1(M(X,A))
ρ+ 7−→ ρ∆+

where ρ∆+ = {( f , 1) : f − 1 = h − k for some (h, k) ∈ ρ+}.

Proposition 4.12. Each z-congruence ofM+(X,A) is of the form k∩ (M+(X,A)×M+(X,A)) for some congruence
k onM(X,A).

Proof. Since every congruence M(X,A) is a z-congruence, it is easy to show that ρ∇ is a z-congruence
on M+(X,A) for any congruence ρ on M(X,A). Now suppose ρ+ is a z-congruence on M+(X,A). Let
E( f , 1) ∈ E(ρ∆+). Then define h = f − ( f ∧ 1) and k = 1 − (1 ∧ f ). Clearly, h, k ∈ M+(X,A). Also, we have
E( f , 1) = E(h, k) ∈ ρ+ and (h, k) ∈ ρ+. But from the construction of h and k, it is clear that f − 1 = h − k.
Therefore ( f , 1) ∈ ρ∆+ and hence ρ∆+ is a z-congruence on M(X,A). Also, since every z-congruence is a
cancellative congruence onM+(X,A), we have ρ∆∇+ = ρ+ by Chapter II, Theorem 7.1 of [12]. This completes
the proof.

Due to Corollary 3.11, Theorem 4.10 and Corollary 4.11, we arrive at the following remarkable corre-
spondence theorem for z-ideals and z-congruences inM+(X,A).

Proposition 4.13. There is a one-one correspondence between z-ideals and z-congruences in the semiringM+(X,A).

Proof. Let k be a z-congruence on M+(X,A). Then the corresponding ideal (zeroth class), denoted by
Ik = { f : ( f , 0) ∈ k} is again a z-ideal ofM+(X,A). We denote this map fromZCon1(M+(X,A)) toL(M+(X,A))
by I+. For any z-congruence k we can easily observe that I+(k) = α(I(k∆)). The following diagram captures
the essence of our goal.

L(M(X,A)) Con1(M(X,A))

L(M+(X,A)) ZCon1(M+(X,A))

K (I)=kI

α I(k)=Ik ∇β

K+

I+

∆

Now we define a map K+ : L(M+(X,A)) 7→ ZCon1(M+(X,A)) by K+(J) = K∇β(I). Since each ideal J of
M
+(X,A) is a strong ideal, we immediately have K∇β(I) = {( f , 1) : f + s = 1 + t, for some s, t ∈ I}, which is

again a z-congruence onM+(X,A) corresponding to the z-ideal I. Moreover I+(K+(I)) = I for any ideal I
andK+(I+(k)) = k for any z-congruence k onM+(X,A). This completes the proof.
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4.2. Prime z-congruences

Definition 4.14. A ZA-filter F on X is said to be prime if A,B ∈ A, A ∪ B ∈ F implies A ∈ F or B ∈ F.

Lemma 4.15. For any f1, f2, 11 and 12 inM+(X,A), E( f1, 11) ∪ E( f2, 12) = E( f1 f2 + 1112, f112 + f211).

Theorem 4.16. If ρ is a prime z-congruence onM+(X,A), then E(ρ) is a prime z-filter on X.

The next theorem gives us a picture of the relation between prime congruences and z-congruences to
some extent.

Theorem 4.17. For a z-congruence ρ onM+(X,A) the following are equivalent:

1. ρ is prime.

2. ρ contains a prime congruence.

3. For all f1, f2, 11, 12 ∈ M
+(X,A), f1 f2 + 1112 = f212 + f211 implies that either ( f1, 11) ∈ ρ or ( f2, 12) ∈ ρ.

4. For all f , 1 ∈ M+(X,A) there exists A ∈ E(ρ) such that either f ≥ 1 or 1 ≥ f on A.

Proof. (1)⇒ (2) : Trivial.
(2) ⇒ (3) : Let ρ contain a prime congruence σ and f1, f2, 11, 12 ∈ M

+(X,A), such that f1 f2 + 1112 =
f212 + f211. Then ( f1 f2 + 1112, f212 + f211) is a member of the diagonal congruence and hence a member of
σ. Since σ is prime, then either ( f1, 11) ∈ ρ1 or ( f2, 12) ∈ σ. Since σ ⊆ ρ, so either ( f1, 11) ∈ ρ or ( f2, 12) ∈ ρ.

(3)⇒ (4) : Let f , 1 ∈ M+(X,A). We define h1 = f − ( f ∧ 1) and h2 = 1 − (1 ∧ f ). Then h1, h2 ∈ M
+(X,A)

and h1h2 = 0. Thus (h1, 0) ∈ ρ or (0, h2) ∈ ρ by (3). This implies that E(h1, 0) ∈ E(ρ) or E(0, h2) ∈ E(ρ). Clearly,
f ≥ 1 on E(h1, 0) and 1 ≥ f on E(h2, 0).

(4) ⇒ (1) : Let f1, f2, 11, 12 ∈ M
+(X,A) such that ( f1 f2 + 1112, f112 + f211) ∈ ρ. Let A = E( f1 f2 +

1112, f112 + f211) ∈ E(ρ). Set h1 = | f1 − 11| and h2 = | f2 − 12|. Then h1, h2 ∈ M
+(X,A),E( f1, 11) = E(h1, 0) and

E( f2, 12) = E(h2, 0).
By (4) there exists A1 ∈ E(ρ) such that h1 ≤ h2 or h2 ≤ h1 on A1. We assume that h1 ≤ h2 on A1. Then

h1 ≤ h2 on A∩A1. Now E( f1 f2+1112, f112+ f211) = E( f1, 11)∪E( f2, 12). Therefore A∩A1 ⊆ E(h1, 0) = E( f1, 11).
Then E( f1, 11) ∈ E(ρ) as A ∩ A1 ∈ E(ρ) and E(ρ) is anA-filter on X. Thus ( f1, 11) ∈ ρ as ρ is a z-congruence.

Similarly h2 ≤ h1 on A1 implies that ( f2, 12) ∈ ρ. Hence, ρ is a prime congruence.

Corollary 4.18. If ρ is a prime congruence onM+(X,A), then E(ρ) is a primeA-filter on X.

Proof. Let σ = E−1(E(ρ)). Then σ is a z-congruence and ρ ⊆ ρ. So σ is prime by Theorem 4.17. Hence
E(ρ) = E(σ) is a prime ZA-filter on X by Theorem 4.17.

Theorem 4.19. If F is a prime ZA-filter on X, then E−1(F) is a prime congruence onM+(X,A).

Proof. E−1(F) is a congruence on M+(X,A) by Proposition 4.3. Let f1, 11, f2, 12 ∈ M
+(X,A) such that

( f111+ f212, f112+ f211) ∈ E−1(F). Then E( f111+ f212, f112+ f211) = E( f1, 11)∪E( f2, 12) ∈ F. Since F is a prime
A-filter, therefore either E( f1, 11) ∈ F or E( f2, 12) ∈ F. Thus either ( f1, 11) ∈ E−1(F) or ( f2, 12) ∈ E−1(F). Hence
E−1(F) is a prime congruence onM+(X,A).

We have the following result as an easy consequence of Proposition 4.3 and Theorem 4.5.

Theorem 4.20. The following statements hold for a measurable space (X,A).

a) If ρ is a maximal congruence onM+(X,A) then E(ρ) is a ZA-ultrafilter on X.

b) IfU is a ZA-ultrafilter on X then E−1(U) is a maximal congruence onM+(X,A).

Theorem 4.21. Every maximal congruence onM+(X,A) is a prime congruence.
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Theorem 4.22. Every prime ZA-filter on X is a ZA-ultrafilter.

Theorem 4.23. Let ρ be a z-congruence onM+(X,A). Then ρ is maximal if and only if it is prime.

Proof. If ρ is a maximal congruence, then it is prime by Theorem 4.21.
Conversely let, ρ be prime. Then E(ρ) is a prime ZA-filter by Theorem 4.18. By Theorem 4.22, E(ρ) is an

A-ultrafilter. So E−1(E(ρ)) is a maximal congruence onM+(X,A) by Theorem 4.20. Since ρ is a z-congruence,
hence E−1(E(ρ)) = ρ is maximal.

We denote the intersection of all maximal congruences containing ( f , 1) as M( f , 1). clearly, M( f , 1) is
a z-congruence, for any f , 1 ∈ M+(X,A) Next we give an algebraic characterization of z-congruences on
M
+(X,A).

Proposition 4.24. A congruence ρ onM+(X,A) is a z-congruence if and only ifM( f , 1) ⊆ ρ for every ( f , 1) ∈ ρ.

Proof. First, we observe that if (h, k) belongs to every maximal congruence that ( f , 1) belongs to, then
E( f , 1) ⊆ E(h, k). Indeed, if we have x ∈ E( f , 1) and x < E(h, k), then for this fixed point x, consider the fixed
maximal ideal Mx ofM(X,A). Which forces E−1(Z[Mx]) to be a maximal congruence (cf. Theorem 4.20),
where Z[Mx] is a ZA-ultrafilter (cf. Theorem 2.7, [4]). Then clearly ( f , 1) ∈ E−1(Z[Mx]) but (h, k) < E−1(Z[Mx]).
Which is a contradiction. Therefore we have E( f , 1) ⊆ E(h, k).

Now let ρ be a z-congruence onM+(X,A) and ( f , 1) ∈ ρ. For any (h, k) ∈M( f , 1) we have E( f , 1) ⊆ E(h, k),
which implies (h, k) ∈ ρ. Indeed, this follows from that fact that E(ρ) is a ZA-filter and ρ is a z-congruence.
ThereforeM( f , 1) ⊆ ρ.

Conversely, it follows easily since each maximal congruence is a z-congruence.

Corollary 4.25. Any z-congruence ρ onM+(X,A) is of the form ρ =
∨

z
( f ,1)∈ρ

M( f , 1).

5. Structure space ofM+(X,A)

Let Max(X,A) be the set of all maximal ideals ofM(X,A) and for f ∈ M(X,A) setM f = {M ∈Max(X,A) :
f ∈ M}. Then {M f : f ∈ M(X,A)} is base for closed sets for some topology on Max(X,A). Max(X,A) with
this topology is called structure space of the ringM(X,A); See [4].

Let S be a semiring and MCon1(S) be the set of all maximal congruences on S. For a, b ∈ S, set
m(a, b) = {ρ ∈ MCon1(S) : (a, b) ∈ ρ}. For a, b, c, d ∈ S, m(a, b) ∪m(c, d) ⊆ m(ac + bd, ad + bc). If every maximal
congruence on S is prime, then the equality holds. Using this fact, we have the following theorem.

Theorem 5.1 (Theorem 2.9, [2]). If each maximal congruence on S is prime, then {m(a, b) : (a, b) ∈ S × S} is a base
for closed sets of some topology onMCon1(S).

The setMCon1(S) with this topology is said to be the structure space of S, defined in [14]. We now show
that Max(X,A) can be achieved via the positive cone of the ringM(X,A).

Theorem 5.2. MCon1(M+(X,A)) is homeomorphic to Max(X,A).

Proof. Let ρ ∈ MCon1(M+(X,A)). Then E(ρ) is a ZA-ultrafilter on X (cf. Theorem 4.20). Then Z−1[E(ρ)]
is a maximal ideal in M(X,A) by Theorem 2.7 of [4]. Define η : MCon1(M+(X,A)) → Max(X,A) by
η(ρ) = Z−1[E(ρ)] for every ρ ∈ MCon1(M+(X,A)).

Let ρ1, ρ2 ∈ MCon1(M+(X,A)) such that η(ρ1) = η(ρ2). Then Z−1[E(ρ1)] = Z−1[E(ρ2)]. For any ZA-filter
F, ZZ−1[F] = F, so we have E(ρ1) = E(ρ2). Also ρ1, ρ2 are z-congruences, therefore we have ρ1 = ρ2. Hence
η is injective.

Let M be a maximal ideal ofM(X,A). Then Z[M] is a ZA-ultrafilter by Theorem 2.7 of [4]. By Theorem
4.20, E−1Z[M] is a maximal congruence onM+(X,A). Let ρ = E−1Z[M]. Then η(ρ) = Z−1E(ρ) =M. Hence η
is onto.
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Let m( f , 1) be a basic closed set inMCon1(M+(X,A)), where f , 1 ∈ M+(X,A). Then M ∈ η(m( f , 1)) ⇔
M = η(ρ), ρ ∈ m( f , 1) ⇔ M = Z−1E(ρ), ( f , 1) ∈ ρ ⇔ Z[M] = E(ρ), ( f , 1) ∈ ρ ⇔ E( f , 1) = Z( f − 1) ∈ E(ρ) =
Z[M]⇔ f −1 ∈M as M is a z-ideal⇔M ∈ M f−1. Hence η(m( f , 1)) =M f−1 is a basic closed set in Max(X,A).

Let M f be a basic closed set in Max(X,A), where f ∈ M(X,A). Then ρ ∈ η−1(M f ) ⇔ η(ρ) ∈ M f ⇔

f ∈ η(ρ) = Z−1E(ρ) ⇔ Z( f ) = Z(| f |) = E(| f |, 0) ∈ E(ρ) ⇔ (| f |, 0) ∈ ρ as ρ is a z-congruence ⇔ ρ ∈ m(| f |, 0).
Therefore η−1(M f ) = m(| f |, 0) is a basic closed set inMCon1(M+(X,A)). Hence η is a homeomorphism.

Definition 5.3. A congruence ρ on M+(X,A) is called fixed if
⋂
{E( f , 1) : ( f , 1) ∈ ρ} is nonempty and free

otherwise.

Theorem 5.4. For a measurable space (X,A), the set of all fixed maximal congruences of M+(X,A) is the set
{ρx : x ∈ X}, where ρx = {( f , 1) ∈ M+(X,A) ×M+(X,A) : f (x) = 1(x)}. Moreover, for two distinct points x, y ∈ X
we have ρx , ρy.

Next, we try to characterize the measurable space (X,A) for which each maximal congruence on
M
+(X,A) is fixed. We need the following definitions.

Definition 5.5. (cf. Definition 7.15 of [10]) Let L be a complete lattice, and let a be an element of L. Then a is called
compact if a ≤

∨
X, for some X ⊆ L, implies that a ≤

∨
S for some finite S ⊆ X. In particular, if the top element of

L is compact, then we call L a compact lattice.

Definition 5.6. ([11]) A measurable space (X,A) is said to be a compact measurable space if A is a compact
lattice.

Theorem 5.7. Let (X,A) be a measurable space. Then the following are equivalent.

1) Each maximal ideal ofM(X,A) is fixed.

2) Each maximal congruence onM+(X,A) is fixed.

3) A is a finite σ-algebra on X.

4) (X,A) is a compact measurable space.

5) M(X,A) =M∗(X,A) = { f ∈ M(X,A) : f is bounded on X}.

Proof. (1)⇔ (3)⇔ (5) : Follows from Theorem 2.13 of [4].
(1)⇔ (4) Follows from Proposition 4.11 of [11].
(1)⇒ (2) : Let ρ be a maximal congruence onM+(X,A). Then E(ρ) is an ZA-ultrafilter on X. So Z−1[E(ρ)]

is a maximal ideal ofM(X,A). Thus Z−1[E(ρ)] = {h ∈ M(X,A) : h(x) = 0} for some x ∈ X. Let ( f , 1) ∈ ρ.
Then E( f , 1) = Z( f − 1) ∈ E(ρ). Therefore f − 1 ∈ Z−1[E(ρ)]. So ( f − 1)(x) = 0 i.e., x ∈ E( f , 1). Hence ρ is a
fixed congruence onM+(X,A).

(2)⇒ (1) : Let M be any maximal ideal ofM(X,A). Then Z[M] is a ZA-ultrafilter on X. Thus E−1(Z[M])
is a maximal congruence on M+(X,A). By (2) E−1(Z[M]) is fixed. So by Theorem 5.4 E−1(Z[M]) = ρx
for some x ∈ X. Let f ∈ M. Then Z( f ) = E(| f |, 0) ∈ Z[M]. Thus (| f |, 0) ∈ E−1(Z[M]) = ρx. Therefore
f (x) = | f |(x) = 0(x) = 0. Hence M is a fixed maximal ideal ofM(X,A).

(3)⇒ (4) Trivially true.
(4) ⇒ (3) Suppose A is an infinite σ-algebra on X. For each x ∈ X, we define x⋎ =

⋂
{B ∈ A : x ∈ B}.

Since A is a complete lattice, we have x⋎ ∈ A for all x ∈ X. It is easy to see that x⋎ ∩ y⋎ = ∅ or x⋎ = y⋎,
for two distinct points x, y ∈ X. Let X = {x⋎ : x ∈ X}. It is clear that any B ∈ A can be written as unions of
elements of X. SinceA is infinite, then X has infinite cardinality. Now let, {x⋎1 , x

⋎
2 , · · · } be a countable infinite

subset of X. Let A =
⋃

i x⋎i . Then A ∈ A. By our hypothesis, (X,A) is a compact measurable space. Then
there exists a finite subcollection {xi

⋎
j } j of {x⋎i }i such that A =

⋃
j xi
⋎
j . This contradicts the fact that any two

members of the family {x⋎i }i is pairwise disjoint.
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Remark 5.8. From the definition of a σ-algebra, it is clear that a σ-algebra is a σ-frame (A σ-frame L is a lattice with
countable joins

∨
n, finite meets ∧, a top element ⊤ and a bottom element ⊥ such that x ∧

∨
n xn =

∨
n(x ∧ xn), for

n ∈N, for all x, xn ∈ L). A σ-frame S is said to be pseudocompact if every σ-frame maps ϕ : L(R)→ S is a bounded
map (cf. Definition 3, [9]). HereL(R) is the σ-frame (frame) of real numbers, which is isomorphic toO(R), the lattice
of open sets of R. Therefore a σ-algebraA is pseudocompact if every f : O(R)→ A is bounded. Unlike the classical
case of rings of continuous functions, that is, a space X is pseudocompact if and only if C(X) = C∗(X), Theorem 5.7
is unable to capture pseudocompactness of (X,A). Now, we argue why this phenomenon occurs. We show that any
σ-algebra is a regular σ-frame (for definition, see the Background section of [9]). Consider any nonempty element B
ofA. If B is an atom, then vacuously B is a regular element of the σ-frameA. Now let B be a non-atom ofA. Then
there exists {En : n ∈ N}, a pairwise disjoint countable nonempty members of A defined as in Lemma 2.12 of [4]. It
is easy to see that Ei+1 ≺ Ei and B =

∨
i Ei, i = 1, 2, · · · . Therefore every non-atom is also a regular element. We

conclude that A is a regular σ-frame. Now under the Axiom of countable dependent choice, any regular σ-frame is
completely regular. Then by Corollary 2 of [9], compactness and pseudocompactness coincide inA.

Proposition 5.9. For every compact measurable space (X,A),

(MCon1(M+(X,A), {m( f , 1) : f , 1 ∈ M+(X,A)})

is T-measurable.

Proof. We know from Theorem 5.7 that each maximal congruence on M+(X,A) is of the form ρx for
each x ∈ X (cf. Theorem 5.4). It follows that m( f , 1) = {ρx : ( f , 1) ∈ ρx} = {ρx : x ∈ E( f , 1)}. Therefore
m( f , 1)c = {ρx : x ∈ Ec( f , 1)} = {ρx : x ∈ E(χE( f ,1), 0)} = m(χE( f ,1), 0). Moreover

⋃
n∈Nm( fn, 1n) =

⋃
n∈N{ρx : x ∈

E( fn, 1n)} = {ρx : x ∈
⋃

n∈N E( fn, 1n)} = m(χ∩n∈NEc( fn,1n), 0). Therefore

(MCon1(M+(X,A), {m( f , 1) : f , 1 ∈ M+(X,A)})

is a measurable space and by Theorem 5.4 it is a T-measurable space.

Definition 5.10. ([11]) Let (X,A) and (Y,B) be two measurable spaces. We say that (X,A) and (Y,B) are homeo-
morphic if there exists a one-one and onto function f : X → Y such that A ∈ A if and only if f (A) ∈ B, for every
A ∈ A.

When (X,A) is homeomorphic to (Y,B) we will simply write X � Y.

Theorem 5.11. For every compact measurable space (X,A), X �MCon1(M+(X,A)) as measurable spaces.

Proof. We define ϕ : X → MCon1(M+(X,A)) by ϕ(x) = ρx. From Theorem 5.7 it is clear that ϕ is one-one
and onto, Moreover ϕ(E( f , 1)) = {ρx : x ∈ E( f , 1)} = m( f , 1) and ϕ−1(m( f , 1)) = E( f , 1). Therefore, ϕ is a
homeomorphism.

The following corollary is a direct consequence of Theorem 5.2 and Theorem 5.11.

Corollary 5.12. If (X,A) and (Y,B) are two compact measurable spaces, then X � Y as measurable spaces if and
only ifM+(X,A) �M+(Y,B) as semirings.

6. Real maximal congruences onM+(X,A)

Here we initiate a study of quotients ofM+(X,A) via some important class of congruences on it. Our
goal is to give an alternative description of realcompact measurable spaces, in view of M+(X,A). The
following lemma infers that the class of z-congruences is ideal to consider while sculpting quotients of
M
+(X,A).

Lemma 6.1. Every z-congruence onM+(X,A) is convex.

Proof. Let ρ be a z-congruence on M+(X,A). Let f , 1, f1, 11 ∈ M
+(X,A) such that f ≤ f1 ≤ 11 ≤ 1 and

( f , 1) ∈ ρ. Then E( f , 1) ⊆ E( f1, 11), E( f , 1) ∈ E(ρ) and E(ρ) is a ZA-filter ⇒ E( f1, 11) ∈ E(ρ). Also E(ρ) is a
z-congruence. Therefore ( f1, 11) ∈ ρ. Hence ρ is a convex congruence.
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Theorem 6.2. Let ρ be a z-congruence onM+(X,A) and f , 1 ∈ M+(X,A). Then ρ( f ) ≤ ρ(1) if and only if f ≤ 1
on some member of E(ρ).

Proof. Let f , 1 ∈ M+(X,A) such that ρ( f ) ≤ ρ(1). Then by Theorem 2.4 and Lemma 6.1, there exists (h, k) ∈ ρ
such that f + h ≤ 1 + k. We have f ≤ 1 on E(h, k) ∈ E(ρ).

Conversely, let f ≤ 1 on some A ∈ E(ρ). Then A = E( f1, 11) for some ( f1, 11) ∈ ρ. Set h = ( f − 1)∨ 0. Then
h ∈ M+(X,A) and A ⊆ E(h, 0). Since E(ρ) is a ZA-filter, therefore E(h, 0) ∈ E(ρ). This implies that (h, 0) ∈ ρ
as ρ is a z-congruence. Also f + 0 ≤ 1 + h. Hence ρ( f ) ≤ ρ(1).

Theorem 6.3. Let f , 1 ∈ M+(X,A) and ρ be a maximal congruence onM+(X,A). Then ρ( f ) < ρ(1) if and only if
there exists Z ∈ E(ρ) such that f < 1 on Z.

Proof. Let f < 1 on some Z ∈ E(ρ). Then E( f , 1)∩Z = ∅. Therefore E( f , 1) < E(ρ). This implies that ( f , 1) < ρ.
So, ρ( f ) , ρ(1). By the above theorem, we get ρ( f ) < ρ(1).

Conversely let, ρ( f ) < ρ(1). Since every maximal congruence is a z-congruence, then by Theorem 6.2
we have f ≤ 1 on some Z1 ∈ E(ρ). Again ρ( f ) , ρ(1), this implies ( f , 1) < ρ. Therefore E( f , 1) < E(ρ) as ρ is a
z-congruence. As E(ρ) is an ZA-ultrafilter then there exists Z2 ∈ E(ρ) such that E( f , 1) ∩ Z2 = ∅. Then f < 1
on Z1 ∩ Z2 ∈ E(ρ). This completes the proof.

Theorem 6.4. Let ρ be a congruence onM+(X,A). Then the quotient semiringM+(X,A)/ρ is totally ordered if
and only if ρ is maximal.

Proof. First suppose ρ is a maximal congruence. Let f , 1 ∈ M+(X,A). Set A1 = {x ∈ X : f (x) ≤ 1(x)},
A2 = {x ∈ X : 1(x) ≤ f (x)}. Then A1,A2 ∈ A and A1 ∪ A2 = X. Since ρ is a maximal congruence, it is prime.
Therefore E(ρ) is a prime ZA-filter. Thus either A1 ∈ E(ρ) or A2 ∈ E(ρ). Now f ≤ 1 on A1 and 1 ≤ f on A2.
Then by Theorem 6.2 either ρ( f ) ≤ ρ(1) or ρ(1) ≤ ρ( f ). HenceM+(X,A)/ρ is totally ordered semiring.

Conversely, let the quotient semiringM+(X,A)/ρ be a totally ordered semiring. Then it follows from
Chapter II, Theorem 7.1 of [12] that the difference ring ofM+(X,A)/ρ is of the formM(X,A)/k, where k is a
congruence onM(X,A) and k∇ = ρ. AgainM(X,A)/k is a totally ordered ring andM(X,A)/k �M(X,A)/Ik,
where Ik is the corresponding ideal to the congruence k inM(X,A). Then it follows thatM(X,A)/Ik is a
totally ordered ring. Hence, Ik is a maximal ideal by Theorem 3.5 of [4]. Therefore, the corresponding
congruence k of Ik on M(X,A) is a maximal congruence, so the congruence ρ on M+(X,A) is a maximal
congruence.

We can easily prove the following result.

Theorem 6.5. Let ρ be maximal congruence onM+(X,A). then the mapping ϕ : R+ →M+(X,A)/ρ, defined by
ϕ(r) = ρ(r) is an order preserving isomorphism from R+ intoM+(X,A)/ρ.

Definition 6.6. Let ρ be a maximal congruence onM+(X,A). Then ρ is called real if ϕ is onto where ϕ is defined
in Theorem 6.5. A maximal congruence is said to be hyper-real if it is not real.

Theorem 6.7. A maximal congruence ρ onM+(X,A) is real if and only ifM+(X,A)/ρ is isomorphic to R+.

Proof. If ρ is real then by the definition of real congruenceM+(X,A)/ρ is isomorphic to R+.
Conversely let,M+(X,A)/ρ be isomorphic to R+ and ψ is an isomorphism formM+(X,A)/ρ onto R+.

Then ϕ ◦ ψ is an isomorphism from R+ into R+. But only non-zero isomorphism from R+ into R+ is the
identity map. Therefore ϕ ◦ ψ is the identity map. So ϕ is onto. Hence ρ is a real maximal congruence.

Theorem 6.8. For each x ∈ X, the fixed congruence ρx = {( f , 1) ∈ M+(X,A) × M+(X,A) : f (x) = 1(x)} on
M
+(X,A) is real.

Proof. Follows from Theorem 5.4 and Theorem 6.7.

Lemma 6.9, Theorem 6.10, Theorem 6.11, 6.12 follows arguing similarly as in the proof of Lemma 4.9,
Theorem 4.8, Theorem 4.10, and Theorem 4.11 respectively in [3].
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Lemma 6.9. For any maximal congruence ρ onM+(X,A) each non-zero element inM+(X,A)/ρ has multiplicative
inverse.

Theorem 6.10. A maximal congruence ρ on M+(X,A) is real if and only if the set {ρ(n) : n ∈ N} is cofinal in
M
+(X,A)/ρ.

An element a in a totally ordered semiring S is called infinitely large if a ≥ n for all n ∈N.

Theorem 6.11. Let ρ be a maximal congruence onM+(X,A) and f ∈ M+(X,A). Then the following statements
are equivalent:

1) ρ( f ) is infinitely large.

2) For all n ∈N, Zn = {x ∈ X : f (x) ≥ n} ∈ E(ρ).

3) For all n ∈N, ( f ∧ n,n) ∈ ρ.

4) f is unbounded on each member of E(ρ).

Theorem 6.12. A maximal congruence ρ is real if and only if E(ρ) is closed under countable intersection.

Theorem 6.13. A maximal congruence ρ on M+(X,A) is real if and only if Z−1[E(ρ)] is a real maximal ideal in
M(X,A).

Proof. A maximal ideal M inM(X,A) is real if and only if Z[M] is closed under countable intersection by
Theorem 2.2[1]. Therefore the maximal ideal Z−1[E(ρ)] is real if and only if ZZ−1E(ρ) = E(ρ) is closed under
countable intersection if and only if ρ is real by Theorem 6.12. This completes the proof.

Let RMCon1(M+(X,A)) = {ρ ∈ MCon1(M+(X,A)) : ρ is a real maximal congruence} and RMax(X,A)
be the set of all real maximal ideals ofM(X,A)). Topologically, RMCon1(M+(X,A)) is a subspace of
MCon1(M+(X,A)) with basic closed sets
mR( f , 1) = {ρ ∈ RMCon1(M+(X,A)) : ( f , 1) ∈ ρ}.

Theorem 6.14. The map η̃ : RMCon1(M+(X,A))→ RMax(X,A) is a homeomorphism, where η̃ is the restriction
map η|RMCon1(M+(X,A)) (cf. Theorem 5.2).

Proof. For ρ ∈ RMCon1(M+(X,A)), η̃(ρ) ∈ RMax(X,A) by Theorem 6.13. In view of Theorem 5.2 it is only
to show that η̃ is onto. Let M ∈ RMax(X,A). Then Z[M] is an ZA-ultrafilter. Then Z[M] = E(ρ) for a unique
maximal congruence ρ onM+(X,A). Since M is real, Z[M] = E(ρ) is closed under countable intersection.
Then by Theorem 6.12 ρ is real i.e., ρ ∈ RMCon1(M+(X,A)). Also η̃(ρ) = Z−1E(ρ) = Z−1Z[M] = M. Thus η̃
is onto. Moreover ifMR

f is a basic closed set in RM(X,A), then η̃(mR( f , 1)) =MR
f−1 for f , 1 ∈ M+(X,A) and

η̃−1(MR
h ) = mR(|h|, 0) for h ∈ M(X,A). This completes the proof.

The collection RMCon1(M+(X,A)) can be made into a measurable space also.

Theorem 6.15. For a measurable space (X,A),

(RMCon1(M+(X,A)), {mR( f , 1) : f , 1 ∈ M+(X,A)})

forms a T-measurable space.

Proof. To show that {mR( f , 1) : f , 1 ∈ M+(X,A)} is a σ-algebra on RMCon1(M+(X,A). First we observe that
mR(1, 0) = ∅. Indeed, no proper congruence contains the identity pair (1, 0). Next, for any mR( f , 1), the
complement is
mR( f , 1)c = RMCon1(M+(X,A)) \ {mR( f , 1)} = mR(χZ( f )∪Z(1), 0). Indeed the twisted product ( f , 1) ·t

(χZ( f )∪Z(1), 0) ∈ ρ, for all ρ ∈ mR( f , 1)c and ρ does not contain ( f , 1). Since every maximal congruence is prime,
(χZ( f )∪Z(1), 0) ∈ ρ. Hence mR( f , 1)c

⊆ mR(χZ( f )∪Z(1), 0) and reverse inclusion follows easily. Finally, let ρ ∈⋃
n∈Nm

R( fn, 1n). Then ρ ∈ mR( fn, 1n) for some n ∈ N, so ( fn, 1n) ∈ ρ. Therefore E(χ⋂
k∈N Ec( fk ,1k), 0) ⊇ E( fn, 1n).

Hence
⋃

n∈Nm
R( fn, 1n) ⊆ mR(χ⋂

k∈N Ec( fk ,1k), 0). The reverse inclusion follows easily. Therefore {mR( f , 1) : f , 1 ∈
M
+(X,A)} is a σ-algebra on RMCon1(M+(X,A). Moreover, since all fixed maximal congruences are real

(cf. Theorem 6.8), the σ-algebra {mR( f , 1) : f , 1 ∈ M+(X,A)} separates points (cf. Theorem 5.4).
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In view of Theorem 6.14, we can define realcompactness as follows: A measurable space (X,A) is said
to be realcompact if every real maximal congruence onM+(X,A) is fixed.

Let us denote the set of all fixed maximal congruences as FMCon1(M+(X,A)).Then by Theorem 6.8,
FMCon1(M+(X,A)) ⊆ RMCon1(M+(X,A)). Equality holds for realcompact spaces.

Lemma 6.16. For any measurable space (X,A), we have FMCon1(M+(X,A) � X.

Proof. Follows from Proposition 5.9 and Theorem 5.11.

Theorem 6.17. For a realcompact space (X,A) the measurable spaces (RMax(X,A), {BR
f : f ∈ f ∈ M(X,A)}) (cf.

Theorem 2.4, [1]) and (RMCon1(M+(X,A)), {mR( f , 1) : f , 1 ∈ M+(X,A)}) are homeomorphic.

Proof. Since (X,A) is a realcompact space, RMCon1(M+(X,A)) = FMCon1(M+(X,A)) and RMax(X,A) =
FMax(X,A), where FMax(X,A) is the set of all fixed maximal ideals of M(X,A). By Lemma 6.16 and
Theorem 2.6 of [1], we conclude that RMCon1(M+(X,A)) � X � RMax(X,A).

Theorem 6.18. Two realcompact measurable spaces (X,A) and (Y,B) are homeomorphic if and only ifM+(X,A)
andM+(Y,B) are isomorphic as semirings.

Proof. If (X,A) and (Y,B) are homeomorphic, then M(X,A) and M(Y,B) are isomorphic as semirings.
Since every ring homomorphism ϕ between M(X,A) and M(Y,B) is also a lattice homomorphism, the
homomorphism preserves order. Indeed, if f ≤ 1 in M(X,A), then 1 − f is a square and so ϕ(1 − f ) is a
square in M(Y,B). Hence ϕ( f ) ≤ ϕ(1). Therefore any isomorphism between M(X,A) and M(Y,B) gives
rise to an isomorphism of the positive conesM+(X,A) andM+(Y,B).

Conversely, if there is a semiring isomorphism ϕ : M+(X,A) → M
+(Y,B), then there is a homeo-

morphism ψ : (RMCon1(M+(X,A)), {mR( f , 1) : f , 1 ∈ M+(X,A)}) → (RMCon1(M+(Y,B)), {mR(h, k) : h, k ∈
M
+(Y,B)}) defined as ψ(mR( f , 1)) = mR(ϕ( f ), ϕ(1)). For realcompact measurable spaces (X,A) and (Y,B)

we have, RMCon1(M+(X,A) � X � RMax(X,A) and RMCon1(M+(Y,B)) � Y � RMax(Y,B) (cf. Theorem
6.17). Therefore X � Y as measurable spaces.

By Meas, we denote the category of measurable spaces and measurable functions. In particular, we
are interested in the subcategory RCTMeas, consisting of realcompact T-measurable spaces. Theorem 6.18
solves the isomorphism problem for the semirings of the formM+(X,A). We arrive at the following easy
proposition.

Proposition 6.19. The category RCTMeas is dual to the full subcategory of CRig (the category of commutative
semirings and semiring homomorphisms) consisting of the semirings of the formM+(X,A).
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