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The zero-divisor graph of 2 × 2 matrix ring and its energies
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Abstract. Let R = M2(F) be a 2 × 2 matrix ring over a finite field F. The zero-divisor graph of R, denoted
by Γt(R), is a simple undirected graph with the vertex set consisting of all nonzero left zero-divisors in R,
and two vertices A and B being adjacent if and only if ABt = 0, where Bt is a transpose of the matrix B. In
this paper, we consider a subgraph of Γt(R) denoted by IdN(R) whose vertex set consists of all non-trivial
idempotent and nonzero nilpotent elements in R. It has been established that the components of IdN(R) are
either complete graphs or complete bipartite graphs. Additionally, a necessary and sufficient condition for
the regularity of IdN(R) is obtained. We also analyze the adjacency and Laplacian spectra, as well as the
energy and Laplacian energy of IdN(R). Furthermore, it is proved that Beck’s conjecture holds for IdN(R).

1. Introduction

The energy of a graph is a spectral quantity introduced in the 1970s, having a chemical background [9].
Its mathematical theory is nowadays well elaborated [8, 16, 22] and it found diverse applications across fields
like mathematics, chemistry, computer science, network analysis, but also social science, environmental
analysis, machine learning, bioinformatics, etc [10]. In this paper, we present some graph-energy-related
studies in the area of associative ring algebra.

Let R be an associative ring. A mapping ∗defined on R is called an involution if (a+b)∗ = a∗+b∗, (ab)∗ = b∗a∗,
and (a∗)∗ = a for all a, b ∈ R. An element e in a ring R is called an idempotent if e2 = e. The elements 0 and 1
are called trivial idempotents. The idempotents other than 0 and 1 are called non-trivial idempotents. The
set of idempotent elements in R is denoted by Id(R). In [18], authors studied rings with involution.

I. Beck [3] introduced the concept of the zero-divisor graph of commutative rings, primarily for the
purpose of studying graph coloring. He conjectured that χ(Γ(R)) = ω(Γ(R)). Patil and Waphare [21]
introduced the zero-divisor graph of ∗-rings, denoted by Γ∗(R). This is a simple undirected graph whose
vertex set is the set of all nonzero zero-divisors in R, and two vertices x and y are adjacent if and only if
xy∗ = 0. Transpose of a matrix is an involution on a matrix ring M2(F). Hence the zero-divisor graph of R,
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Γ∗(R) is denoted by Γt(R), and it is a simple undirected graph with the vertex set of all nonzero zero-divisors
in R, and two vertices A and B are adjacent if and only if ABt = 0.

For details of the study of zero-divisor graphs see [1, 2, 5, 13, 15, 19, 23].
Let F be a finite field and R = M2(F), we consider the subgraph of Γt(R) having vertices all non-trivial

idempotents and nonzero nilpotent elements, it is denoted by IdN(R) (as it contains only the idempotent
and nilpotent elements). In IdN(R) two vertices A and B are adjacent if and only if ABt = 0. In this
paper, we derive necessary and sufficient conditions for the regularity of IdN(R). It is shown that IdN(R) is
disconnected, and its components form either complete bipartite graphs or complete graphs. Furthermore,
we explicitly determine the adjacency spectrum, Laplacian spectrum, the energy and the Laplacian energy
of IdN(R). Further we prove that Beck’s conjecture holds for IdN(R).

2. Preliminaries

We begin by introducing definitions required for the subsequent discussion.
For a vertex u ∈ V(G), let C(u) represents the subgraph of G induced by the set of all vertices connected to

u by a path. This subgraph C(u) is called the connected component of G containing u. A graph G is connected
if and only if number of connected components in G is 1. If the degree of every vertex in G is k, then G is
called k-regular and k is called the valency of G.

A graph is called complete if any two distinct vertices are adjacent. The complete graph with n vertices is
denoted by Kn. A graph is called bipartite if its vertex set can be partitioned into two disjoint subsets U and
V, such that there are no edges between vertices within U or within V. A bipartite graph is complete if every
vertex in U is connected to every vertex in V by a path. Such a graph is denoted as Km,n, where m = |U| and
n = |V|. Let G be a simple graph with vertices v1, v2, . . . , vn, the adjacency matrix of G denoted by A(G), is an
n × n matrix [ai j], whose rows and columns are indexed by v1, v2, . . . , vn, where ai j = 1 if the vertices vi and
v j are adjacent with each other, and 0 otherwise. The multiset of eigenvalues of A(G) is called the adjacency
spectrum of G. The Laplacian matrix of G is given by L(G) = D − A(G), where D is the diagonal matrix with
entries as degrees of vertices. The Laplacian spectrum of G is the multiset of eigenvalues of L(G). The energy
of a graph G denoted by E(G) is the sum of the absolute values of the eigenvalues of the adjacency matrix
of G. Let G be a graph with n vertices and m edges, and let µ1, µ2, . . . , µn be the Laplacian eigenvalues of G,

then the Laplacian energy of G is denoted by LE(G) and is given by LE(G) =
n∑

i=1

∣∣∣∣∣µi −
2m
n

∣∣∣∣∣ (see [11]).

The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors required to color
the vertices of G in such a way that no two adjacent vertices share the same color. The clique number of G,
denoted by ω(G), is the size of the largest clique (a complete subgraph) within G.

For undefined terminology and notations, see [7, 12].

Let F be a finite field. Let Z(M2(F)) denote the set of all non-trivial idempotent and nonzero nilpotent
elements in M2(F). We use the following notations:

E0 =

(
0 0
0 1

)
, E0 =

(
1 0
0 0

)
, Ea =

(
0 0
a 1

)
, Ea =

(
1 a
0 0

)
,Fa =

(
0 a
0 1

)
,Fa =

(
1 0
a 0

)
, Ei j =

(
i j

i(1 − i) j−1 1 − i

)
,

N =
(
0 1
0 0

)
, M =

(
0 0
1 0

)
, Nk =

(
1 k
−

1
k −1

)
, where i, j, a, k ∈ F \ {0}, and i , 1.

In [14], authors studied the generalized projections inZn. In [4] authors studied 2×2 operator matrices and
their applications. Recently, in [17, 20], idempotent and nilpotent elements in Z(M2(F)) were studied. The
classification of idempotent and nilpotent elements in the ring Z(M2(F)) is given as in the following result.

Lemma 2.1. [17] Every idempotent element in Z(M2(F)) has one of the following forms.

(i) E0,E0,Ea,Ea,Fa,Fa for some a ∈ F\{0},
(ii) Ei j for some nonzero i ∈ F\{0, 1}, j ∈ F\{0}.
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Lemma 2.2. [17] Every nilpotent element in Z(M2(F)) has one of the following forms.

(i) aN, aM for some a ∈ F\{0},
(ii) aNk for some a, k ∈ F\{0}.

Let n denote the number of elements in the field F i.e., n = |F|. In what follows, we count the total
number of non-trivial idempotent and nonzero nilpotent elements in Z(M2(F)).

Remark 2.3. The non-trivial idempotent elements in Z(M2(F)) are given in Lemma 2.1. We count their cardinalities:
|E0| = |E0

| = 1, since a ∈ F \ {0}, |Ea| = |Ea
| = |Fa| = |Fa

| = n − 1. Now, i ∈ F\{0, 1}, j ∈ F\{0}, therefore |Ei j| =
(n−1)(n−2). Thus, the total number of non-trivial idempotent elements in Z(M2(F)) is 2+4(n−1)+ (n−1)(n−2) =
n(n+1). The nonzero nilpotent elements in Z(M2(F)) are given in Lemma 2.2. For a, k ∈ F\ {0}, |aM| = |aN| = n−1,
|Nk| = n − 1. Therefore, |aNk| = (n − 1)2. Therefore, the number of nonzero nilpotent elements in Z(M2(F)) is
2(n − 1) + (n − 1)2 = n2

− 1.

3. The graph IdN(R)

Let R = M2(F). In this section, we study the subgraph IdN(R) of Γt(R) whose vertex set consists of all
non-trivial idempotent and nonzero nilpotent elements in R.

Definition 3.1. Let R = M2(F). The graph IdN(R) is a simple undirected graph with vertex set consisting of all
non-trivial idempotent and nonzero nilpotent elements in R, and two distinct vertices A and B are adjacent if and
only if ABt = 0.

Recall the following result from Number Theory. A positive integer a is said to be a quadratic residue
modulo n if there is an integer x such that x2

≡ a (mod n). Let p be a prime. Then −1 is quadratic residue
modulo p if and only if a2 = −1 for some a ∈ F \ {0}, where F is a field with pk elements.

Remark 3.2. Let Fpk be a field with pk elements, where p is a prime and k is a positive integer. Then:

1. If p ≡ 1 (mod 4), then there are exactly 2 elements a ∈ F with a2 = −1.
2. If p ≡ 3 (mod 4), then there is no element a ∈ F with a2 = −1 .
3. If p = 2, then (a + 1)2 = a2 + 1 = 0 implies a = −1, since for p = 2, we have −1 = 1, hence there is exactly one

element a ∈ F with a2 = −1.

LetN(A) denote the set of vertices adjacent to A in G. That isN(A) =
{
B ∈ V(G)\{A} : ABt = 0

}
. Henceforth,

we assume that F is a finite field with n = |F| = pk, where p is a prime and k is a positive integer.
Let R =M2(F) and aM, aN, aNk are nilpotent elements in Z(M2(F)). Observe the following:

1. For all a, b ∈ F \ {0}, bM(aN)t = 0. Hence every element from aM is adjacent to each element in bN.
Since (aM)(bM)t , 0 for all a, b ∈ F \ {0}. Hence no element of type aM is adjacent to any other element
bM i.e., {aM : a ∈ F \ {0}} is an independent set. Similarly, {aN : a ∈ F \ {0}} is an independent set.

2. Since bNk(aN−1/k)t = 0 for all a, b ∈ F \ {0}. Hence every element of the form bNk is adjacent to each
element of the form aN−1/k. And (aNk)(bNk)t , 0 for all a, b ∈ F \ {0}. Hence no element of the from
aNk is adjacent to any other element in bNk i.e., {aNk : a ∈ F \ {0}} is an independent set.

In [20], it is proved that GId(R) is regular. We characterize the rings M2(F) for which IdN(R) is regular.
The following result shows that IdN(R) is regular for p ≡ 3 (mod 4).

Lemma 3.3. Let R =M2(F) and p ≡ 3 (mod 4). Then IdN(R) is a 2n − 1 regular graph.

Proof. Suppose p ≡ 3 (mod 4). Therefore a2 , −1 for each a ∈ F. First we determine the degrees of the
vertices in IdN(R).
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1. N(E0) =
{
A ∈ Z(M2(F)) : E0At = 0 i.e., AE0 = 0

}
. Therefore N(E0) =

{
E0,Fa, aM : a ∈ F \ {0}

}
. Hence

|N(E0)| = 2n − 1.
2. N(E0) =

{
A ∈ Z(M2(F)) : E0At = 0 i.e.,AE0 = 0

}
. Therefore N(E0) = {E0,Fa, aN : a ∈ F \ {0}}. Hence

|N(E0)| = 2n − 1.
3. N(Ea) = {A ∈ Z(M2(F)) : EaAt = 0 i.e.,A(Ea)t = AFa = 0}. Observe that E−aFa = 0, E−1/aFa = 0. Therefore

E−1/a ∈ N(Ea) if and only if E−1/a , Ea i.e. if and only if a2 , −1 in F.

Next, if Eb,c ∈ N(Ea), then Eb,cFa = 0. This gives
[

b c
b(1 − b)c−1 1 − b

] [
0 a
0 1

]
=

[
0 0
0 0

]
, which yields

ba + c = 0. That is c = −ba. Now, NcFa = 0 if and only if
[

1 c
−1/c −1

] [
0 a
0 1

]
=

[
0 0
0 0

]
, which yields

a + c = 0. That is c = −a i.e., N−a ∈ N(Ea). Therefore N(Ea) = {E−a,E−1/a,Eb,−ba, kN−a : b ∈ F \ {0, 1}, k ∈
F \ {0}}, for a2 , −1. Hence |N(Ea)| = 2n − 1.

4. N(Ea) =
{
A ∈ Z(M2(F)) : EaAt = 0 i.e.,A(Ea)t = AFa = 0

}
. Note that E−aFa = 0, E−1/aFa = 0. Therefore

E−1/a
∈ N(Ea) if and only if E−1/a , Ea i.e., if and only if a2 , −1 in F. Next, if Eb,c ∈ N(Ea), then

Eb,cFa = 0, which yields b + ac = 0. That is c = −ba−1. Now, NcFa = 0 gives 1 + ac = 0. This implies
c = −a−1 i.e., N−a−1 ∈ N(Ea). Therefore N(Ea) = {E−a,E−a−1

,Eb,−ba−1 , kN−a−1 : b ∈ F \ {0, 1}, k ∈ F \ {0}}, for
a2 , −1. Hence |N(Ea)| = 2n − 1.

5. N(Fa) =
{
A ∈ Z(M2(F)) : FaAt = 0 i.e.,A(Fa)t = AEa = 0

}
. Note that MEa = E0Ea = 0 and FcEa j = 0 for

c ∈ F \ {0}. If Eb,cEa = 0, then we get c = 0, which is a contradiction. Hence Eb,cEa , 0 for any b, c.
Therefore N(Fa) = {E0,Fc, cM : c ∈ F \ {0}}. Hence |N(Fa)| = 2n − 1.

6. N(Fa) =
{
A ∈ Z(M2(F)) : FaAt = 0 i.e.,A(Fa)t = AEa = 0

}
. Note that NEa = E0Ea = 0 and FcEa = 0 for

c ∈ F \ {0}. If Eb,cEa = 0, then we get b = 0, which is a contradiction. Hence Eb,cEa , 0 for any b, c.
Therefore N(Fa) = {E0,Fc, cN : c ∈ F \ {0}}. Hence |N(Fa)| = 2n − 1.

7. N(Eb,c) =
{
A ∈ Z(M2(F)) : Eb,cAt = 0

}
. Note that Eb,cEa , 0 giving (Ea)t = Fa < N(Eb,c). Also, Eb,cEa , 0

implies (Ea)t = Fa < N(Eb,c). Also, Eb,cN , 0 and Eb,cM , 0. Therefore M,N < N(Eb,c). Next,
Eb,c(Nk)t = 0 gives b + ck = 0 i.e., k = −bc−1. Therefore N−bc−1 ∈ N(Eb,c). Eb,c(Ea)t = 0 if and only
if ba + c = 0, which yields a = −cb−1. Now, Eb,c(Ea)t = 0 if and only if b + ac = 0, which implies
a = −bc−1. Next, Eb,c(Eak,al )

t = 0 if and only if bak + alc = 0 i.e., al = −bc−1ak. Therefore N(Eb,c) =
{E−cb−1 ,E−bc−1

,Eak,−akbc−1 , kN−bc−1 : ak ∈ F \ {0, 1}, k ∈ F \ {0}}. Hence |N(Eb,c)| = 2n − 1.

Thus, if p ≡ 3 (mod 4), then IdN(R) is a 2n − 1 regular graph.

The converse of the above result is also true. We prove the converse of the above result in Theorem 3.9.
In the following result, we prove that if p ≡ 3 (mod 4), then IdN(R) is disconnected and the components of
IdN(R) are complete bipartite graphs.

Proposition 3.4. Let R =M2(F) and p ≡ 3 (mod 4). Then IdN(R) is a disjoint union of
n + 1

2
copies of K2n−1,2n−1.

Proof. Suppose p ≡ 3 (mod 4), hence a2 , −1 for any a ∈ F.
Let X1 = {E0,E0,Fa,Fa, aM, aN} and Y1 = {Eb,Eb,Ea,b, kNb : a, b, k ∈ F \ {0}, a , 1}. From Figures 1, 2, and 3,
observe that no vertex in X1 is connected to any vertex in Y1. Hence X1 and Y1 form two disconnected compo-
nents of IdN(R). Additionally, the vertices in X1 form a complete bipartite graph with the partition of vertices
{E0,Fa, aN} and {E0,Fa, aM}, where a ∈ F \ {0} as shown in Figure 2. Consider a partition of the vertex set
Y1 as U1 = {Ea,Ea−1

,Eb,ba−1 ,Ea,Ea−1 ,Eb,ba, kNa, kNa−1 } and V1 = {E−a,E−a−1 ,Eb,−ba,E−a,E−a−1
,Eb,−ba−1 , kN−a, kN−a−1 }.

The neighborhoods of the elements in U1 and V1 are given below:

1. N(Ea) = {E−a,E−a−1 ,Eb,−ba, kN−a} = N(Ea−1
) = N(Eb,ba−1 ) = N(kNa−1 ).

2. N(E−a) = {Ea,Ea−1
,Eb,ba−1 , kNa−1} = N(E−a−1 ) = N(Eb,−ba) = N(kN−a).

3. N(Ea) = {E−a,E−a−1
,Eb,−ba−1 , kN−a−1} = N(Ea−1 ) = N(Eb,ba) = N(kNa).

4. N(E−a) = {Ea,Ea−1 ,Eb,ba, kNa} = N(E−a−1
) = N(Eb,−ba−1 ) = N(kN−a−1 ).
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E0

E0 Fa aM

E0

E0 Fa aN

Ea

E−a E−a−1 Eb,−ba kN−a

Ea

E−a E−a−1 Eb,−ba−1 kN−a−1

Fa

E0 Fb bM

Fa

E0 Fb bN

Ea,b

E−ba−1 E−ab−1 Ec,−cab−1 kN−ab−1

bM

E0 Fa aN

bN

E0 Fa aM

kNa

E−a E−a−1 Eb,−ba−1 cN−a−1

Figure 1: Neighborhoods of vertices in IdN(R)

Clearly, {U1,V1} forms a partition of Y1 such that no vertex in U1 is adjacent to any other vertex in U1
and no vertex in V1 is adjacent to any other vertex in V1 (see Figure 3). Therefore, the component Y1 is a
bipartite graph. Hence IdN(R) is a disconnected graph having bipartite components.

E0 Ea kM

E0 Fa kN

Figure 2: The component X1

Ea Ea−1 Eb,ba−1 kNa−1 Ea Ea−1 Eb,ba kNa

E−a E−a−1 Eb,−ba kN−a E−a E−a−1 Eb,−ba−1 kN−a−1

Figure 3: The component Y1



A. Lande et al. / Filomat 39:22 (2025), 7559–7570 7564

By Remark 2.3, the number of non-trivial idempotent elements in IdN(R) is n(n+1). Also, the number of
nonzero nilpotent elements is n2

−1 . Therefore |IdN(R)| = n(n+1)+n2
−1 = 2n2+n−1 = (n+1)(2n−1). Since

each component of IdN(R) is regular bipartite with valency 2n − 1. Each component of IdN(R) is K2n−1,2n−1.
Therefore, each component of IdN(R) contains 4n− 2 vertices. Hence the number of connected components

in IdN(R) is
(n + 1)(2n − 1)

4n − 2
=

n + 1
2

. Thus, IdN(R) is a disjoint union of
n + 1

2
copies of K2n−1,2n−1.

Recall the following results from spectral graph theory [6]. Let λ(s) denote the eigenvalue λ with
multiplicity s. Let G be a simple undirected regular graph with valency k. Then:
(i) k is the largest eigenvalue of the adjacency matrix of G.
(ii) The multiplicity of k as an eigenvalue equals the number of connected components of G.
(iii) The adjacency spectrum of Kn is the multiset: {(n − 1)(1), (−1)(n−1)

}.
(iv) The adjacency spectrum of Kn,n is the multiset: {n(1),−n(1), (0)(2n−2)

}.
(v) The Laplacian spectrum of Kn is the multiset: {0(1), (n)(n−1)

}.
(vi) The Laplacian spectrum of Kn,n is the multiset: {0(1), (n)(2n−2), (2n)(1)

}.
We now apply this to determine the spectrum and the energy of IdN(R).

Proposition 3.5. Let R =M2(F) and p ≡ 3 (mod 4). Then the adjacency spectrum of IdN(R) is the multiset{
(2n − 1)( n+1

2 ), (−(2n − 1))( n+1
2 ), (0)(2(n2

−1))
}
, (1)

whereas the Laplacian spectrum of IdN(R) is the multiset{
0( n+1

2 ), (2n − 1)(2(n2
−1)), (2(2n − 1))( n+1

2 )
}
. (2)

Proof. By Proposition 3.4, IdN(R) has
n + 1

2
connected components, and each component is K2n−1,2n−1.

Therefore 2n − 1 is the largest eigenvalue of IdN(R), and its multiplicity is
n + 1

2
. The eigenvalues of

K2n−1,2n−1 are given by: (2n− 1)(1),−(2n− 1)(1), 0(4n−4). Thus the adjacency spectrum of IdN(R) is the multiset
(1).

The Laplacian eigenvalues of K2n−1,2n−1 are 0(1), (2n− 1)4n−4, (2(2n− 1))(1). Hence the Laplacian spectrum
of IdN(R) is the multiset (2).

Recall that if the graph G is regular, then LE(G) = E(G) ([11], Lemma 1). The following corollary is an
immediate consequence of the above proposition.

Corollary 3.6. Let R = M2(F) and p ≡ 3 (mod 4). Both the energy and Laplacian energy of IdN(R) are equal to
(2n − 1)(n + 1).

Proof. By the above proposition, the adjacency spectrum of IdN(R) is the multiset (1), and thus the energy
of IdN(R) is given by:

E(IdN(R)) =
n + 1

2
|2n − 1| +

n + 1
2
| − (2n − 1)| = (2n − 1)(n + 1).

By Lemma 3.3, the graph IdN(R) is regular. Therefore the Laplacian energy is same as the energy of IdN(R),
i.e., LE(IdN(R)) = (2n − 1)(n + 1).

As an application consider the following example.

Example 3.7. Let R = M2(Z3) be a ring with transpose involution. The idempotent and nilpotent elements
aM, aN, aN j in M2(Z3) are given below:

E0 =

(
0 0
0 1

)
,E0 =

(
1 0
0 0

)
,E1 =

(
0 0
1 1

)
,E2 =

(
0 0
2 1

)
,E1 =

(
1 1
0 0

)
,E2 =

(
1 2
0 0

)
,F1 =

(
0 1
0 1

)
,F2 =

(
0 2
0 1

)
,
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F1 =

(
1 0
1 0

)
,F2 =

(
1 0
2 0

)
,E22 =

(
2 2
2 2

)
,E21 =

(
2 1
1 2

)
,M =

(
0 0
1 0

)
,N =

(
0 1
0 0

)
,N1 =

(
1 1
2 2

)
,N2 =

(
1 2
1 2

)
,

2M =
(
0 0
1 0

)
, 2N =

(
0 1
0 0

)
, 2N1 =

(
1 1
2 2

)
, 2N2 =

(
1 2
1 2

)
.

The neighborhoods of the vertices are given below:
N(E0) = {E0,F1,F2,M, 2M},N(E0) = {E0,F1,F2,N, 2N},N(E1) = {E2,E2,E21,N2, 2N2},N(E2) = {E1,E1,E22,N1, 2N1},
N(E1) = {E2,E2,E21,N2, 2N2},N(E2) = {E1,E1,E22,N1, 2N1},N(F1) = {E0,F1,F2,M, 2M},N(F2) = {E0,F1,F2,M, 2M},
N(F1) = {E0,F1,F2,N, 2N},N(F2) = {E0,F1,F2,N, 2N},N(E22) = {E2,E2,E21,N2, 2N2},N(E21) = {E1,E1,E22,N1, 2N1},
N(M) = {E0,F1,F2,N, 2N},N(N) = {E0,F1,F2,M, 2M},N(N1) = {E2,E2,E21,N2, 2N2},N(N2) = {E1,E1,E22,N1, 2N1}.
The graph IdN(R) is depicted in Figure 4.

E0 F1 F2 N 2N E1 E1 E22 N1 2N1

E0 F1 F2 M 2M E2 E2 E21 N2 2N2

Figure 4: IdN(M2(Z3)).

Here, n = 3, and thus the graph IdN(R) is (2n− 1) = 5-regular, with 2 complete bipartite components. The eigen-
values of each component are −5(1), 0(8), 5(1). The adjacency spectrum of IdN(R) is the multiset {5(2),−5(2), 0(16)

}. The
Laplacian spectrum of IdN(R) is {0(2), 5(16), 10(2)

}. The energy and Laplacian energy are E(IdN(R)) = LE(IdN(R)) =
20.

If p . 3 (mod 4), then the following result demonstrates that IdN(R) is not regular.

Lemma 3.8. Let R =M2(F) and p . 3 (mod 4). Then IdN(R) is not a regular graph.

Proof. Suppose p . 3 (mod 4). Then there exists an element a ∈ F with a2 = −1. The neighborhood of
E0 is N(E0) =

{
E0,Fa, aM : a ∈ F \ {0}

}
, which means that the size of N(E0) is 2n − 1. For a ∈ F \ {0}, the

neighborhood of Ea is given by: N(Ea) = {A ∈ M2(F) : EaAt = 0 i.e., A(Ea)t = AFa = 0}. If Eb,c ∈ N(Ea), then
Eb,cFa = 0. This implies(

b c
b(1 − b)c−1 1 − b

) (
0 a
0 1

)
=

(
0 0
0 0

)
, which yields ba+c = 0, giving c = −ba. Additionally, note that E−aFa = 0

and E−a−1 Fa = 0. Therefore E−a−1 ∈ N(Ea) if and only if E−a−1 , Ea i.e., if and only if a2 , −1 in F. Thus, if
a2 = −1 in F, then E−a−1 < N(Ea). Therefore N(Ea) = {E−a,Eb,−ba, kNa : b, k ∈ F\ {0, 1}, b , 1}, for a2 = −1. Hence
for a2 = −1, |N(Ea)| = 2n − 2. Since the degree of the vertex E0 is 2n − 1, but the degree of the vertex Ea is
2n − 2 for a2 = −1, it follows that IdN(R) is not a regular graph.

The following result gives a necessary and sufficient condition for the regularity of IdN(R).

Theorem 3.9. Let R =M2(F). Then IdN(R) is regular if and only if p ≡ 3 (mod 4).

Proof. The proof follows by Lemmas 3.3 and 3.8.

The neighborhoods of the elements are given in Lemmas 3.3 and 3.8. The next result characterizes the
structure of IdN(R) for p . 3 (mod 4).

Proposition 3.10. Let R =M2(F) and p . 3 (mod 4). Then:
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1. The components of IdN(R) corresponding to the vertices Ea and Ea are complete bipartite graphs K2n−1,2n−1 for
a2 , −1.

2. The components of IdN(R) corresponding to Ea and Ea are complete graphs K2n−1 for a2 = −1.

Proof. Since p . 3 (mod 4), there exists an element a ∈ Fwith a2 = −1.
Case (1): Let a ∈ F\{0}, with a2 , −1.
(i) Consider the neighborhoods of the vertices adjacent to Ea.
N(Ea) = {E−a,E−a−1

,Eb,−ba−1 , kN−a−1 : b, k ∈ F \ {0}, b , 1} = N(Ea−1 ) = N(Eb,ba) = N(kNa). Note that |N(Ea)| =
2n − 1. And N(E−a−1

) = {Ea−1 ,Ea,Eb,ba, kNa : b, k ∈ F \ {0}, b , 1} = N(E−a) = N(Eb,−ba−1 ) = N(kN−a−1 ). Observe
that |N(E−a−1

)| = 2n − 1.
Let C = {Eb,ba : b ∈ F \ {0, 1}} and D = {Eb,−ba−1 : b ∈ F \ {0, 1}}. Note that Eb,baEt

c,ca , 0, and Eb,baEt
c,−ca−1 = 0.

Every vertex in C is adjacent to every vertex in D, and no vertex within C or D are adjacent. Therefore the
component corresponding to Ea forms a complete bipartite graph K2n−1,2n−1 in IdN(R) as shown in Figure 5
(a).

kNa

kN−a−1

Ea Ea−1

Eb,ba

E−a E−a−1
Eb,−ba−1

Kn−2,n−2Kn−1,n−1

(a) Component corresponding to Ea

kNa−1 Ea−1 Ea Eb,ba−1

kN−a E−a−1 E−a
Eb,−ba

Kn−2,n−2Kn−1,n−1

(b) Component corresponding to Ea

Figure 5: The components of IdN(R) corresponding to the vertices Ea and Ea for a2 , −1.

(ii) Next, consider the neighborhoods of the elements in component of IdN(R) corresponding to Ea.
N(Ea) = {E−a,E−a−1 , kN−a,Eb,−ba : b, k ∈ F \ {0}, b , 1} = N(Ea−1

) = N(Eb,ba−1 ) = N(kNa−1 ). Observe that
|N(Ea)| = 2n − 1. And N(E−a−1 ) = {Ea−1

,Ea, kNa−1 ,Eb,ba−1 : b, k ∈ F \ {0}, b , 1} = N(E−a) = N(Eb,−ba) = N(kN−a).
Observe that |N(E−a−1 )| = 2n − 1.
Let C1 = {Eb,−ba : b ∈ F \ {0, 1}} and D1 = {Eb,ba−1 : b ∈ F \ {0, 1}}. Note that Eb,−baEt

c,−ca , 0, and Eb,−baEt
c,ca−1 = 0.

Every vertex in C1 is adjacent to every vertex in D1, and no vertex within C1 or within D1 are adjacent.
Thus, the component corresponding to Ea forms a complete bipartite graph K2n−1,2n−1 as shown in Figure 5
(b).
Case (2): Let a ∈ F\{0}, with a2 = −1.
(i) The neighborhood of Ea is: N(Ea) = {E−a,Eb,ba, kNa : b, k ∈ F \ {0}, b , 1}. Hence |N(Ea)| = 2n − 2. Next,
consider the neighborhoods of the elements adjacent to Ea. N(E−a) = {Ea,Eb,ba, kNa : b, k ∈ F \ {0}, b , 1}.
N(Eb,ba) = {Ea,E−a,Ec,ca, kNa : c, k ∈ F \ {0}, c , 1}. Since a2 = −1, −1/a = a. This gives Na = N−1/a = (Na)t.
Therefore (kNa)(bNa)t = 0, which yields bNa ∈ N(kNa), for each b , k i.e., the vertices kNa are mutually
adjacent. Therefore N(kNa) = {Ea,E−a,Eb,ba, cNa : b ∈ F \ {0, 1}, c ∈ F \ {0}, c , k}. Hence |N(kNa)| = 2n− 2. For
each vertex v adjacent to Ea, the neighborhoods N(x) demonstrate that all vertices are mutually connected.
Therefore, the component corresponding to Ea forms a complete graph K2n−1 (see Figure 6 (a)).



A. Lande et al. / Filomat 39:22 (2025), 7559–7570 7567

Ea

E−a

kNa

Eb,ba
Kn−2

Kn−1

(a) Component corresponding to Ea

Ea

E−a

N−a

Eb,−ba
Kn−2

Kn−1

(b) Component corresponding to Ea

Figure 6: The components of IdN(R) corresponding to the vertices Ea and Ea for a2 = −1.

(ii) N(Ea) = {E−a,Eb,−ba, kN−a : b, k ∈ F \ {0}, b , 1}. Hence |N(Ea)| = 2n − 2.
Consider the neighborhoods of the elements adjacent to Ea.
N(E−a) = {Ea,Eb,−ba, kN−a : b, k ∈ F \ {0}, b , 1}.
N(Eb,−ba) = {Ea,E−a,Ec,−ca, kN−a : c, k ∈ F \ {0}, c , b, c , 1}.
N(kN−a) = {Ea,E−a,Eb,−ba, cNa : b ∈ F \ {0, 1}, c ∈ F \ {0}, c , k}. Similar to part (i) above the component
corresponding to the vertex Ea forms complete graph K2n−1 (see Figure 6 (b)).

If p ≡ 1 (mod 4), the following result characterizes the graph IdN(R).

Proposition 3.11. Let R = M2(F) and p ≡ 1 (mod 4). Then IdN(R) is a disjoint union of 2 copies of K2n−1 and
n − 1

2
copies of K2n−1,2n−1.

Proof. The total number of vertices in IdN(R) is (n+1)(2n−1). According to Proposition 3.10, the components
of IdN(R) are either bipartite or complete graphs. The components Ea and Ea corresponding to an element
a2 = −1 are complete graphs K2n−1. Also, note that the components associated with a ∈ F and −a ∈ F are the
same for a2 = −1. By Remark 3.2, there are only 2 elements in F with a2 = −1. Therefore there are exactly
two copies of K2n−1. The remaining components are regular bipartite graphs K2n−1,2n−1. The total number
of vertices in bipartite components is (n + 1)(2n − 1) − 2(2n − 1) = (2n − 1)(n − 1). Therefore the number of

bipartite components in IdN(R) is
(2n − 1)(n − 1)

2(2n − 1)
=

n − 1
2

. Hence IdN(R) is a disjoint union of 2 copies of

K2n−1 and
n − 1

2
copies of K2n−1,2n−1.

If p ≡ 1 (mod 4), the following result determines the spectrum of IdN(R).

Proposition 3.12. Let R =M2(F) and p ≡ 1 (mod 4). Then the adjacency spectrum of IdN(R) is{
(2n − 2)(2), (−1)(2(2n−2)), (2n − 1)( n−1

2 ), (−(2n − 1))( n−1
2 ), (0)(2(n−1)2)

}
, (3)

whereas the Laplacian spectrum of IdN(R) is{
0( n+3

2 ), (2n − 1)(2(n2
−1)), (2(2n − 1))( n−1

2 )
}
. (4)

Proof. The adjacency eigenvalues corresponding to K2n−1 are 2n − 2 with multiplicity 1, and −1 with mul-
tiplicity 2n − 2. Thus, the adjacency eigenvalues corresponding to these two copies of K2n−1 are (2n − 2)(2)

and (−1)(2(2n−2)). The adjacency eigenvalues of K2n−1,2n−1 are (2n − 1)(1), (−(2n − 1))(1), (0)(2(2n−2)). Therefore
the eigenvalues of n−1

2 copies of K2n−1,2n−1 are (2n − 1)( n−1
2 ), (−(2n − 1))( n−1

2 ), (0)(2(n−1)2). Hence the adjacency
spectrum of IdN(R) is the multiset (3).
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The Laplacian eigenvalues of K2n−1 are 0(1), (2n − 1)(2n−2). Therefore, the Laplacian eigenvalues corre-
sponding with two components of the complete graphs K2n−1 are 0(2), (2n−1)(2(2n−2)). The Laplacian eigenval-
ues corresponding with K2n−1,2n−1 are 0(1), (2n − 1)(4n−4), (2(2n − 1))(1). Since there are n−1

2 copies of K2n−1,2n−1,
the Laplacian eigenvalues corresponding to these components are 0( n−1

2 ), (2n−1)(2(n−1)2), (2(2n−1))( n−1
2 ). Thus,

the Laplacian spectrum of IdN(R) is the multiset (4).

Recall that if G is a graph with N vertices and M edges, and µ1, µ2, . . . , µN are the Laplacian eigenvalues

of G, then LE(G) =
N∑

i=1

∣∣∣∣∣µi −
2M
N

∣∣∣∣∣. In the following result, we find the energy of IdN(R).

Corollary 3.13. Let R = M2(F) and p ≡ 1 (mod 4). Then the energy is E(IdN(R)) = (n − 1)(2n + 7), and the
Laplacian energy is LE(IdN(R)) = (n−1)(n+3)(2n+3)

n+1 .

Proof. The adjacency spectrum of IdN(R) is the multiset (3). Hence The energy is given by:
E(IdN(R)) = 2|2n − 2| + 2(2n − 2)| − 1| + ( n−1

2 )|2n − 1| + ( n−1
2 )| − (2n − 1)| = (n − 1)(2n + 7).

Total number of vertices in IdN(R) is N = (n + 1)(2n − 1). Since there are two copies of K2n−1 and n−1
2 copies

of K2n−1,2n−1 in IdN(R). Total number of edges in IdN(R) is given by:
M = 2

(
(2n−1)(2n−2)

2

)
+

(
n−1

2

)
(2n − 1)2 =

(n−1)(2n−1)(2n+3)
2 .

The Laplacian spectrum of IdN(R) is the multiset (4). Hence the Laplacian energy is given by:

LE(G) =
N∑

i=1

∣∣∣∣∣µi −
2M
N

∣∣∣∣∣
=

n+3
2∑

i=1

∣∣∣∣∣0 − (n − 1)(2n − 1)(2n + 3)
(n + 1)(2n − 1)

∣∣∣∣∣ + 2(n2
−1)∑

i=1

∣∣∣∣∣(2n − 1) −
(n − 1)(2n − 1)(2n + 3)

(n + 1)(2n − 1)

∣∣∣∣∣
+

n−1
2∑

i=1

∣∣∣∣∣2(2n − 1) −
(n − 1)(2n − 1)(2n + 3)

(n + 1)(2n − 1)

∣∣∣∣∣
=

n+3
2∑

i=1

(n − 1)(2n + 3)
n + 1

+

2(n2
−1)∑

i=1

2
n + 1

+

n−1
2∑

i=1

2n2 + n + 1
n + 1

=
(n + 3

2

) ( (n − 1)(2n + 3)
n + 1

)
+ 2(n2

− 1)
( 2

n + 1

)
+

(n − 1
2

) (2n2 + n + 1
n + 1

)
=

(n − 1)(n + 3)(2n + 3)
n + 1

.

For p = 2. The following result gives the structure of IdN(R).

Proposition 3.14. Let R =M2(F) and p = 2. Then IdN(R) is a disjoint union of K2n−1 and
n
2

copies of K2n−1,2n−1.

Proof. The total number of vertices in IdN(R) is (n+1)(2n−1). According to Proposition 3.4, the components
of IdN(R) are either bipartite or complete graphs. In this case, when p = 2, there is only one element a ∈ F
such that a2 = −1 (see Remark 3.2). Therefore there is exactly one component K2n−1. The total number of
vertices in bipartite components is (n + 1)(2n − 1) − (2n − 1) = n(2n − 1). Therefore the number of bipartite

components in IdN(R) is
n(2n − 1)

2n − 1
=

n
2

. Hence IdN(R) is a disjoint union of one copy of K2n−1 and
n
2

copies
of K2n−1,2n−1.

Let p = 2. In the following result we determine the spectrum of IdN(R).
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Proposition 3.15. Let R =M2(F) and p = 2. Then the adjacency spectrum of IdN(R) is given by the multiset{
(2n − 2)(1), (−1)(2n−2), (2n − 1)( n

2 ), (−(2n − 1))( n
2 ), (0)(2n(n−1)

}
, (5)

whereas the Laplacian spectrum is the multiset{
0( n+2

2 ), (2n − 1)(2n2
−2), (2(2n − 1))( n

2 )
}
. (6)

Proof. The adjacency eigenvalues of K2n−1 are 2n−2 with multiplicity 1, and −1 with multiplicity 2n−2. The
adjacency eigenvalues of K2n−1,2n−1 are (2n− 1)(1), (−(2n− 1))(1), 0(4n−4). Therefore, the adjacency eigenvalues
of n

2 copies of K2n−1,2n−1 are (2n − 1)( n
2 ), (−(2n − 1))( n

2 ), (0)(2n(n−1)). Hence the adjacency spectrum of IdN(R) is
the multiset (5).

The Laplacian eigenvalues corresponding to K2n−1 are 0(1), (2n − 1)(2n−2). The Laplacian eigenvalues
corresponding to K2n−1,2n−1 are 0(1), (2n − 1)(4n−4), (2(2n − 1))(1). Therefore, the Laplacian eigenvalues corre-
sponding to n

2 copies of K2n−1,2n−1 are 0( n
2 ), (2n − 1)(2n(n−1)), (2(2n − 1))( n

2 ). Thus, the Laplacian spectrum of
IdN(R) is the multiset (6).

The following corollary follows directly from the above result.

Corollary 3.16. Let R = M2(F) and p = 2. Then the energy of IdN(R) is E(IdN(R)) = 2n2 + 3n − 4 whereas the
Laplacian energy is

LE(IdN(R)) =
(n + 2)(2n2 + n − 2)

n + 1
.

Proof. The adjacency spectrum of IdN(R) is the multiset (5). Hence the energy of IdN(R) is given by:

E(IdN(R)) = 1|2n − 2| + (2n − 2)| − 1| +
n
2
|2n − 1| +

n
2
| − (2n − 1)| = 2n2 + 3n − 4.

Let N and M be the number of vertices and edges of IdN(R). Then N = (n + 1)(2n − 1). Since there is 1 copy
of K2n−1 and n

2 copies of K2n−1,2n−1, we have M = (2n−1)(2n−2)
2 + n

2 (2n − 1)2 =
(2n−1)(2n2+n−2)

2 . Thus

2M
N
=

(2n − 1)(2n2 + n − 2)
(n + 1)(2n − 1)

=
2n2 + n − 2

n + 1
.

The Laplacian spectrum of IdN(R) is the multiset (6) and then the Laplacian energy of IdN(R) is given by:

LE(G) =
N∑

i=1

∣∣∣∣∣µi −
2M
N

∣∣∣∣∣
=

n+2
2∑

i=1

∣∣∣∣∣∣0 − 2n2 + n − 2
n + 1

∣∣∣∣∣∣ + 2(n2
−1)∑

i=1

∣∣∣∣∣∣2n − 1 −
2n2 + n − 2

n + 1

∣∣∣∣∣∣ +
n
2∑

i=1

∣∣∣∣∣∣2(2n − 1) −
2n2 + n − 2

n + 1

∣∣∣∣∣∣
=

n+2
2∑

i=1

2n2 + n − 2
n + 1

+

2(n2
−1)∑

i=1

2
n + 1

+

n
2∑

i=1

n(2n + 1)
n + 1

=
(n + 2

2

) (2n2 + n − 2
n + 1

)
+ 2(n2

− 1)
( 2

n + 1

)
+

(n
2

) (n(2n + 1)
n + 1

)
=

2n3 + 5n2
− 4

n + 1
=

(n + 2)(2n2 + n − 2)
n + 1

.

Remark 3.17. Let R =M2(F). Since IdN(R) contains K3,3 as a subgraph, IdN(R) is not planar.
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We conclude this section by proving Beck’s conjecture for IdN(R).

Proposition 3.18. Let R =M2(F). Then the chromatic number and clique number of IdN(R) are:

ω(IdN(R)) = χ(IdN(R)) =

2, if p ≡ 3 (mod 4)
2n − 1, if p . 3 (mod 4).

Proof. Suppose that p ≡ 3 (mod 4). By Proposition 3.4, each component of IdN(R) forms a bipartite graph.
The chromatic number and clique number of a bipartite graph are both 2. Henceω(IdN(R)) = χ(IdN(R)) = 2.
Suppose p . 3 (mod 4), then there exists a ∈ Fwith a2 = −1. By Proposition 3.10, the components of IdN(R)
include complete graphs K2n−1 and complete bipartite graphs K2n−1,2n−1. The largest clique in IdN(R) is
K2n−1, so ω(IdN(R)) = 2n − 1. The graph K2n−1 requires 2n − 1 colors since it is a complete graph, and we
need one color for each vertex. For the bipartite components K2n−1,2n−1, any two of the 2n−1 available colors
can be used to color the vertices, so they do not affect the total chromatic number. Thus χ(IdN(R)) = 2n− 1.
Therefore, in both cases, we have ω(IdN(R)) = χ(IdN(R)), and the values are given by the above cases
depending on whether p ≡ 3 (mod 4) or not. Hence

ω(IdN(R)) = χ(IdN(R)) =

2, if p ≡ 3 (mod 4)
2n − 1, if p . 3 (mod 4).
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