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The zero-divisor graph of 2 X 2 matrix ring and its energies
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Abstract. Let R = M,(FF) be a 2 X 2 matrix ring over a finite field IF. The zero-divisor graph of R, denoted
by I'(R), is a simple undirected graph with the vertex set consisting of all nonzero left zero-divisors in R,
and two vertices A and B being adjacent if and only if AB' = 0, where B' is a transpose of the matrix B. In
this paper, we consider a subgraph of I*(R) denoted by IdN(R) whose vertex set consists of all non-trivial
idempotent and nonzero nilpotent elements in R. It has been established that the components of IdN(R) are
either complete graphs or complete bipartite graphs. Additionally, a necessary and sufficient condition for
the regularity of IIN(R) is obtained. We also analyze the adjacency and Laplacian spectra, as well as the
energy and Laplacian energy of I[IN(R). Furthermore, it is proved that Beck’s conjecture holds for IdN(R).

1. Introduction

The energy of a graph is a spectral quantity introduced in the 1970s, having a chemical background [9].
Its mathematical theory is nowadays well elaborated [8, 16, 22] and it found diverse applications across fields
like mathematics, chemistry, computer science, network analysis, but also social science, environmental
analysis, machine learning, bioinformatics, etc [10]. In this paper, we present some graph-energy-related
studies in the area of associative ring algebra.

Let R be an associative ring. A mapping *defined on Ris called an involution if (a+b)* = a*+b", (ab)* = b*a”,
and (a*)* = a for alla,b € R. An element e in a ring R is called an idempotent if e* = e. The elements 0 and 1
are called trivial idempotents. The idempotents other than 0 and 1 are called non-trivial idempotents. The
set of idempotent elements in R is denoted by Id(R). In [18], authors studied rings with involution.

L. Beck [3] introduced the concept of the zero-divisor graph of commutative rings, primarily for the
purpose of studying graph coloring. He conjectured that Y(I'(R)) = w(I'(R)). Patil and Waphare [21]
introduced the zero-divisor graph of -rings, denoted by I'*(R). This is a simple undirected graph whose
vertex set is the set of all nonzero zero-divisors in R, and two vertices x and y are adjacent if and only if
xy* = 0. Transpose of a matrix is an involution on a matrix ring M,(IF). Hence the zero-divisor graph of R,

2020 Mathematics Subject Classification. Primary 16W10; Secondary 05C25, 05C15.

Keywords. Idempotent element, nilpotent element, regular graph, zero-divisor graph, spectrum (of graph), graph energy, Laplacian
energy.

Received: 18 February 2025; Accepted: 14 March 2025

Communicated by Dragan S. Djordjevié¢

* Corresponding author: Anil Khairnar

Email addresses: anita7783@gmail.com, abw.agc@mespune.in (Anita Lande), anil_maths2004@yahoo.com,
ask.agc@mespune.in (Anil Khairnar), gutman@kg.ac.rs (Ivan Gutman)

ORCID iDs: https://orcid.org/0009-0005-8542-6290 (Anita Lande), https://orcid.org/0000-0003-2187-6362 (Anil
Khairnar), https://orcid.org/0000-0001-9681-1550 (Ivan Gutman)



A. Lande et al. / Filomat 39:22 (2025), 7559-7570 7560

I*(R) is denoted by I''(R), and it is a simple undirected graph with the vertex set of all nonzero zero-divisors
in R, and two vertices A and B are adjacent if and only if AB' = 0.

For details of the study of zero-divisor graphs see [1, 2, 5, 13, 15, 19, 23].

Let FF be a finite field and R = M,(FF), we consider the subgraph of I*(R) having vertices all non-trivial
idempotents and nonzero nilpotent elements, it is denoted by IdN(R) (as it contains only the idempotent
and nilpotent elements). In IdN(R) two vertices A and B are adjacent if and only if AB' = 0. In this
paper, we derive necessary and sufficient conditions for the regularity of IdN(R). It is shown that IdN(R) is
disconnected, and its components form either complete bipartite graphs or complete graphs. Furthermore,
we explicitly determine the adjacency spectrum, Laplacian spectrum, the energy and the Laplacian energy
of IAN(R). Further we prove that Beck’s conjecture holds for IdN(R).

2. Preliminaries

We begin by introducing definitions required for the subsequent discussion.

For avertex u € V(G), let C(u) represents the subgraph of G induced by the set of all vertices connected to
u by a path. This subgraph C(u) is called the connected component of G containing u. A graph G is connected
if and only if number of connected components in G is 1. If the degree of every vertex in G is k, then G is
called k-regular and k is called the valency of G.

A graph is called complete if any two distinct vertices are adjacent. The complete graph with 1 vertices is
denoted by K. A graph is called bipartite if its vertex set can be partitioned into two disjoint subsets U and
V, such that there are no edges between vertices within U or within V. A bipartite graph is complete if every
vertex in U is connected to every vertex in V by a path. Such a graph is denoted as K, ,, where m = |U| and
n = |V|. Let G be a simple graph with vertices vy, vy, ..., v,, the adjacency matrix of G denoted by A(G), is an
n X n matrix [a;;], whose rows and columns are indexed by vy, vy, ..., v,, where a;; = 1 if the vertices v; and
v; are adjacent with each other, and 0 otherwise. The multiset of eigenvalues of A(G) is called the adjacency
spectrum of G. The Laplacian matrix of G is given by L(G) = D — A(G), where D is the diagonal matrix with
entries as degrees of vertices. The Laplacian spectrum of G is the multiset of eigenvalues of L(G). The energy
of a graph G denoted by E(G) is the sum of the absolute values of the eigenvalues of the adjacency matrix
of G. Let G be a graph with n vertices and m edges, and let pi1, u, . . ., yin, be the Laplacian eigenvalues of G,

then the Laplacian energy of G is denoted by LE(G) and is given by LE(G) = Z
i=1
The chromatic number of a graph G, denoted by x(G), is the minimum number of colors required to color
the vertices of G in such a way that no two adjacent vertices share the same color. The clique number of G,
denoted by w(G), is the size of the largest clique (a complete subgraph) within G.
For undefined terminology and notations, see [7, 12].

Wi — 277” (see [11]).

Let IF be a finite field. Let Z(M;(FF)) denote the set of all non-trivial idempotent and nonzero nilpotent
elements in M(IF). We use the following notations:

(0 0y o (1O . (00 L, (1 a) . (0 &), (1O . [ i j
EO_(O 1)”5 ‘(0 o)'Eﬂ‘(a 1)’E ‘(0 0)'F”‘(o 1)’F“_(a 0)"511‘(1'(1—1')]'—1 1—1’)’

01 00 1k . .
N = (0 0), M= (1 0), N = (_% _1),where i, j,a, ke F\{0},and i # 1.
In [14], authors studied the generalized projections in Z,. In [4] authors studied 2 X 2 operator matrices and
their applications. Recently, in [17, 20], idempotent and nilpotent elements in Z(M,(IF)) were studied. The

classification of idempotent and nilpotent elements in the ring Z(M(IF)) is given as in the following result.

Lemma 2.1. [17] Every idempotent element in Z(M,(IF)) has one of the following forms.

(i) Eo, E°, E,, E*,F,, F for some a € FF\{0},
(i1) Eij for some nonzero i € IF\{0,1}, j € IF\{0}.
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Lemma 2.2. [17] Every nilpotent element in Z(My(IF)) has one of the following forms.

(i) aN, aM for some a € F\{0},
(ii) aNy for some a, k € F\{0}.

Let n denote the number of elements in the field F i.e.,, n = [F|. In what follows, we count the total
number of non-trivial idempotent and nonzero nilpotent elements in Z(M,(IF)).

Remark 2.3. The non-trivial idempotent elements in Z(M,(IF)) are given in Lemma 2.1. We count their cardinalities:
|Eo| = |E°| = 1, since a € F\ {0}, |E4| = |E? = |F,| = |F?| = n — 1. Now, i € F\{0,1}, j € FF\{0}, therefore |E;;| =
(n—=1)(n—2). Thus, the total number of non-trivial idempotent elements in Z(M,(IF)) is2+4(n—1)+(n—-1)(n-2) =
n(n+1). The nonzero nilpotent elements in Z(M,(IF)) are given in Lemma 2.2. For a, k € IF\{0}, [aM| = [aN| =n -1,
INk| = n — 1. Therefore, |aNi| = (n — 1)%. Therefore, the number of nonzero nilpotent elements in Z(My(F)) is
2= +mn—-17>=n>-1.

3. The graph IdN(R)

Let R = M,(FF). In this section, we study the subgraph IdN(R) of I''(R) whose vertex set consists of all
non-trivial idempotent and nonzero nilpotent elements in R.

Definition 3.1. Let R = Mj(F). The graph IdN(R) is a simple undirected graph with vertex set consisting of all
non-trivial idempotent and nonzero nilpotent elements in R, and two distinct vertices A and B are adjacent if and
only if AB' = 0.

Recall the following result from Number Theory. A positive integer a is said to be a quadratic residue
modulo 7 if there is an integer x such that x> = a (mod n). Let p be a prime. Then —1 is quadratic residue
modulo p if and only if a?> = -1 for some a € F \ {0}, where F is a field with pk elements.

Remark 3.2. Let IF be a field with P~ elements, where p is a prime and k is a positive integer. Then:

1. Ifp = 1 (mod 4), then there are exactly 2 elements a € F with a* = —1.

2. Ifp = 3 (mod 4), then there is no element a € F with a®> = -1 .

3. Ifp =2, then (a + 1)* = a*> + 1 = 0 implies a = —1, since for p = 2, we have —1 = 1, hence there is exactly one
element a € F with a* = —1.

LetN(A) denote the set of vertices adjacent to A in G. ThatisN(A) = {B € V(G)\{A}: AB' = 0}. Henceforth,
we assume that IF is a finite field with n = |IF| = p¥, where p is a prime and k is a positive integer.
Let R = M,(IF) and aM, aN, aNj are nilpotent elements in Z(M;(IF)). Observe the following;:

1. For alla,b € F \ {0}, bM(aN)! = 0. Hence every element from aM is adjacent to each element in bN.
Since (aM)(bM)! # 0 for alla, b € FF\ {0}. Hence no element of type aM is adjacent to any other element
bMi.e., {aM: a € [F\ {0}} is an independent set. Similarly, {aN: a € F \ {0}} is an independent set.

2. Since bNk(aN_1;)" = 0 for all a,b € FF \ {0}. Hence every element of the form bNj is adjacent to each
element of the form aN_y/x. And (aNy)(bNi)' # 0 for all a,b € F \ {0}. Hence no element of the from
aNj is adjacent to any other element in bNj i.e., {aNi: a € [F\ {0}} is an independent set.

In [20], it is proved that GId(R) is regular. We characterize the rings M,(IF) for which IdN(R) is regular.
The following result shows that IdN(R) is regular for p = 3 (mod 4).

Lemma 3.3. Let R = M(F) and p = 3 (mod 4). Then IAN(R) is a 2n — 1 reqular graph.

Proof. Suppose p = 3 (mod 4). Therefore a> # —1 for each a € F. First we determine the degrees of the
vertices in IdN(R).
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1. N(Eo) = {A € Z(My(IF)): EoA' = 0ie., AEg =0}. Therefore N(E¢) = {E°,F,,aM: a € F\ {0}}. Hence

IN(Eo)] = 21 — 1.
2. N(E% = {A € Z(My(F)): E°A' = 0ie, AE* = 0}. Therefore N(E®) = {Eo,F",aN: a € F\ {0}). Hence
IN(EY)] = 21 — 1.

3. N(E,) = {A € Z(My(F)): E,A" = 0i.e.,A(E;)! = AF® = 0}. Observe that E™F* = 0, E_/,F* = 0. Therefore
E_1/, € N(E,) if and only if E_y, # E, i.e. if and only if 4> # -1 in F.

Next, if Ey. € N(E,), then E, .F* = 0. This gives [b(l —bb)c‘l 1 ib] [8 li] = [0 8], which yields

. ; . . 1 c (|0 a 0 . .
ba 4+ c = 0. That is c = —ba. Now, N.F* = 0 if and only if [—1/c “1llo 115 1o ol which yields
a+c=0. Thatisc = —aie., N, € N(E,). Therefore N(E;) = {E™, E_1/a, Ep,—pa, KN_q: b € F\ {0, 1}, k €
F\ {0}, for > # —1. Hence IN(E,)| = 2n — 1.

4. N(E") = {A € Z(My(F)): E°A! = 0i.e., A(E*)! = AF, = 0}. Note that E_,F, = 0, E'V/“F, = 0. Therefore
E7Y" € N(E,) if and only if E-¥/* # E° i.e., if and only if a*> # —1 in F. Next, if E,. € N(E,), then
EycF, = 0, which yields b +ac = 0. Thatisc = —ba'. Now, N.F, =0 gives 1 +ac = 0. This implies
c=-a'ie., N_,1 € N(E"). Therefore N(E*) = {E_,, E_aq,Eb,_bu—l,kN_u—l :beF\{0,1},k € IF\ {0}}, for
a?> # —1. Hence |[N(E")| = 2n — 1.

5. N(F") = {A € Z(My(F)): F’A" = 0 i.e., A(F") = AE, = 0}. Note that ME, = E°E, = 0 and F.E,, = 0 for
c € F\{0}. If E;cE, = 0, then we get ¢ = 0, which is a contradiction. Hence E;E, # 0 for any b, c.
Therefore N(F*) = {E°, F.,cM: c € F \ {0}}. Hence |[N(F%)| = 2n — 1.

6. N(F,) = {A € Z(My(F)): F,At = 0i.e., A(F,) = AE* = 0}. Note that NE* = EgE* = 0 and F°E? = 0 for
c e F\{0}. If E,.E* = 0, then we get b = 0, which is a contradiction. Hence E;.E* # 0 for any b,c.
Therefore N(F,) = {Eg, F°,cN: c € IF \ {0}}. Hence [N(F,)| = 2n — 1.

7. N(Epe) = {A € Z(My(F)): E, A" = 0}. Note that E,.E, # 0 giving (E,)" = F* ¢ N(E; ). Also, E,E* # 0
implies (E*)" = F, ¢ N(Ep.). Also, E;cN # 0 and E;cM # 0. Therefore M,N ¢ N(E,.). Next,
Ep(Nx)! = 0 gives b + ck = 0 i.e.,, k = —bc™!. Therefore N_j.1 € N(Ep.). Epc(E,)' = 0 if and only
if ba + ¢ = 0, which yields a = —cb™!. Now, E;(E*)" = 0 if and only if b + ac = 0, which implies
a = —bc™t. Next, Ep(Eqq)" = 0 if and only if bay + ajc = 0 i.e., ay = —bc'ay. Therefore N(Ey.) =
{E_p1, E_bC%,Eak,_akbc—l,kN_bC—l sar € F\{0,1},k € F\ {0}}. Hence [N(Ep.)| = 2n — 1.

o
—_

Thus, if p = 3 (mod 4), then IdN(R) is a 2n — 1 regular graph. O

The converse of the above result is also true. We prove the converse of the above result in Theorem 3.9.
In the following result, we prove that if p = 3 (mod 4), then IdN(R) is disconnected and the components of
IdN(R) are complete bipartite graphs.

n+1
2

Proposition 3.4. Let R = My(F) and p = 3 (mod 4). Then IdN(R) is a disjoint union of copies of Koy—1,n-1.

Proof. Suppose p = 3 (mod 4), hence a> # —1 for any a € FF.

Let X; = {Ey,E°, F,, F?,aM,aN} and Y; = {E, EY, Eup, kNp:a, bk € IF\ {0},a # 1}. From Figures 1, 2, and 3,
observe that no vertexin Xj is connected to any vertexin Y;. Hence X; and Y7 form two disconnected compo-
nents of [IN(R). Additionally, the vertices in X; form a complete bipartite graph with the partition of vertices
{E°, F,,aN} and {Eo, F*,aM}, where a € T \ {0} as shown in Figure 2. Consider a partition of the vertex set
Yias Uy = {Eq, E™, Eppat, E Ext, Eppas KNu KNy} and Vi = {E™, E_yt, Eppay E—a, E™ ', Epy_pa1, KN, KN_g1 ).
The neighborhoods of the elements in U; and V; are given below:

1. N(Eo) = {E™, E_y1, Ep -, KN} = N(E™") = N(Ep 1) = N(kN-).
2. N(E™) = {E0, E™, Epypor, KNa1} = N(E_y1) = N(Ep, 1) = N(kN_,).
8. N(E") = {E_0,E™"", Ey 1, kN g1} = N(E;1) = N(Eppa) = N(kN,).

1

4. N(E_o) = {E*, Epr, Etpu, KNG} = NE™) = N(Ey_pa1) = NN _g1).
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Ep

EO© F, F aN E™ a1 Eb —ba kN_a E_, E- —a! Eb a1 kN_u—l
o

EO Fy bM FY E —bat  ETAbT ! C —cab1 kaabfl
] /]\ /\\

Eyb F  aN E, po' Eppt N

Figure 1: Neighborhoods of vertices in IdN(R)

Clearly, {U1, V1} forms a partition of Y; such that no vertex in U is adjacent to any other vertex in U
and no vertex in V; is adjacent to any other vertex in V; (see Figure 3). Therefore, the component Y; is a
bipartite graph. Hence IdN(R) is a disconnected graph having bipartite components.

EO F, kN

Ep E*? kM

Figure 2: The component X;

1

E,; Ea' Eb,bﬂ‘l kNaq E“ Ea—l Eb,ba kNu

E™ E_, Eb,—ba kN_, E_, Ea Ep_por KN_j1

Figure 3: The component Yy
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By Remark 2.3, the number of non-trivial idempotent elements in IdN(R) is n(n + 1). Also, the number of
nonzero nilpotent elements is n? —1 . Therefore [[AN(R)| = n(n+1)+n*-1 = 2n?+n-1 = (n+1)(2n—1). Since
each component of IdN(R) is regular bipartite with valency 2n — 1. Each component of IdN(R) is Ky—1,20-1-
Therefore, each component of I[dN(R) contains 41 — 2 vertices. Hence the number of connected components

+1)2n-1
in IAN(R) is ( 42(_712 ) - er 1. Thus, IdN(R) is a disjoint union of 1 J2r !

copies of Kpp—104-1. [

Recall the following results from spectral graph theory [6]. Let A®) denote the eigenvalue A with
multiplicity s. Let G be a simple undirected regular graph with valency k. Then:
(i) k is the largest eigenvalue of the adjacency matrix of G.
(i) The multiplicity of k as an eigenvalue equals the number of connected components of G.
(iii) The adjacency spectrum of K, is the multiset: {(n — 1)V, (=1)("=D}.
(iv) The adjacency spectrum of K, , is the multiset: {n®, —nV), (0)?"-2}.
(v) The Laplacian spectrum of K,, is the multiset: {00, ()"~}
(vi) The Laplacian spectrum of K, , is the multiset: {01, (1)@*~2), (2n)}.
We now apply this to determine the spectrum and the energy of IdN(R).

Proposition 3.5. Let R = My(FF) and p = 3 (mod 4). Then the adjacency spectrum of IAN(R) is the multiset

{@n =1, (=@n - )", @D}, M
whereas the Laplacian spectrum of IAN(R) is the multiset

{0459, @n = 1)), 220 - 1))}, @)

n+1

Proof. By Proposition 3.4, IdN(R) has connected components, and each component is Ko,—124-1.

1
Therefore 2n — 1 is the largest eigenvalue of IdN(R), and its multiplicity is 2 The eigenvalues of

Kay-190-1 are given by: 2n — 1), —(2n — 1), 044 Thus the adjacency spectrum of IdN(R) is the multiset
(1).

The Laplacian eigenvalues of Ky,_12,-1 are 0, (2n — 1)#=%,(2(2n — 1))V). Hence the Laplacian spectrum
of IAN(R) is the multiset (2). O

Recall that if the graph G is regular, then LE(G) = E(G) ([11], Lemma 1). The following corollary is an
immediate consequence of the above proposition.

Corollary 3.6. Let R = My(IF) and p = 3 (mod 4). Both the energy and Laplacian energy of IAN(R) are equal to
2n-1)(n+1).

Proof. By the above proposition, the adjacency spectrum of IdN(R) is the multiset (1), and thus the energy
of IAN(R) is given by:

_n+1 n+1

E(N(R) = —— |21 = 1] +

|—-2n-1)=02n-1n+1).

By Lemma 3.3, the graph IdN(R) is regular. Therefore the Laplacian energy is same as the energy of IdN(R),
ie, LEIdNR)=@2n-1)(n+1). O

As an application consider the following example.

Example 3.7. Let R = My(Z3) be a ring with transpose involution. The idempotent and nilpotent elements
aM,aN,aN; in My(Z3) are given below:

00 10 00 00 11 12 0 1 0 2
L e e B A R Rl )
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10 10 2 2 2 1 0 0 0 1 11 1 2

00 01 11 1 2
2M=(1 0),2N= 0 O),2N1=(2 2),2N2=(1 2).

The neighborhoods of the vertices are given below:

N(Eo) = {E®, F1,Fa, M, 2M}, N(E°) = {Ey, F', F?,N, 2N}, N(E1) = {Ez, E?, E21, N, 2Na}, N(E2) = {E1, E', Ep, N1, 2N1),
N(E") = {Ea, E?, Ez1, N2, 2N}, N(E?) = {Ey, E', Exp, N1, 2N1}, N(F') = {E®, F1, Fy, M, 2M}, N(F?) = {E°, Fy, F2, M, 2M},
N(F1) = {Eo, F', F?, N, 2N}, N(F2) = {Eo, F', F?, N, 2N}, N(E2) = {Ez, E?, E21, N2, 2Na}, N(E1) = {Eq, E', Ep, N1, 2N1},
N(M) = {Eo, F!,F?,N, 2N}, N(N) = {E®, F1, F2, M, 2M}, N(N1) = {E2, E?, E31, N2, 2Na}, N(N2) = {E1, E', Ex, N1, 2N1}.
The graph IdN(R) is depicted in Figure 4.

Figure 4: IdN(M»(Z3)).

Here, n = 3, and thus the graph IAN(R) is (2n — 1) = 5-reqular, with 2 complete bipartite components. The eigen-
values of each component are —51,0®), 51, The adjacency spectrum of IAN(R) is the multiset {52, 5,010}, The
Laplacian spectrum of IAN(R) is {0®,519,10®)}. The energy and Laplacian energy are E(IAN(R)) = LE(IdN(R)) =
20.

If p # 3 (mod 4), then the following result demonstrates that IdN(R) is not regular.
Lemma 3.8. Let R = M(F) and p # 3 (mod 4). Then IdN(R) is not a regular graph.

Proof. Suppose p # 3 (mod 4). Then there exists an element a4 € F with > = —1. The neighborhood of
Eg is N(Ep) = {EO,Fg,aM: aelF\ {O}}, which means that the size of N(Ej) is 2n — 1. For a € [F\ {0}, the
neighborhood of E, is given by: N(E,) = {A € My(F): E,A' = 0i.e., A(E,)" = AF* = 0}. If E;. € N(E,), then
EyF* = 0. This implies

(b 1 —bb)c’l 1 i b) (8 le) = (8 8), which yields ba+c = 0, giving c = —ba. Additionally, note that E™*F* =0
and E_,«F* = 0. Therefore E_,1 € N(E,) if and only if E_, # E, i.e., if and only if a?> # —1in F. Thus, if
a?> = —1inF, then E_,- ¢ N(E,). Therefore N(E,) = {E™*, Eb—pa,kNg: b,k € F\{0,1},b # 1}, for a%> = —1. Hence
for a®> = -1, IN(E,)| = 2n — 2. Since the degree of the vertex E is 2n — 1, but the degree of the vertex E, is
2n — 2 for a® = -1, it follows that IdN(R) is not a regular graph. [

The following result gives a necessary and sufficient condition for the regularity of IdN(R).
Theorem 3.9. Let R = M,(IF). Then IAN(R) is regular if and only if p = 3 (imod 4).
Proof. The proof follows by Lemmas 3.3 and 3.8. [

The neighborhoods of the elements are given in Lemmas 3.3 and 3.8. The next result characterizes the
structure of IdN(R) for p # 3 (mod 4).

Proposition 3.10. Let R = M,(F) and p # 3 (mod 4). Then:
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1. The components of IAN(R) corresponding to the vertices E* and E, are complete bipartite graphs Ka,—124-1 for
a* # -1
2. The components of IAN(R) corresponding to E* and E, are complete graphs Ka,_q for a*> = —1.

Proof. Since p # 3 (mod 4), there exists an element a € IF with a? = —1.

Case (1): Leta € F\{0}, with a? # —1.

(i) Consider the neighborhoods of the vertices adjacent to E*.

N(E?) = {E—0, E™,Epp a1, KN_g1: b,k € F\{0},b # 1} = N(E,1) = N(Epps) = N(kN,). Note that [N(E?)| =
2n—1. And N(E™") = {E;1, E%, Eppa, kN, : b,k € F\ {0}, b # 1) = N(E_y) = N(Ej 1) = N(kN_,+). Observe
that [IN(E™ )| = 2n — 1.

Let C = {Eppo: b € F\{0,1}} and D = (E,_y,-1: b € F\ {0,1}}. Note that Ey,EL , # 0, and Eb/bﬂEz,_m—l =0.
Every vertex in C is adjacent to every vertex in D, and no vertex within C or D are adjacent. Therefore the
component corresponding to E* forms a complete bipartite graph Kz,—12,-1 in IAN(R) as shown in Figure 5

(a).

(a) Component corresponding to E? (b) Component corresponding to E,
p p g P P g

Figure 5: The components of IdN(R) corresponding to the vertices E” and E, for a® # —1.

(i) Next, consider the neighborhoods of the elements in component of IdN(R) corresponding to E,.
N(E,) = {E™% E_y1,kN_4, Epp po: b,k € F\ {0},b # 1} = N(E™') = N(Eypr1) = N(kN,+). Observe that

IN(E))| =2n—1. And N(E_,-1) = {E”_l,El,,kNaq,Eh,haq :b,k e F\{0},b # 1} = N(E™) = N(Ep,—pa) = N(N_,).
Observe that [N(E_,-1)| = 2n — 1.

Let C; = {Eppo: b € F\ {0,1}} and Dy = {E;,-1: b € F\ {0, 1}}. Note that E; 4,E._, # 0, and Eh,_;mEé =0
Every vertex in C; is adjacent to every vertex in Dj, and no vertex within C; or within D; are aajacent.
Thus, the component corresponding to E, forms a complete bipartite graph Ks,-12,-1 as shown in Figure 5
(b).

Case (2): Let a € F\{0}, with a? = 1.

(i) The neighborhood of E” is: N(E?) = {E_,, Eppa, kN,: b,k € IF\ {0},b # 1}. Hence IN(E*)| = 2n — 2. Next,
consider the neighborhoods of the elements adjacent to E*. N(E_;) = {E®, Epps, kN, b,k € F\ {0}, b # 1}.
N(Eppa) = {E", E—a, Ecca, kN, ¢,k € F\ {0}, ¢ # 1}. Since a®> = —1, —1/a = a. This gives N, = N_1;, = (N,)".
Therefore (kN,)(bN,)! = 0, which yields bN, € N(kN,), for each b # k i.e., the vertices kN, are mutually
adjacent. Therefore N(kN,) = {E®, E_;, Eppy, cN,: b € F\ {0,1},c € F\ {0}, c # k}. Hence [N(kN,)| = 2n — 2. For
each vertex v adjacent to E,, the neighborhoods N(x) demonstrate that all vertices are mutually connected.
Therefore, the component corresponding to E* forms a complete graph Kj,_; (see Figure 6 (a)).
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Ea

kN,

(a) Component corresponding to E* (b) Component corresponding to E,

Figure 6: The components of IdN(R) corresponding to the vertices E and E, for a® = —1.

(ii) N(Ez) = {E™*, Ep—pa, kN_s: b,k € IF\ {0}, b # 1}. Hence [N(E,)| = 2n — 2.
Consider the neighborhoods of the elements adjacent to E,.
N(E™) ={Es, Ep—pa, KN_z: b,k € F\ {0}, b # 1}.
N(Ep,-pa) ={Ea, E™®, E¢—ca, KN_z: ¢,k € F\ {0},c # b,c # 1}.
N(kN_;) = {Es, E™" Ep—pa,cNy: b € F\ {0,1},c € F\ {0},c # k}. Similar to part (i) above the component
corresponding to the vertex E, forms complete graph K;,_1 (see Figure 6 (b)). O

If p = 1 (mod 4), the following result characterizes the graph IdN(R).
Proposition 3.11. Let R = M,(IF) and p = 1 (mod 4). Then IAN(R) is a disjoint union of 2 copies of Ky,—1 and

n-—1 .
5 copies of Koy—1,2n-1.

Proof. The total number of vertices in IIN(R) is (n+1)(2n—1). According to Proposition 3.10, the components
of IdN(R) are either bipartite or complete graphs. The components E, and E* corresponding to an element
a*> = —1are complete graphs Ky,_1. Also, note that the components associated with a € IF and —a € IF are the
same for > = —1. By Remark 3.2, there are only 2 elements in IF with 4> = —1. Therefore there are exactly
two copies of K,-1. The remaining components are regular bipartite graphs Ks,-124-1. The total number
of vertices in bipartite components is (n + 1)(2n — 1) — 2(2n — 1) = (2n — 1)(n — 1). Therefore the number of
@n-1n-1) n-1
2@n-1) 2

Copies of KZn—l,Zn—1~ O

bipartite components in IdN(R) is . Hence IdN(R) is a disjoint union of 2 copies of

n-1

Ks,—1 and
If p = 1 (mod 4), the following result determines the spectrum of IdN(R).
Proposition 3.12. Let R = My(FF) and p = 1 (mod 4). Then the adjacency spectrum of IIN(R) is
{(Zn —2)®,(=1)@@=2) (25 — 1)) (=21 - 1))('T), (0)(2(11—1)2)} ) 3)
whereas the Laplacian spectrum of I[AN(R) is
{0459, @n = 1)), 220 - 1))}, (4)

Proof. The adjacency eigenvalues corresponding to Ky,—1 are 2n — 2 with multiplicity 1, and —1 with mul-
tiplicity 2n — 2. Thus, the adjacency eigenvalues corresponding to these two copies of Ky,_1 are (21 — 2)®
and (-1)?@"-2) The adjacency eigenvalues of Ky,—12,-1 are (2n — 1), (=(2n — 1)), (0)?@*-2). Therefore
the eigenvalues of ”T_l copies of Ky,—124-1 are (2n — 1)(%), (—(@2n - l))(”T_l), (0)(2(”‘1)2). Hence the adjacency
spectrum of IdN(R) is the multiset (3).
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The Laplacian eigenvalues of Kj,-1 are 00, (2n — 1)?"=2. Therefore, the Laplacian eigenvalues corre-
sponding with two components of the complete graphs Ky,,_1 are 0%, (2n—1)??"-2), The Laplacian eigenval-
ues corresponding with Ka—1,24-1 are 00, (2n — 1)#4),(2(2n — 1))@, Since there are %51 copies of Kay—-124-1,
the Laplacian eigenvalues corresponding to these components are 007", (211 — 1)1 (221 —1))(*7"). Thus,
the Laplacian spectrum of IdN(R) is the multiset (4). O

Recall that if G is a graph with N vertices and M edges, and y1, ls, . . ., jin are the Laplacian eigenvalues

N
of G, then LE(G) = Z
i=1

Wi — %/I ‘ In the following result, we find the energy of IdN(R).

Corollary 3.13. Let R = M(FF) and p = 1 (mod 4). Then the energy is E(IAN(R)) = (n — 1)(2n + 7), and the
Laplacian energy is LE(IAN(R)) = (= 1)(43)(2n+3)

n+1

Proof. The adjacency spectrum of IdN(R) is the multiset (3). Hence The energy is given by:

E(IAN(R)) = 212n = 2| + 22n = 2)| = 1| + (5 2n — 1| + (52) - @n = 1) = (n = 1)(2n + 7).

Total number of vertices in IN(R) is N = (n + 1)(2n — 1). Since there are two copies of Kj,_1 and "T_l copies
of Kyy—12n-1 in IAN(R). Total number of edges in IdN(R) is given by:

M=2 ((211—1)2(211—2)) + (nT_l) (211 _ 1)2 — (n—l)(Zn;l)(2n+3).

The Laplacian spectrum of IdN(R) is the multiset (4). Hence the Laplacian energy is given by:

N

LE© = ) |- 2|
i=1
& -DEn-1En+3)] 4D (n—1)2n - 1)2n + 3)
= ’0_ (n+1)2n-1) '+ = G =D T D -1
4 (n-1)2n-1)(2n+3)
+;2(2”_1)_ (n+1)@2n—1) ‘
S e-nEn+3) %S 2 G alen+l
_i=1 n+1 M Z‘ m-’_; n+1
_(n+3\[((n—1)2n+3) 2 n—1\(2n’+n+1
_( 2 )( n+1 )+2("2_1)(n+1)+( 2 )( n+1 )
_(n=1)(n+3)(2n +3)
B n+1 ‘

|
For p = 2. The following result gives the structure of I[IN(R).

Proposition 3.14. Let R = M,(F) and p = 2. Then IdN(R) is a disjoint union of Kp,—1 and g copies of Koy—1,2n-1.

Proof. The total number of vertices in IdN(R) is (n+1)(2n —1). According to Proposition 3.4, the components
of IdN(R) are either bipartite or complete graphs. In this case, when p = 2, there is only one element a € F

such that 2> = —1 (see Remark 3.2). Therefore there is exactly one component Ky,—1. The total number of
vertices in bipartite components is (1 + 1)(2n — 1) — (2n — 1) = n(2n — 1). Therefore the number of bipartite
n(2n —1)

components in [dN(R) is = E. Hence IdN(R) is a disjoint union of one copy of K,—1 and g copies

2n—1 2
of Kop-120-1. O

Let p = 2. In the following result we determine the spectrum of IdN(R).
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Proposition 3.15. Let R = M, (IF) and p = 2. Then the adjacency spectrum of IAN(R) is given by the multiset
{@n =20, (1), @20 - 1)), (=20 - )P, >V}, (5)
whereas the Laplacian spectrum is the multiset
{0459, 2n - )2, 220 - 1))®)}. (6)

Proof. The adjacency eigenvalues of Ky,— are 2n —2 with multiplicity 1, and —1 with multiplicity 21 —2. The
adjacency eigenvalues of Ky,_124-1 are 2n — 1)@, (=(2n — 1)), 04"~ Therefore, the adjacency eigenvalues
of 2 copies of Ky,_1,2,-1 are (2n — 1)(2), (—(2n — 1)){2), (0)**~1). Hence the adjacency spectrum of IN(R) is
the multiset (5).

The Laplacian eigenvalues corresponding to Ky,-1 are 0, (2n — 1)?"-2. The Laplacian eigenvalues
corresponding to Ka,_12,-1 are 00, (2n — 1)@=4 (2(2n — 1)), Therefore, the Laplacian eigenvalues corre-
sponding to % copies of Ko—14-1 are 02, (2n — 1)@ =1) (2(2n — 1))(2). Thus, the Laplacian spectrum of
IAN(R) is the multiset (6). O

The following corollary follows directly from the above result.

Corollary 3.16. Let R = My(FF) and p = 2. Then the energy of IAN(R) is E(IAN(R)) = 2n* + 3n — 4 whereas the
Laplacian energy is
_ (m+2)2n*+n-2)

LE(IAN(R)) —

Proof. The adjacency spectrum of IdN(R) is the multiset (5). Hence the energy of IdN(R) is given by:
EIAN(R)) = 1211 — 2| + 21 — 2)| — 1] + ngn 1+ g| —@n-1) =21 +3n—4.

Let N and M be the number of vertices and edges of IdN(R). Then N = (n + 1)(2n — 1). Since there is 1 copy

— — - 24
of Ky,—1 and 4 copies of K;-124-1, we have M = (2”1)2& +2@2n—-1) = w Thus

2M _ @n=-1)@2n*+n-2) _2n*+n-2
N  w+1)@n-1) n+1

The Laplacian spectrum of IdN(R) is the multiset (6) and then the Laplacian energy of IdN(R) is given by:

N
2M
LE@G) = ) i - 57
=1
n+2 2_1) n
= m2+n—-2| & 2n2+n -2 . 2n2+n—-2
= 0— ——| + n-1—- — |+ 22n-1) -
;" n+1 ; " n+1 P (2n ) n+1
12 2_ n
v 2n2+n—2+2(n Voo +in(2n+1)
_i:1 n+1 P n+1 P n+1

()P o () ()

2n® +5n* —4  (n+2)2n*+n-2)
n+1 - n+1 ’

O
Remark 3.17. Let R = M,(IF). Since IdN(R) contains K3 3 as a subgraph, IAN(R) is not planar.
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We conclude this section by proving Beck’s conjecture for IdN(R).

Proposition 3.18. Let R = M,(F). Then the chromatic number and clique number of IAN(R) are:

2, ifp=3 d 4
@(IdN(R)) = x(IAN(R)) =1, Z:z £3 EZZd 4;.

Proof. Suppose that p = 3 (mod 4). By Proposition 3.4, each component of I[IN(R) forms a bipartite graph.
The chromatic number and clique number of a bipartite graph are both 2. Hence w(IdN(R)) = x(IdN(R)) = 2.
Suppose p # 3 (mod 4), then there exists a € F with > = —1. By Proposition 3.10, the components of IdN(R)
include complete graphs K,,—1 and complete bipartite graphs Ky,—12,-1. The largest clique in IdN(R) is
Ku-1, so w(IdN(R)) = 2n — 1. The graph K, requires 21 — 1 colors since it is a complete graph, and we
need one color for each vertex. For the bipartite components Ky;,-12,4-1, any two of the 2n —1 available colors
can be used to color the vertices, so they do not affect the total chromatic number. Thus y(IdN(R)) = 2n —1.
Therefore, in both cases, we have w(IdN(R)) = x(IdN(R)), and the values are given by the above cases
depending on whether p = 3 (mod 4) or not. Hence

2, if p = 3 (mod 4)

w(IAN(R)) = x(IdN(R)) = 2n—1, ifp#3(mod4).

O
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