

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The zero-divisor graph of 2×2 matrix ring and its energies

Anita Landea, Anil Khairnara, Ivan Gutmanb

^aDepartment of Mathematics, Abasaheb Garware College, Pune-411 004, India ^bFaculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia

Abstract. Let $R = M_2(\mathbb{F})$ be a 2×2 matrix ring over a finite field \mathbb{F} . The zero-divisor graph of R, denoted by $\Gamma^t(R)$, is a simple undirected graph with the vertex set consisting of all nonzero left zero-divisors in R, and two vertices A and B being adjacent if and only if $AB^t = 0$, where B^t is a transpose of the matrix B. In this paper, we consider a subgraph of $\Gamma^t(R)$ denoted by IdN(R) whose vertex set consists of all non-trivial idempotent and nonzero nilpotent elements in R. It has been established that the components of IdN(R) are either complete graphs or complete bipartite graphs. Additionally, a necessary and sufficient condition for the regularity of IdN(R) is obtained. We also analyze the adjacency and Laplacian spectra, as well as the energy and Laplacian energy of IdN(R). Furthermore, it is proved that Beck's conjecture holds for IdN(R).

1. Introduction

The energy of a graph is a spectral quantity introduced in the 1970s, having a chemical background [9]. Its mathematical theory is nowadays well elaborated [8, 16, 22] and it found diverse applications across fields like mathematics, chemistry, computer science, network analysis, but also social science, environmental analysis, machine learning, bioinformatics, etc [10]. In this paper, we present some graph-energy-related studies in the area of associative ring algebra.

Let R be an associative ring. A mapping * defined on R is called an *involution* if $(a+b)^* = a^* + b^*$, $(ab)^* = b^*a^*$, and $(a^*)^* = a$ for all $a, b \in R$. An element e in a ring R is called an *idempotent* if $e^2 = e$. The elements 0 and 1 are called trivial idempotents. The idempotents other than 0 and 1 are called non-trivial idempotents. The set of idempotent elements in R is denoted by Id(R). In [18], authors studied rings with involution.

I. Beck [3] introduced the concept of the zero-divisor graph of commutative rings, primarily for the purpose of studying graph coloring. He conjectured that $\chi(\Gamma(R)) = \omega(\Gamma(R))$. Patil and Waphare [21] introduced the zero-divisor graph of *-rings, denoted by $\Gamma^*(R)$. This is a simple undirected graph whose vertex set is the set of all nonzero zero-divisors in R, and two vertices x and y are adjacent if and only if $xy^* = 0$. Transpose of a matrix is an involution on a matrix ring $M_2(\mathbb{F})$. Hence the zero-divisor graph of R,

 $^{2020\ \}textit{Mathematics Subject Classification}.\ Primary\ 16W10; Secondary\ 05C25, 05C15.$

Keywords. Idempotent element, nilpotent element, regular graph, zero-divisor graph, spectrum (of graph), graph energy, Laplacian energy.

Received: 18 February 2025; Accepted: 14 March 2025

Communicated by Dragan S. Djordjević

^{*} Corresponding author: Anil Khairnar

Email addresses: anita7783@gmail.com, abw.agc@mespune.in (Anita Lande), anil_maths2004@yahoo.com,

ask.agc@mespune.in (Anil Khairnar), gutman@kg.ac.rs (Ivan Gutman)

ORCID iDs: https://orcid.org/0009-0005-8542-6290 (Anita Lande), https://orcid.org/0000-0003-2187-6362 (Anil Khairnar), https://orcid.org/0000-0001-9681-1550 (Ivan Gutman)

 $\Gamma^*(R)$ is denoted by $\Gamma^t(R)$, and it is a simple undirected graph with the vertex set of all nonzero zero-divisors in R, and two vertices A and B are adjacent if and only if $AB^t = 0$.

For details of the study of zero-divisor graphs see [1, 2, 5, 13, 15, 19, 23].

Let \mathbb{F} be a finite field and $R = M_2(\mathbb{F})$, we consider the subgraph of $\Gamma^t(R)$ having vertices all non-trivial idempotents and nonzero nilpotent elements, it is denoted by IdN(R) (as it contains only the idempotent and nilpotent elements). In IdN(R) two vertices A and B are adjacent if and only if $AB^t = 0$. In this paper, we derive necessary and sufficient conditions for the regularity of IdN(R). It is shown that IdN(R) is disconnected, and its components form either complete bipartite graphs or complete graphs. Furthermore, we explicitly determine the adjacency spectrum, Laplacian spectrum, the energy and the Laplacian energy of IdN(R). Further we prove that Beck's conjecture holds for IdN(R).

2. Preliminaries

We begin by introducing definitions required for the subsequent discussion.

For a vertex $u \in V(G)$, let C(u) represents the subgraph of G induced by the set of all vertices connected to u by a path. This subgraph C(u) is called the *connected component* of G containing u. A graph G is connected if and only if number of connected components in G is 1. If the degree of every vertex in G is g, then g is called g and g is called the valency of g.

A graph is called *complete* if any two distinct vertices are adjacent. The complete graph with n vertices is denoted by K_n . A graph is called bipartite if its vertex set can be partitioned into two disjoint subsets U and V, such that there are no edges between vertices within U or within V. A bipartite graph is complete if every vertex in U is connected to every vertex in V by a path. Such a graph is denoted as $K_{m,n}$, where m = |U| and n = |V|. Let G be a simple graph with vertices v_1, v_2, \ldots, v_n , the *adjacency matrix* of G denoted by G, is an G matrix [G are adjacent with each other, and G otherwise. The multiset of eigenvalues of G is called the *adjacency spectrum* of G. The *Laplacian matrix* of G is given by G is the multiset of eigenvalues of G is the diagonal matrix with entries as degrees of vertices. The *Laplacian spectrum* of G is the multiset of eigenvalues of the adjacency matrix of G. Let G be a graph with G vertices and G edges, and let G0. The *Laplacian eigenvalues* of G0.

then the Laplacian energy of *G* is denoted by
$$LE(G)$$
 and is given by $LE(G) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|$ (see [11]).

The *chromatic number* of a graph G, denoted by $\chi(G)$, is the minimum number of colors required to color the vertices of G in such a way that no two adjacent vertices share the same color. The *clique number* of G, denoted by $\omega(G)$, is the size of the largest clique (a complete subgraph) within G.

For undefined terminology and notations, see [7, 12].

Let \mathbb{F} be a finite field. Let $\mathbb{Z}(M_2(\mathbb{F}))$ denote the set of all non-trivial idempotent and nonzero nilpotent elements in $M_2(\mathbb{F})$. We use the following notations:

$$E_{0} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, E^{0} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{a} = \begin{pmatrix} 0 & 0 \\ a & 1 \end{pmatrix}, E^{a} = \begin{pmatrix} 1 & a \\ 0 & 0 \end{pmatrix}, F^{a} = \begin{pmatrix} 0 & a \\ 0 & 1 \end{pmatrix}, F_{a} = \begin{pmatrix} 1 & 0 \\ a & 0 \end{pmatrix}, E_{ij} = \begin{pmatrix} i & j \\ i(1-i)j^{-1} & 1-i \end{pmatrix},$$

$$N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, M = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, N_{k} = \begin{pmatrix} 1 & k \\ -\frac{1}{k} & -1 \end{pmatrix}, \text{ where } i, j, a, k \in \mathbb{F} \setminus \{0\}, \text{ and } i \neq 1.$$

In [14], authors studied the generalized projections in \mathbb{Z}_n . In [4] authors studied 2×2 operator matrices and their applications. Recently, in [17, 20], idempotent and nilpotent elements in $Z(M_2(\mathbb{F}))$ were studied. The classification of idempotent and nilpotent elements in the ring $Z(M_2(\mathbb{F}))$ is given as in the following result.

Lemma 2.1. [17] Every idempotent element in $Z(M_2(\mathbb{F}))$ has one of the following forms.

- (i) $E_0, E^0, E_a, E^a, F_a, F^a$ for some $a \in \mathbb{F} \setminus \{0\}$,
- (ii) E_{ij} for some nonzero $i \in \mathbb{F} \setminus \{0, 1\}, j \in \mathbb{F} \setminus \{0\}.$

Lemma 2.2. [17] Every nilpotent element in $Z(M_2(\mathbb{F}))$ has one of the following forms.

- (i) aN, aM for some $a \in \mathbb{F} \setminus \{0\}$,
- (ii) aN_k for some $a, k \in \mathbb{F} \setminus \{0\}$.

Let n denote the number of elements in the field \mathbb{F} i.e., $n = |\mathbb{F}|$. In what follows, we count the total number of non-trivial idempotent and nonzero nilpotent elements in $Z(M_2(\mathbb{F}))$.

Remark 2.3. The non-trivial idempotent elements in $Z(M_2(\mathbb{F}))$ are given in Lemma 2.1. We count their cardinalities: $|E_0| = |E^0| = 1$, since $a \in \mathbb{F} \setminus \{0\}$, $|E_a| = |E^a| = |F_a| = |F^a| = n-1$. Now, $i \in \mathbb{F} \setminus \{0\}$, $i \in \mathbb{F} \setminus \{0\}$, therefore $|E_{ij}| = (n-1)(n-2)$. Thus, the total number of non-trivial idempotent elements in $Z(M_2(\mathbb{F}))$ is 2+4(n-1)+(n-1)(n-2)=n(n+1). The nonzero nilpotent elements in $Z(M_2(\mathbb{F}))$ are given in Lemma 2.2. For $a, k \in \mathbb{F} \setminus \{0\}$, |aM| = |aN| = n-1, $|N_k| = n-1$. Therefore, $|aN_k| = (n-1)^2$. Therefore, the number of nonzero nilpotent elements in $Z(M_2(\mathbb{F}))$ is $2(n-1)+(n-1)^2=n^2-1$.

3. The graph IdN(R)

Let $R = M_2(\mathbb{F})$. In this section, we study the subgraph IdN(R) of $\Gamma^t(R)$ whose vertex set consists of all non-trivial idempotent and nonzero nilpotent elements in R.

Definition 3.1. Let $R = M_2(\mathbb{F})$. The graph IdN(R) is a simple undirected graph with vertex set consisting of all non-trivial idempotent and nonzero nilpotent elements in R, and two distinct vertices A and B are adjacent if and only if $AB^t = 0$.

Recall the following result from Number Theory. A positive integer a is said to be a quadratic residue modulo n if there is an integer x such that $x^2 \equiv a \pmod{n}$. Let p be a prime. Then -1 is quadratic residue modulo p if and only if $a^2 = -1$ for some $a \in \mathbb{F} \setminus \{0\}$, where \mathbb{F} is a field with p^k elements.

Remark 3.2. Let \mathbb{F}_{p^k} be a field with p^k elements, where p is a prime and k is a positive integer. Then:

- 1. If $p \equiv 1 \pmod{4}$, then there are exactly 2 elements $a \in \mathbb{F}$ with $a^2 = -1$.
- 2. If $p \equiv 3 \pmod{4}$, then there is no element $a \in \mathbb{F}$ with $a^2 = -1$.
- 3. If p = 2, then $(a + 1)^2 = a^2 + 1 = 0$ implies a = -1, since for p = 2, we have -1 = 1, hence there is exactly one element $a \in \mathbb{F}$ with $a^2 = -1$.

Let $\mathcal{N}(A)$ denote the set of vertices adjacent to A in G. That is $\mathcal{N}(A) = \{B \in V(G) \setminus \{A\} : AB^t = 0\}$. Henceforth, we assume that \mathbb{F} is a finite field with $n = |\mathbb{F}| = p^k$, where p is a prime and k is a positive integer.

Let $R = M_2(\mathbb{F})$ and aM, aN, aN_k are nilpotent elements in $Z(M_2(\mathbb{F}))$. Observe the following:

- 1. For all $a, b \in \mathbb{F} \setminus \{0\}$, $bM(aN)^t = 0$. Hence every element from aM is adjacent to each element in bN. Since $(aM)(bM)^t \neq 0$ for all $a, b \in \mathbb{F} \setminus \{0\}$. Hence no element of type aM is adjacent to any other element bM i.e., $\{aM: a \in \mathbb{F} \setminus \{0\}\}$ is an independent set. Similarly, $\{aN: a \in \mathbb{F} \setminus \{0\}\}$ is an independent set.
- 2. Since $bN_k(aN_{-1/k})^t = 0$ for all $a, b \in \mathbb{F} \setminus \{0\}$. Hence every element of the form bN_k is adjacent to each element of the form $aN_{-1/k}$. And $(aN_k)(bN_k)^t \neq 0$ for all $a, b \in \mathbb{F} \setminus \{0\}$. Hence no element of the from aN_k is adjacent to any other element in bN_k i.e., $\{aN_k : a \in \mathbb{F} \setminus \{0\}\}$ is an independent set.

In [20], it is proved that GId(R) is regular. We characterize the rings $M_2(\mathbb{F})$ for which IdN(R) is regular. The following result shows that IdN(R) is regular for $p \equiv 3 \pmod{4}$.

Lemma 3.3. Let $R = M_2(\mathbb{F})$ and $p \equiv 3 \pmod{4}$. Then IdN(R) is a 2n - 1 regular graph.

Proof. Suppose $p \equiv 3 \pmod{4}$. Therefore $a^2 \neq -1$ for each $a \in \mathbb{F}$. First we determine the degrees of the vertices in IdN(R).

- 1. $\mathcal{N}(E_0) = \{A \in Z(M_2(\mathbb{F})) : E_0 A^t = 0 \text{ i.e., } AE_0 = 0\}.$ Therefore $\mathcal{N}(E_0) = \{E^0, F_a, aM : a \in \mathbb{F} \setminus \{0\}\}$. Hence $|\mathcal{N}(E_0)| = 2n 1$.
- 2. $\mathcal{N}(E^0) = \{A \in Z(M_2(\mathbb{F})) : E^0 A^t = 0 \text{ i.e., } AE^0 = 0\}.$ Therefore $\mathcal{N}(E^0) = \{E_0, F^a, aN : a \in \mathbb{F} \setminus \{0\}\}.$ Hence $|\mathcal{N}(E^0)| = 2n 1$.
- 3. $\mathcal{N}(E_a) = \{A \in Z(M_2(\mathbb{F})) : E_a A^t = 0 \text{ i.e., } A(E_a)^t = AF^a = 0\}$. Observe that $E^{-a}F^a = 0$, $E_{-1/a}F^a = 0$. Therefore $E_{-1/a} \in \mathcal{N}(E_a)$ if and only if $E_{-1/a} \neq E_a$ i.e. if and only if $a^2 \neq -1$ in \mathbb{F} .

Next, if $E_{b,c} \in \mathcal{N}(E_a)$, then $E_{b,c}F^a = 0$. This gives $\begin{bmatrix} b & c \\ b(1-b)c^{-1} & 1-b \end{bmatrix} \begin{bmatrix} 0 & a \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, which yields ba + c = 0. That is c = -ba. Now, $N_cF^a = 0$ if and only if $\begin{bmatrix} 1 & c \\ -1/c & -1 \end{bmatrix} \begin{bmatrix} 0 & a \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, which yields a + c = 0. That is c = -a i.e., $N_{-a} \in \mathcal{N}(E_a)$. Therefore $\mathcal{N}(E_a) = \{E^{-a}, E_{-1/a}, E_{b,-ba}, kN_{-a} : b \in \mathbb{F} \setminus \{0,1\}, k \in \mathbb{F} \setminus \{0\}\}$, for $a^2 \neq -1$. Hence $|\mathcal{N}(E_a)| = 2n - 1$.

- 4. $\mathcal{N}(E^a) = \{A \in Z(M_2(\mathbb{F})) : E^a A^t = 0 \text{ i.e.}, A(E^a)^t = AF_a = 0\}$. Note that $E_{-a}F_a = 0$, $E^{-1/a}F_a = 0$. Therefore $E^{-1/a} \in \mathcal{N}(E_a)$ if and only if $E^{-1/a} \neq E^a$ i.e., if and only if $E^a \neq -1$ in \mathbb{F} . Next, if $E_{b,c} \in \mathcal{N}(E_a)$, then $E_{b,c}F_a = 0$, which yields $E^a = 0$. That is $E^a = 0$. That is $E^a = 0$. This implies $E^a = 0$. Therefore $E^a = 0$. Therefore
- 5. $\mathcal{N}(F^a) = \{A \in Z(M_2(\mathbb{F})): F^a A^t = 0 \text{ i.e.}, A(F^a)^t = AE_a = 0\}$. Note that $ME_a = E^0 E_a = 0$ and $F_c E_{a_j} = 0$ for $c \in \mathbb{F} \setminus \{0\}$. If $E_{b,c} E_a = 0$, then we get c = 0, which is a contradiction. Hence $E_{b,c} E_a \neq 0$ for any b,c. Therefore $\mathcal{N}(F^a) = \{E^0, F_c, cM: c \in \mathbb{F} \setminus \{0\}\}$. Hence $|\mathcal{N}(F^a)| = 2n 1$.
- 6. $\mathcal{N}(F_a) = \{A \in Z(M_2(\mathbb{F})): F_aA^t = 0 \text{ i.e.}, A(F_a)^t = AE^a = 0\}$. Note that $NE^a = E_0E^a = 0$ and $F^cE^a = 0$ for $c \in \mathbb{F} \setminus \{0\}$. If $E_{b,c}E^a = 0$, then we get b = 0, which is a contradiction. Hence $E_{b,c}E^a \neq 0$ for any b,c. Therefore $\mathcal{N}(F_a) = \{E_0, F^c, cN : c \in \mathbb{F} \setminus \{0\}\}$. Hence $|\mathcal{N}(F_a)| = 2n 1$.
- 7. $\mathcal{N}(E_{b,c}) = \{A \in Z(M_2(\mathbb{F})) : E_{b,c}A^t = 0\}$. Note that $E_{b,c}E_a \neq 0$ giving $(E_a)^t = F^a \notin \mathcal{N}(E_{b,c})$. Also, $E_{b,c}E^a \neq 0$ implies $(E^a)^t = F_a \notin \mathcal{N}(E_{b,c})$. Also, $E_{b,c}N \neq 0$ and $E_{b,c}M \neq 0$. Therefore $M, N \notin \mathcal{N}(E_{b,c})$. Next, $E_{b,c}(N_k)^t = 0$ gives b + ck = 0 i.e., $k = -bc^{-1}$. Therefore $N_{-bc^{-1}} \in \mathcal{N}(E_{b,c})$. $E_{b,c}(E_a)^t = 0$ if and only if ba + c = 0, which yields $a = -cb^{-1}$. Now, $E_{b,c}(E^a)^t = 0$ if and only if b + ac = 0, which implies $a = -bc^{-1}$. Next, $E_{b,c}(E_{a_k,a_l})^t = 0$ if and only if $ba_k + a_lc = 0$ i.e., $a_l = -bc^{-1}a_k$. Therefore $\mathcal{N}(E_{b,c}) = \{E_{-cb^{-1}}, E^{-bc^{-1}}, E_{a_k,-a_kbc^{-1}}, kN_{-bc^{-1}} : a_k \in \mathbb{F} \setminus \{0\}$. Hence $|\mathcal{N}(E_{b,c})| = 2n 1$.

Thus, if $p \equiv 3 \pmod{4}$, then IdN(R) is a 2n - 1 regular graph. \square

The converse of the above result is also true. We prove the converse of the above result in Theorem 3.9. In the following result, we prove that if $p \equiv 3 \pmod{4}$, then IdN(R) is disconnected and the components of IdN(R) are complete bipartite graphs.

Proposition 3.4. Let $R = M_2(\mathbb{F})$ and $p \equiv 3 \pmod{4}$. Then IdN(R) is a disjoint union of $\frac{n+1}{2}$ copies of $K_{2n-1,2n-1}$.

Proof. Suppose $p \equiv 3 \pmod{4}$, hence $a^2 \neq -1$ for any $a \in \mathbb{F}$.

Let $X_1 = \{E_0, E^0, F_a, F^a, aM, aN\}$ and $Y_1 = \{E_b, E^b, E_{a,b}, kN_b : a, b, k \in \mathbb{F} \setminus \{0\}, a \neq 1\}$. From Figures 1, 2, and 3, observe that no vertex in X_1 is connected to any vertex in Y_1 . Hence X_1 and Y_1 form two disconnected components of IdN(R). Additionally, the vertices in X_1 form a complete bipartite graph with the partition of vertices $\{E^0, F_a, aN\}$ and $\{E_0, F^a, aM\}$, where $a \in \mathbb{F} \setminus \{0\}$ as shown in Figure 2. Consider a partition of the vertex set Y_1 as $U_1 = \{E_a, E^{a^{-1}}, E_{b,ba^{-1}}, E^a, E_{a^{-1}}, E_{b,ba}, kN_a, kN_{a^{-1}}\}$ and $V_1 = \{E^{-a}, E_{-a^{-1}}, E_{b,-ba}, E_{-a}, E^{-a^{-1}}, E_{b,-ba^{-1}}, kN_{-a}, kN_{-a^{-1}}\}$. The neighborhoods of the elements in U_1 and V_1 are given below:

- 1. $\mathcal{N}(E_a) = \{E^{-a}, E_{-a^{-1}}, E_{b,-ba}, kN_{-a}\} = \mathcal{N}(E^{a^{-1}}) = \mathcal{N}(E_{b,ba^{-1}}) = \mathcal{N}(kN_{a^{-1}}).$
- 2. $\mathcal{N}(E^{-a}) = \{E_a, E^{a^{-1}}, E_{b,ba^{-1}}, kN_{a^{-1}}\} = \mathcal{N}(E_{-a^{-1}}) = \mathcal{N}(E_{b,-ba}) = \mathcal{N}(kN_{-a}).$
- 3. $\mathcal{N}(E^a) = \{E_{-a}, E^{-a^{-1}}, E_{b,-ba^{-1}}, kN_{-a^{-1}}\} = \mathcal{N}(E_{a^{-1}}) = \mathcal{N}(E_{b,ba}) = \mathcal{N}(kN_a).$
- 4. $\mathcal{N}(E_{-a}) = \{E^a, E_{a^{-1}}, E_{b.ba}, kN_a\} = \mathcal{N}(E^{-a^{-1}}) = \mathcal{N}(E_{b,-ba^{-1}}) = \mathcal{N}(kN_{-a^{-1}}).$

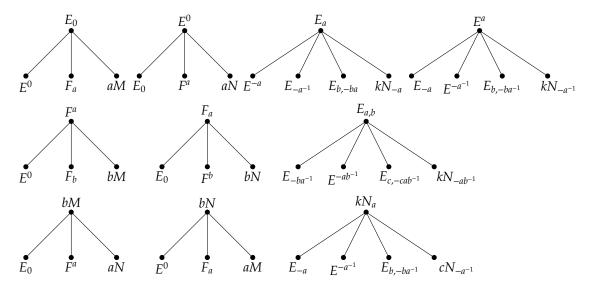


Figure 1: Neighborhoods of vertices in IdN(R)

Clearly, $\{U_1, V_1\}$ forms a partition of Y_1 such that no vertex in U_1 is adjacent to any other vertex in U_1 and no vertex in V_1 is adjacent to any other vertex in V_1 (see Figure 3). Therefore, the component Y_1 is a bipartite graph. Hence IdN(R) is a disconnected graph having bipartite components.

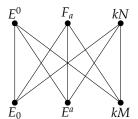


Figure 2: The component X_1

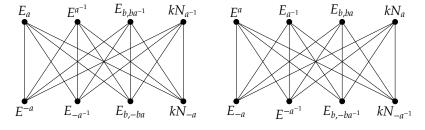


Figure 3: The component Y_1

By Remark 2.3, the number of non-trivial idempotent elements in IdN(R) is n(n+1). Also, the number of nonzero nilpotent elements is n^2-1 . Therefore $|IdN(R)| = n(n+1) + n^2 - 1 = 2n^2 + n - 1 = (n+1)(2n-1)$. Since each component of IdN(R) is regular bipartite with valency 2n-1. Each component of IdN(R) is $K_{2n-1,2n-1}$. Therefore, each component of IdN(R) contains 4n-2 vertices. Hence the number of connected components in IdN(R) is $\frac{(n+1)(2n-1)}{4n-2} = \frac{n+1}{2}$. Thus, IdN(R) is a disjoint union of $\frac{n+1}{2}$ copies of $K_{2n-1,2n-1}$. \square

Recall the following results from spectral graph theory [6]. Let $\lambda^{(s)}$ denote the eigenvalue λ with multiplicity s. Let G be a simple undirected regular graph with valency k. Then:

- (i) *k* is the largest eigenvalue of the adjacency matrix of *G*.
- (ii) The multiplicity of *k* as an eigenvalue equals the number of connected components of *G*.
- (iii) The adjacency spectrum of K_n is the multiset: $\{(n-1)^{(1)}, (-1)^{(n-1)}\}$.
- (iv) The adjacency spectrum of $K_{n,n}$ is the multiset: $\{n^{(1)}, -n^{(1)}, (0)^{(2n-2)}\}$.
- (v) The Laplacian spectrum of K_n is the multiset: $\{0^{(1)}, (n)^{(n-1)}\}$.
- (vi) The Laplacian spectrum of $K_{n,n}$ is the multiset: $\{0^{(1)}, (n)^{(2n-2)}, (2n)^{(1)}\}$.

We now apply this to determine the spectrum and the energy of IdN(R).

Proposition 3.5. Let $R = M_2(\mathbb{F})$ and $p \equiv 3 \pmod{4}$. Then the adjacency spectrum of IdN(R) is the multiset

$$\left\{ (2n-1)^{\left(\frac{n+1}{2}\right)}, (-(2n-1))^{\left(\frac{n+1}{2}\right)}, (0)^{(2(n^2-1))} \right\},\tag{1}$$

whereas the Laplacian spectrum of IdN(R) is the multiset

$$\left\{0^{\left(\frac{n+1}{2}\right)}, (2n-1)^{\left(2(n^2-1)\right)}, (2(2n-1))^{\left(\frac{n+1}{2}\right)}\right\}. \tag{2}$$

Proof. By Proposition 3.4, IdN(R) has $\frac{n+1}{2}$ connected components, and each component is $K_{2n-1,2n-1}$. Therefore 2n-1 is the largest eigenvalue of IdN(R), and its multiplicity is $\frac{n+1}{2}$. The eigenvalues of $K_{2n-1,2n-1}$ are given by: $(2n-1)^{(1)}$, $-(2n-1)^{(1)}$, $0^{(4n-4)}$. Thus the adjacency spectrum of IdN(R) is the multiset (1).

The Laplacian eigenvalues of $K_{2n-1,2n-1}$ are $0^{(1)}$, $(2n-1)^{4n-4}$, $(2(2n-1))^{(1)}$. Hence the Laplacian spectrum of IdN(R) is the multiset (2).

Recall that if the graph G is regular, then LE(G) = E(G) ([11], Lemma 1). The following corollary is an immediate consequence of the above proposition.

Corollary 3.6. Let $R = M_2(\mathbb{F})$ and $p \equiv 3 \pmod{4}$. Both the energy and Laplacian energy of IdN(R) are equal to (2n-1)(n+1).

Proof. By the above proposition, the adjacency spectrum of IdN(R) is the multiset (1), and thus the energy of IdN(R) is given by:

$$E(IdN(R)) = \frac{n+1}{2}|2n-1| + \frac{n+1}{2}| - (2n-1)| = (2n-1)(n+1).$$

By Lemma 3.3, the graph IdN(R) is regular. Therefore the Laplacian energy is same as the energy of IdN(R), i.e., LE(IdN(R)) = (2n-1)(n+1).

As an application consider the following example.

Example 3.7. Let $R = M_2(\mathbb{Z}_3)$ be a ring with transpose involution. The idempotent and nilpotent elements aM, aN, aN in $M_2(\mathbb{Z}_3)$ are given below:

$$E_0 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, E^0 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_1 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, E_2 = \begin{pmatrix} 0 & 0 \\ 2 & 1 \end{pmatrix}, E^1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, E^2 = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}, F^1 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, F^2 = \begin{pmatrix} 0 & 2 \\ 0 &$$

$$F_{1} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, F_{2} = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}, E_{21} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, M = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, N_{1} = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}, N_{2} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, 2M = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, 2N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, 2N_{1} = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}, 2N_{2} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}.$$

The neighborhoods of the vertices are given below:

$$\begin{split} &\mathcal{N}(E_0) = \{E^0, F_1, F_2, M, 2M\}, \mathcal{N}(E^0) = \{E_0, F^1, F^2, N, 2N\}, \mathcal{N}(E_1) = \{E_2, E^2, E_{21}, N_2, 2N_2\}, \mathcal{N}(E_2) = \{E_1, E^1, E_{22}, N_1, 2N_1\}, \\ &\mathcal{N}(E^1) = \{E_2, E^2, E_{21}, N_2, 2N_2\}, \mathcal{N}(E^2) = \{E_1, E^1, E_{22}, N_1, 2N_1\}, \mathcal{N}(F^1) = \{E^0, F_1, F_2, M, 2M\}, \mathcal{N}(F^2) = \{E^0, F_1, F_2, M, 2M\}, \\ &\mathcal{N}(F_1) = \{E_0, F^1, F^2, N, 2N\}, \mathcal{N}(F_2) = \{E_0, F^1, F^2, N, 2N\}, \mathcal{N}(E_{22}) = \{E_2, E^2, E_{21}, N_2, 2N_2\}, \mathcal{N}(E_{21}) = \{E_1, E^1, E_{22}, N_1, 2N_1\}, \\ &\mathcal{N}(M) = \{E_0, F^1, F^2, N, 2N\}, \mathcal{N}(N) = \{E^0, F_1, F_2, M, 2M\}, \mathcal{N}(N_1) = \{E_2, E^2, E_{21}, N_2, 2N_2\}, \mathcal{N}(N_2) = \{E_1, E^1, E_{22}, N_1, 2N_1\}. \\ &The \ graph \ IdN(R) \ is \ depicted \ in \ Figure \ 4. \end{split}$$

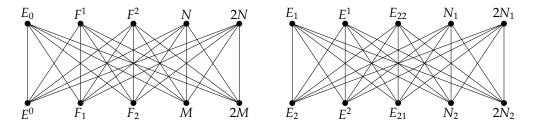


Figure 4: $IdN(M_2(\mathbb{Z}_3))$.

Here, n = 3, and thus the graph IdN(R) is (2n - 1) = 5-regular, with 2 complete bipartite components. The eigenvalues of each component are $-5^{(1)}$, $0^{(8)}$, $5^{(1)}$. The adjacency spectrum of IdN(R) is the multiset $\{5^{(2)}, -5^{(2)}, 0^{(16)}\}$. The Laplacian spectrum of IdN(R) is $\{0^{(2)}, 5^{(16)}, 10^{(2)}\}$. The energy and Laplacian energy are E(IdN(R)) = LE(IdN(R)) = 20.

If $p \not\equiv 3 \pmod{4}$, then the following result demonstrates that IdN(R) is not regular.

Lemma 3.8. Let $R = M_2(\mathbb{F})$ and $p \not\equiv 3 \pmod{4}$. Then IdN(R) is not a regular graph.

Proof. Suppose $p \not\equiv 3 \pmod 4$. Then there exists an element $a \in \mathbb{F}$ with $a^2 = -1$. The neighborhood of E_0 is $\mathcal{N}(E_0) = \{E^0, F_a, aM: a \in \mathbb{F} \setminus \{0\}\}$, which means that the size of $\mathcal{N}(E_0)$ is 2n - 1. For $a \in \mathbb{F} \setminus \{0\}$, the neighborhood of E_a is given by: $\mathcal{N}(E_a) = \{A \in M_2(\mathbb{F}): E_aA^t = 0 \text{ i.e., } A(E_a)^t = AF^a = 0\}$. If $E_{b,c} \in \mathcal{N}(E_a)$, then $E_{b,c}F^a = 0$. This implies

 $\begin{pmatrix} b & c \\ b(1-b)c^{-1} & 1-b \end{pmatrix} \begin{pmatrix} 0 & a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \text{ which yields } ba+c=0, \text{ giving } c=-ba. \text{ Additionally, note that } E^{-a}F^a=0$ and $E_{-a^{-1}}F^a=0$. Therefore $E_{-a^{-1}}\in \mathcal{N}(E_a)$ if and only if $E_{-a^{-1}}\neq E_a$ i.e., if and only if $a^2\neq -1$ in \mathbb{F} . Thus, if $a^2=-1$ in \mathbb{F} , then $E_{-a^{-1}}\notin \mathcal{N}(E_a)$. Therefore $\mathcal{N}(E_a)=\{E^{-a},E_{b,-ba},kN_a\colon b,k\in\mathbb{F}\setminus\{0,1\},b\neq 1\},$ for $a^2=-1$. Hence for $a^2=-1$, $|\mathcal{N}(E_a)|=2n-2$. Since the degree of the vertex E_0 is 2n-1, but the degree of the vertex E_a is 2n-2 for $a^2=-1$, it follows that IdN(R) is not a regular graph. \square

The following result gives a necessary and sufficient condition for the regularity of IdN(R).

Theorem 3.9. Let $R = M_2(\mathbb{F})$. Then IdN(R) is regular if and only if $p \equiv 3 \pmod{4}$.

Proof. The proof follows by Lemmas 3.3 and 3.8. \Box

The neighborhoods of the elements are given in Lemmas 3.3 and 3.8. The next result characterizes the structure of IdN(R) for $p \not\equiv 3 \pmod{4}$.

Proposition 3.10. *Let* $R = M_2(\mathbb{F})$ *and* $p \not\equiv 3 \pmod{4}$ *. Then:*

- 1. The components of IdN(R) corresponding to the vertices E^a and E_a are complete bipartite graphs $K_{2n-1,2n-1}$ for $a^2 \neq -1$.
- 2. The components of IdN(R) corresponding to E^a and E_a are complete graphs K_{2n-1} for $a^2 = -1$.

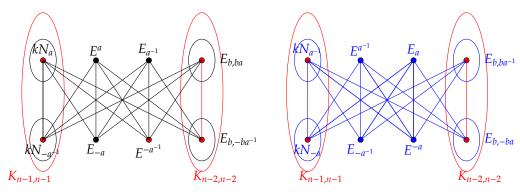
Proof. Since $p \not\equiv 3 \pmod{4}$, there exists an element $a \in \mathbb{F}$ with $a^2 = -1$.

Case (1): Let $a \in \mathbb{F} \setminus \{0\}$, with $a^2 \neq -1$.

(i) Consider the neighborhoods of the vertices adjacent to E^a .

 $\mathcal{N}(E^a) = \{E_{-a}, E^{-a^{-1}}, E_{b,-ba^{-1}}, kN_{-a^{-1}} : b, k \in \mathbb{F} \setminus \{0\}, b \neq 1\} = \mathcal{N}(E_{a^{-1}}) = \mathcal{N}(E_{b,ba}) = \mathcal{N}(kN_a).$ Note that $|\mathcal{N}(E^a)| = 2n - 1$. And $\mathcal{N}(E^{-a^{-1}}) = \{E_{a^{-1}}, E^a, E_{b,ba}, kN_a : b, k \in \mathbb{F} \setminus \{0\}, b \neq 1\} = \mathcal{N}(E_{-a}) = \mathcal{N}(E_{b,-ba^{-1}}) = \mathcal{N}(kN_{-a^{-1}}).$ Observe that $|\mathcal{N}(E^{-a^{-1}})| = 2n - 1$.

Let $C = \{E_{b,ba} : b \in \mathbb{F} \setminus \{0,1\}\}$ and $D = \{E_{b,-ba^{-1}} : b \in \mathbb{F} \setminus \{0,1\}\}$. Note that $E_{b,ba}E_{c,ca}^t \neq 0$, and $E_{b,ba}E_{c,-ca^{-1}}^t = 0$. Every vertex in C is adjacent to every vertex in D, and no vertex within C or D are adjacent. Therefore the component corresponding to E^a forms a complete bipartite graph $K_{2n-1,2n-1}$ in IdN(R) as shown in Figure 5 (a).



- (a) Component corresponding to E^a
- (b) Component corresponding to E_a

Figure 5: The components of IdN(R) corresponding to the vertices E^a and E_a for $a^2 \neq -1$.

(ii) Next, consider the neighborhoods of the elements in component of IdN(R) corresponding to E_a . $\mathcal{N}(E_a) = \{E^{-a}, E_{-a^{-1}}, kN_{-a}, E_{b,-ba} \colon b, k \in \mathbb{F} \setminus \{0\}, b \neq 1\} = \mathcal{N}(E^{a^{-1}}) = \mathcal{N}(E_{b,ba^{-1}}) = \mathcal{N}(kN_{a^{-1}}).$ Observe that $|\mathcal{N}(E_a)| = 2n - 1$. And $\mathcal{N}(E_{-a^{-1}}) = \{E^{a^{-1}}, E_a, kN_{a^{-1}}, E_{b,ba^{-1}} \colon b, k \in \mathbb{F} \setminus \{0\}, b \neq 1\} = \mathcal{N}(E^{-a}) = \mathcal{N}(E_{b,-ba}) = \mathcal{N}(kN_{-a}).$ Observe that $|\mathcal{N}(E_{-a^{-1}})| = 2n - 1$.

Let $C_1 = \{E_{b,-ba}: b \in \mathbb{F} \setminus \{0,1\}\}$ and $D_1 = \{E_{b,ba^{-1}}: b \in \mathbb{F} \setminus \{0,1\}\}$. Note that $E_{b,-ba}E_{c,-ca}^t \neq 0$, and $E_{b,-ba}E_{c,ca^{-1}}^t = 0$. Every vertex in C_1 is adjacent to every vertex in D_1 , and no vertex within C_1 or within D_1 are adjacent. Thus, the component corresponding to E_a forms a complete bipartite graph $K_{2n-1,2n-1}$ as shown in Figure 5 (b).

Case (2): Let $a \in \mathbb{F} \setminus \{0\}$, with $a^2 = -1$.

(i) The neighborhood of E^a is: $\mathbb{N}(E^a) = \{E_{-a}, E_{b,ba}, kN_a : b, k \in \mathbb{F} \setminus \{0\}, b \neq 1\}$. Hence $|\mathbb{N}(E^a)| = 2n - 2$. Next, consider the neighborhoods of the elements adjacent to E^a . $\mathbb{N}(E_{-a}) = \{E^a, E_{b,ba}, kN_a : b, k \in \mathbb{F} \setminus \{0\}, b \neq 1\}$. $\mathbb{N}(E_{b,ba}) = \{E^a, E_{-a}, E_{c,ca}, kN_a : c, k \in \mathbb{F} \setminus \{0\}, c \neq 1\}$. Since $a^2 = -1, -1/a = a$. This gives $N_a = N_{-1/a} = (N_a)^t$. Therefore $(kN_a)(bN_a)^t = 0$, which yields $bN_a \in \mathbb{N}(kN_a)$, for each $b \neq k$ i.e., the vertices kN_a are mutually adjacent. Therefore $\mathbb{N}(kN_a) = \{E^a, E_{-a}, E_{b,ba}, cN_a : b \in \mathbb{F} \setminus \{0\}, c \in \mathbb{F} \setminus \{0\}, c \neq k\}$. Hence $|\mathbb{N}(kN_a)| = 2n - 2$. For each vertex v adjacent to E_a , the neighborhoods $\mathbb{N}(x)$ demonstrate that all vertices are mutually connected. Therefore, the component corresponding to E^a forms a complete graph K_{2n-1} (see Figure 6 (a)).

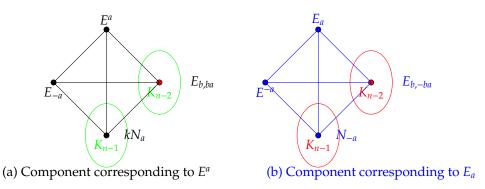


Figure 6: The components of IdN(R) corresponding to the vertices E^a and E_a for $a^2 = -1$.

(ii) $\mathbb{N}(E_a) = \{E^{-a}, E_{b,-ba}, kN_{-a} \colon b, k \in \mathbb{F} \setminus \{0\}, b \neq 1\}$. Hence $|\mathbb{N}(E_a)| = 2n - 2$. Consider the neighborhoods of the elements adjacent to E_a . $\mathbb{N}(E^{-a}) = \{E_a, E_{b,-ba}, kN_{-a} \colon b, k \in \mathbb{F} \setminus \{0\}, b \neq 1\}$. $\mathbb{N}(E_{b,-ba}) = \{E_a, E^{-a}, E_{c,-ca}, kN_{-a} \colon c, k \in \mathbb{F} \setminus \{0\}, c \neq b, c \neq 1\}$. $\mathbb{N}(kN_{-a}) = \{E_a, E^{-a}, E_{b,-ba}, cN_a \colon b \in \mathbb{F} \setminus \{0, 1\}, c \in \mathbb{F} \setminus \{0\}, c \neq k\}$. Similar to part (i) above the component corresponding to the vertex E_a forms complete graph K_{2n-1} (see Figure 6 (b)). \square

If $p \equiv 1 \pmod{4}$, the following result characterizes the graph IdN(R).

Proposition 3.11. Let $R = M_2(\mathbb{F})$ and $p \equiv 1 \pmod{4}$. Then IdN(R) is a disjoint union of 2 copies of K_{2n-1} and $\frac{n-1}{2}$ copies of $K_{2n-1,2n-1}$.

Proof. The total number of vertices in IdN(R) is (n+1)(2n-1). According to Proposition 3.10, the components of IdN(R) are either bipartite or complete graphs. The components E_a and E^a corresponding to an element $a^2 = -1$ are complete graphs K_{2n-1} . Also, note that the components associated with $a \in \mathbb{F}$ and $-a \in \mathbb{F}$ are the same for $a^2 = -1$. By Remark 3.2, there are only 2 elements in \mathbb{F} with $a^2 = -1$. Therefore there are exactly two copies of K_{2n-1} . The remaining components are regular bipartite graphs $K_{2n-1,2n-1}$. The total number of vertices in bipartite components is (n+1)(2n-1)-2(2n-1)=(2n-1)(n-1). Therefore the number of bipartite components in IdN(R) is $\frac{(2n-1)(n-1)}{2(2n-1)} = \frac{n-1}{2}$. Hence IdN(R) is a disjoint union of 2 copies of K_{2n-1} and $\frac{n-1}{2}$ copies of $K_{2n-1,2n-1}$. □

If $p \equiv 1 \pmod{4}$, the following result determines the spectrum of IdN(R).

Proposition 3.12. Let $R = M_2(\mathbb{F})$ and $p \equiv 1 \pmod{4}$. Then the adjacency spectrum of IdN(R) is

$$\left\{ (2n-2)^{(2)}, (-1)^{(2(2n-2))}, (2n-1)^{(\frac{n-1}{2})}, (-(2n-1))^{(\frac{n-1}{2})}, (0)^{(2(n-1)^2)} \right\},\tag{3}$$

whereas the Laplacian spectrum of IdN(R) is

$$\left\{0^{\left(\frac{n+3}{2}\right)}, (2n-1)^{\left(2(n^2-1)\right)}, (2(2n-1))^{\left(\frac{n-1}{2}\right)}\right\}. \tag{4}$$

Proof. The adjacency eigenvalues corresponding to K_{2n-1} are 2n-2 with multiplicity 1, and -1 with multiplicity 2n-2. Thus, the adjacency eigenvalues corresponding to these two copies of K_{2n-1} are $(2n-2)^{(2)}$ and $(-1)^{(2(2n-2))}$. The adjacency eigenvalues of $K_{2n-1,2n-1}$ are $(2n-1)^{(1)}$, $(-(2n-1))^{(1)}$, $(0)^{(2(2n-2))}$. Therefore the eigenvalues of $\frac{n-1}{2}$ copies of $K_{2n-1,2n-1}$ are $(2n-1)^{(\frac{n-1}{2})}$, $(-(2n-1))^{(\frac{n-1}{2})}$, $(0)^{(2(n-1)^2)}$. Hence the adjacency spectrum of IdN(R) is the multiset (3).

The Laplacian eigenvalues of K_{2n-1} are $0^{(1)}$, $(2n-1)^{(2n-2)}$. Therefore, the Laplacian eigenvalues corresponding with two components of the complete graphs K_{2n-1} are $0^{(2)}$, $(2n-1)^{(2(2n-2))}$. The Laplacian eigenvalues corresponding with $K_{2n-1,2n-1}$ are $0^{(1)}$, $(2n-1)^{(4n-4)}$, $(2(2n-1))^{(1)}$. Since there are $\frac{n-1}{2}$ copies of $K_{2n-1,2n-1}$, the Laplacian eigenvalues corresponding to these components are $0^{(\frac{n-1}{2})}$, $(2n-1)^{(2(n-1)^2)}$, $(2(2n-1))^{(\frac{n-1}{2})}$. Thus, the Laplacian spectrum of IdN(R) is the multiset (4).

Recall that if *G* is a graph with *N* vertices and *M* edges, and $\mu_1, \mu_2, \dots, \mu_N$ are the Laplacian eigenvalues of *G*, then $LE(G) = \sum_{i=1}^{N} \left| \mu_i - \frac{2M}{N} \right|$. In the following result, we find the energy of IdN(R).

Corollary 3.13. Let $R = M_2(\mathbb{F})$ and $p \equiv 1 \pmod{4}$. Then the energy is E(IdN(R)) = (n-1)(2n+7), and the Laplacian energy is $LE(IdN(R)) = \frac{(n-1)(n+3)(2n+3)}{n+1}$.

Proof. The adjacency spectrum of IdN(R) is the multiset (3). Hence The energy is given by: $E(IdN(R)) = 2|2n-2| + 2(2n-2)| - 1| + (\frac{n-1}{2})|2n-1| + (\frac{n-1}{2})| - (2n-1)| = (n-1)(2n+7).$ Total number of vertices in IdN(R) is N=(n+1)(2n-1). Since there are two copies of K_{2n-1} and $\frac{n-1}{2}$ copies of $K_{2n-1,2n-1}$ in IdN(R). Total number of edges in IdN(R) is given by: $M = 2\left(\frac{(2n-1)(2n-2)}{2}\right) + \left(\frac{n-1}{2}\right)(2n-1)^2 = \frac{(n-1)(2n-1)(2n+3)}{2}.$ The Laplacian spectrum of IdN(R) is the multiset (4). Hence the Laplacian energy is given by:

$$\begin{split} LE(G) &= \sum_{i=1}^{N} \left| \mu_i - \frac{2M}{N} \right| \\ &= \sum_{i=1}^{\frac{n+3}{2}} \left| 0 - \frac{(n-1)(2n-1)(2n+3)}{(n+1)(2n-1)} \right| + \sum_{i=1}^{2(n^2-1)} \left| (2n-1) - \frac{(n-1)(2n-1)(2n+3)}{(n+1)(2n-1)} \right| \\ &+ \sum_{i=1}^{\frac{n-1}{2}} \left| 2(2n-1) - \frac{(n-1)(2n-1)(2n+3)}{(n+1)(2n-1)} \right| \\ &= \sum_{i=1}^{\frac{n+3}{2}} \frac{(n-1)(2n+3)}{n+1} + \sum_{i=1}^{2(n^2-1)} \frac{2}{n+1} + \sum_{i=1}^{\frac{n-1}{2}} \frac{2n^2+n+1}{n+1} \\ &= \left(\frac{n+3}{2} \right) \left(\frac{(n-1)(2n+3)}{n+1} \right) + 2(n^2-1) \left(\frac{2}{n+1} \right) + \left(\frac{n-1}{2} \right) \left(\frac{2n^2+n+1}{n+1} \right) \\ &= \frac{(n-1)(n+3)(2n+3)}{n+1}. \end{split}$$

For p = 2. The following result gives the structure of IdN(R).

Proposition 3.14. Let $R = M_2(\mathbb{F})$ and p = 2. Then IdN(R) is a disjoint union of K_{2n-1} and $\frac{n}{2}$ copies of $K_{2n-1,2n-1}$.

Proof. The total number of vertices in IdN(R) is (n+1)(2n-1). According to Proposition 3.4, the components of IdN(R) are either bipartite or complete graphs. In this case, when p=2, there is only one element $a \in \mathbb{F}$ such that $a^2 = -1$ (see Remark 3.2). Therefore there is exactly one component K_{2n-1} . The total number of vertices in bipartite components is (n + 1)(2n - 1) - (2n - 1) = n(2n - 1). Therefore the number of bipartite components in IdN(R) is $\frac{n(2n-1)}{2n-1} = \frac{n}{2}$. Hence IdN(R) is a disjoint union of one copy of K_{2n-1} and $\frac{n}{2}$ copies of $K_{2n-1,2n-1}$.

Let p = 2. In the following result we determine the spectrum of IdN(R).

Proposition 3.15. Let $R = M_2(\mathbb{F})$ and p = 2. Then the adjacency spectrum of IdN(R) is given by the multiset

$$\left\{ (2n-2)^{(1)}, (-1)^{(2n-2)}, (2n-1)^{(\frac{n}{2})}, (-(2n-1))^{(\frac{n}{2})}, (0)^{(2n(n-1))} \right\},\tag{5}$$

whereas the Laplacian spectrum is the multiset

$$\left\{0^{\left(\frac{n+2}{2}\right)}, (2n-1)^{\left(2n^2-2\right)}, (2(2n-1))^{\left(\frac{n}{2}\right)}\right\}. \tag{6}$$

Proof. The adjacency eigenvalues of K_{2n-1} are 2n-2 with multiplicity 1, and -1 with multiplicity 2n-2. The adjacency eigenvalues of $K_{2n-1,2n-1}$ are $(2n-1)^{(1)}$, $(-(2n-1))^{(1)}$, $0^{(4n-4)}$. Therefore, the adjacency eigenvalues of $\frac{n}{2}$ copies of $K_{2n-1,2n-1}$ are $(2n-1)^{(\frac{n}{2})}$, $(-(2n-1))^{(\frac{n}{2})}$, $(0)^{(2n(n-1))}$. Hence the adjacency spectrum of IdN(R) is the multiset (5).

The Laplacian eigenvalues corresponding to K_{2n-1} are $0^{(1)}$, $(2n-1)^{(2n-2)}$. The Laplacian eigenvalues corresponding to $K_{2n-1,2n-1}$ are $0^{(1)}$, $(2n-1)^{(4n-4)}$, $(2(2n-1))^{(1)}$. Therefore, the Laplacian eigenvalues corresponding to $\frac{n}{2}$ copies of $K_{2n-1,2n-1}$ are $0^{(\frac{n}{2})}$, $(2n-1)^{(2n(n-1))}$, $(2(2n-1))^{(\frac{n}{2})}$. Thus, the Laplacian spectrum of IdN(R) is the multiset (6). \square

The following corollary follows directly from the above result.

Corollary 3.16. Let $R = M_2(\mathbb{F})$ and p = 2. Then the energy of IdN(R) is $E(IdN(R)) = 2n^2 + 3n - 4$ whereas the Laplacian energy is

$$LE(IdN(R)) = \frac{(n+2)(2n^2 + n - 2)}{n+1}.$$

Proof. The adjacency spectrum of IdN(R) is the multiset (5). Hence the energy of IdN(R) is given by:

$$E(IdN(R)) = 1|2n - 2| + (2n - 2)| - 1| + \frac{n}{2}|2n - 1| + \frac{n}{2}| - (2n - 1)| = 2n^2 + 3n - 4.$$

Let *N* and *M* be the number of vertices and edges of IdN(R). Then N = (n + 1)(2n - 1). Since there is 1 copy of K_{2n-1} and $\frac{n}{2}$ copies of $K_{2n-1,2n-1}$, we have $M = \frac{(2n-1)(2n-2)}{2} + \frac{n}{2}(2n-1)^2 = \frac{(2n-1)(2n^2+n-2)}{2}$. Thus

$$\frac{2M}{N} = \frac{(2n-1)(2n^2+n-2)}{(n+1)(2n-1)} = \frac{2n^2+n-2}{n+1}.$$

The Laplacian spectrum of IdN(R) is the multiset (6) and then the Laplacian energy of IdN(R) is given by:

$$LE(G) = \sum_{i=1}^{N} \left| \mu_i - \frac{2M}{N} \right|$$

$$= \sum_{i=1}^{\frac{n+2}{2}} \left| 0 - \frac{2n^2 + n - 2}{n+1} \right| + \sum_{i=1}^{\frac{2(n^2 - 1)}{2}} \left| 2n - 1 - \frac{2n^2 + n - 2}{n+1} \right| + \sum_{i=1}^{\frac{n}{2}} \left| 2(2n - 1) - \frac{2n^2 + n - 2}{n+1} \right|$$

$$= \sum_{i=1}^{\frac{n+2}{2}} \frac{2n^2 + n - 2}{n+1} + \sum_{i=1}^{\frac{2(n^2 - 1)}{2}} \frac{2}{n+1} + \sum_{i=1}^{\frac{n}{2}} \frac{n(2n+1)}{n+1}$$

$$= \left(\frac{n+2}{2} \right) \left(\frac{2n^2 + n - 2}{n+1} \right) + 2(n^2 - 1) \left(\frac{2}{n+1} \right) + \left(\frac{n}{2} \right) \left(\frac{n(2n+1)}{n+1} \right)$$

$$= \frac{2n^3 + 5n^2 - 4}{n+1} = \frac{(n+2)(2n^2 + n - 2)}{n+1}.$$

П

Remark 3.17. Let $R = M_2(\mathbb{F})$. Since IdN(R) contains $K_{3,3}$ as a subgraph, IdN(R) is not planar.

We conclude this section by proving Beck's conjecture for IdN(R).

Proposition 3.18. Let $R = M_2(\mathbb{F})$. Then the chromatic number and clique number of IdN(R) are:

$$\omega(IdN(R)) = \chi(IdN(R)) = \begin{cases} 2, & \text{if } p \equiv 3 \pmod{4} \\ 2n - 1, & \text{if } p \not\equiv 3 \pmod{4}. \end{cases}$$

Proof. Suppose that $p \equiv 3 \pmod 4$. By Proposition 3.4, each component of IdN(R) forms a bipartite graph. The chromatic number and clique number of a bipartite graph are both 2. Hence $\omega(IdN(R)) = \chi(IdN(R)) = 2$. Suppose $p \not\equiv 3 \pmod 4$, then there exists $a \in \mathbb{F}$ with $a^2 = -1$. By Proposition 3.10, the components of IdN(R) include complete graphs K_{2n-1} and complete bipartite graphs $K_{2n-1,2n-1}$. The largest clique in IdN(R) is K_{2n-1} , so $\omega(IdN(R)) = 2n - 1$. The graph K_{2n-1} requires 2n - 1 colors since it is a complete graph, and we need one color for each vertex. For the bipartite components $K_{2n-1,2n-1}$, any two of the 2n - 1 available colors can be used to color the vertices, so they do not affect the total chromatic number. Thus $\chi(IdN(R)) = 2n - 1$. Therefore, in both cases, we have $\omega(IdN(R)) = \chi(IdN(R))$, and the values are given by the above cases depending on whether $p \equiv 3 \pmod 4$ or not. Hence

$$\omega(IdN(R)) = \chi(IdN(R)) = \begin{cases} 2, & \text{if } p \equiv 3 \pmod{4} \\ 2n - 1, & \text{if } p \not\equiv 3 \pmod{4}. \end{cases}$$

References

- [1] S. Akbari, M. Habibi, A. Majidinya, and R. Manaviyat, On the idempotent graph of a ring, Journal of Algebra and Its Applications 12(6) (2013) #1350003.
- [2] M. N. Authman, M. Q. Husam and S. H. Nazar, The domination number of idempotent divisor graphs of commutative rings, Palestine Journal of Mathematics 11(4) (2022) 300–306.
- [3] I. Beck, Coloring of commutative rings, Journal of Algebra 116 (1988) 208–226.
- [4] D. S. Djordjević, M. Z. Kolundzija, S. Radosavljevic and D. Mosic, A survey on 2×2 operator matrices and their applications. Zb. Rad.(Beogr.) 20(28) (2022) 7–81.
- [5] K. Cvetko-Vah and D. Dolzan, Indecomposability graphs of rings, Bulletin of the Australian Mathematical Society 77 (2008) 151–159.
- [6] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs -Theory and Application, Academic Press, New York, (1980).
- [7] C. Godsil and G. Royle, Algebraic Graph Theory, Springer, New York, (2001).
- [8] I. Gutman, The energy of a graph: Old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer, Berlin, (2001), pp. 196–211.
- [9] I. Gutman and B. Furtula, The total π -electron energy saga, Croatica Chemica Acta 90 (2017), 359–368.
- [10] I. Gutman and B. Furtula, Energies of Graphs Survey, Census, Bibliography, Center for Scientific Research, Kragujevac, (2019).
- [11] I. Gutman and B. Zhou, Laplacian energy of a graph, Linear Algebra and Its Applications 414(1) (2006) 29–37.
- [12] F. Harary, Graph Theory, CRC Press, Boca Raton, (1969).
- [13] A. Khairnar and B. N.Waphare, Zero-divisor graphs of Laurent polynomials and Laurent power series, in: S. Rizvi, A. Ali, V. Filippis (Eds.), Algebra and Its Applications, Springer, Singapore (2016) 345–349.
- [14] A. Khairnar and B. N. Waphare, Generalized projections in \mathbb{Z}_n , in: AKCE International Journal of Graphs and Combinatorics 16(1) (2019) 1-7.
- [15] N. Kumbhar, A. Khairnar and B. N. Waphare, Strong zero-divisor graph of rings with involution, Asian-European Journal of Mathematics 16(10) (2023) #2350179.
- [16] X. Li, Y. Shi and I. Gutman, Graph Energy, Springer, New York, (2012).
- [17] K. Masalkar, A. Khairnar, A. Lande and L. Kadam, On spectrum of the zero-divisor graph of matrix ring, arXiv:2312.09934v1 (2023).
- [18] N. Mihajlović, and D. Djordjević, Perturbation results and forward order law for the Moore–Penrose inverse in rings with involution. Georgian Mathematical Journal, 29(3) (2022) 425–439.
- [19] A. Patil and P. Momale, Idempotent graphs, weak perfectness, and zero-divisor graphs, Soft computing 25(15) (2021) 10083–10088.
- [20] A. Patil, P. S. Momale and C. M. Jadhav, On the idempotent graph of matrix ring, arXiv:2402.11256v1 [math.CO] (2024).
- [21] A. Patil and B. Waphare, The zero-divisor graph of a ring with involution. Journal of Algebra and its Applications 17(03) (2018) #1850050.
- [22] H. S. Ramane, Energy of graphs, in: M. Pal, S. Samanta, A. Pal (Eds.), Handbook of Research on Advanced Applications of Graph Theory in Modern Society, IGI Global, Hershey, (2020), pp. 267–296.
- [23] P. Sharma and S. Dutta, On Idempotent graph of rings, Palestine Journal of Mathematics 12(1) (2023) 883–891.