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Existence theorem for the Cauchy’s problem on Kuelbs-Steadman
spaces of vector-valued functions

Hemanta Kalita?

“Mathematics division, SASL, VIT-Bhopal University, Bhopal- Indore Highway, Sehore, Madhya Pradesh, India

Abstract. We present Kuelbs-Steadman spaces designed for vector-valued functions that take values in
Banach spaces. Our study focuses on their fundamental properties and their embeddings within £? spaces.
Additionally, we introduce a fixed point theorem based on the concept of a measure of noncompactness
in KS8'(X). Furthermore, we demonstrate the existence theorem for Cauchy’s problem defined by #'(8) =
J(8, His) and the inclusion " € (8, fis) in KSP(X), where J is a Henstock-Kurzweil integrable function.

1. Introduction

Recent research has increasingly focused on Kuelbs-Steadman spaces, or KS” spaces for short. The
motivation for examining these spaces arises from the concept that £! spaces can be interpreted as includ-
ing Henstock-Kurzweil integrable functions within a broader Hilbert space that has a lesser norm. For
additional information on Henstock-Kurzweil integrals, see [11]. This enables the development of several
applications to Functional Analysis and other areas of mathematics, including those involving Gaussian
measures (see also [19]), convolution operators, Fourier transformations, the Feynman integral, quantum
physics, differential equations, and Markov chains (see also [3, 9, 10, 16]). By using Kuelbs-Steadman
spaces in place of the more traditional L7 spaces, this method also enables the development of a functional
analysis theory that incorporates Sobolev-type spaces. H. Kalita et al. [15] introduced a BMO type spaces
with Kelbs-Steadman spaces of essentially bounded locally Henstock-Kurzweil integrable functions. Im-
portantly, classical BMO spaces has been seen as a dense subspace of their BMO spaces with continuous
embeddings. In a initiation towards Harmonic analysis, H. Kalita [14] discussed Kuelbs-Steadman spaces
with bounded variable exponents. It is observed that Kuels-Steadman spaces can defined by employing
weighted I’ norms, is equivalence of the norm defined by T. L. Gill et al. of their construction (see [10]).
A. Boccuto et al. [3] discussed Kuelbs-Steadman spaces with Banach valued measures. Banach lattice
properties, separability of KS” were observed in their work.

It is well known that Kuratowski introduced the idea of measure of noncompactness. Followed by
Kuratowski J. Banas et al. (see [1, 2]) provided the axiomatic definition of measure of noncompactness is an
important tool to show the existence of solutions of ordinary and functional differential equations in Banach
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spaces. G. Darbo [6] presented a fixed point theorem for first time by employing the idea of measure of
noncompactness of Kuratowski. Various fixed point theory and measure of noncompactness(MNC) have
many applications in solving different types of integral and differential equations which we come across in
different real life situations. One can see [12, 13, 22, 27] and references their in for related literature of these.

The work of [5] motivated us to investigate the existence of solution of i’ = J(0, %) and inclusion
I € 3(8, his) in KS'(X).

Our article structured as follows: In Section 2, the basic concepts and terminology are intro- duced
together with some definitions and results. In Section 3, we introduce Banach-valued Kuelbs-Steadman
spaces. Several fundamental properties of KS”(X) are discussed in this section. Followed by above, we
introcuce measure of noncompactness in KS'(X) and a fixed point theorem supported by measure of
noncompactness of KS”(X). In Section 4, we discuss the existence of solution of the differential equation,

1'(0) = 3(0,T15)
n(6) = $(6) 1)

in KS”(X), where the multi function F : 7, X KS”(X) — 2% ) has a selection J(8, fis) Henstock-Kurzweil
integrable for each 71 € A(¢, 1) is discussed. One can see [23] for details of A(¢, 1).

2. Preliminaries

Throughout the article let 7~ # 0 be an abstract set, P(7") be the class of all subsets of 7, Z C P(7") be
a o-algebra, X be a Banach space and X’ be its topological dual. For each A € L, let us denote by xa the
characteristic function of A, defined by

1 ifoeA,

xa(t) =
0 ifoeT \A

We denote a closed and convex subset E of X as conv(E). Recalling Hausdorff measure of noncompactness
as follows:

Definition 2.1. [1] For any bounded subset A of X, Haussdorff measure of non-compactness of A is

a(A) = inf {e > 0: A can be covered with a finite number of sets of diameter smaller than e}.

Theorem 2.2. [21, Theorem 2.1] Let X be a Banach space. E C X is closed and convex. Suppose f : E — E is
continuous and for some x € E, the following are holds

for some x € E, C C E, countable, C = cono({x} U I(C)) implies C is relatively compact.
Then 3 has a fixed point in E.

Definition 2.3. [17, Definition 1.1] Let X, Y be topological spaces on a finite measure space (7, L, ). A function
I :T x X — Y is a Carathéodory function if

1. 3(., u) is a measurable for each n;
2. 9(0,.) is continuous for each 0.

Definition 2.4. [23] A non-negative real-valued function (8, 1) — h(8, r) defined on I x R* is a Kamke function if
h satisfies the Carathéodory condition, h(d,0) = 0 and the function identically equal to zero is the unique continuous

solution u(0) = foé h(s, us)ds for & € I, = [0, 1] satisfying u(0) = 0, where us(8) = u(d +s).

Recalling Banach-valued Henstock-Kurzweil integrable function as follows.
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Definition 2.5. ([20, Definition 2.1] or [26, Definition 3.2.1]) A function J : [1, 7] — X is Henstock-Kurzweil
integrable on [i, 7] if there exists a vector z € X with the following property: for each € > 0 there exists a
positive function 6 on [t, 7] such that

“S(S,D) - z”X <e

whenever D is sub 6-on [, 7].

Theorem 2.6. [26, Theorem 7.3.10] If the function F : [1,t] — X is differentiable on [t, T] with F'(8) = J(0) for
O €, t]then J : [1,t] = X is Henstock-Kurzuweil integrable and flT J= fLT F’ = F(t) — F(1).

Definition 2.7. [26, Definition 7.1.5]

1. Let F : [1,t] — Rand E be a subset of [1, T]. The function F is called absolutely continuous (AC or AC*) on E
if for each € > O there esists v > 0 such that }, |[F(p;) — F(o)| < € whenever {[p, p\]} is a finite sequence of non

overlapping intervals that have end points in E and satisfy Y (p, — 0) < v.

2. The function F is ACG (or ACG.) on E if F is continuous on E and E can be expressed as a countable union of
sets on each of which F is AC (or AC*).

Definition 2.8. [26, Definition 7.2.2] A function F : [1, 7] — X is ACG. on E C [, t] if F is continuous on E and if
E can be expressed as a countable union of closed sets on each of which F is AC".

Lemma 2.9. [20, Theorem 2.2] (Saks-Henstock’s Lemma) If J is real valued and Henstock-Kurzweil inte-
grable on [t, T] with primitive F, then for every € > 0 there is a function 6(.) > 0 such that for any 6-fine

division D = :[Q, pl, 5} of [1, 7], then ” % I(&)p - o) - Elo, p])HX <e.

We can find a corollary of [26, Theorem 7.6. 12] and [26, Theorem 7.6. 16] as follows:

Theorem 2.10. Let 3, : [1, 7] = X, n = 1,2, ... is a sequence of Henstock-Kurzweil integrable functions satisfying
the following conditions

1. lim J,(00) = 3(9), 6 € [1, 7).
n—oo
2. Let the set F,,, {F,(x)} where F,(x) = fLX fu(s)ds is uniformly AGC, in n.
3. The primitives F,, are equi-continuous on [t, 7] then 3 is Henstock-Kurzweil integrable on [1, T] and fl * 3, -

fo 3 uniformly on [1, t] as n — oco.

3. Banach valued Kuelbs-Steadman spaces

In this section, we extend the theory of Kuelbs-Steadman spaces on an arbitrary Banach space. We start
our construction with the following remark.

Remark 3.1. One should take into account that ||¢|[(A) < +oo holds true for all sets A belonging to X, as
indicated in [7, Corollary 1.19].

The completion of ¥ with respect to ||| is defined by

YL ={A=BUN:B€XNCM e L with [|ul|(M) = 0}. )
A function 3 : 7 — Ris said to be y-measurable if

B N{OeT :9@)#£0}ex

for each Borel subset B C IR. We say that u is -separable (or separable) if there is a countable family B = (By)x
in X such that, for each A € X and ¢ > 0, there is ky € IN such that

llull(AABy,) < € )
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(see also [24]). Such a family B is said to be u-dense.

It is important to note that the measure u is considered X-separable if and only if the o-algebra X is
defined as p-essentially countably generated. This implies the presence of a countably generated o-algebra
Xy that is a subset of X, such that for every element A in Y, there exists an element B in Zy for which
the condition p(AAB) = 0 holds. The separability of y can be exemplified in cases where T is a separable
metrizable space, L represents the Borel o-algebra of the Borel subsets of T, and u is a Radon measure (refer
to [4, Theorem 4.13], [8, Theorem 1.0], [18, §1.3 and §2.6], [24, Propositions 1A and 3]).

Henceforth, we will consider that u is separable, and let B = (By); denote a u-dense family within the
o-algebra ~ and

lull(Bx) <M = |lull(7) +1 forall k € N. 4)
We begin with giving the following technical results, which will be useful later.
Proposition 3.2. [3] Let us define two sequences of non-negative real numbers, (ax)r and (N, with the condition

that a = sup ar < +oo,
k

i mw=1, ®)
k=1

assume that p > 0 is a designated positive real number. Then,

o 1/p
[Z Nk ai] <a. (6)
k=1

Proposition 3.3. [3] Let (by)x, (ck)x be two sequences of real numbers, (ni)x be a sequence of positive real numbers,
satisfying (5), and p > 1 be a fixed real number. Then,

1/p /p 1/p
< +

[2mm+wjz%2mww¢wj (meq [meﬂ
k=1 k=1 k=1 k=1

Let B = (By) be as in (4), set & = xp,, k € N.

For 1 < p < oo, let us define a norm on £![u] by setting

~ v 1/p
sup Z e |(L) fr E(x) I () du(x) l if1<p<oo,
15 llksry = = @)
sup [sup ‘(L) f Er(0) T (x)du(x) ] ifp = oo
keN T

One can easily check that the expression (7) form a norm. For 1 < p < oo, the Kuelbs-Steadman space
KSP(X) (respectively KSh (X)) is the completion of L1(X) (respectively L1 (X)) with respect to the norm
defined in (7). For simplicity now onwards we will denote norm of KS”(X) as ||. Ik

Proposition 3.4. Forany 3 € LY(X)and p > 1, it is ||l < [IBllgcs=(x)-

Proof. From (6) used with ax = ‘(L) f’r E(x) B (x)du(x)| we have

1

p)ﬁ Ssup‘(L)LSk(x)ﬁ(x)dy(x)

kelN

(iﬂmﬁwmmmw : ®
k=1



H. Kalita / Filomat 39:22 (2025), 7571-7585 7575
Taking the supremum, we obtain,

Ik = sup (Y

k=1

)

(L) fr ) B ()dp(x)

)

Ssup(supkL%j‘SﬁxﬁHxﬁth)
keN T
= [IB|lks=(x)-
0
Since KS”(X) is the completion of L7(X), the following results holds:
Theorem 3.5. Foreveryq, 1 < q < oo, the Lebesgue space L9(X) is dense continuous embedding subset of KS" (X).

Proof. Let us consider 1 < p < co. Suppose J € L1(X), 1 < g < oo, along with M > 1. Considering M as in

(4). since M > 1, it gives M% < M. As |E(0)] = E(B) < 1 and |Ex(0)|7 < &E(D) forany k€ Nand 0 € T,
taking into account (6) and Jensen’s inequality (see also [4, Exercise 4.9]), we deduce

) paq1/p
sup v (@) auwm@mql
o pla]H/P
sup{[ka(<u(Bk>w-1 o[ 8k<x>|8<x)wdu<x>) ‘ } ©)
k=1 T

g-1 1/q
M7 sup [sup((L)];Gk(x)lﬁ(x)lqdy(x)) ]

131l

IN

IA

keN

IN

1/q
M sup [((L)ﬁ|5(x)|qdﬂ(x)) ] = M |3l z1x),

where M is as in (4). Now, let 1 < p < oo and g = co. We have

(o)

v 1/p
ISl = Sup{ZVk () L 8k<x)8<x)du<x>} }
k=1
< sup[(u(By)Y - ess sup|IP1P < M- |10 (10)

The proof of the case p = o is analogous to that of the case 1 < p < co. Therefore, I € KS”(X), and the
embeddings in (9) and (10) are continuous. [J

From the Theorem 3.5, we can observe that the Kuelbs-Steadman spaces K'S"(X) are completion of £7(X)
also. The following theorem shows that C(X) in simply C(X) is dense in KS'(X).

Theorem 3.6. C(X) is dense in KS'(X) or KS'(X) is a completion of C(X).

Proof. Let M,N, and O are subspaces of C(X), LF(X) and KS”(X) respectively. If possible let C(X) is not
dense in KS”(X). Then for some J € O, we know J ¢ M. Since C(X) is dense in £F(X) so 1\_£= N and N is
isometric with M in the sense that there is a bijective isometry from M — N.So, 3 € N. Since M is closed and

M = N then N must be closed so N = N, and again we know J ¢ N. Thus N # M as J € M a contradiction.
So C(X) is dense in KSP(X). O

Proposition 3.7. The space of all Z-simple functions is dense in KSP(X).
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Proof. Since KS”(X) is the completion of £!(X) with respect to || £1(X) SO, L'(X) is dense in KS"(X) with
respect to ||.|| z1(x). Consequently, L1(X) is dense in KSP(X) with respect to ||.||x. So, for arbitrarily € > 0 and
J € KS'(X), there is b € L1(X),

b = Bl 1) < Ml
and
€
lIb— 3k < Ml

Indeed, in correspondence with € and b we find a X-simple function sy with

€
sg—J <—.
llss = 3l o) Ml
Now using [|.|[x < Ml|.|| z1(x), we have

llss = Jllx < llsg = bllx + [Ib — Jllx
< Mllsg = bll g1y + 11D = Tl
Me €

M+l Myl €

Hence, L-simple functions are dense in KS/(X). O
Theorem 3.8. The separability of the space KSP(X) is established for 1 < p < oo,

Proof. The proof is similar to [3, Proposition 3.8]. O

The following theorem shows that KS”(X) contains Henstock-Kurzweil integrable functions.
Theorem 3.9. Let J be a vector-valued Henstock-Kuzweil integrable function. Then 3 € KSP(X).

Proof. Let 3 be a vector-valued Henstock-Kurzweil integrable function. From (8) for every p with1 < p < oo
we have

( g{ Vkl(L) j; Er(x) I (x)du(x)

1

P\p
) <sup
keN

(L) f¢ &) I ()Au()

(Henstock-Kurzweil sense)

| &saueo
A

= sup
keN

= sup
kelN

< sup
Aex

(Henstock-Kurzweil sense)

JRE
By

REZE
A

(Henstock-Kurzweil sense)

= |3l

Hence J in KS/(X). O

3.1. Measure of noncompactness on KSP(X)
We start this section with the following proposition.

Proposition 3.10. Let K be a bounded set in KS"(X) with 1 < p < oo. The closure of K in KS'(X) is compact
if and only if%ir% I3 (x + h) — I@)llk = 0 uniformly in I(x) € K. Consequently for € > O there is a bounded and

measurable subset QO C X such that ||3(x)|lkx\q) < €Y I(x) € K.
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Proof. The proof is similar to [4, Theorem 4.26] so we have ommitted. [

It is well known that KS”(X) are completion of LF(X). We called Hausdorff measure of noncompactness
on KSP(X) as follows:

Definition 3.11. For any bounded subset K of KS'(X), Haussdorff measure of non-compactness of K is
a(K) = inf {e > 0: K can be covered with a finite number of sets of diameter smaller than e}.

Let Mk, Ms are denote the family of all relatively compact and non-empty subset of XS’ and subfamily
consisting of all relatively compact sets respectively.

Proposition 3.12. Let a : Mg — [0, 00) be a function. If

1. a(F) = 0 if and only if F is relatively compact set of KS' (X).
2. IfPl C F, then a(F1) < O((Fz).
3. (X(Pl U Fz) = max(oc(Fl), a(Fz))

then (F,) is a sequence of closed sets belonging to Mg with F,, > Fy11, n = 1,2,... and lim a(F,) = 0 so that
n—o0

Fe = () Fy is nonempty.
n=1

Proof. Proof is similar to [2, Lemma 2.1]. O

We are ready to give axiomatic definition of measure of noncompactness on KS”(X) as below.

Definition 3.13. A family o : Mg — R* is called a measure of non-compactness in KS'(X) if it satisfies the

following conditions:

The family Ker(a) = {G € Mg : a(F) = 0} is non-empty and Ker(a) C Ms.

If G1 € Gy then a(Gy) < a(Gy).

a(G) = a(G) = a(ConvG).

a(AGy + (1= 1)G2) < Aa(Gy) + (1 - D(Gy), A € [0,1].

If (Gy) is a sequence of closed sets belonging to Mk with G, D Gu41, n = 1,2,... and lim a(G,) = 0 then
n—o0

AR

Go = [ Gy, is nonempty.
n=1

The proof of all axioms of the Definition (3.13) are below:
Let us consider J € £1([0, 0)) and G € Mk([0, =)). By employing Proposition 3.10, we define

G) =1 L 86 I 3(0))du(o
a(G) = limsup antuf (@36 + ) - 50))duo)] |

Letb, h e Fand A € [0,1]. Then for 3 = Ab + (1 — A)h we get

sup{ ki‘ el(L) fo &30+ - 3(0))du(d)

T

=1

L) fo ) [A(b(é )= b(@)) + (1~ (k@ +e) - h(é))]dy(é)'}

(o)

Ssup{an

k=1
< Aa(G) + (1 - )a(G) = a(G).

) Sk()\b(é) . A)h(é))dy(é)’} + sup { i -

k=1

L) fo ) Sk(/\b(é Te)+(1- A+ e))dy(é)’}
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So, a(convG) < a(G). Similarly we can find a(convG) > a(G). Hence a(convG) = a(G).
For a(G) = a(a) let us fix an arbitrary number 6 > 0. We can find e; >0, A >0and J,b € G such that

a(ﬁ)SSup{ mel@) f 8k(6) I@+e)— 8(6) dy(é)‘
k=1

+ sup { i Mk
k=1

for every € < €1 and A; > A. Let us consider {J,} and {b,} are sequences of elements from G converging in
the norm of £([0, 0)) to J and b respectively. Hence we can choose a positive integer ng such that n > ng
we have

(L) fA ) Sk(é)(b(é te) - b(6))dy(6)‘ + g

kf;ﬂk (L) fow ak(é)(sn(é) - f3(5'3))‘111(5) < g (11)
and
Y 6) b @) - b(é))dy(é) <2 (12)
Thusfk e1and 11 > 11y we obtain

a(X) < i
k=1

(o)

2

k=1
o o6 6
§+3+ +sup{217k

Ifn — 00, Ay = coand e — Owe get a(G) < a(G)+6. Since « is monotone so a(G) < a(G). Hence a(G) = a(G).
Criterion (5) follows from the Proposition 3.12. Remaining axioms are very straight.
The next theorem shows a Darbo type fixed point theorem in KS"(X).

Sk(é) FB+e)-IB) =T, +e)+ T (6) dy(é)‘

C60(3,0+0 - 9,0) dué)‘ Y o
k=1

D) f £:(0)(0®) - bu(0)) dy(é)\

(L) f E(O)(30 + ) - 30 o).

Theorem 3.14. Let K be a non empty closed convex subset of KS”X), F be a continuous map from K into itself. If
for some x € K, for every countable subset V of K assume that

V= conv({x}UF(V)) = Vs relatively compact. (13)
Then F has a fixed point.

Proof. Let Ky = {x}, and define K41 = conv({x} UFK, nK ) for n > 0. Also we consider the sequence

{Kulnen is increasing with respect to inclusion and the sets K, are relatively compact. Therefore, there
exists a sequence {V,,:ne of countable sets with %, NK =V, forall n € N. Let V = |J K. Now using the

n>0

fact that (7( ) o 18 increasing we have

V= U (](n+1

n>0

- conv({x} | JEIG 0K ))

n>0

= conv({x} U F(Vn ‘K)).
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So for the countable set V we have

V:UVH

n>0

= U(«n NK)

n>0
_ M({x} UF(V N 7())
- m({x} U F( L_JO(« N 7<)))

- m({x} U F(V)).

Using (13), V is compact. Since K'S”(X) is a separable Banach space, then there exists a finite dimensional
increasing sequence of subspaces (%K), such that K = |J K. We can find F has fixed point as immediate

n=1
consequence of Schauder’s fixed point theorem by employing Brouwer fixed point theorem. [

4. Existence of solution and differential inclusions in Kuelbs-Steadman spaces

In our observation, if solutions of retarded functional differential equation are in KS”(IR) may not be in
LP(R) but converse is always possible. We can understood this with the solution of the following retarded
functional differential equation that was taken by T. S. Chew et al. in [5]. Let w, § are non-negative real
numbers and ) is some real number. Let /i be some function defined on [y — w, y + w]. Forany 0 € [y, y + B,
the function 75 is defined as 7i5(6) = 71(0 + 0) where —w < 0 < 0. We consider 6 are functional involving 6.
Consider a retarded functional differential equation of the form

HOERU( (14)

initial function (0) = ¢(0), —r < 0 < 0 & ¢ is some specific function. The solution of (14) is equivalent to
solution of

hy=¢
H(©) = §(0) + [ ® (s, h)ds, & > 7.
It is noted that if there exists a solution 71(0) of (14) for 8 € [y, + B] then J(9, fi5) is in
KS' ([7/, Y+ ﬁ]). However J(0,73) may not be in L7 ([)/, Y+ ﬁ]). This can be easily seen if we consider
3(0,h5) =hs(-1)+F'(8), 00 <1,
where

2cim(L
F(é):{ gsgzié(z)), 0+0

For some function ¢ that is continuous on [-1, 1], (14) become
0'(0) = hs(—1) + F'(9)
=70 —-1)+ F(d)
with initial condition i(6) = ¢(0), -1 < 6 < 1. Since 0 € [0, 1] then 7'(0) = $(d — 1) + F'(9). So, h(d) =
foé ¢(s—1)ds+f06 F'(s)ds+¢(0). Clearly, F'(3) is not a Lebesgue integrable on [0, 1]. So, F/(3) ¢ £([0, 1]). Hence
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not in £7([0, 1]) but F’(d) is a Henstock-Kurzweil integrable on [0, 1]. By Theorem 3.9, F'(8) € KS'([0, 1]). In
this section, we demonstrate an existence theory for the problem (1) in KS”(X).

It is clear that two Henstock-Kurzweil integrable functions 31, 3, on [g, p] are in same equivalence class
if 31(0) = J,(0) a.e. in [g, p]. We denote HR[p, p], the space of equivalence classes of Henstock-Kurzweil
integrable functions on [g, p]. For D € ${[g, p], we defined norm on HR[p, p] as

IDllgs = sup [|D|| = sup |lp(O)llk
o€lo,p] O€lo,pl

where ¢(0) = fg 0 Y(s)ds for any ¢ € D. We consider ¢ be some function fixed in HR[-r,0], r > 0. We defined
Qr = {h € HR[-7,0] : I — Yllga < T} and R,; = I, X Q; where a, T are positive numbers.
Let 7, @ be non-negative real numbers, I, = [0,a]. Suppose that x be some function defined on [-7, a]. For

any 0 € 7, the function 75 is defined as x;(0) = x(t + 0), —r < 0 < 0. It is not restricted that 6 can not be a
function of 3. Let I : T, x C([1, 7], KS(X)) - C([1, 7], KS"(X)), and

'(8) = 3(3,715)
{ () = ¢(0) 15)
where —r < 0 < 0, ¢ is some specified function. We consider the problem
3
{ o) y $(0) + [y I(s,h)ds, € I, a5
0 =

where the integral is taken in the sense of Henstock-Kurzweil integrable.
We call a function /i is a solution of (15) with the initial function ¢ if for w > 0, #’(8) = J(0, is) for some
0€l,andfy=1.

Consider 72 be an auxiliary function of 1 on 74, 0 < 8 < a with /i(0) = 1(0) and

[ 1@, 5€0,p)
’“6)‘{ P(d), S (-r,0) °

We defined a bounded, closed and convex subset A(y), 1) of KS”(X) so thatA(y, 1) is also bounded, closed
and convex subset C(I w0, KSP (X )) as
A, ) = {7'1 € C(Z,, KS'(X)) : 1(0) = P(0), IIillk < T+ I1Y(O)llk, Tis € Qb}-

We fix (F;)(0) = Hp + f; S(S,’I"':s)ds, for® € 1, and i € A(¥, 1), the integral is taken in the sense of Henstock-
Kurzweil integrable.

Theorem 4.1. Let us consider that V represents a countable collection of functions that are integrable in the Henstock-
Kurzweil sense within the space KS”(X). Let

5
F:{f h(s)ds,er,teIw}
0

be equicontinuity, equiboundedness, and uniform ACG., on the interval 1 ,. Then

oc( fo t V(s)ds) < fo . o(V(s))ds, & € 1.,

whenever a(V(s)) < Y(s) for s € I, a.e., Y € LP(X), a denote the Hausdorff measure of noncompactness.
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Proof. Since KSP(X) is a separable Banach space, there exists an increasing sequence of subspaces (K;,) of

finite dimension, K = |J K, such that A = {Lm :m=1,2, } c K and

n=1
a(4) = lim lim d(u, 5G),
where A is a bounded countable set, d is distance in K. Consider 8 is a linear subspace of KS"(X). Then
0 d(h(é),R) is a measurable on 7, and
(17)

d(Aapr + Aapa, R) < hid(py, R) + Aad(p2, )
for A1, A2 20, p1,p2 € KSP(X). Since i is Henstock-Kurzweil integrable so for each € = % >0, m=1,2,..
there exists a positive function 0,, such thatif D = {(5 L [021,0]) : 1 <1< n} is a tagged partition of 7, which

is subordinate to 9,,, we have

n )
A(EN(O, —0—1) — fi(s)d
Zl‘ (€)@~ 3.1) fo (s)ds

<E.
K

or
<eg 0€l, xeV.

n 0
3 A0, 90, - 0-1) ~ [ (i), s
=1 0

So, d( Y X(E)©, - 6._1),3) < ¥ d((£), R)(® — 81). 1f m — oo we obtain,
=1 =1

d( f i h(s)ds,R) < f i d(1(s), R)ds, € T, x € V.
0 0

Let

) o]
f V(s)ds={ f i(s)ds : m = 1,2,...}.
0 0

Asd — d(hm(é), 7(;4) is measurable on 7, so, the function

8 = 0(®) = a(V(9) = lim Tim (dh,(3), %)

is measurable on 7. So v(0) < Y(0) a.e. where 1 € LF(X). Again, by (17)
3 3
d( f T (s)ds, 7() < f d(hm(s), Wn)ds.
0 0

Using monotone and dominated convergence theorems, we have
3

6 ——
( f hm(s)ds,%,)g lim Tim d(hm(s),%n)ds
0 0

n—00 m—0oo

6 —
< f lim limd(hm(s),‘](n)ds.
0

NnN—00 M—00

lim limd

n—00 m—00

So a( N V(s)ds) < [Pa(Vis)ds, 5e T, O
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Theorem 4.2. Let i represent a specific function within the space HR[—r,0]. For every continuous function
h: I, — KSP(X), the expression 3(8, lis) is Henstock-Kurzweil integrable in the space KS'(X). Furthermore, J
is defined as a Carathéodory function on the set R, for certain positive values and

a(f‘((ﬁ, Y)) < h(é,a(Y))for each bounded subset Y C C(Z’a,‘KS”(X)), (18)

h is classified as a Kamke function. Consider the family F = {Fh :he AQy, L)}, which is equicontinuous, equibounded,
and uniformly ACG. on the interval 1 ,,. Consequently, equation (15) possesses a solution on the interval 1 g for some
value of 0 < B <, with the initial function being 1.

Proof. As Fis equicontinuous, it follows that there exists a number f satisfying 0 < < a, and the subsequent
conditions hold.

0 T
l fo (s, Tis)ds||,, < for & € Iy, I (¥(0) - p())ds||, <k,

T d+s -
l I fo I(p, hp)dpds”K <landh € A, ).

Since,

o] . ) e
v+ |6 < ol +] [ 36 Tas,

= lpO||, + .
Again,
By = s | [ (Bu- v
o8 re(-r0) Il J-1 K
= o | L o wa-vole],

O+s

YO+ [ 5@ H)dp - (o) s

0

K

T
= sup f
te(-r,0) -1

(
= sup I ' (¢(0)—¢(s))ds+ f ' 06+53(p,'r€,,)dpds
(

7€(-r,0) T -1 K
T T O+s e
= sup f ¥(0) - ‘P(S)) + sup f I(p, hp)dpds
te(-r,0) -7 K 1e(-r0) —-7J0 K
<k+l=r1

Thus, Fj is appropriately defined, and the mapping A(y, f) into itself is also well defined. Consider a
countablebounded set V C A(y, ), withV = conv({h}UF (V)). To fulfill the requirements of (15), it is essential

to establish that V is relatively compact. Since F(V) is equicontinuous, the function 6 — v(6) = a(V(9)) is
continuous. Let

3 . t
{f J(s,ls)ds, s € V} = f J(s, Vs)ds where V, = {Es i s€ V} and
0 0

F(V(8)) = 1(0) + f hi(s,fi)ds, s € V.
0
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According to Theorem 4.1 and equation (18), we can conclude that
3
a(F(V(é))) - a(¢(0) ; f (s, Vs)ds)
0

< f: a(ﬁ(s, VS))ds
< f: (S, a(V(s)))ds

It can be established that V = conv({h} U F(V)). This leads to the conclusion that a(V(0)) < a(F(V(0))).
Therefore, we can express this as
t

o) = a(V(D) < fo h(s,a(V(s)))ds.

If v(0) = a(V(0)) = 0, then according to Arzela-Ascoli’s theorem (refer to [4, Theorem 4.25]), the function V
is relatively compact. Furthermore, by Theorem 3.14, it follows that F possesses a fixed point that serves as
a solution to equation (15). [

The next objective is to illustrate the existence of solutions associated with the differential inclusions.

1(8) € F(3, Fig)
(19)
1(0) = () € KS'(X)

where the function F : T, X KS(X) — 2% has a selection J(8, fi5) that is Henstock-Kurzweil integrable
forall7i € A(Y, 1). The set

{ f I(s, his)ds : T(s, his) € F(s, lis); I is a Henstock-Kurzweil integrable selection of the multifunction F}
0

is termed the Henstock-Kurzweil integral of the multifunction F on the interval 7,. The following theorem
give the existence solution of (19).

Theorem 4.3. Let F(s, fis) possess a Henstock-Kurzweil integrable selection 3 (s, Tis) for every hi € A(y, 1), where I
is a Carathéodory function. Define J; as follows:

6 —
]h(6)=¢(0)+£ F(s,Iis)ds for de I,

and I € A(Y, 1) with the condition that a(P(é, Y)) < h(8, a(Y)), where h is a Kamke function and Y € C([0, (]). If

the set | = {Jn : i € A(Y, 1)} is equi-continuous, equi-bounded, and uniformly ACG. on I, then a solution to the
inclusion (19) exists on Ig for some 0 < < 1.

Proof. With a similar technique of the proof of Theorem 4.2. It is easy to see that J satisfies all criterion of
the Theorem 4.2. Also we can find that every solution of (15) is a solution of (19) in KS(X). O

Example 4.1. Let p =0, v = 1, ¢ be some fixed function in HR[-1,0] and (¢, x) € Ry1. Suppose f(t,x) = x(-1).
Clearly f(t,x) is a Carathéodory function on Ryy. Let x € A(p, o) then

fltx) =x(-1) =x(t - 1)
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is a Henstock-Kurzweil integrable function on 1 ,. By Theorem 4.1, for some number p > 0 there exists a function \V
such that

Wi(t) = fx, W) =W(t-1)
on I with W = ¢. The existence of a solution of x'(t) = x(t — 1) can be established directly. Fort € I,

1
x(t) = ¢(0) + j(; x(s — 1)ds

t—1
=¢0) + j:l x(s)ds
t—1

=00+ | s

Since ¢ is Henstock-Kurzweil integrable on [1, T]. By Theorem 4.2 could have used here to establish solution existence.

Conclusions

This paper extends the theory of Kuelbs-Steadman spaces to include Banach-valued functions. We
propose a measure of noncompactness for the space XS’ (X) and examine various properties associated with
it. A Darbo-type fixed point theorem is formulated within the framework of KS”(X), integrating the notion
of noncompactness measure. Furthermore, we explore the existence of solutions to Cauchy’s problem in
the context of KS”(X), utilizing the newly established fixed point theorem alongside Kuratowski’s measure
of noncompactness.
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