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Existence theorem for the Cauchy’s problem on Kuelbs-Steadman
spaces of vector-valued functions

Hemanta Kalitaa

aMathematics division, SASL, VIT-Bhopal University, Bhopal- Indore Highway, Sehore, Madhya Pradesh, India

Abstract. We present Kuelbs-Steadman spaces designed for vector-valued functions that take values in
Banach spaces. Our study focuses on their fundamental properties and their embeddings withinLp spaces.
Additionally, we introduce a fixed point theorem based on the concept of a measure of noncompactness
in KSp(X). Furthermore, we demonstrate the existence theorem for Cauchy’s problem defined by ℏ′(ð) =
ℑ(ð, ℏð) and the inclusion ℏ′ ∈ ℑ(ð, ℏð) in KSp(X), where ℑ is a Henstock-Kurzweil integrable function.

1. Introduction

Recent research has increasingly focused on Kuelbs-Steadman spaces, or KSp spaces for short. The
motivation for examining these spaces arises from the concept that L1 spaces can be interpreted as includ-
ing Henstock-Kurzweil integrable functions within a broader Hilbert space that has a lesser norm. For
additional information on Henstock-Kurzweil integrals, see [11]. This enables the development of several
applications to Functional Analysis and other areas of mathematics, including those involving Gaussian
measures (see also [19]), convolution operators, Fourier transformations, the Feynman integral, quantum
physics, differential equations, and Markov chains (see also [3, 9, 10, 16]). By using Kuelbs-Steadman
spaces in place of the more traditionalLp spaces, this method also enables the development of a functional
analysis theory that incorporates Sobolev-type spaces. H. Kalita et al. [15] introduced a BMO type spaces
with Kelbs-Steadman spaces of essentially bounded locally Henstock-Kurzweil integrable functions. Im-
portantly, classical BMO spaces has been seen as a dense subspace of their BMO spaces with continuous
embeddings. In a initiation towards Harmonic analysis, H. Kalita [14] discussed Kuelbs-Steadman spaces
with bounded variable exponents. It is observed that Kuels-Steadman spaces can defined by employing
weighted lp norms, is equivalence of the norm defined by T. L. Gill et al. of their construction (see [10]).
A. Boccuto et al. [3] discussed Kuelbs-Steadman spaces with Banach valued measures. Banach lattice
properties, separability ofKSp were observed in their work.

It is well known that Kuratowski introduced the idea of measure of noncompactness. Followed by
Kuratowski J. Banaś et al. (see [1, 2]) provided the axiomatic definition of measure of noncompactness is an
important tool to show the existence of solutions of ordinary and functional differential equations in Banach
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spaces. G. Darbo [6] presented a fixed point theorem for first time by employing the idea of measure of
noncompactness of Kuratowski. Various fixed point theory and measure of noncompactness(MNC) have
many applications in solving different types of integral and differential equations which we come across in
different real life situations. One can see [12, 13, 22, 27] and references their in for related literature of these.

The work of [5] motivated us to investigate the existence of solution of ℏ′ = ℑ(ð, ℏð) and inclusion
ℏ′ ∈ ℑ(ð, ℏð) inKSp(X).

Our article structured as follows: In Section 2, the basic concepts and terminology are intro- duced
together with some definitions and results. In Section 3, we introduce Banach-valued Kuelbs-Steadman
spaces. Several fundamental properties of KSp(X) are discussed in this section. Followed by above, we
introcuce measure of noncompactness in KSp(X) and a fixed point theorem supported by measure of
noncompactness ofKSp(X). In Section 4, we discuss the existence of solution of the differential equation,

ℏ′(ð) = ℑ(ð, ℏð)
ℏ(θ) = ϕ(θ) (1)

in KSp(X),where the multi function F : Iα×KS
p(X)→ 2KS

p(X) has a selectionℑ(ð, ℏð) Henstock-Kurzweil
integrable for each ℏ ∈ A(ϕ, ι) is discussed. One can see [23] for details of A(ϕ, ι).

2. Preliminaries

Throughout the article let T , ∅ be an abstract set, P(T ) be the class of all subsets of T , Σ ⊂ P(T ) be
a σ-algebra, X be a Banach space and X′ be its topological dual. For each A ∈ Σ, let us denote by χA the
characteristic function of A, defined by

χA(t) =


1 if ð ∈ A,

0 if ð ∈ T \ A.

We denote a closed and convex subset E of X as conv(E). Recalling Hausdorffmeasure of noncompactness
as follows:

Definition 2.1. [1] For any bounded subset A of X, Haussdorff measure of non-compactness of A is

α(A) = inf
{
ϵ > 0 : A can be covered with a finite number of sets of diameter smaller than ϵ

}
.

Theorem 2.2. [21, Theorem 2.1] Let X be a Banach space. E ⊂ X is closed and convex. Suppose f : E → E is
continuous and for some x ∈ E, the following are holds

for some x ∈ E, C ⊂ E, countable, C = conv({x} ∪ ℑ(C)) implies C is relatively compact.

Then ℑ has a fixed point in E.

Definition 2.3. [17, Definition 1.1] Let X, Y be topological spaces on a finite measure space (T ,Σ, µ). A function
ℑ : T × X → Y is a Carathéodory function if

1. ℑ(.,u) is a measurable for each n;
2. ℑ(ð, .) is continuous for each ð.

Definition 2.4. [23] A non-negative real-valued function (ð, r) 7−→ h(ð, r) defined on I×R+ is a Kamke function if
h satisfies the Carathéodory condition, h(ð, 0) = 0 and the function identically equal to zero is the unique continuous
solution u(ð) =

∫ ð
0 h(s,us)ds for ð ∈ Iα = [0, ι] satisfying u(0) = 0, where us(ð) = u(ð + s).

Recalling Banach-valued Henstock-Kurzweil integrable function as follows.
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Definition 2.5. ([20, Definition 2.1] or [26, Definition 3.2.1]) A function ℑ : [ι, τ]→ X is Henstock-Kurzweil
integrable on [ι, τ] if there exists a vector z ∈ X with the following property: for each ϵ > 0 there exists a
positive function δ on [ι, τ] such that ∥∥∥S(ℑ,D) − z

∥∥∥
X
< ϵ

whenever D is sub δ-on [ι, τ].

Theorem 2.6. [26, Theorem 7.3.10] If the function F : [ι, τ] → X is differentiable on [ι, τ] with F′(ð) = ℑ(ð) for
ð ∈ [ι, τ] then ℑ : [ι, τ]→ X is Henstock-Kurzweil integrable and

∫ τ
ι
ℑ =

∫ τ
ι

F′ = F(τ) − F(ι).

Definition 2.7. [26, Definition 7.1.5]

1. Let F : [ι, τ]→ R and E be a subset of [ι, τ]. The function F is called absolutely continuous (AC or AC∗) on E
if for each ϵ > 0 there esists ν > 0 such that

∑
p
|F(ρi) − F(ϱp)| < ϵ whenever {[ϱp, ρp]} is a finite sequence of non

overlapping intervals that have end points in E and satisfy
∑
p
(ρp − ϱp) < ν.

2. The function F is ACG (or ACG∗) on E if F is continuous on E and E can be expressed as a countable union of
sets on each of which F is AC (or AC∗).

Definition 2.8. [26, Definition 7.2.2] A function F : [ι, τ]→ X is ACG∗ on E ⊂ [ι, τ] if F is continuous on E and if
E can be expressed as a countable union of closed sets on each of which F is AC∗.

Lemma 2.9. [20, Theorem 2.2] (Saks-Henstock’s Lemma) If ℑ is real valued and Henstock-Kurzweil inte-
grable on [ι, τ] with primitive F, then for every ϵ > 0 there is a function δ(.) > 0 such that for any δ-fine
division D =

{
[ϱ, ρ], ξ

}
of [ι, τ], then

∥∥∥∑
D
ℑ(ξ)(ρ − ϱ) − F([ϱ, ρ])

∥∥∥
X
< ϵ.

We can find a corollary of [26, Theorem 7.6. 12] and [26, Theorem 7.6. 16] as follows:

Theorem 2.10. Let ℑn : [ι, τ]→ X, n = 1, 2, ... is a sequence of Henstock-Kurzweil integrable functions satisfying
the following conditions

1. lim
n→∞
ℑn(ð) = ℑ(ð), ð ∈ [ι, τ].

2. Let the set Fn, {Fn(x)} where Fn(x) =
∫ x

ι
fn(s)ds is uniformly AGC∗ in n.

3. The primitives Fn are equi-continuous on [ι, τ] then ℑ is Henstock-Kurzweil integrable on [ι, τ] and
∫ x

ι
ℑn →∫ x

ι
ℑ uniformly on [ι, τ] as n→∞.

3. Banach valued Kuelbs-Steadman spaces

In this section, we extend the theory of Kuelbs-Steadman spaces on an arbitrary Banach space. We start
our construction with the following remark.

Remark 3.1. One should take into account that ∥µ∥(A) < +∞ holds true for all sets A belonging to Σ, as
indicated in [7, Corollary 1.19].

The completion of Σwith respect to ∥µ∥ is defined by

Σ̃ = {A = B ∪N : B ∈ Σ,N ⊂M ∈ Σwith ∥µ∥(M) = 0}. (2)

A function ℑ : T → R is said to be µ-measurable if

ℑ
−1(B) ∩ {ð ∈ T : ℑ(ð) , 0} ∈ Σ̃

for each Borel subset B ⊂ R. We say that µ is Σ-separable (or separable) if there is a countable family B = (Bk)k
in Σ such that, for each A ∈ Σ and ε > 0, there is k0 ∈N such that

∥µ∥(A∆Bk0 ) ≤ ε (3)
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(see also [24]). Such a family B is said to be µ-dense.
It is important to note that the measure µ is considered Σ-separable if and only if the σ-algebra Σ is

defined as µ-essentially countably generated. This implies the presence of a countably generated σ-algebra
Σ0 that is a subset of Σ, such that for every element A in Σ, there exists an element B in Σ0 for which
the condition µ(A∆B) = 0 holds. The separability of µ can be exemplified in cases where T is a separable
metrizable space, Σ represents the Borel σ-algebra of the Borel subsets of T, and µ is a Radon measure (refer
to [4, Theorem 4.13], [8, Theorem 1.0], [18, §1.3 and §2.6], [24, Propositions 1A and 3]).

Henceforth, we will consider that µ is separable, and let B = (Bk)k denote a µ-dense family within the
σ-algebra Σ and

∥µ∥(Bk) ≤M = ∥µ∥(T ) + 1 for all k ∈N. (4)

We begin with giving the following technical results, which will be useful later.

Proposition 3.2. [3] Let us define two sequences of non-negative real numbers, (ak)k and (ηk)k, with the condition
that a = sup

k
ak < +∞,

∞∑
k=1

ηk = 1, (5)

assume that p > 0 is a designated positive real number. Then, ∞∑
k=1

ηk ap
k


1/p

≤ a. (6)

Proposition 3.3. [3] Let (bk)k, (ck)k be two sequences of real numbers, (ηk)k be a sequence of positive real numbers,
satisfying (5), and p ≥ 1 be a fixed real number. Then, ∞∑

k=1

ηk|bk + ck|
p


1/p

≤

 ∞∑
k=1

ηk(|bk| + |ck|)p


1/p

≤

 ∞∑
k=1

ηk|bk|
p


1/p

+

 ∞∑
k=1

ηk|ck|
p


1/p

.

Let B = (Bk)k be as in (4), set Ek = χBk , k ∈N.

For 1 ≤ p ≤ ∞, let us define a norm on L1[µ] by setting

∥ℑ∥KSp(X) =


sup


 ∞∑

k=1

ηk

∣∣∣∣∣(L)
∫
T

Ek(x)ℑ(x)dµ(x)
∣∣∣∣∣p


1/p
 if 1 ≤ p < ∞,

sup
[
sup
k∈N

∣∣∣∣∣(L)
∫
T

Ek(x)ℑ(x)dµ(x)
∣∣∣∣∣] if p = ∞.

(7)

One can easily check that the expression (7) form a norm. For 1 ≤ p ≤ ∞, the Kuelbs-Steadman space
KS

p(X) (respectively KSp
w(X)) is the completion of L1(X) (respectively L1

w(X)) with respect to the norm
defined in (7). For simplicity now onwards we will denote norm ofKSp(X) as ||.||K.

Proposition 3.4. For any ℑ ∈ L1(X) and p ≥ 1, it is ||ℑ||K ≤ ||ℑ||KS∞(X).

Proof. From (6) used with ak =

∣∣∣∣∣(L)
∫
T
Ek(x)ℑ(x)dµ(x)

∣∣∣∣∣ we have

( ∞∑
k=1

νk

∣∣∣(L)
∫
T

Ek(x)ℑ(x)dµ(x)
∣∣∣∣∣p) 1

p

≤ sup
k∈N

∣∣∣∣∣(L)
∫
T

Ek(x)ℑ(x)dµ(x)
∣∣∣∣∣. (8)
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Taking the supremum, we obtain,

||ℑ||K = sup
{( ∞∑

k=1

νk

∣∣∣∣∣(L)
∫
T

Ek(x)ℑ(x)dµ(x)
∣∣∣∣∣p) 1

p
}

≤ sup
(

sup
k∈N

∣∣∣∣∣(L)
∫
T

Ek(x)ℑ(x)dµ(x)
∣∣∣∣∣)

= ||ℑ||KS∞(X).

SinceKSp(X) is the completion of Lp(X), the following results holds:

Theorem 3.5. For every q, 1 ≤ q ≤ ∞, the Lebesgue spaceLq(X) is dense continuous embedding subset ofKSp(X).

Proof. Let us consider 1 ≤ p < ∞. Suppose ℑ ∈ Lq(X), 1 ≤ q < ∞, along with M ≥ 1. Considering M as in

(4). since M ≥ 1, it gives M
q−1

q ≤ M. As |Ek(ð)| = Ek(ð) ≤ 1 and |Ek(ð)|q ≤ Ek(ð) for any k ∈ N and ð ∈ T ,
taking into account (6) and Jensen’s inequality (see also [4, Exercise 4.9]), we deduce

∥ℑ∥K = sup


 ∞∑

k=1

νk

∣∣∣∣∣(L)
∫
T

Ek(x)ℑ(x)dµ(x)
∣∣∣∣∣ pq

q


1/p


≤ sup


 ∞∑

k=1

νk

(
(µ(Bk))q−1

· (L)
∫
T

Ek(x)|ℑ(x)|qdµ(x)
)p/q


1/p

 (9)

≤ M
q−1

q sup

sup
k∈N

(
(L)

∫
T

Ek(x)|ℑ(x)|qdµ(x)
)1/q

≤ M sup

((L)
∫

T
|ℑ(x)|qdµ(x)

)1/q =M ∥ℑ∥Lq(X),

where M is as in (4). Now, let 1 ≤ p < ∞ and q = ∞. We have

∥ℑ∥K = sup


 ∞∑

k=1

νk

∣∣∣∣∣(L)
∫
T

Ek(x)ℑ(x)dµ(x)
∣∣∣∣∣p


1/p


≤ sup[(µ(Bk))p
· ess sup|ℑ|p]1/p

≤M · ∥ℑ∥L∞(X). (10)

The proof of the case p = ∞ is analogous to that of the case 1 ≤ p < ∞. Therefore, ℑ ∈ KSp(X), and the
embeddings in (9) and (10) are continuous.

From the Theorem 3.5, we can observe that the Kuelbs-Steadman spaces KSp(X) are completion of Lp(X)
also. The following theorem shows that C(X) in simply C(X) is dense inKSp(X).

Theorem 3.6. C(X) is dense inKSp(X) orKSp(X) is a completion of C(X).

Proof. Let M,N, and O are subspaces of C(X), Lp(X) and KSp(X) respectively. If possible let C(X) is not
dense in KSp(X). Then for some ℑ ∈ O, we know ℑ < M. Since C(X) is dense in Lp(X) so M = N and N is
isometric with M in the sense that there is a bijective isometry from M→ N. So,ℑ ∈ N. Since M is closed and
M = N then N must be closed so N = N, and again we know ℑ < N. Thus N ,M as ℑ ∈M a contradiction.
So C(X) is dense in KSp(X).

Proposition 3.7. The space of all Σ-simple functions is dense inKSp(X).
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Proof. Since KSp(X) is the completion of L1(X) with respect to ∥.∥L1(X) so, L1(X) is dense in KSp(X) with
respect to ∥.∥L1(X). Consequently, L1(X) is dense inKSp(X) with respect to ∥.∥K. So, for arbitrarily ϵ > 0 and
ℑ ∈ KS

p(X), there is ♭ ∈ L1(X),

||♭ − ℑ||L1(X) <
ϵ

M + 1
and

||♭ − ℑ||K <
ϵ

M + 1
.

Indeed, in correspondence with ϵ and ♭ we find a Σ-simple function sℑ with

||sℑ − ℑ||L1(X) <
ϵ

M + 1
.

Now using ||.||K ≤M||.||L1(X), we have

||sℑ − ℑ||K ≤ ||sℑ − ♭||K + ||♭ − ℑ||K
≤M||sℑ − ♭||L1(X) + ||♭ − ℑ||K

<
Mϵ

M + 1
+

ϵ
M + 1

= ϵ.

Hence, Σ-simple functions are dense inKSp(X).

Theorem 3.8. The separability of the spaceKSp(X) is established for 1 ≤ p ≤ ∞.

Proof. The proof is similar to [3, Proposition 3.8].

The following theorem shows thatKSp(X) contains Henstock-Kurzweil integrable functions.

Theorem 3.9. Let ℑ be a vector-valued Henstock-Kuzweil integrable function. Then ℑ ∈ KSp(X).

Proof. Letℑ be a vector-valued Henstock-Kurzweil integrable function. From (8) for every p with 1 ≤ p < ∞
we have( ∞∑

k=1

νk

∣∣∣(L)
∫
T

Ek(x)ℑ(x)dµ(x)
∣∣∣∣∣p) 1

p

≤ sup
k∈N

∣∣∣∣∣(L)
∫
T

Ek(x)ℑ(x)dµ(x)
∣∣∣∣∣

= sup
k∈N

∣∣∣∣∣ ∫
T

Ek(x)ℑ(x)dµ(x)
∣∣∣∣∣ (Henstock-Kurzweil sense)

= sup
k∈N

∣∣∣∣∣ ∫
Bk

ℑ(x)dµ(x)
∣∣∣∣∣ (Henstock-Kurzweil sense)

≤ sup
A∈Σ

∣∣∣∣∣ ∫
A
ℑ(x)dµ(x)

∣∣∣∣∣ (Henstock-Kurzweil sense)

= ||ℑ||HK.

Hence ℑ inKSp(X).

3.1. Measure of noncompactness on KSp(X)
We start this section with the following proposition.

Proposition 3.10. Let K be a bounded set in KSp(X) with 1 ≤ p < ∞. The closure of K in KSp(X) is compact
if and only if lim

h→0
||ℑ(x + h) − ℑ(x)||K = 0 uniformly in ℑ(x) ∈ K . Consequently for ϵ > 0 there is a bounded and

measurable subset Ω ⊂ X such that ||ℑ(x)||K(X\Ω) < ϵ ∀ ℑ(x) ∈ K .
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Proof. The proof is similar to [4, Theorem 4.26] so we have ommitted.

It is well known that KSp(X) are completion of Lp(X). We called Hausdorff measure of noncompactness
onKSp(X) as follows:

Definition 3.11. For any bounded subsetK ofKSp(X), Haussdorff measure of non-compactness ofK is

α(K ) = inf
{
ϵ > 0 : K can be covered with a finite number of sets of diameter smaller than ϵ

}
.

Let MK, MS are denote the family of all relatively compact and non-empty subset of KSp and subfamily
consisting of all relatively compact sets respectively.

Proposition 3.12. Let α : MK → [0,∞) be a function. If

1. α(F) = 0 if and only if F is relatively compact set ofKSp(X).
2. If F1 ⊂ F2 then α(F1) ≤ α(F2).
3. α(F1 ∪ F2) = max(α(F1), α(F2)).

then (Fn) is a sequence of closed sets belonging to MK with Fn ⊃ Fn+1, n = 1, 2, ... and lim
n→∞

α(Fn) = 0 so that

F∞ =
∞⋂

n=1
Fn is nonempty.

Proof. Proof is similar to [2, Lemma 2.1].

We are ready to give axiomatic definition of measure of noncompactness onKSp(X) as below.

Definition 3.13. A family α : MK → R+ is called a measure of non-compactness in KSp(X) if it satisfies the
following conditions:

1. The family Ker(α) =
{
G ∈MK : α(F) = 0

}
is non-empty and Ker(α) ⊂MS.

2. If G1 ⊂ G2 then α(G1) ≤ α(G2).
3. α(G) = α(G) = α(ConvG).
4. α

(
λG1 + (1 − λ)G2

)
≤ λα(G1) + (1 − λ)α(G2), λ ∈ [0, 1].

5. If (Gn) is a sequence of closed sets belonging to MK with Gn ⊃ Gn+1, n = 1, 2, ... and lim
n→∞

α(Gn) = 0 then

G∞ =
∞⋂

n=1
Gn is nonempty.

The proof of all axioms of the Definition (3.13) are below:
Let us consider ℑ ∈ L1([0,∞)) and G ∈MK([0,∞)). By employing Proposition 3.10, we define

α(G) = lim
ϵ→0

sup
ℑ∈G

{ ∞∑
k=1

ηk

∣∣∣(L)
∫
∞

0
Ek(ð)

(
ℑ(ð + ϵ) − ℑ(ð)

)
dµ(ð)

∣∣∣}.
Let ♭, h ∈ F and λ ∈ [0, 1]. Then for ℑ = λ♭ + (1 − λ)h we get

sup
{ ∞∑

k=1

ηk

∣∣∣(L)
∫
∞

0
Ek

(
ℑ(ð + ϵ) − ℑ(ð)

)
dµ(ð)

∣∣∣}
= sup

{ ∞∑
k=1

ηk

∣∣∣∣∣(L)
∫
∞

0

[
λ
(
♭(ð + ϵ) − ♭(ð)

)
+ (1 − λ)

(
h(ð + ϵ) − h(ð)

)]
dµ(ð)

∣∣∣∣∣}
≤ sup

{ ∞∑
k=1

ηk

∣∣∣∣∣(L)
∫
∞

0
Ek

(
λ♭(ð) + (1 − λ)h(ð)

)
dµ(ð)

∣∣∣∣∣} + sup
{ ∞∑

k=1

ηk

∣∣∣∣∣(L)
∫
∞

0
Ek

(
λ♭(ð + ϵ) + (1 − λ)h(ð + ϵ)

)
dµ(ð)

∣∣∣∣∣}
≤ λα(G) + (1 − λ)α(G) = α(G).
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So, α(convG) ≤ α(G). Similarly we can find α(convG) ≥ α(G). Hence α(convG) = α(G).
For α(G) = α(G), let us fix an arbitrary number δ > 0. We can find ϵ1 > 0, A > 0 and ℑ, ♭ ∈ G such that

α(F) ≤ sup
{ ∞∑

k=1

ηk

∣∣∣∣∣(L)
∫
∞

0
Ek(ð)

(
ℑ(ð + ϵ) − ℑ(ð)

)
dµ(ð)

∣∣∣∣∣
+ sup

{ ∞∑
k=1

ηk

∣∣∣∣∣(L)
∫
∞

A1

Ek(ð)
(
♭(ð + ϵ) − ♭(ð)

)
dµ(ð)

∣∣∣∣∣ + δ3
for every ϵ < ϵ1 and A1 > A. Let us consider {ℑn} and {♭n} are sequences of elements from G converging in
the norm of L1([0,∞)) to ℑ and ♭ respectively. Hence we can choose a positive integer n0 such that n ≥ n0
we have

∞∑
k=1

ηk

∣∣∣∣∣(L)
∫
∞

0
Ek(ð)

(
ℑn(ð) − ℑ(ð)

)
dµ(ð)

∣∣∣∣∣ ≤ δ3 , (11)

and
∞∑

k=1

ηk

∣∣∣∣∣(L)
∫
∞

0
Ek(ð)

(
♭n(ð) − ♭(ð)

)
dµ(ð)

∣∣∣∣∣ ≤ δ3 . (12)

Thus for ϵ ≤ ϵ1 and n ≥ n0 we obtain

α(X) ≤
∞∑

k=1

ηk

∣∣∣∣∣(L)
∫
∞

0
Ek(ð)

(
ℑ(ð + ϵ) − ℑ(ð) − ℑn(ð + ϵ) + ℑn(ð)

)
dµ(ð)

∣∣∣∣∣
+

∞∑
k=1

ηk

∣∣∣∣∣(L)
∫
∞

0
Ek(ð)

(
ℑn(ð + ϵ) − ℑn(ð)

)
dµ(ð)

∣∣∣∣∣ + ∞∑
k=1

ηk

∣∣∣∣∣(L)
∫
∞

0
Ek(ð)

(
♭(ð) − ♭n(ð)

)
dµ(ð)

∣∣∣∣∣
≤
δ
3
+
δ
3
+
δ
3
+ sup

{ ∞∑
k=1

ηk

∣∣∣∣∣(L)
∫
∞

0
Ek(ð)

(
ℑ(ð + ϵ) − ℑ(ð)

)
dµ(ð)

∣∣∣∣∣}.
If n→∞, A1 →∞ and ϵ→ 0 we get α(G) ≤ α(G)+δ. Since α is monotone so α(G) ≤ α(G).Hence α(G) = α(G).
Criterion (5) follows from the Proposition 3.12. Remaining axioms are very straight.

The next theorem shows a Darbo type fixed point theorem inKSp(X).

Theorem 3.14. LetK be a non empty closed convex subset ofKSp
X), F be a continuous map fromK into itself. If

for some x ∈ K , for every countable subset V ofK assume that

V = conv
(
{x}

⋃
F(V)

)
=⇒ V is relatively compact. (13)

Then F has a fixed point.

Proof. Let K0 = {x}, and define Kn+1 = conv
(
{x}

⋃
F(Kn ∩ K

)
for n ≥ 0. Also we consider the sequence

{Kn}n∈N is increasing with respect to inclusion and the sets Kn are relatively compact. Therefore, there
exists a sequence

{
Vn

}
n∈N

of countable sets with Kn ∩K = Vn for all n ∈ N. Let V =
⋃
n≥0
Kn. Now using the

fact that
(
Kn

)
n∈N

is increasing we have

V =
⋃
n≥0

Kn+1

=
⋃
n≥0

conv
(
{x}

⋃
F(Kn ∩K )

)
= conv

(
{x}

⋃
F(V ∩K )

)
.
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So for the countable set V we have

V =
⋃
n≥0

Vn

=
⋃
n≥0

(Kn ∩K )

= conv
(
{x} ∪ F(V ∩K )

)
= conv

(
{x} ∪ F

(⋃
n≥0

(Kn ∩K )
))

= conv
(
{x} ∪ F(V)

)
.

Using (13), V is compact. Since KSp(X) is a separable Banach space, then there exists a finite dimensional

increasing sequence of subspaces (Kn), such that K =
∞⋃

n=1
Kn. We can find F has fixed point as immediate

consequence of Schauder’s fixed point theorem by employing Brouwer fixed point theorem.

4. Existence of solution and differential inclusions in Kuelbs-Steadman spaces

In our observation, if solutions of retarded functional differential equation are inKSp(R) may not be in
L

p(R) but converse is always possible. We can understood this with the solution of the following retarded
functional differential equation that was taken by T. S. Chew et al. in [5]. Let ω, β are non-negative real
numbers and γ is some real number. Let ℏ be some function defined on [γ−ω, γ+ω]. For any ð ∈ [γ, γ+ β],
the function ℏð is defined as ℏð(θ) = ℏ(ð + θ) where −ω ≤ θ ≤ 0. We consider θ are functional involving ð.
Consider a retarded functional differential equation of the form

ℏ′(ð) = ℑ(ð, ℏð) (14)

initial function ℏ(θ) = ϕ(θ), −r ≤ θ ≤ 0 & ϕ is some specific function. The solution of (14) is equivalent to
solution of

ℏγ = ϕ

ℏ(ð) = ϕ(0) +
∫ ð
γ
ℑ(s, ℏs)ds, ð ≥ γ.

It is noted that if there exists a solution ℏ(ð) of (14) for ð ∈ [γ, γ + β] then ℑ(ð, ℏð) is in
KS

p
(
[γ, γ + β]

)
. However ℑ(ð, ℏð) may not be in Lp

(
[γ, γ + β]

)
. This can be easily seen if we consider

ℑ(ð, ℏð) = ℏð(−1) + F′(ð), 0 ≤ ð ≤ 1,

where

F(ð) =
{
ð2sin( 1

ð2 ), ð , 0
0, ð = 0

For some function ϕ that is continuous on [−1, 1], (14) become

ð′(ð) = ℏð(−1) + F′(ð)
= ℏ(ð − 1) + F′(ð)

with initial condition ℏ(θ) = ϕ(0), −1 ≤ θ ≤ 1. Since ð ∈ [0, 1] then ℏ′(ð) = ϕ(ð − 1) + F′(ð). So, ℏ(ð) =∫ ð
0 ϕ(s−1)ds+

∫ ð
0 F′(s)ds+ϕ(0).Clearly, F′(ð) is not a Lebesgue integrable on [0, 1]. So, F′(ð) < L1([0, 1]).Hence
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not inLp([0, 1]) but F′(ð) is a Henstock-Kurzweil integrable on [0, 1]. By Theorem 3.9, F′(ð) ∈ KSp([0, 1]). In
this section, we demonstrate an existence theory for the problem (1) inKSp(X).

It is clear that two Henstock-Kurzweil integrable functionsℑ1, ℑ2 on [ϱ, ρ] are in same equivalence class
if ℑ1(ð) = ℑ2(ð) a.e. in [ϱ, ρ]. We denote HK[ϱ, ρ], the space of equivalence classes of Henstock-Kurzweil
integrable functions on [ϱ, ρ]. ForD ∈ HK[ϱ, ρ], we defined norm on HK[ϱ, ρ] as

||D||HK = sup
ð∈[ϱ,ρ]

||D|| = sup
ð∈[ϱ,ρ]

||ϕ(ð)||K

where ϕ(ð) =
∫ ð
ϱ
ψ(s)ds for any ψ ∈ D.We consider ψ be some function fixed in HK[−r, 0], r > 0.We defined

ατ =
{
ℏ ∈ HK[−r, 0] : ||ℏ − ψ||HK ≤ τ

}
and Rωτ = Iα ×Ωτ where α, τ are positive numbers.

Let τ, α be non-negative real numbers, Iω = [0, a]. Suppose that x be some function defined on [−τ, α]. For
any ð ∈ Iω, the function ℏð is defined as xt(θ) = x(t + θ), −r ≤ θ ≤ 0. It is not restricted that θ can not be a
function of ð. Let ℑ : Iω × C

(
[ι, τ],KSp(X)

)
→ C

(
[ι, τ],KSp(X)

)
, and{

ℏ′(ð) = ℑ(ð, ℏð)
ℏ(θ) = ϕ(θ) (15)

where −r ≤ θ < 0, ϕ is some specified function. We consider the problem{
ℏ(ð) = ϕ(0) +

∫ ð
0 ℑ(s, ℏs)ds, ð ∈ Iω

ℏ0 = ϕ
(16)

where the integral is taken in the sense of Henstock-Kurzweil integrable.
We call a function ℏ is a solution of (15) with the initial function ψ if for ω > 0, ℏ′(ð) = ℑ(ð, ℏð) for some

ð ∈ Iω and ℏ0 = ψ.

Consider ℏ̂ be an auxiliary function of ℏ on Iβ, 0 < β < a with ℏ(0) = ψ(0) and

ℏ̂(ð) =
{
ℏ(ð), ð ∈ (0, β)
ψ(ð), ð ∈ (−r, 0) .

We defined a bounded, closed and convex subset A(ψ, ι) of KSp(X) so thatA(ψ, ι) is also bounded, closed
and convex subset C

(
Iω,KS

p(X)
)

as

A(ψ, ι) =
{
ℏ ∈ C(Iω,KS

p(X)) : ℏ(0) = ψ(0), ||ℏ||K ≤ τ + ||ψ(0)||K, ℏ̂ð ∈ Ωb

}
.

We fix (Fℏ)(ð) = ℏ0 +
∫ ð

0 ℑ(s, ℏ̂s)ds, for ð ∈ Iω and ℏ ∈ A(ψ, ι), the integral is taken in the sense of Henstock-
Kurzweil integrable.

Theorem 4.1. Let us consider that V represents a countable collection of functions that are integrable in the Henstock-
Kurzweil sense within the spaceKSp(X). Let

F =
{∫ ð

0
ℏ(s)ds, x ∈ V, t ∈ Iω

}
be equicontinuity, equiboundedness, and uniform ACG∗ on the interval Iω. Then

α
( ∫ t

0
V(s)ds

)
≤

∫ ð

0
α
(
V(s)

)
ds, ð ∈ Iα,

whenever α(V(s)) ≤ ψ(s) for s ∈ Iω a.e., ψ ∈ Lp(X), α denote the Hausdorff measure of noncompactness.
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Proof. Since KSp(X) is a separable Banach space, there exists an increasing sequence of subspaces (Kn) of

finite dimension,K =
∞⋃

n=1
Kn such that A =

{
ιm : m = 1, 2, ...

}
⊂ K and

α(A) = lim
n→∞

lim
m→∞

d(ιm, Kn),

where A is a bounded countable set, d is distance in K . Consider K is a linear subspace of KSp(X). Then
ð 7−→ d

(
ℏ(ð),K

)
is a measurable on Iα and

d
(
λ1p1 + λ2p2,K

)
≤ λ1d(p1,K) + λ2d(p2,K) (17)

for λ1, λ2 ≥ 0, p1, p2 ∈ KS
p(X). Since ℏ is Henstock-Kurzweil integrable so for each ϵ = 1

m > 0, m = 1, 2, ...
there exists a positive function δm such that if D =

{
(ξp, [ðp−1, ðp]) : 1 ≤p≤ n

}
is a tagged partition of Iα,which

is subordinate to δm, we have∥∥∥∥∥ n∑
p=1

ℏ(ξp)(ðp − ðp−1) −
∫ ð

0
ℏ(s)ds

∥∥∥∥∥
K
< ϵ.

or ∣∣∣∣∣ n∑
p=1

d(ℏ(ξp),K)(ðp − ðp−1) −
∫ ð

0
d(ℏ(s),K)ds

∣∣∣∣∣ < ϵ, ð ∈ Iα, x ∈ V.

So, d
( n∑
p=1

x(ξp)(ðp − ðp−1),K
)
≤

n∑
p=1

d
(
ℏ(ξp),K

)
(ðp − ðp−1). If m→∞we obtain,

d
( ∫ ð

0
ℏ(s)ds,K

)
≤

∫ ð

0
d
(
ℏ(s),K

)
ds, ð ∈ Iα, x ∈ V.

Let ∫ ð

0
V(s)ds =

{∫ ð

0
ℏm(s)ds : m = 1, 2, ...

}
.

As ð→ d
(
ℏm(ð),Kn

)
is measurable on Iα so, the function

ð→ v(ð) = α(V(ð)) = lim
n→∞

lim
m→∞

(dℏm(ð),Kn)

is measurable on Iα. So v(ð) ≤ ψ(ð) a.e. where ψ ∈ Lp(X). Again, by (17)

d
( ∫ ð

0
ℏm(s)ds,Kn

)
≤

∫ ð

0
d
(
ℏm(s),Kn

)
ds.

Using monotone and dominated convergence theorems, we have

lim
n→∞

lim
m→∞

d
( ∫ ð

0
ℏm(s)ds,Kn

)
≤ lim

n→∞
lim

m→∞

∫ ð

0
d
(
ℏm(s),Kn

)
ds

≤

∫ ð

0
lim
n→∞

lim
m→∞

d
(
ℏm(s),Kn

)
ds.

So α
( ∫ ð

0 V(s)ds
)
≤

∫ ð
0 α(V(s))ds, ð ∈ Iα.
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Theorem 4.2. Let ψ represent a specific function within the space HK[−r, 0]. For every continuous function
ℏ : Iω → KS

p(X), the expression ℑ(ð, ℏð) is Henstock-Kurzweil integrable in the space KSp(X). Furthermore, ℑ
is defined as a Carathéodory function on the set Rατ for certain positive values and

α
(
ℑ(ð,Y)

)
≤ h

(
ð, α(Y)

)
for each bounded subset Y ⊂ C

(
Iα,KS

p(X)
)
, (18)

h is classified as a Kamke function. Consider the family F =
{
Fℏ : ℏ ∈ A(ψ, ι)

}
, which is equicontinuous, equibounded,

and uniformly ACG∗ on the interval Iω. Consequently, equation (15) possesses a solution on the interval Iβ for some
value of 0 < β ≤ ι, with the initial function being ψ.

Proof. As F is equicontinuous, it follows that there exists a number β satisfying 0 < β ≤ a, and the subsequent
conditions hold.∥∥∥∫ ð

0
ℑ(s, ℏ̂s)ds

∥∥∥
K ≤ τ for ð ∈ Iβ,

∥∥∥∫ τ

−τ

(
ψ(0) − ψ(s)

)
ds

∥∥∥
K ≤ k,

∥∥∥∫ τ

−τ

∫ ð+s

0
ℑ(p, ℏ̂p)dpds

∥∥∥
K < l and ℏ ∈ A(ψ, β).

Since,

∥∥∥ψ(0) +
∫ ð

0
ℑ(s, ℏ̂s)ds

∥∥∥
K ≤

∥∥∥ψ(0)
∥∥∥

K +
∥∥∥∫ ð

0
ℑ(s, ℏ̂s)ds

∥∥∥
K

=
∥∥∥ψ(0)

∥∥∥
K + τ.

Again,∥∥∥∥∥F̂ℏð − ψ
∥∥∥∥∥
HK

= sup
τ∈(−r,0)

∥∥∥∥∥∫ τ

−τ

(
F̂ℏð (s) − ψ(s)

)
ds

∥∥∥∥∥
K

= sup
τ∈(−r,0)

∥∥∥∥∥∫ τ

−τ

(
F̂ℏð (ð + s) − ψ(s)

)
ds

∥∥∥∥∥
K

= sup
τ∈(−r,0)

∥∥∥∥∥∫ τ

−τ

(
ψ(0) +

∫ ð+s

0
ℑ(ð, ℏ̂p)dp − ψ(s)

)
ds

∥∥∥∥∥
K

= sup
τ∈(−r,0)

∥∥∥∥∥∫ τ

−τ

(
ψ(0) − ψ(s)

)
ds +

∫ τ

−τ

∫ ð+s

0
ℑ(p, ℏ̂p)dpds

∥∥∥∥∥
K

= sup
τ∈(−r,0)

∥∥∥∥∥∫ τ

−τ

(
ψ(0) − ψ(s)

)∥∥∥∥∥
K
+ sup
τ∈(−r,0)

∥∥∥∥∥∫ τ

−τ

∫ ð+s

0
ℑ(p, ℏ̂p)dpds

∥∥∥∥∥
K

≤ k + l = τ.

Thus, Fℏ is appropriately defined, and the mapping A(ψ, β) into itself is also well defined. Consider a

countable bounded set V ⊂ A(ψ, β), with V = conv
(
{ℏ}∪F(V)

)
.To fulfill the requirements of (15), it is essential

to establish that V is relatively compact. Since F(V) is equicontinuous, the function ð → v(ð) = α(V(ð)) is
continuous. Let{∫ ð

0
ℑ(s, ℏ̂s)ds, s ∈ V

}
=

∫ t

0
ℑ(s,Vs)ds where Vs =

{̂
ℏs : s ∈ V

}
and

F(V(ð)) = ψ(0) +
∫ ð

0
ℏ(s, ℏ̂s)ds, s ∈ V.
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According to Theorem 4.1 and equation (18), we can conclude that

α
(
F(V(ð))

)
= α

(
ψ(0) +

∫ ð

0
ℑ(s,Vs)ds

)
≤

∫ ð

0
α
(
ℑ(s,Vs)

)
ds

≤

∫ ð

0

(
s, α

(
V(s)

))
ds

It can be established that V = conv
(
{ℏ} ∪ F(V)

)
. This leads to the conclusion that α(V(ð)) ≤ α(F(V(ð))).

Therefore, we can express this as

v(t) = α(V(t)) ≤
∫ t

0
h
(
s, α(V(s))

)
ds.

If v(ð) = α(V(ð)) = 0, then according to Arzelà-Ascoli’s theorem (refer to [4, Theorem 4.25]), the function V
is relatively compact. Furthermore, by Theorem 3.14, it follows that F possesses a fixed point that serves as
a solution to equation (15).

The next objective is to illustrate the existence of solutions associated with the differential inclusions.

ℏ′(ð) ∈ F(ð, ℏð)

ℏ(θ) = ψ(θ) ∈ KSp(X)
(19)

where the function F : Iα ×KS
p(X)→ 2KS

p(X) has a selection ℑ(ð, ℏð) that is Henstock-Kurzweil integrable
for all ℏ ∈ A(ψ, ι). The set{∫ ι

0
ℑ(s, ℏs)ds : ℑ(s, ℏs) ∈ F(s, ℏs); ℑ is a Henstock-Kurzweil integrable selection of the multifunction F

}
is termed the Henstock-Kurzweil integral of the multifunction F on the interval Iα. The following theorem
give the existence solution of (19).

Theorem 4.3. Let F(s, ℏs) possess a Henstock-Kurzweil integrable selection ℑ(s, ℏs) for every ℏ ∈ A(ψ, ι), where ℑ
is a Carathéodory function. Define Jℏ as follows:

Jℏ(ð) = ψ(0) +
∫ ð

0
F(s, ℏ̂s)ds for ð ∈ Iα

and ℏ ∈ A(ψ, ι) with the condition that α
(
F(ð,Y)

)
≤ h(ð, α(Y)), where h is a Kamke function and Y ⊆ C([0, ι]). If

the set J = {Jℏ : ℏ ∈ A(ψ, ι)} is equi-continuous, equi-bounded, and uniformly ACG∗ on Iα, then a solution to the
inclusion (19) exists on Iβ for some 0 < β ≤ ι.

Proof. With a similar technique of the proof of Theorem 4.2. It is easy to see that ℑ satisfies all criterion of
the Theorem 4.2. Also we can find that every solution of (15) is a solution of (19) inKSp(X).

Example 4.1. Let ρ = 0, r = 1, ϕ be some fixed function in HK[−1, 0] and (t, x) ∈ R11. Suppose f (t, x) = x(−1).
Clearly f (t, x) is a Carathéodory function on R11. Let x ∈ A(ϕ, α) then

f (t, x̂t) = x̂t(−1) = x̂(t − 1)



H. Kalita / Filomat 39:22 (2025), 7571–7585 7584

is a Henstock-Kurzweil integrable function on Iα. By Theorem 4.1, for some number β > 0 there exists a functionΨ
such that

Ψ′(t) = f (x,Ψt) = Ψ(t − 1)

on Iβ withΨ = ϕ. The existence of a solution of x′(t) = x(t − 1) can be established directly. For t ∈ I1,

x(t) = ϕ(0) +
∫ 1

0
x(s − 1)ds

= ϕ(0) +
∫ t−1

−1
x(s)ds

= ϕ(0) +
∫ t−1

−1
ϕ(s)ds.

Since ϕ is Henstock-Kurzweil integrable on [ι, τ]. By Theorem 4.2 could have used here to establish solution existence.

Conclusions

This paper extends the theory of Kuelbs-Steadman spaces to include Banach-valued functions. We
propose a measure of noncompactness for the spaceKSp(X) and examine various properties associated with
it. A Darbo-type fixed point theorem is formulated within the framework ofKSp(X), integrating the notion
of noncompactness measure. Furthermore, we explore the existence of solutions to Cauchy’s problem in
the context ofKSp(X), utilizing the newly established fixed point theorem alongside Kuratowski’s measure
of noncompactness.
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