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The windowed linear canonical Fourier-Jacobi transform and the
related uncertainty principles

Abdelaali Dades?

*Laboratory of Fundamental and Applied Mathematics, Department of Mathematics, Faculty of Sciences Atn Chock, Hassan II University,
Casablanca, Morocco

Abstract. The main objective of this work is to introduce the windowed linear canonical Fourier-Jacobi
transform and to study its properties. In particular, Parseval and inversion formulas are given and proved
for this transform. Heisenberg uncertainty inequalities for the LCFJ-transform and the windowed LCFJ-

transform are proved. The Donoho-Stark and Lieb uncertainty principles are also discussed and established
for the proposed integral transform.

1. Introduction

Fourier analysis is a very important subject in signal processing. Over time, scientists and researchers
discovered that this analysis had a few problems when dealing with non-stationary signals and non-linear
systems. Using Fourier analysis, we can extract informations about frequencies existing in the signal,
but the instance that these frequencies emitted still unknown. To solve this problem, in 1940 Denis Gabor
proposed an efficient method by decomposing the signal into small parts of frequencies by sliding a window
function along the signal and calculating the associated Fourier transform at each moment. This gives the
windowed Fourier transform, also known as the Gabor transform. Its expression is as follows:

(Vg(f)(é)/ )/O) = jﬂ;f(x)g(x — yo)e—Zinxg dx,

where g(x — y)) is the window function used to localize the Fourier transform of f nearing the point y,.
Based on Gabor’s idea, many papers have been published by authors dealing with the Gabor transform
associated with various integral operators (see for example [10, 18? , 19] and references therein). Nowadays,
authors have constructed and developed other integral transformations which gives a degree of freedom
to the signal processing levels. These transformations include the fractional Fourier transform [27], the
continuous wavelet transform [12], the linear canonical Fourier transform [15] and so one. This latter
generalizes the traditional Fourier transform and has many advantages. Firstly, this transformation can
handle different types of signals, whether stationary or not. Secondly, the way in which it processes
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these signals is faster. Its applications include optics [16], signal processing [5], wave processing, analysis,
medicine [4] and so forth. In this work, we are interested in the linear canonical Fourier-Jacobi (LCF])
transform [7] generated by the operator Aﬁ,{; which combine both the linear canonical (LC) transform and

the Fourier-Jacobi (FJ) transform. This operator is given by

A‘;‘/ﬁu(x,)\ = - (2—22 + pz) u(x, 1),
u(0,4) = e2#*, £4,(0,1) = 0,

where p = a +  + 1. The above differential equation has the unique solution Kﬁ ﬁ(" A) which is the kernel of
the following LCFJ-transform

TN = [ FOK0 ) g

Here, the exponent A = (a,b, ¢, d) with b # 0, is an arbitrary matrix in SL(2, R) and 1, is the measure on R,
which will be fixed in the next section. Recently, several papers have been published dealing with the linear
canonical transform associated with various operators, see for example [3, 9, 26? ]. The reader can refer
also to the excellent work [24], where the authors give the fundamental study of windowed linear canonical
transform and some of its applications. In particular, in [2], the relation between the windowed linear
canonical transform and windowed Fourier transform is given. Many inequalities and generalizations of
the traditional uncertainty principles are discussed and proved. Most of these uncertainty inequalities are
motivated by the famous Heisenberg’s uncertainty principle which first appeared in 1927 in his works on
quantum mechanics. Mathematically, this principle states that a function f and its Fourier transform ¥ (f)
cannot both be precisely localized, when we try to localize the frequency of a signal, we lose its temporal
information. Explicitly, let f € L%(R),

Al NAIF (Allzwy > 17201 g,

where

FHN) = @) P2 fR f(@eedp.

Inspired from the above works, we aim in this paper to define and study the windowed LCFJ-transform
and to give some of its uncertainty principles. Namely, we give the Donoho-Stark’s uncertainty princi-
ple, Lieb’s uncertainty principle, Heisenberg-type uncertainty principle, and Heisenberg-type uncertainty
inequality via the k-entropy for this transform.

This paper is organised as follows: In the second section, we recall some useful results of harmonic
analysis associated with the FJ and LCF] transforms. In the third section, we introduce the windowed
LCEJ-transform. Then, we give its properties such as Parseval formula, inversion formula and other
interesting results. In the section 4, we study some uncertainty principles associated with the windowed
LCFJ-transform. Namely, we give and prove the Heisenberg uncertainty inequality, the Donoho-Stark and
Lieb uncertainty principles for the proposed transform.

2. Preliminaries

In this section, we recall some useful results about harmonic analysis associated with FJ] and LCFJ trans-
forms. The interested reader can refer to [1, 7, 11, 13] for more comprehension of this theory. Throughout
the paper, the space L ﬁ(]R+),p > 1, is the space of all measurable functions on R, satisfying

1/p

g o =( [ 1) <0
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where

1
ditap(x) = \/T_nAa'ﬁ (x) dx,

and
Agp(x) = 27 sinh®*! (x) cosh? " (x),

where a,  are two real numbers satisfying a > § > -1/2; (a, f) # (=1/2,-1/2).
The space LZ ﬁ(]RJr, dvap(A)), 1 < pis the space of all measurable functions on R, such that

T fo F ) dvap(1) < o,

where
dv (A) = —1 )C (A))_z dA
a,f ,—2 a,f 7

and ¢, (A7) is a constant depending on A. Formally, it is expressed as follow:

B 20 AT GA)T (a + 1)
CT((a+B+1-id)/2QT(@—B+1-id)/2)

Coc,ﬁ (/\)

2.1. Fourier-Jacobi transform

Definition 2.1. The Fourier-Jacobi transform is defined for a function f in L}Lﬁ(]RJ,) by

Fas(H) = fo O F(0) (). W

The Jacobi function (pj’ﬁ is an even and C*—function on R. It is the solution of the following differential
equation

{ Agpu(x) = — (/\2 + pz) u(x)
u@0 =1, -Lu(0)=0.

Ay p is the Fourier-Jacobi operator given in [1, 7, 21]. We mention that, in this section, we give just the
necessary results that will be use to prove of our main results in this paper.

Definition 2.2. Let x € Ry, the F]-translation operator is defined by

T2 = [ FEKop0,2) Aug Mt (2). @
0
The function K, g(x,y,z) is given in [1, 21].
Forall f € L}Lﬁ(]RJ,),
fo T () dita () = fo £ dite ) ©)

Remark 2.3. Let f € Lzrﬁ(]RJr),p € [1, +o0] we have

T;ﬁ(f) < ”f”Li,ﬁ(]R*)‘ 4)

LR
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2.2. The linear canonical Fourier-Jacobi transform

The LCFJ-transform generalize the fractional Fourier-Jacobi transform studied in [25]. This integral
operator which is constructed by gluing together F] and LC operators, has many advantages at the processed
signal level. It can be applied in signal analysis, data and computer sciences, optics and so forth [5, 15, 23].

Definition 2.4. Let f € L} ﬁ(]RJr). The linear canonical Fourier-Jacobi transform is defined by

FAHOW = [ A0k 1) 0 ©)

where the kernel function Kﬁ, P (x, A) is given by
Kﬁlﬁ(x, A) = o (@ +al?) q0/\/})(3() b#0. (6)

The kernel function Kf ﬁ(x, A) generalizes the classical one of Fourier-Jacobi. In particular, when b = 0, we
get K2 (x, 1) = 9y (x).

Proposition 2.5. Let f € L! ﬁ(]R+) such that T ( f)e L1 ( Then we have

i )
" telleas ()
dA
—|2~ @)

fo =@ [ RGN0
o P : 16 |cas ()

Authors in [1], introduced and studied the generalized convolution and translation operators associated
with the LCFJ-transform. Many properties and fundamental results have been given and proved by the
same authors in [7]. From these mentioned references, we have these equalities:

1. Generalized convolution: For every f and g in L}l,ﬁ (Ry),

Frag= [ Ta00 o) )
2. Generalized translation:
T DWay) = f ¥ f(2) Ko, Y, 2) ditap(2), 9)
where
Kis(x,y,2) = eI (v, y, 2). (10)

3. Parseval formula: Forall f,g € L}Y /3(1R+), we have

[ e = [ 7 o07em—" : (1)

Ibl

A
Cap\ o

4. Plancherel formula: For all f € L}X ﬁ(IRJ,) al Li,ﬁ(]RJ,), we have

i), = 10z, (12)
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The LCFJ-translation operator T‘fﬁ . is a continuous bounded linear operator. In particular, if f € L’ ﬁ(]I{+),
p € [1, +0c0], then Té‘}ﬁ/x( f) belongs also to Lzrﬁ(]RJr) and

For f,g € L}Y ﬁ(]RJr), this product formula holds for the LCFJ-Transform

T(ﬁ,g,x(f) < ||f||LZ’ﬁ(]R+)- (13)

L} (R.)

4,2
bx

FLAf a0 )0) = e HEFADDT AW, (14)

where A7! is the inverse of A.

3. The windowed LCFJ-transform

In this section, we introduce the windowed linear canonical Fourier-Jacobi transform. Then, we study
its properties. In particular, we give and prove the Parseval and inversion formulas for this transform.
Furthermore, many approximation results related to this transform are given and established. In all the
paper g and y are two elements of R..

Definition 3.1. Letg € Li/ﬁ (R+). The generalized modulation operator associated with the LCF]-transform is defined
by

mig= ()" (|

Definition 3.2. The windowed LCFJ-transform is defined for a function f € L? ﬁ(]RJr) with respect to window
function g € Li/ﬁ(]RJr) by

0] =

VA(Poy) = fo e F(0)g (Ot (), (16)
where
70,0 = Ty, (M'9) Q). (17)

The windowed linear canonical Fourier-Jacobi transform which generalizes the classical form of Fourier-
Jacobi, has many advantages and applications. In particular, when the signal has variable time and
frequency properties and where the classical Fourier transform is inadequate. Another expression of (V‘;
can be followed by using the relation (8) as follow

Vifen = fo eP F()75 (dptap(x) (18)
_ fo e FOTL (M) @) N
= (f *A-1 M‘gg) (). "

Now, we give some estimation properties of the windowed LCFJ-transform. These inequalities will be
useful to prove the main results of this manuscript.

Proposition 3.3. (i) Forallg € Lirﬁ(]RJr), we have

”M?g”LiB(]RQ = ||!7||thﬁ(nz+)' (21)
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(ii) Let g € L} ((R,). The function ., belongs to L}, ,(R..) and we have

llg 2

ap

R, S ||9||L(2"ﬁ(11<+)- (22)

(iii) Forall f € Li’ﬁ(]RJ,) and g € Li,ﬁ(]RJ,), we have
||(V?(f)||L;‘jﬁ(lR+) < Ifll2 (]R+)||g|IL(2Lﬁ(]R+)' (23)

o

Proof. To prove (i), we use the relations (12) (3) and (15), so we get for all g € Li’ﬁ(]RJr),

fo Mg dpas()

0 2
= fo T (MEg) [ dvap(Arb)
oo . 2
= fo Fas [(ﬁ?ﬁ) (\/IT;‘}ﬁ,@(eéizsz}ﬁ(g)ﬁ){]} )| dvag(A/b)
- fo T[fﬁlp(e%zz|ﬂ‘?ﬁ(g)|2)| dva (A /D)
I A (N2
_j(; Ta,ﬁ (lTaﬁ(gN )| dve,p(A/b)
- [ oW dngam)
0
— 12
= ||g||L§lﬁ(R+).
where we have used the relation (see [1])
id (4242 —idz?.
T @) = AT (92 . 24)
Now, let us prove the second assertion. By the relations (13) and (21),
— Z
A S (S A7) [
< MR,
< oz r

(iii) Let f,g € Lilﬁ(]RJr). Using the Cauchy-Schwartz inequality, we get

VAP = fo e (0 (Ot p(0)
< ||f||L(2w(]R+)||92),||L§ﬁ(1R+)
< “f”Li,ﬁ(IRJr)”g“Li,ﬁ(]RJr)'
Then,
||(V}q(f)||L§,),(R+) < ”f”Lfy'ﬁ(]RJf)”gHLilﬁ(]R,,)-
|

We are now in a position to prove one of the main results in this paper, which is the following Parseval
equality. Note that below w, g is the measure on R, X R, given by dw,(0,7) = Aap(y) dy dvag(o/b).
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Theorem 3.4. (Parseval formula) Let g € L, ,(R.) be a window function. For all f,h € L} (R), we have

f f V@) Vihioy) dwagloy) = llgls f FEOROAwp()dx. (25)

Proof. According to the relations (20), (14) and by Parseval formula (11), we have for all f,h € Li ﬁ(IRJr),

f i f i V0, 7)Vih(o,y) dwapo,y)
f f foan MA@ xa Mig) () dwagp(o, )

dA dva,5(0/b)
fras MEGY T (40 M) D) ——2-
N A R L (O Ly o

- fo fo Fas(NNT s (M 9) MT (M(MW(A)
A

X —dva,ﬁ(g/b).
Blica ()12

Now, we apply the Fubini’s theorem and the relations (21), (11), we obtain

fo fo V30, 7)Vih(o,y) dwap(o,y)
dA

_ * A TA O ~ A A 2 "
= fo Taﬁ(f)(/\)fx,ﬁ(f)(/\)( fo Iﬂ,ﬁ(M@g)(A)l dva,ﬁ(p/b)) by ( %)|

dA

- n)(A)) ————
gl IR)f Fop (f)(A)(F ( (/\))I Ilcaﬁ(%)l

:||9||izw(R+) fo FOOM(x) Agp(x)dx.

This completes the proof of Theorem 3.4. [J

As a consequence of the above theorem, we have the following Plancherel formula of the windowed
LCFJ-transform.

Corollary 3.5. (Plancherel formula) For every f, g € L* s(Ry), we have

fo fo Vi@ dwnplon) = ol g, fo P A p(x)ex. (26)

Theorem 3.6. (Reconstruction formula) Let f, g € Li,ﬁ(]lh). Then

f)=—— L f f e B Y0, )90 () danp(0,7). @)

L2 j(R+)

«/z_nllgll
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Proof. Leth € Lirﬁ(]RJ,), we have from (25)

f f(x)@Aa,ﬁ(x)dx
- [ [ ViferVime oy
L s(R+)
”g”—f f (VA(f)(Q/ [f eiﬁxzh(x)géy(x)dya,ﬁ(x)j dwap(0,7)
L s(R+)

o [T([ [ et e s wionto ) i
||g||Lz S(R.)

YA (0, ), ()dwg 5(0, V) | HE) Ay 5(X)dx.
”g“LZ - f ( = f f A(F) (0, )90 (0 y)) ) Aas ()i

Hence,

bx A
) = VZ_n”g” f f VA F(0, )70 () dwp(0, 7).

L2 ,(Ry)

This completes the proof. [

4. The uncertainty principles

In what follows, we denote by xy the characteristic function of a subset U of R: X R,.. We assume that
the measure of U is finite. Before given our main results in this section, we need the following definition.

Definition 4.1. Let ey € [0,1[and F € Liﬁ (R4 X Ry) . We said that F is ey-concentrated on U, if
”XLI‘F”Lﬁ,p,(]ILx]RQ < GU”F”Li,ﬁ(]ILxIRJr)' (28)

We have the following Donoho-5Stark uncertainty principle for the windowed LCFJ-transform. The reader
can refer to [22], where the author studied the quantitative uncertainty principles associated with the
Fourier-Jacobi transform.

Theorem 4.2. (Donoho-Stark uncertainty principle) Let f,g € Li/ﬁ (Ry) such that g # 0. If (V‘;( f) is eu-
concentrated on U, then

wap(U) 2 (1-€Y). (29)

Proof. Let f € quﬁ (R+) . By the Plancherel relation (26) and as the function (V‘; (f) is ey-concentrated on U,
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then we have

||f||L2 (]R )

f f |(VA(f)(@,7/)1 dwap(0,7)
||g||Lz .

vy dwag(o,y
lglE, (]R)ff Vil dwesten

f f VAo dwas(e )
IIglle N

f f VA0 ) dwnsoy)

||g||L2 w0
T IIWf)IILw oy VoD
L2 SR
Hence,
(1 =€), o S g y@ap(D:

Consequently, ( )

wap(U) 2 (1 -€y

0

Donoho-Stark uncertainty principle known also as weak uncertainty has been suggested and developed
by Grochenig [14] for the windowed Fourier transform. This uncertainty gives the information about a
function by measuring its concentration in a part of finite measure. The reader can refer to [8], for a better
understanding of this concept. Now, we prove another uncertainty principle formulated by the physician
H.Lieb in 1970. More precisely, we have the following theorem:

Theorem 4.3. (Lieb uncertainty principle) Let g1, g2 be two window functions of unit norm, and let f,h € L2 s(R4),
then for all v € [1, c0), we have

( fo fo VAP e ) VAGNe | dwaﬁ@,w) <l e Al . 30)

Proof. By the Cauchy-Schwartz inequality, we have for all f,h € Li,ﬁ (Ry),
[ [ manenviomenldeey

5( fo fo |q’2<f)(@,y>|dwa,ﬁ(@,y)) ( fo fo VA 00| dwa o, )

Then, by (26), we have

[ [ vamenvameldonor < 1w i . G
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we get then

( I |V2<f>(@,y>v;2<h><@,y>|’dwa,ﬁ@,y))’

= 7 oy 7 oy b Wa,p\0, Y 7
], Ve Vame | dosse)

< [VAO VRO gy [VAD Y,

< (11 el (||f||LgﬁaR+>||h||L;Lﬁ<R+))
= flez e Hllz e,

1

L1 s(RiXR,)

This completes the proof. O

Another important result which measures the concentration of the windowed LCFJ-transform in a set U of
finite measure, is given by the theorem below.

Theorem 4.4. Let g € Lilﬁ (R%) be a window function and let ey > 0. If "V_j;( f) is ey-concentrated on U, then for
all 2 < r < oo, we have

wapU) 2 (1-€})7,  Vfel2 (R,). (32)
Proof. Let f € L op (R;), from (26) and since (VA( f) is ey-concentrated on U, then

||f||L2 (]R )

f f VAP0 dwas(e )
IIQIILZ N

VI y)| dwwploy
ol (]R)ff [VsPef denste)
||g||Lz .

f f [ VA0 )| dwagley)

SV T ” ff VAR dwwgo),

we have then,

(1= €)0lR, g B, ) < f f VAN dawslon).
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Using then the Holder’s inequality for the conjugate exponents 5 and ;%5, we get

f fu VA2 )] dansoy)
=f0 fo xu@ Vi) dwase )

S (fom fo e dwuste V))ryz
’ (fom fow (|(V§(f e V)f)% dawa,g(0, V))%

r—

= (np@) " V(D

2
L (R XR,) °

By the relations (23), (26) and the Riesz-Thorin interpolation theorem for 2 < p < oo, we have
[VION; .y = Ntz 11z, (33)

Consequently,
r=2
2 2 T
(1-€) Itz L1 gy < Nz, gtz . (wap(W) " .

Then, )
wap(U) 2 (1-€4)7 .
O

Now, we give and prove the Heisenberg uncertainty principle associated with the windowed LCFJ-
transform. According to our knowledge, this principle has not yet been proved for the LCFJ-transform.
And since the two transformations LCF] and windowed LCEF] are related, we decided to start by giving
the proof of Heisenberg uncertainty involving LCFJ-transform. Using the estimate of heat kernel and some
properties of the semi groups generated by the Jacobi operator, Ruigin Ma proved in [17] the following
Heisenberg uncertainty principle for the FJ-transform.

Theorem 4.5. (Heisenberg uncertainty principle for F, ) Let f € Lilﬁ(IRJr), and a > B> -1, a > -1 Suppose
that n,m > 0 and 6 € D,, we have

> Clifllz (wr,) (34)
2,v b

m
n+m

L ,(R.)

(22 + Pz)% Fap(f)

||xm3f

where C is a positive constant and D, := [%, 1] ifa > % For —}I <a< %, ifp21,Dy:= [%, 2(“;1)], otherwise D, :=

1 2(a+1)
(i' 3 ]
Theorem 4.6. (Heisenberg uncertainty principle for 7/ "}ﬁ) Let f € Li,ﬁ(IRJr), and a > B > —1,a > —3. Assume
that n,m > 0 and 6 € D,. Then

o
n+m
mn

n+m

L3 4(R.)

||xn6f

/\2 ) % A
2 +p 7:11/3(1[)

> C”f”thﬁ(]Rg' (35)
2v

Proof. 1t is not difficult to see that for all f € Lilﬁ (Ry),

AW = 05 70) (5). (36)
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Replacing f by e f in the relation (34), we get

[f ) Xl f (x)‘2 dpa,ﬁ(x)]w
0
w0 y 2
fo‘ ((%)2 + p2) Fap (e%t)zf(')) (%)
dr
0

Then, using the fact that le??| = 1, for all 6 € R, and by the relation (36), we obtain

* no 2 m
[ fo £ () dua,ﬁoc)]

m
00
jO‘

2 2
((5) +#) Faatnin
>Cl [ f@f duapt)
0

m

n

T
x dvap(A/ b)}

id 2 2 %
e ()| dya,ﬁ(x)] .

2 o)
X dvap(A/ b)]

1
2
7

which is the desired result.
O

Heisenberg’s uncertainty inequality is applied in various fields such as engineering, quantum mechanics,
mathematics and many others [6, 20]. The best thing that this uncertainty provide is giving and extracting
the information of a function (or signal) from its integral transform. It is quantitative uncertainty which
measures the concentration from dispersion. For our transformation V4, we have the following result:

Theorem 4.7. (Heisenberg uncertainty principle for (V’;‘) Let f,g € Lilﬁ(]RJr), anda > B> -1,a > -1 Assume
that n,m > 0 and 6 € D,. Then, we have

> C||g”£g;(m+)“f”Liﬁ(]R+)‘ (37)

m
n+m

I2,(R.)

v

AZ ) % A
” +p ?:)zﬁ(f)

2,v

Proof. Applying the inequality (35) to Vg‘( f) and making a change of variable 1 = A/b, we obtain for all
f/ g € Li/ﬁ(R+)/

m

[ fo P [VAp, y>|2Aa,ﬁ<y>dy]

6

~ 1/2
>c[ fo )(V;*(f)(@,V)IZAa,ﬁ(V)dV] -

bioem]
(V) d—A‘
’ bl ew ()]
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Now, we integrate both sides of the above inequality with respect to du,(0), we get

S ) =
[ f f W VA )| dwa,ﬁ(@fy)}
0 0

1 00 oo | (312 m 2 dA dva/ (Q)
. w/z_nfo fo ((5) +Pz) ﬂ‘?ﬁ(q’ﬁ(f))()\ﬂ Ti)r
a,f m
* * 1/2
>C[fo fo [V )(P'V)‘zdwa,ﬁ(@,y)] :

Ibl
In the other hand, we have by Fubini’s theorem

dA dve(0)

fow fom ((%)Z " pz)m 7 (vie)af s ()]
ey

X ( fo i Fos (MS9) (A)\z dva,ﬁ(@)

) 00 A 2 ) m

dA

o[
161w (%)

’2

dA

a,p
|b| |Ca,ﬁ (_|2|)

)

Therefore,
e b A, : A m
n+m ”gH m+n (ﬁ + p ) 7:&,,3(-]()

L2,®) N (R

v

> C”g”Liﬂ(]R,,)Hf”Liﬂ(]R,,)'
2v

Then,

m /\2 2% " o
(ﬁ"'p) (faﬁ(f)

L2,(R.)

v

>l g W12 i

2v
The proof is then completed. [

Now, we prove Heisenberg-type inequality via k-entropy (called also Rényi entropy). This inequality which
generalize the classical form of Heisenberg (in view of the different values taken by k), is very important in
harmonic analysis. It gives a degree of freedom and opens up new perspectives concerning this theory. We
need the following definitions of probability density function.

Definition 4.8. A probability density function f on R, X R, is a non-negative measurable function on Ry X Ry
satisfying

fo fo flo,y) dwago, y) = 1. (38)

Definition 4.9. Let f be a probability density function on Ry X R. Then, the k-entropy of f is given by

Ex(F) = - fo fo In(f(0, 1) (0, V)dewong(0,7), (39)

whenever the integral on the right-hand side is well defined.
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Theorem 4.10. Let g € L? ; (R.) be a non-zero window function. Let f € L7, , (R.) with f # 0. We have

2
Ec([VAO) = =2 10 (1hz e gl s o IR, (40)

Proof. Let f € L[ZX P (R+) . We suppose that ||f ”Lzﬁ(]R+) = ||g||Lzﬁ(]R+) = 1. Then, by the relation (23), we have

[V )] < Ml wollgllz . < 1.

ap B
Therefore, In (|q/’;(f)|) < 0 hence E; (|(V’;(f)|) > 0. If E; ()(V’;(f)‘) is infinite, the relation (40) holds true.

Suppose that E (|(V‘;( f)|) is finite. Let f,g € Li,ﬁ (R+) be two non-zero functions. We consider

F= # and G = L
||f||L(2Lﬁ(]R+) ||!7||L§,ﬂ(JR+)
SoEGe Li/ﬂ (R;) with ”F”Li,,;(JRJ = ||G||L§ﬁ(1R+) =1 and hence
Eq(|Vam)) 2 0. (41)
In addition, we have
A 1 A
VAP = VA,

||f||Li'ﬁ(]R+)”g||wa(1[z+)
Using then (26), we obtain
2 R 2 2
E(lvael)=- [ [ m(vioenf)vaeef dogey
1

_ A |2
NN (fvior)
2,02 w,)

2
”g”LZ (R+)

ap
+ ZW In (”f”Li/ﬁ(]Rg||g||Lﬁlﬁ(R+)) .
g L2 ,(Ry)

By the relation (41), we have

2
Ex ('(V’;(f)| ) > —2||g||i2ﬂ(]R+)ln (||f||L(2Y/ﬁ(R+)||g||Li/ﬂ(R+)) ||f||i2f(]R+).

The result is then proved. [

5. Conclusion

In this paper, the windowed linear canonical Fourier-Jacobi (LCF]) transform is introduced and studied.
Several properties such as Plancherel, inversion and other interesting results related to this transform are
given and established. Moreover, Heisenberg uncertainty inequalities for the LCFJ-transform and the win-
dowed LCFJ-transform are proved. The Donoho-Stark and Lieb uncertainty principles are also discussed
and established for the proposed integral transform.
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