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Abstract. In this study, the beta fractional Dirac system is discussed. After the definitions and theorems

used in the study are given, The self-adjoint boundary value issue is posed and the existence and uniqueness
theorem for the Dirac system is established. The eigenfunction expansions of the beta fractional Dirac system
are provided along with the construction of the corresponding Green matrix. Finally, some examples related
to the subject are given.

1. Introduction

This paper deals with the following beta system:
() (O =y (©), M
where

y(C)=( glg )/OSCSb<oo,

u is a complex parameter,

| =Ty (O +p Q1 (O
@) ) “{ T (O + 1 Q) 2 (0).

In(1),p,7:[0,b] = R are continuous and beta integrable functions on [0, b].

Fractional derivatives are studied within the scope of fractional calculus, a sub-branch of mathematics.
These types of derivatives express situations where the degree of the derivative does not have to be an integer
and generalize the concept of the classical derivative. Fractional derivatives are particularly effective in
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modeling complex systems and anomalous properties. Khalil and his friend in their work, gave definitions
of compatible fractional derivative and compatible fractional integral for fractional derivative and fractional
integral ([16]). Later, Abdeljawad defined the right and left conformable fractional derivatives, the fractional
chain rule, and fractional integrals of higher orders using the classical definition of derivative and integral
([1]). Later, Atangana et al. defined beta derivative [6, 7]. Fractional beta derivatives are used in modeling
heat conduction, diffusion, analysis of viscoelastic materials, modeling control of delayed and uncertain
systems, financial mathematics including modeling market anomalies, and modeling complex biological
processes with fractional dynamics, modeling cases where cell growth or biological processes proceed at
abnormal speeds, modeling abnormal distribution of drugs in the body (e.g., passage to tumor tissues).
The derivative known as the beta derivative is used to adjust this concept in order to make it compatible
with the classical derivative [11]. Fractional beta derivatives are a powerful tool, especially in systems
where weighted functions and special kernel structures are required. Integration of the beta function into
fractional derivatives enables the creation of new dynamic models by extending the classical fractional
derivative definitions. Although these definitions are not exactly fractional derivatives, they have attracted
a lot of attention from researchers because they are an extension of ordinary derivatives. In [20], the authors
studied the space-time generalized nonlinear Schrodinger equation involving the beta-derivative. Fadhal
et al. [9] studied a nonlinear beta Sasa—Satsuma equation. Recently, a spectral expansion has been given by
establishing a singular case spectral function for beta Sturm-Liouville problems ([2]).

The Dirac equation was developed by Paul Dirac in 1928 to describe the motion of fermions such as
electrons. By combining Maxwell’s electromagnetic theory with relativistic quantum theory, Dirac correctly
described both the spin and relativistic effects of electrons. There are many studies in the literature about
the Dirac equation [3, 4, 8, 10, 12-15, 19, 22].

This work aims to investigate a beta fractional Dirac system (1). We shall investigate whether this
system’s solution exists and is unique. The spectral features of the problem, such as eigenvectors forming
an orthonormal basis, Green’s matrix, eigenvector orthogonality, and formally self-adjointness, will be
studied later.

2. Preliminaries

Definition 2.1 ([20], [6]). Let g € (0,1]. If f : [0, 00) — R is a function, then the f derivative of f is defined by

fo+ely+ 55" ) - f)

Ty f(y) = lim ! @
Definition 2.2 ([7]). If f : [a, 00) — R is a function, then the beta-integral of f is given by the formula
Y Y 1 !
ap(f(r) = f f©dsC= f (C + Tﬁ)) f(0dc. €)

where 0 < a < 1and (*Tyf)(y) = lim, - CTpf)(7).

Theorem 2.3. Let f, g be B-differentiable functions. Then, the following relation holds

b b
[ rom@dr =050 - [ 10Ty

Let

f: ( ISR dﬁ?’)l/z

Lg(o, b) :=
1/2

(R0l O+ )™ ) <0
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Then L;(O, b) is a Hilbert space endowed with the inner product

b [
Govi= [ FOTOHr, £.9€ 10D,

We now use the following inner product

b
(0= [ GO s
to introduce the Hilbert space B = L/%((O, b); C?).

Theorem 2.4. Let
Alyi}=1{G}, ieN:=1{1,2,3,..},

where

(9]

G = Z NikVk, 1,k € N.

k=1

If

(oY)
Y Il < +oo,

ik=1

then the operator A is compact in I? ([21]).

3. Main Results

Theorem 3.1. For u,cy,c; € C, the equation ty = uy has a unique solution @ in B which satisfies

cD(O,u)=( %Egﬁﬁg )z( c )
Proof: Let

p@=r()=0,

©1(C ) = - (foc ”dﬁy)
NEOE

—sin (foc ydﬁy)

sin (foc ydﬁy)
and O, (G, 1) =

cos (foc' yd/;y)

7605
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Then, for C € [0,b] and u € C, the solution of the equation Ty = uy is

Uoi1 (G, 1)

Up (G u) = =101 (G p) + 202 (G, p).

Uoz (G, 1)

By applying the method of variation of the constants, we find

Uy (G p) = 101 (G, ) + €202 (C, 1)

C
+ fo [©2(C 1) O] (v, 1) - ©1 (¢, 1) ©F (v, )] Q () Unr (3, 1) dpy

where C€[0,b], u€C,and

_(r@© O
Q(C)—( 0 r(C))'

That is, for C € [0,b] and pu € C, we have
un+1 (C/ ‘U) = UO (C/ [Ll)

[ C . y 1
—cos f ydﬁy)sm f udgs
foc , (Oc (Oy ) p () Unn (v, 1) dgy
i +sm(f0 ydﬁy)cos (fo ydﬁs) |
+
} . , )
cos (f yd,gy)cos f pdgs
N ,(OV ) p () U (v, ) dgy
| +sin (fo yd[;)/) sm(fo pdﬁs) |
C y
cos f udgy | cos f udgs
: .(OC ) . (07/ ) r(V)UZn(%,Ll)dﬁ)/
+sin (_[) ydﬁy) sin (fo ,udﬁs)
C . Y
-| cos (f [udﬁy) sin f udgs
- oC e (Oy ) r(y) Uzn (y, 1) dgy
—sin (fo ydﬁy) cos (fo ydﬁs)

Let u € C be fixed and let

VM ()

,7=12,
2

0 (¢, p)| <

max |p (0)] = A1, max |r(0)l = Az, A = max{A1, Ay},
Cel0,b] Ce[0,b]

M M(u
)UU (@ #)| < (le1] + lezl) 2(:“) = 2(#), i=1,2,3.,

where M (), A are positive numbers and C € [0, b] . Then, we find

7606
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C . Y
—cos f ydﬁy) sin f udgs
y . ( OC ( 0)/ ) p (7/) Un ()// f’l) dﬁy
+sin (j(; ,udﬁy) cos (fo yd,gs)
<
c| cos (fo(’ ydﬁy) cos (fo} pdﬁs)
+ e (o r(y) Unz2 (y, w) dgy
+ sin (fo ,ud}gy) sin (fo ydﬁs)
< y
cos f [udﬁy) cos f udps
C .(OC .(0)/ ) p () U (y, w)dgy
+sin (fo yd/;y) sin (fo ydﬁs)
+
C . %
cos f ,ud,gy) sin f udgs
- OC -(OC (oy ) r () Una (7, 1) dgy
—sin (fo ydﬁy) cos (fo ydﬁs)
M(u T\ | <
< [M(u)Al éu) +M () Az 2(”)) UO dgy

rm v C
+(M(H>A1@+M<u)AzM§”]‘ [ dﬁy‘

B
1
e+ )

<2Q(u) AM (”)T'
Similarly, we get
o (er 5l Aoy
||Un+1 (G )= U (G, P‘)H < M ()2 pn! ’

where n € IN. It is clear that

o ov(or sl Aoy
Z(M(#))"(E) |+r(ﬁ)|n! :
n=1

is uniformly convergent. Hence, the following series

Uy (Cp)+ ) (U (G ) = Un G, )
n=1
uniform convergent. Thus, we get
lim Uy, (G, ) = (G ) -

We can demonstrate that U,, and

Tﬁun (C, [,l) = C1Tﬁ®1 (C, [J) + CzTﬁ@z (C, [J)

7607
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C
+ fo [T6©2 (€, 1) O] (y, 1) = T4©1 (€, 1) ©} (v, )| Q) U (y, 1) dgy, n € N

are continuous by applying induction on n. Hence, ® (C, ) € B and @ satisfies (7).

Now we prove that ® satisfies (1). If C # 0, then

TsDq (C,
Tﬁq) (Cr |u) = ( Tiq); EE/ Z; ) = ClTﬁG)l (CI [—1) + CZTﬁG)Z (C/ [J)

C
+ fo [75©2 (€, 1) ©] (v, 1) = T4©1 (G, 1) ©) (7, )| Q) @ (v, ) gy

From (1), we conclude that

C C
Tg cos (f ydﬁy) = —usin (f yd,g)/),
0 0
C C
Tgsin (f ydﬁy) = ucos (f yd[;)/).
0 0

Therefore, we find
C C
Tpdy (C, u) = c1Tp cos (f .udﬁ)/) + ¢ Tgsin (f lud;;y)
0 0

. » —Tg cos (foc ydﬁy) sin (foy lud}gs)
+ f p() @1y, 1) dgy
° _ +Tg sin (foc [udl;y) cos (foy ydﬁs)

c » Tg cos (foc }ld}g')/) cos (foy yd,gs)
- f r(y) @2(y, p)dgy
° _ +Tgsin (foc [udﬁy) sin (foy yd,gs)

C C
—1(0)P, (C, ) = —cusin (f ydﬁy) + co i cos (f [Jdﬁ]/)
0 0

ysin (foc pdﬁy) sin (foy pdﬁs)
+ fo . p() @1y, 1) dsy
| +Hcos (fo ydﬁy) cos (foy [udﬁs) |

[ —p sin (foc pdﬁy) cos (foy [Jd/;S) ]
- C r() @2 (y, ) dgy
| picos (fo ydﬁy) sin (fo} yd,gs) |
Q) D2 (C, 1) = (=7 (0) + ) P2 (C, ).

Similar proofs are made for the other equation in (1).

™

™

7608



Y. Yalginkaya et al. / Filomat 39:22 (2025), 7603-7618

Assume that ¢ (C, 1) and ¢, (C, i) are two solutions of this problem. Let us define

x(@C ) =1 (G ) —v2(C ),

where C € [0,b] . Then, x is a solution of Problem (1)-(7). An easy computation shows that

) ~ [ Cr) + W xa () dty

(@)
x(Cup) = ( x2 (G, 1)

foC (~p () + @) x1(y, wd*y

Since x (C, 1), 7(C), p(C) are continuous, there exist positive numbers M, and Y, such that

sup |x1 (¢, p)| = MY, sup |xa (¢, )| = MY,
Cel0,b] Ce[0,b]

M, = max {ME}),MLZ)} ,

sup |u—r@©|=", sup |u-p©@| =71,
Ce[0,b] Cel0,b]

Y, = max (Y, vP}.

Hence, we find

C
I @ | = ’—fo r+wxa(y,w) dﬁ?”

+

C
fo P +wWxi(y, dﬁy‘
()

xﬂi%y B

When we use mathematical induction to k, we get

< ZM#TH < ZM‘u’Y“LL

(C+ )"
k! !

2k
HXHS(E)YﬁNﬁ

where k € N and C € [0, b].
We will prove (9) for k + 1 assuming it holds for k. (9) states that we have

+

C C
IIX(C,u)||=’— fo (=1 () + ) x2 (v, ) dgy fo (~p () + W) x1 (v, w) dgy

, %
Cly+ s
< 2F Ik e f %dﬁy
o PK

7609
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)(k+1>ﬁ

k+1 L
(2)7 e (C+ iy
b T kD)

Therefore, we demonstrate that (10) is valid for all k in IN. Due to
(k+1)p
k+1 1
2\ (C+ p)
li Yk+1 k+1 | = =0,
dm VM (k+ 1) 0

we conclude that x (¢, 1) =0 forall C € [0, D] .
Consider the following beta Dirac problem

Y = 1y,

L1 (y) := k1ay1 (0) + k12y2 (0) = 0O,
Lo (y) := ka1y1 (b) + kopya (b) = O,

7610

(11)

(12)
(13)

where p,r : [0,b] — R are continuous and beta integrable functions on [0, b], u is a complex parameter,

kij € R (i, j = 1,2) and the rank of the matrix (k,-]-) is 2.
Let

DL={yeB:Li(y) =0, L (y) = 0}
The operator L on Dy, is defined by Ly = ty.
Theorem 3.2. The operator L is self-adjoint.

Proof. For y,z € B, we conclude that

b b
(ty,2) ~ (y,72) = fo (=Tpya +p (O y1) TadsC + fo (Toyr + 7 (Q) v2) Z2dC

b y & - 0000000
- f yl(_TﬁZZ +p () Zl)dﬁC - f yz(Tﬁzl +7(0) Zz)dﬁC
0 0

et PN (e

Hence, we obtain
(ty,2) - (y,72)
b - b .
- [ HEORO)c [ T ©R0)H

b -
- fo Ty |11 © 2 © - 71 Q2 O] dsC.
Let

[v,2). =11 (022 ) - 21 (Qy2 Q).
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Thus, we see that
(ty,2) = (v, 12) = [y, 2], = [y, 2], - (14)
Now, we prove that the operator L is self-adjoint. Let y,z € D;. Then, we have

(Ly,z) = (y,L2) = (ty,2) = (y,72)

=[y,z], - [v,z], = 0.
[

Corollary 3.3. All eigenvalues of L are real. If uy and uy are two different eigenvalues of L, then the corresponding
eigenvectors vy and vy are orthogonal.

The B-Wronskian of y and z is defined by
W (,2)(Q) = y1 (022 (0) —z1 (O y2(0),

where

| N | &
y—(yz ),z—(Zz ),y,zeB.

Let A (G, ) =( /‘EE gg ﬁg )and As (G ) =( ﬁi EE Zg )be linearly independent solutions of (11) which
satisfy the following

Al(O/u)=( ﬁiEgZ; ):( ‘1) )

(A Cu)\_(0
AZ(C”U)—( Az (G ) )_( ! )
Let us define

sen=( 20

and

_ o Ea (G
(G p) —( :i (&) )

E1 (G ) =L (A2) A1 (G ) = Ly (A1) A2 (G ),
B2 (G ) = Lo (A2) A (G ) = Lo (A1) Ax (G ) (15)

Then, E; (C, 1) and Z; (C, ) are solutions of (11) such that

= k - k
E1(0,u) = ( —121 ) and 5, (b, u) = ( _i; ) (16)
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Let us consider the following system

~Tgya +{-p+pQ}y1 = A1(0), (17)
Teyr +{-p+r(Q}y2 = £2(0), (18)
L1 (y) == knyi (0) + k122 (0) = 0, (19)
Ly (y) := ka1y1 (b) + kpoyo (b) = 0, (20)

where f () := ( 2 8 ) €B.

Theorem 3.4. If u is not an eigenvalue of Problem (11)-(13), then Problem (17)-(20) is solvable for any function f.
Conwversely, if u is an eigenvalue of Problem (11)-(13), then Problem (17)-(20) is, generally unsolvable.

Proof. Let
E2(Cu)ET (1)
i v 0 < < C,
S (SADER ST (21)
=G, cops

Now, we’ll demonstrate that

b
(G = f GGy, 1) f () dyy )

is the solution of Problem (17)-(20).
From (21), we find

1 ( En (G En (1) Ean(Cu)En(y, ) )
WELE)\ Exn (G En (1) Ex(CwEn(y,w )’
0<y<g

Gy )= 1 ( En QW) En(y, ) Eu(Cu)Exn(y, w) )
WELE) B (G ) En (1) En(CwEx(,u) )’
C<y<hb.
Hence,
1 ( En (G En(,w) AG) +En(Cp)En(y,p) () )
WELE) N B (G En () A +Ex (W) En(,w L) )’

0 = =5,

GGy f ()= =ys¢

. ( En(CwExn () i) +En(Cp)Ex (1) () )
WELE)\ B2 (G ) B (v, 1) i () + En2 (G 1) Exx (v, 1) 2 (7)
C<y<hb

From (22), we have

= C
0 @) == 2 [ 21 0,00 0) + 2070 £ ) iy

= b
- % fc Ca (1) fr () + 2 (v, 1) 2(1)) gy 23)
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ya(Gp) = - 2(1@5)) f @ 00 ) 1 () + 2 (i) 2 0) dgy

En(Gup)
-~ W(E,E)

From (23), it follows that

Tgy1 (C, )

_TEn (G w)
W (‘—‘1/

b
f En 0r ) L 0) + En (01 1) f2 0) gy (24)

f En 0,0 fi () + En (1) o 0) dgy

TpZ11 (C,
vﬁi/(+(,”y) f 1 0, 1) fr () + Bn (0, 1) 2 (7)) dgy

tE eV EE RO
_ “ff("f)){ e f @0 0ni) i )+ B i) o 0 iy

b
+ VT/1(2 c y)) {mu+ T(C)}fc CEa (W) i) +En(,w) f2()dgy + f2(0)

Ex (G 1)

={-u+ r(C)} W& E

f En 0,0 fi () + En (1) r(0) dsy

E12 (G u)

b
W(ELED Je Ea (W) i) +Ex(y,w) f2(r)dsy

+{-u+r©0)

+ £ =~{-u+7rO}y2 (0 + £2(0).

The validity of (17) is proved similarly. Hence the function y (, u) in (22) is the solution of Problem (17)-(18).
We check at once that (22) satisfies the conditions (19)-(20). O

Without loss of generality we can assume that 1 = 0 is not an eigenvalue. Then, ker L = {0} . The solution
of

(Ly)(©Q = f(Q),
is given by

b
Y0 = fo G(Ty) f0)dy,

where
_2O0) ) gy <
G(Cy)=G(y,0) = :lez(c?éf(zy)) >
ey C<y<hb.
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Theorem 3.5. G (C,y) is a beta Hilbert-Schmidt kernel, i.e.,

b b
fo fo IG @ )| dsldsy < +co..

Proof. From (25), we conclude that

b C
fo e f 16 @) sy < +oo,

b b
fo a5t fC IG @ )| dsy < +oo

because Z;; (C) Ex(y) € Lﬁ(O, b) (i, j, k,1 =1,2). Then, we find

b b
fo f 16 @ )| dsxdsy < +eo.

Theorem 3.6. Let

O

b
(SAHQ = fo Gy f () dsy.

Then the operator S is compact and self-adjoint.

Proof. Let A;j = Ai(y),i € N, be a complete, orthonormal basis of B. By Theorem 9, one can define

b

G=(FA) = fo FO), A edsy,
b

vi = (g, A) = fo (@ 0), MO exdy,

b b
0 = fo fo GCENA©, M O)edsldsy, ik e N.

7614

(26)

Then, B is mapped isometrically 2. Consequently, S transforms into the operator A defined as (4). (26) is

translated into (6). By Theorem 4, S is compact.

Let f,g € B. AsG((,y) = G! (y,0) and G (C, y) is a matrix-valued function in C? defined on [0, b] X [0, 1],

we find

b
(Sf,9) = fo (SH O, 9 Q)edsl

b b
:f (f G(C'V)f(V)dﬁ%g(C)) dgC
0 0 o

- [(ro [ c090ae) =5
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Theorem 3.7. The eigenvalues of L form an infinite sequence {yi,}.. , of real numbers which can be ordered so that

[u,,‘—>ooasn—>oo,

|U1| < |H2| <..< |un| <.

The set of all normalized eigenfunctions of L forms an orthonormal basis for the space B and forz € B,Sz = h,Lh = z,
Lo, = Aypy (n € IN) the eigenfunction expansion formula

Lh=Y" pallt, du)pn
n=1

is valid.

Proof. By Hilbert-Schmidt theorem and Theorem 10, S has an infinite sequence of non-zero real eigenvalues
{Entq with limy,_,e &, = 0. Then,

1
|yn|= — —> o0asn — oo.
Enl

Furthermore, let {¢n}n_1 denote an orthonormal set of eigenfuntions corresponding to {&,},>, . Then, for
z € B, we see that

0o

2= =Y b= Y L)
n=1

n=1

=Y 160 = Y alh )
n=1

n=1
O
4. Applications

Example 4.1. Consider the following system

=Tay> = uy,
{ Tay1 = uy2, 27)

with the Dirichlet conditions
Li(y)=y1(0)=0, L(y) =y (1) = 0. (28)

The solutions of (27) are

A1 (G ) - (foc Wlﬁy) and
1) =

—sin (foc ydﬁy)

sin (foc ydﬁy)
A (Gu) =

cos (foc' yd/;y)
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Then, the eigenvalues of problem (27) are the zeros of the determinant

1
= —sin(f ydﬁy).
0

Hence the eigenvalues {u,} . , are the zeros of sin ( fol ydﬁy) and the corresponding set of eigenfuctions

. C
sin (fo yndﬁy)

C
cos (fo /,t,,d,;y)

is an orthogonal basis of B. It is clear that
. C
sin ( fo pdﬁy)

C
cos (fo ydﬁy)

| Li(A) Li(Ap)
A(y)_‘ Ly (A1) Ly(A2)

0o

n=1

E:1 (Cr AU) =

and
E2(C )
sin (fo1 udﬁy) cos (f(f udﬁy) ~ cos (fol MdﬁV) sin (f(f udﬁV)

.t e 1 C
—sin (fo lud;;y) sin (fo ydﬁy) — cos (fo ydﬁy) cos (fo ydﬁy)

Hence if ¢ is not an eigenvalue, then Green’s matrix is given by

_ E(Cu)ET(rp)

) , 0<y<C
B sin(f0 }ldﬁ)’)
G(Cyu)= _ == 0w C<y<l
sin( IS #dzﬁ’) )

Example 4.2. Now we consider the equation

=Tay2 =y,
Toyr = uyo,

with the Neumann boundary conditions

Li(y) =y200)=0, Lo (y) = 2 (1) = 0.

Then, we have
1
= sin (f ydﬁy).
0

So the eigenvalues {u,},, are the zeros of sin ( fol ydﬁy) . Furthermore,

C
cos (J;) yd,gy)

. C
—sin (fo ydﬁy)

| Li(Aq) Li(Ag)
A(#)_’ Ly (A1) La(Az)

El (Cr ‘Ll) =
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and
EZ (Cr Au')
cos (fol yd,;y) cos (foc ydﬁy) + sin (fol ydﬁy) sin (foc ydﬁy)

1 . C . 1 C
—cos (fo ydﬁy) sin (fo ydﬁy) + sin (fo ydﬁy) cos (fo ydﬁy)

If u is not an eigenvalue, then we get

2esln) 0o
) | () Sys<
Crm =\ zenzion

sin(fo1 ydﬁy)

Example 4.3. Consider the equation

, C<y<l

=Tay2 =y,
Toyn = uyo,

with the conditions

Li(y) =1 (0) =0, La(y) =y () +y2(1) =0.

Then, we have
1 1
= —cos (f yd/;y) —sin (f ydﬁy).
0 0

The eigenvalues of this problem are the solutions of the equation

1 1
cos (f yd,;y) = —sin (f ydﬁy).
0 0

The functions &, (C, p) and E; (C, ) are given by
. C
—sin (fo ydﬁy)
Ei1(Gu) = . ,
—cos (fo [udﬁy)

_ | Li(A1) Li(A2)
A(“)“Lzml) L (A2)

EZ (Cr ‘U)
sin (fol ‘udﬁy) cos (foc ydﬁy) + cos (fol ydﬁy) cos (foc yd,;y)
+sin (fol yd,;y) sin (foc ydﬁy) — cos (fol yd,;y) sin (foc ydﬁy)
- cos (j(;l yd,gy) sin (foc ydﬁy) —sin (fol lud,;)/) sin (j(;c yd,;y)

1 C . 1 C
—cos (ﬁ) ydﬁy) cos (fo pdﬁy) + sin (fo ydﬁy) cos (fo ydﬁy)

+

7617
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If u is not an eigenvalue, then Green’s matrix is given by

GGy )

_ 1
sin(fo1 ydﬁ)/)ﬂos(fol udgy
1

)Ez(c,u)ElT(%u), 0<y=<cC
)51 CwE (ru), C<y<l

sin(ﬁ)1 ydm/)+cos(f01 udgy

Remark 4.4. In [18], the authors discuss systems of conformable linear differential equations with constant coeffi-
cients. They give full solution for homogeneous and non-homogeneous systems.
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