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Extensions of summability factors from single to double series

Mehmet Ali Sarigol®

?Department of Mathematics, Pamukkale University, Denizli, Turkey

Abstract. In earlier papers, some classes of absolute Riesz summability factors of infinite single series were
characterized by Sarigol and Bor [23], Sarigol [25, 26] and Rhoades and Savas [29]. The goal of this paper is
to extend these classes to double summability and also to obtain some well known results as special cases.

1. Introduction

Let us consider an infinite single series Xa, of real or complex numbers with partial sums s,, and write
(pn) for a sequence of positive numbers with

Py=po+p1+..+py > coasn— oo, Py =p_4=0. @

The sequence (u,,) of Riesz mean (R, p,) or weighted mean (ITT, pn) mean of the sequence (s,) is defined by

the sequence-to-sequence transformation u, = Y.5_ P»So/Pn, generated by the sequence of coefficients (p,).
In Hardy’s notation [8], the series Xa, is called summable |N , pn| if (Au,) € £, where

n
Pn

Au,_1 = P,_qa,.

Up-1 PPy ; r—1ar

This topic was extended by Bor [1] and Sarigol [25] to the summabilities )ZT], Pul|, and

|, and R, p|, ,k > 1, which
1/k .
are defined by replacing the condition (Au,) € ¢ by the conditions ((p,; 1Pﬂ) / Aun) € {, and (nl/ k Aun) € {,

respectively, where k* is the conjugate of index k, 1/k + 1/k* = 1, and ¢ is the set of absolutely k -convergent
series.

The topic of summability factors is one research field of summability theory and plays an important role
in establishing relation between domains of methods. If a sequence A = (A,) has the property that the series
YAna, is summable by a method F whenever a series Ya, is summable by a method E, then A is called the
sequence of summability factors of type (E, F), written A € (E, F) (see Bosanquet and Das [3]). This concept
has been examined by many authors for a long time and there are many papers related to this topic (see,
for example, [1-3, 6, 9-15, 20, 21, 23, 25, 26, 28, 29, 31, 32]). Hereof, the following results given by Sarigol
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([23, 25, 26]), Sar1gol & Bor [23] and Rhoades &Savas ([29]) states necessary and sufficient conditions for
some classes of summability factors for absolute Riesz methods, which also include the results related to
comparison of summability methods (see [4, 14, 24, 25, 33]).

Theorem 1.1. A € ( P |k> ,k>1,if and only if

npn

l

Pn / ’ / ’
Ar=0(1), p—A(pHAn) W, (') = O(1), PiduaW, (') = O(1),

where, provided that

o , k 1/k
AN k— pv

v=n+1

Although the converse of this result seems similar to itself, in fact it has a different class of summability
factors as follows.

Theorem 1.2. A € ( IR Py ), k> 1, if and only if
{v-l/k ( ”p,” Aul + PoAd + Ao )} € b
PvP Po

We note that Theorem 1.1 and Theorem 1.2 have been also proved by Rhoades and Savas (see [29]) under
stronger condtions and equivalent condtions, respectively.

The following theorems characterize classes of summability factors for different summability methods
[23].

Theorem 1.3. A € (W, Pnl,

, k),kz 1, if and only if

P, L\ 1/k
A, =0(1), AN, = O(1), =~ (p—) A, = O(1).
Pn pn \P

Theorem 1.4. A € (W, Pn N/ 2

K k
< 0, va (p:lr;ifm |) < 00.

The goal of this paper is to extend Theorems 1.1-1.4 to double summability and also to obtain some well
known results as special cases.

We first recall the needed notations. Throughout this paper we write },>% and }./"", instead of
Yo Yowo and Y10 Xoo_, respectively, and by (p,,) , we denote the sequence of nonnegative terms satisfying
(1), and by (p;,), (9+) and (g;,) , the sequences of nonnegative terms satisfying conditions similar to (1),

. 1/k
W, (a,p) = { 2 k! (%)k} (©)

v=n+1

y ), k> 1, if and only if

(e8]

N

=1

v+1

and

P

eD = p—’A (P;fl}t ) +PAry, 62 = Qv
r

Z}

(Q;,l .Uv) + Q;le

where (A,), (,uv) and () are sequences of complex and nonnegative numbers, respectively.
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Let 7% a,, be given an infinite double series with mnth partial sums s, i.e.,

r,0=0
Smn = Z ry (4)
r,0=0
and Uy, be the double Riesz mean (R, py,, ») of the double sequence (su,), i.e.,
U, = ! f Sro, U_1,, = U =0 (5)
mn — Pan = prqv rors -1n — YUm,—-1 — Y.

The double series Z::]’:}) ay, is said to be summable |R, i, Gu; Vinl,  k 2 1, if (see [17])
00,00 k_l _ k
Z Ymn |Auﬂm| < 0, (6)

m,n=0
where (), is a double sequence of nonnegative numbers and, for m,n > 1,
AUy = Upo—Up-1g,
AUy, = Uy, — Ugu-1, ()
AUy, = Uy - Um—l,n - um,n—l + Um—l,n—lr

We point out that this summability method includes some well known summability methods depending
on choosing of sequences (Vun), (Pm) and.(g,) . For example, it reduces to the double Riesz summability
R, pm, q,,|k (resp. absolute Cesaro method |C, 1, 1| for p,, = g, = 1, where m, n > 0, see, Rhoades [30, 31])

and the double summability W, pm,qn|k (see [18]) for the special cases yy, = mn and Yy = PuQn/Pmn,
respectively.

Consider a double sequence of complex numbers x = (x,,). If for every ¢ > 0 there exists a natural
integer ny(¢) and real number ! such that |x,, —I| < ¢ for all r,v > ngy(e), then, the sequence x is said to
be convergent in the Pringsheim sense, and also, a double series 7% x,, is convergent if and only if the
double sequence (s,;;) in (4) is convergent.

Let X and Y represent double sequence spaces, and A = (@ss) be a four dimensional infinite matrix of
complex (or, real) numbers and

00,00
Apn(x) = Z ApnroXro,s

r,0=0

provided the double series on right side converges for m,n > 0. Then, A defines a matrix transformation
from X into Y, written A € (X : V), if, for every sequence x = (xr,) € X, it's A-transform sequence A(x)
= (Aun(x)) exists and belongs to Y.

It may be noticed that there is a close relation between the summability method and space £, the set of

all double sequences of complex terms (x,,) such that Zr";’:) I,/ < o0, i.e., the series Z:;’Z)aw is summable

R, pm, qn;ymn|k if and only if (h,) € Lk, where hyy, = y},{,’,‘*ZUW form,n > 0..
We require the following lemmas to prove our theorems, and use the notatin a, < b, to show a, =

O (by) and b, = O (a,) for positive sequences (a,,) and (b;,) .

Lemma 1.5. ([27]) Forv >1,

(o)

1
P~ — k>0 )
m=r+1 P’"Pm—l Py
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Lemma 1.6. ([18]). Forr,v >1,

00,00

Pm‘]n 1
= Pk k’k
mn= r+1v+1 m 1Q”Q VQU

> 0. )

Lemma 1.7. ([16]). Let A = (Auy) be a four dimensional matrx of complex numbers. Then, A€ (L: L), k>1,if
and only if

Z |Amnrv|k = O(l)
mmn=0

Lemma 1.8. ([16]). Let A = (Ayy) be a four dimensional matrx of complex numbers. Then, A € (L, : L), k> 1,if
and only if

>

r,0=0

< 0. (10)

(o) k*
Y Vel

m,n=0

2. Summability factors of double Riesz methos

In this section we characterize some classes of summability factors of absolute double Riesz summability
methods and study double sequence (Ar, o) of summability factors such that Z o/Mrlhoflry 18 summable by

a method ¥ whenever Z aw is summable by a method G, where ¥ and Q are double summability
methods. In this case we erte (Ar, o) € (G, F).
Now we establish the following theorem:s.

Theorem 2.1. Let (A, uy) and y = (a,Bo) be double sequences of complex and nonnegative numbers, respectively.

Then, (A, o) € ( gnl, R, p; q,'q,‘)/mn|k),k > 1, if and only if
P, py
kﬂwm¢)=cmx¢mjﬁwwom, an
, Q
2| W8, 7) = Oq), ‘Bl/k v% | = 0Q1), (12)

where W, (o, p’) and W,(B, q’) are defined similarly to (3) .

Proof. By Uy, and U}, we denote the double Riesz means (R, p,,, g,) and (R, p,,, 4;,) of double series Z;’;’Z)a,v
and Zr Arlhofir, respect1vely, ie.,

mn 1,0

= 5 e T

0=0 ]

and

Uy = P;HQI Z prqu /\,"li]'ai]'.

r,u=0 i,j=0
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Also, a few calculations show that

1 mmn mmn
Uy, = aij Prdo
o L L
1 mn
= a;i (P, — P;_ -Qi
anwZO z]( m zl)(Qn Q] 1)
mn
P._ _
_ au( _Pl_l)(l_Qm)
~ AR
and so, form,n > 1,
mmn
e Pmqn
AUy, = ———— P,_1Qyp_1ay,. 13
mn Pum—lgnQn—l H)Z;l T 1Qv 1ary ( )
Analogously,
B pmqn ’
AU, = ———— Pl_1Q_ Arpiofy,. (14)
mn P P 1Qn - };1 1 -1 V‘U'TJ 1o

Now let X, = AUy, and Ymn = ()/mn)l/ A AU,,. Then, the double series Z Lz,z, is summable qn| if
qn'k , if and only if (ymn) € L.

and only if (x,,,) € £, and, the double series Zm}:O rHoly, is summable
On the other hand, it follows by taking the invers of (13) that

Pm—lQnQn—l (P Pm72 ) Pm—lQn—lQn—2 ( Pm72
| 7/ Xmn — P B I — Xmn-1 — Xm-1,n-1
In Pm Pm-1 dn-1 Pm Pm-1
m—1n mun—1 m—1n-1
= Z Pr 1Qv 1rp — Z Pr 1Qv 1rp — Z Pr 1Qv 1ary + Z Pr—le—larv
ro=1 ro=1 ro=1 ro=1
n n—-1
= Py (Z Qo1 — Z Qvlﬂva
=1 v=1
= Pm—lQn—lamnr
which gives
_ Pm Pm—2
Amo = —Xmo — Xm-1,0,
Pm Pm-1
Aom = %xOn - Qi X0,n-1, (15)
In n-1
P P P n P, 20,
Ayn = an Xmn — - ZQn Xm—1n — an 2-xm,n—l + LQnzxm—l,n—l-
pmqn pm—lﬂn Pm‘]n—l pm—lQn—l
Form,n > 1, put
1 k 1/k* , /K,
o = ) ! n g = Qo) / _ o) Py 18
mi - 7 , n — s Ymn ’ ’
P Pm 1 Qn n—1 P P 1Qn

o = Ph_yAmpo, Con = Q_yndo, Cmn=P'm_1Qn_1/\myn. 17)
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CroXyp. Further, using P_; = Q_; =0, it can be seen from (15), (16 ) and (17 ) that

Then, Yun = dun Lyye
m m—1
— (1)
Z Codro = poP,_ 1/\ — Xm0 + Ho Z e, X0, (18)
r=1 Pm 1=1
n n—-1
Qn
Covlloy = /\OQ;_lfun_XOn + Ao 6( )XOv (19)
v=1 n v=1
and
m,n — mer Py n-1 Q Qo1 Qn
Zr,v:l Crollyy =  Coppn— prquz nIn Pt ~ =1 (Cmv ,173 Cmgr] q_u)JCmv + o Zr 1 p(Crn or — Cr+1n v )Xr,n
m—1,n— y o =
+ er 1 { (Crvp Cr+1 v Py1 ) + qvl (Cr+l o+l Py - Cr,v+1 r )} xr,v (20)
PYYI 1 1 1
= Py 1Qn 1Am‘un an X + _Q,/1 1#712 =1 e( )xm
n— 1 2 m-1n-1 (1) (2
A Tt €% + LI e Ve .

m /
o P

This gives

Ymn = Ayn Z AmnroXro
r,o=1
ie., (Ymn) is the A—transform sequence of the double sequence (x,,,), where the four dimensional matrix

(Amnor) is given similarly in page 10, below,

do,,)\oeﬁ,z), m=0, 1<v<n
dOn/\oQ;_lyn%, m=0, v=n
dmO[JOegl)/ n=0 1<r<m
P"’ n=0 r=m

dm()[.lop:ﬂ 1/\
o % - mnerl), v=nl<r<m
dm P’"P;n 1/\me§,2), r=m,1<v<n
dmne(l)eg,z), 1<r<nl<v<m
PWIQYI —_ —
,T=mu=mn

dmnpl 1Qn 1 m,un Dl
0, v>m,r>n
Therefore the consequence of the theorem is satisfied if and only if A € (L : L), or, equivalently, by Lemma

Apnro =

1.7,
00,00 00,00 00,00
k k k k
Y Al = Aol + Y 1Aouool + Aol + Y Amorol + Wrorol + Y Amaral + Y JArirel
m,n=0 n=v+1 m=r+1 m=r+1 n=v+1
O0,0Q k k
+ Z Z |Am,n,r,v| + |Ar,v,r,v|
m=r+1 n=v+1
8
— k _
= ZI,. = 0(1).
i=0
(21)

which holds if and only if
(1),i=0,1,2,3,3,5,6,7,8.
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It is clear from (16) that

. k 1/k»ﬁl' ‘
Y Il =(Q? ) W (@, p),
v=p-1

m=r+1

00 1k, \k
a; pi’ k /

|d1’n|k = 7 D’ W’() ’ ’

Y PP B.q)

n=v+1

00,00

Y, Ml = W p )W)

mn=r+1,0+1

and so
’ *Q ‘
L= @ WoB g, I = B =22 Ao,
Q5
Py,
L= |uoe| Wi p), I = a2y,
pfpr
s Qo ,
o= R qQ Hoet| Wi, p),
8 P”P;’ 2
o= a5 el Wag, ),
I; = || Wila, )W, 7),
- P,Qupoq;
I = drPo Yk _r<otvly rto| -
8 (@:f0) PP, |

It is also easily seen from the last statements that the boundedness of I; and I3 imply the boundedness of
I7; the boundedness of I, and I; imply the boundedness of Is; the boundedness of I; and I imply Is; the
boundedness of I and I3 imply the boundedness of Is. Therefore the proof of the theorem is completed
with (21).

Now we determine the class of summability factors generated by changing the roles of the methods in
Theorem 2.1, which, even it looks similar to the previous one, has a very different structure.

Theorem 2.2. Let (A, uy) and y = (ay, Bo) -be double sequence of complex and nonnegative numbers, respectvely.
Then, (A, ) € (R, Pis G Vi, R, Pror T ),k > 1, if and only if

k* 00
11
ay (P; “ ) ) OO';
k 00 ,
e < -3

Proof. Let the notations Uy, U},,, Zum,,, ZU{W and ¢;;;; as in Theorem 2.1. Choose x;,;, = (amﬁn)l/ K Kum,,,

and Yy, = ZU,’W for m,n > 0. Then, the double series Z;‘;’z)a,v and Z:;ZJAY oy, are summable |R, P Gns Vinn

k’

P\
( ddi IArI) < oo, (22)

y
z,|) < oo. (23)

|
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and |R, p;n,q;l| if and only if (xyn) € Ly and (Yun) € L, respectively. Further, using P_; = Q-1 = 0, it follows
from (15),(16),(17) and (19) that

-1

E

m
Z Cotro = poPy, 1A (0‘ Bo) ™ Xm0 + o ZE Y (arB0) ™ xr0, (24)
=t 1=1
. Q n-1
Cooldop = /\OQ;_lfin—n (aoﬁn)—l/k Xon + Ao 6(2) (a ﬁv)_l/k 25)
v=1 Qn —
and
v Q 0 m-1
Z Crolry = 1Qn 1/\mHn Py Qn ( mﬁ”)_l/k X + ”Qn L Zeﬁl) (arﬁn)_l/k X, (26)
ro=1 Pmn Gn L
n-l m—1,n-1
P A Y €2 (@ufo) ™ X + e (0,8, x,,
v=1 ro=1
Let us put
P I Pl
dmO = o pr dOn = ’ dmn = ,,—’ﬂ’l n>1. (27)
p Pm 1 QVI n—1 P P 1Qn

Then, Yyun = dmn Yoo ro=1 ApnroXry, that is, the double sequence (1) becomes the A—transform sequence of the
double sequence (x,,,) , where the four dimensional matrix A = (Ay0r) is given by

do,q/\oeg,z) (aoﬁv)_l/k* , m=0,1<v<n
dOn)\oQ;l_llin% (aoﬁn)_l/k* , m=0,v=n
dmoyoeil) (oc,ﬁo)_l/k* , n=0,1<r<m
dmoHoP;,,,l/\m% (amﬁo)fl/ky , n=0,r=m
Amnro = dmn(a,[ﬂn)*l/k” o Qe eV, v=nl<r<m
Ay (mPBo) =ys 1;” P 1Ame(vz), r=ml<v<n
(o) H* eMe®  1<r<ml<ov<n
i (@)% Py Quor At 2222 7 = 1,0 = 1
0, r>mo>n

Therefore, the consequence of theorem is true if and only if A € (L : £), or, by Lemma 1.8,

00,00 00,00
Z Z |Amnrv| < 00. (28)
r,v=0 \m,n=0
Further, since
00,00 o o
Z |Amnrv| = Z |A0n07J| + |A0v0v| + Z |Am0r0| + |Ar0r0|
m,n=0 n=v+1 m=r+1
0 ) 00,00
) Mol + Y Ml + Y Ao + 1Arnl,
m=r+1 n=v+1 mn=r+1,0+1

(28) is equivalent to (29) stated as
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© »
i = Z(Ai) <o00,i=1,2,
v=1
o »
o= Y. (A) <ei=34, (29)
r=1
0,00 ©
i = Y. (A) <ei=567s8.
ro=1
where
A=) ool A = Mol A3 = Y Aol
n=v+1 m=r+1
A4 = |A1'070|/Z5 = Z |Amvrv|/;{6 = Z |Arnrv|/
m=r+1 n=v+1
Ay = Z |Am,n,r,v ’ As = |Arvrv| .
mmn=r+1,0+1

Also, it follows from (27) that

Z Aol = Z ol = P, TR

=

(=]

s
|

n=v+1 m=r+1 r n=v+1 r=1<0
00 q OO,DO 1

Z |dmv| = Q - Z |dmn| = P,_Q,

m=r+1 v=o-1 7 m,n:r+1,v+1 r=uv

and

Qs
7.Q5 Ho

A& 1 e
_ Loyl
L= %Zﬁ

|/\0|
Qo vZO‘ Bo

ol ol T~ ( P )
= — 15 A
S TPV M
o1 (Qu e S 1 (P 12|
— "o otr — rPy r€y
Js r;g)arﬁv[%Q; ¢ ] o m,Zzoa”ﬁv (prP; Q, ] ’
& 1 |ee? ¢ v 1 (PQwp, K
] = rl v/ ,] _ ( ’r vy )
' Z‘o“f” Py | ;o“ﬁv PP, 1T |

Further, since the convergence of J; and J;3 imply convergence of 7, the convergence of |, and J; imply
convergence of Jg, the convergence of J, and [3 imply convergence of J5, and the convergence of J; and
J4 imply convergence of Jg, then, (29) holds if and only if (22) and (23) are satisfied, which ends the proof.
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3. Special cases

Theorem 2.1 and Theorem 2.2 contain some well known results as special cases. We note that the
summability method |R, pm,qn;ymn|k for the case Y, = mn and Yy = PuQu/pmqn are reduced to the

summability methods N, Pms qn)k respectively, and also if we take a,y = a, for r > 0, zero

N, D

R, Pmsn |k and

otherwise, then, these methods |R, p, q,,)k and |N, Pm, qn| , are same as R, pm|k and
hence Theorems 1.1-1.4 follow from Theorems 2.1-2.2.

In the special case y,,, = mn, Theorem 2.1 leads to the following result.

;- Tespectively, and

Corollary 3.1. (A, ) € (R, PsGn|+ |R, Phs 0 k) ,k>1,if and only if
AP ) + P W) = O, B = o), (30)
4 4 ’ * Q 4
A (Q ) + Qoo Welg) = O, =B ] = O, G1)

where Wy(p’) and W(q") are defined by (2) .
If Yin = PmQn/PmGn, then W(a,p’) < 1/P; and Wy(B,q’) < 1/Q;,. Therefore, by Lemma 1.5 and Lemma 1.6,
Theorem 2.1 reduces to the following result.

Corollary 3.2. (A, uy) € (N, P Gn) s N, p;n,q,;|k),k > 1, if and only if
S\ 1/k
Pr pr PT
——AA+ A, = 00, |= — A = 0(1),
-2 = 0w, (5] En=on
,\1/k
%AHU +or1| = O(1), (g) % |[uv| =0(1).

The case of A, = p, = 1 of Corollary 3.2 leads to the following result of the author [16], the case k = 1 of
which also extends the result of Sunouchi [33] and Bosanquet [4].to double summability.

Corollary 3.3. (1,1) € (Kl, P Gn| s W, p;ﬂq;’k) k> 1, if and only if

k k
p; (P, Ty Qo
| — :Ol, —_— | — =Ol
Pé(r») @ Q;(qv) M

For p,, = g, = 1, the summability |IT], Pms q,,|k reduces to the absolute double summability |C, 1.1, given by
Rhoades [4], and W, (p") = Wy (p") = 1/m. So, Corollary 3.2 reduces to the result of [16] as follows;

Corollary 3.4. (1,1) € (IC,1,1],

N/p;nr % k)’k > 1, l:fﬂ]’ld only lf

kP K To _
7 =0, d 5 =00,

Further, for A, = y, = 1, Corollary 3.1 gives another inclusion result for |R, pm,qn|k. Then, by (30), since

;’—Zi = O(r—l/k*> — 0 as r — oo, the condition W, (p") = OQ1) is equivalent to P,W, (p’) = O(1).

Analogously, Q, W, (7") = O(1). Hence we have

v _ Py
Pr_ﬁpr
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),kZ 1, if and only if

qn’/

’
il

* Pr :’ ’ ’
P = 00, W, ()P =0
:

Uk =l Qs
QUQv

o), Wy(q)Q; =0(),

where Wy (p’) and W (q") are defined by (2) .

Also, one can be obtain the following results from Theorem 2.2 by putting yyn = Py Qn/Pmn-

Corollary 3.6. (A, uy) € (W, PmsGn

" W,p,’n,q;(),k > 1, if and only if

/ . e
pr/\r Pr r+1 Pr
] (p) “f‘?ﬂ—a < [ () <o
) 0o _ K
Qv ) q;“?} qU/JUH ( Qv ) ( % )
= Au, — — + 00, — = U < oo.
vz(qv T TG, Z; ) gl

Corollary 3.7. (A, o) € (IC, 1.1, [N, p},, 4;]) k> 1, if and only if

Z 1AM, - P +rjr“1 < Zrk ( A, |) < oo,
r=1 r=1
oo , 00 Kk

-1 qrio ”Hl K81 ( )

v Auy — + < o v < 00.
R 27 g e
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