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Extensions of summability factors from single to double series

Mehmet Ali Sarıgöla

aDepartment of Mathematics, Pamukkale University, Denizli, Turkey

Abstract. In earlier papers, some classes of absolute Riesz summability factors of infinite single series were
characterized by Sarıgöl and Bor [23], Sarıgöl [25, 26] and Rhoades and Savas [29]. The goal of this paper is
to extend these classes to double summability and also to obtain some well known results as special cases.

1. Introduction

Let us consider an infinite single series Σan of real or complex numbers with partial sums sn, and write(
pn

)
for a sequence of positive numbers with

Pn = p0 + p1 + ... + pn →∞ as n→∞,P−1 = p−1 = 0. (1)

The sequence (un) of Riesz mean
(
R, pn

)
or weighted mean

(
N, pn

)
mean of the sequence (sn) is defined by

the sequence-to-sequence transformation un =
∑n

v=0 pvsv/Pn, generated by the sequence of coefficients
(
pn

)
.

In Hardy’s notation [8], the series Σan is called summable
∣∣∣N, pn

∣∣∣ if (∆un) ∈ ℓ,where

∆un−1 =
pn

PnPn−1

n∑
r=1

Pr−1ar.

This topic was extended by Bor [1] and Sarıgöl [25] to the summabilities
∣∣∣N, pn

∣∣∣
k and

∣∣∣R, pn

∣∣∣
k , k ≥ 1, which

are defined by replacing the condition (∆un) ∈ ℓ by the conditions
((

p−1
n Pn

)1/k∗
∆un

)
∈ ℓk, and

(
n1/k∗∆un

)
∈ ℓk,

respectively, where k∗ is the conjugate of index k, 1/k+ 1/k∗ = 1, and ℓk is the set of absolutely k -convergent
series.

The topic of summability factors is one research field of summability theory and plays an important role
in establishing relation between domains of methods. If a sequence λ = (λn) has the property that the series
Σλnan is summable by a method F whenever a series Σan is summable by a method E, then λ is called the
sequence of summability factors of type (E,F), written λ ∈ (E,F) (see Bosanquet and Das [3]). This concept
has been examined by many authors for a long time and there are many papers related to this topic (see,
for example, [1–3, 6, 9–15, 20, 21, 23, 25, 26, 28, 29, 31, 32]). Hereof, the following results given by Sarıgöl
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([23, 25, 26]), Sarıgöl & Bor [23] and Rhoades &Savas ([29]) states necessary and sufficient conditions for
some classes of summability factors for absolute Riesz methods, which also include the results related to
comparison of summability methods (see [4, 14, 24, 25, 33]).

Theorem 1.1. λ ∈
(∣∣∣R, pn

∣∣∣ , ∣∣∣R, p′n∣∣∣k) , k ≥ 1, if and only if

n1/k∗ Pnp′n
pnP′n

λn = O (1) ,
Pn

pn
∆

(
P′n−1λn

)
Wn

(
p′

)
= O (1) , P′nλn+1Wn

(
p′

)
= O(1),

where, provided that

Wn
(
p′

)
=

 ∞∑
v=n+1

vk−1

(
p′v

P′vP′v−1

)k


1/k

. (2)

Although the converse of this result seems similar to itself, in fact it has a different class of summability
factors as follows.

Theorem 1.2. λ ∈
(∣∣∣R, pn

∣∣∣
k ,

∣∣∣R, p′n∣∣∣) , k > 1, if and only if{
v−1/k∗

(
Pvp′v
pvP′v

|λn| +

∣∣∣∣∣Pv

pv
∆λ + λv+1

∣∣∣∣∣)} ∈ ℓk∗ .
We note that Theorem 1.1 and Theorem 1.2 have been also proved by Rhoades and Savas (see [29]) under
stronger condtions and equivalent condtions, respectively.

The following theorems characterize classes of summability factors for different summability methods
[23].

Theorem 1.3. λ ∈
(∣∣∣N, pn

∣∣∣ , ∣∣∣N, p′n∣∣∣k) , k ≥ 1, if and only if

λn = O (1) ,
Pn

pn
∆λn = O (1) ,

Pn

pn

(
p′n
P′n

)1/k

λn = O(1).

Theorem 1.4. λ ∈
(∣∣∣N, pn

∣∣∣
k ,

∣∣∣N, p′n∣∣∣) , k > 1, if and only if

∞∑
v=1

pv

Pv

∣∣∣∣∣Pv

pv
∆λn + λv+1

∣∣∣∣∣k∗ < ∞, ∞∑
v=1

pv

Pv

(
Pvp′v
pvP′v

|λn|

)k∗

< ∞.

The goal of this paper is to extend Theorems 1.1-1.4 to double summability and also to obtain some well
known results as special cases.

We first recall the needed notations. Throughout this paper we write
∑
∞,∞
r,v=0 and

∑m,n
r,v=0 instead of∑

∞

r=0
∑
∞

v=0 and
∑m

r=0
∑n

v=0, respectively, and by
(
pn

)
,we denote the sequence of nonnegative terms satisfying

(1) , and by
(
p′n

)
,
(
qn

)
and

(
q′n

)
, the sequences of nonnegative terms satisfying conditions similar to (1) ,

Wn
(
α, p

)
=

 ∞∑
v=n+1

αk−1
v

( pv

PvPv−1

)k


1/k

(3)

and

e(1)
r =

Pr

pr
∆

(
P′r−1λr

)
+ P′rλr+1, e(2)

v =
Qv

qv
∆

(
Q′v−1µv

)
+Q′vµv+1

where (λv),
(
µv

)
and (αv) are sequences of complex and nonnegative numbers, respectively.
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Let Σ∞,∞r,v=0arv be given an infinite double series with mnth partial sums smn, i.e.,

smn =

m,n∑
r,v=0

arv (4)

and Umn be the double Riesz mean
(
R, pm, qn

)
of the double sequence (smn) , i.e.,

Umn =
1

PmQn

m,n∑
r,v=0

prqvsrv, U−1,n = Um,−1 = 0. (5)

The double series
∑
∞,∞
r,v=0 arv is said to be summable

∣∣∣R, pm, qn;γmn

∣∣∣
k , k ≥ 1, if (see [17])

∞,∞∑
m,n=0

γk−1
mn

∣∣∣∆Umn

∣∣∣k < ∞, (6)

where
(
γmn

)
is a double sequence of nonnegative numbers and, for m,n ≥ 1,

∆Um0 = Um0 −Um−1,0,

∆U0n = U0n −U0,n−1, (7)

∆Umn = Umn −Um−1,n −Um,n−1 +Um−1,n−1,

We point out that this summability method includes some well known summability methods depending
on choosing of sequences

(
γmn

)
,
(
pm

)
and.

(
qn

)
. For example, it reduces to the double Riesz summability∣∣∣R, pm, qn

∣∣∣
k (resp. absolute Cesàro method |C, 1, 1|k for pm = qn = 1, where m,n ≥ 0, see, Rhoades [30, 31])

and the double summability
∣∣∣N, pm,qn

∣∣∣
k (see [18]) for the special cases γmn = mn and γmn = PmQn/pmqn,

respectively.
Consider a double sequence of complex numbers x = (xrv) . If for every ε > 0 there exists a natural

integer n0(ε) and real number l such that |xrv − l| < ε for all r, v ≥ n0(ε), then, the sequence x is said to
be convergent in the Pringsheim sense, and also, a double series Σ∞,∞r,v=0xr,v is convergent if and only if the
double sequence (smn) in (4) is convergent.

Let X andY represent double sequence spaces, andA = (amnrs) be a four dimensional infinite matrix of
complex (or, real) numbers and

Amn(x) =
∞,∞∑
r,v=0

Amnrvxrv,

provided the double series on right side converges for m,n ≥ 0. Then, A defines a matrix transformation
from X into Y, written A ∈ (X : Y), if, for every sequence x = (xrv) ∈ X, it’s A-transform sequenceA(x)
= (Amn(x)) exists and belongs toY.

It may be noticed that there is a close relation between the summability method and spaceLk, the set of
all double sequences of complex terms (xrv) such that Σ∞,∞r,v=0 |xrv|

k < ∞, i.e., the series Σ∞,∞r,v=0arv is summable∣∣∣R, pm, qn;γmn

∣∣∣
k if and only if (hmn) ∈ Lk,where hmn = γ

1/k∗
mn ∆Umn for m,n ≥ 0..

We require the following lemmas to prove our theorems, and use the notatin an ≍ bn to show an =
O (bn) and bn = O (an) for positive sequences (an) and (bn) .

Lemma 1.5. ([27]) For v ≥ 1,

∞∑
m=r+1

pm

PmPk
m−1

≍
1

Pk
v
, k > 0. (8)
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Lemma 1.6. ([18]). For r, v ≥ 1,

∞,∞∑
m,n=r+1,v+1

pmqn

PmPk
m−1QnQk

n−1

≍
1

Pk
rQk

v
, k > 0. (9)

Lemma 1.7. ([16]). LetA = (Amn) be a four dimensional matrx of complex numbers. Then,A ∈ (L : Lk) , k ≥ 1, if
and only if

∞,∞∑
m,n=0

|Amnrv|
k = O(1).

Lemma 1.8. ([16]). LetA = (Amn) be a four dimensional matrx of complex numbers. Then,A ∈ (Lk : L) , k > 1, if
and only if

∞∑
r,v=0

 ∞∑
m,n=0

|Amnrv|


k∗

< ∞. (10)

2. Summability factors of double Riesz methos

In this section we characterize some classes of summability factors of absolute double Riesz summability
methods and study double sequence

(
λr, µv

)
of summability factors such that Σ∞,∞r,v=0λrµvarv is summable by

a method F whenever Σ∞,∞r,v=0arv is summable by a method G, where F and G are double summability
methods. In this case we write

(
λr, µv

)
∈ (G,F ).

Now we establish the following theorems.

Theorem 2.1. Let
(
λr, µv

)
and γ =

(
αrβv

)
be double sequences of complex and nonnegative numbers, respectively.

Then,
(
λr, µv

)
∈

(∣∣∣R, pm, qn

∣∣∣ , ∣∣∣R, p′m, q′n;γmn

∣∣∣
k

)
, k ≥ 1, if and only if

∣∣∣e(1)
r

∣∣∣ Wr(α, p′) = O(1), α1/k8

r
Pr

pr

p′r
P′r
|λr| = O(1), (11)∣∣∣e(2)

v

∣∣∣ Wv(β, q′) = O(1), β1/k∗
v

Qvq′v
qvQ′v

∣∣∣µv

∣∣∣ = O(1), (12)

where Wr(α, p′) and Wr(β, q′) are defined similarly to (3) .

Proof. By Umn and U′mn we denote the double Riesz means
(
R, pm, qn

)
and

(
R, p′m, q′n

)
of double seriesΣ∞,∞r,v=0arv

and Σ∞,∞r,v=0λrµvarv, respectively, i.e.,

Umn =
1

PmQn

m,n∑
r,v=0

prqv

r,v∑
i, j=0

ai j

and

U′mn =
1

P′mQ′n

m,n∑
r,v=0

p′rq
′

v

r,v∑
i, j=0

λiµ jai j.
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Also, a few calculations show that

Umn =
1

PmQn

m,n∑
i, j=0

ai j

m,n∑
r,v=i, j

prqv

=
1

PmQn

m,n∑
i, j=0

ai j (Pm − Pi−1)
(
Qn −Q j−1

)
=

m,n∑
i, j=0

ai j

(
1 −

Pi−1

Pm

) (
1 −

Q j−1

Qn

)
and so, for m,n ≥ 1,

∆Umn =
pmqn

PmPm−1QnQn−1

m,n∑
r,v=1

Pr−1Qv−1arv. (13)

Analogously,

∆U′mn =
p′mq′n

P′mP′m−1Q′nQ′n−1

m,n∑
r,v=1

P′r−1Q′v−1λrµvarv. (14)

Now let xmn = ∆Umn, and ymn =
(
γmn

)1/k∗ ∆U′mn. Then, the double series Σ∞,∞r,v=0arv is summable
∣∣∣R, pm, qn

∣∣∣ if
and only if (xmn) ∈ L, and, the double series Σ∞,∞r,v=0λrµvarv is summable

∣∣∣R, p′m, q′n∣∣∣k , if and only if
(
ymn

)
∈ Lk.

On the other hand, it follows by taking the invers of (13) that

Pm−1QnQn−1

qn

(
Pm

pm
xmn −

Pm−2

pm−1
xm−1,n

)
−

Pm−1Qn−1Qn−2

qn−1

(
Pm

pm
xm,n−1 −

Pm−2

pm−1
xm−1,n−1

)
=

m,n∑
r,v=1

Pr−1Qv−1arv −

m−1,n∑
r,v=1

Pr−1Qv−1arv −

m,n−1∑
r,v=1

Pr−1Qv−1arv +

m−1,n−1∑
r,v=1

Pr−1Qv−1arv

= Pm−1

 n∑
v=1

Qv−1amv −

n−1∑
v=1

Qv−1amv


= Pm−1Qn−1amn,

which gives

am0 =
Pm

pm
xm0 −

Pm−2

pm−1
xm−1,0,

a0n =
Qn

qn
x0n −

Qn−2

qn−1
x0,n−1, (15)

amn =
PmQn

pmqn
xmn −

Pm−2Qn

pm−1qn
xm−1n −

PmQn−2

pmqn−1
xm,n−1 +

Pm−2Qn−2

pm−1qn−1
xm−1,n−1.

For m, n ≥ 1, put

dm0 =

(
γm0

)1/k∗ p′m
P′mP′m−1

, d0n =

(
γ0n

)1/k∗ q′n
Q′nQ′n−1

, dmn =

(
γmn

)1/k∗ p′mq′n
P′mP′m−1Q′nQ′n−1

, (16)

cm0 = P′m−1λmµ0, c0n = Q′n−1µnλ0, cmn = P′m−1Q′n−1λmµn. (17)
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Then, ymn = dmn
∑m,n

r,v=0 crvxrv. Further, using P−1 = Q−1 = 0, it can be seen from (15), (16 ) and (17 ) that

m∑
r=1

cr0ar0 = µ0P′m−1λm
Pm

pm
xm0 + µ0

m−1∑
1=1

e(1)
r xr0, (18)

n∑
v=1

c0va0v = λ0Q′n−1µn
Qn

qn
x0n + λ0

n−1∑
v=1

e(2)
v x0v (19)

and ∑m,n
r,v=1 crvarv = cmn

PmQn
pmqn

xm,n +
Pm
pm
.
∑n−1

v=1

(
cmv

Qv
qv
− cm,v+1

Qv−1
qv

)
xm,v +

Qn
qn

∑m−1
r=1

(
crn

Pr
pr
− cr+1,n

Pr−1
pr

)
xr,n

+
∑m−1,n−1

r,v=1

{
Qv
qv

(
crv

Pr
pr
− cr+1,v

Pr−1
pr

)
+ Qv−1

qv

(
cr+1,v+1

Pr−1
pr
− cr,v+1

Pr
pr

)}
xr,v

= Pm−1Qn−1λmµn
PmQn
pmqn

xm,n +
Qn
qn

Q′n−1µn
∑m−1

r=1 e(1)
r xrn

+Pm
pm
.P′m−1λm

∑n−1
v=1 e(2)

v xm,v +
∑m−1,n−1

r,v=1 e(1)
r e(2)

v xr,v.

(20)

This gives

ymn = dmn

∞,∞∑
r,v=1

Amnrvxrv

i.e.,
(
ymn

)
is the A−transform sequence of the double sequence (xmn) , where the four dimensional matrix

A = (Amnvr) is given similarly in page 10, below,

Amnrv =



d0nλ0e(2)
v , m = 0, 1 ≤ v < n

d0nλ0Q′n−1µn
Qn
qn
, m = 0, v = n

dm0µ0e(1)
r , n = 0, 1 ≤ r < m

dm0µ0P′m−1λm
Pm
pm
, n = 0, r = m

dmn
Qn
qn

Q′n−1µne(1)
r , v = n, 1 ≤ r < m

dmn
Pm
pm

P′m−1λme(2)
v , r = m, 1 ≤ v < n

dmne(1)
r e(2)

v , 1 ≤ r < n, 1 ≤ v < m
dmnP′m−1Q′n−1λmµn

PmQn
pmqn
, r = m, v = n

0, v > m, r > n

Therefore the consequence of the theorem is satisfied if and only ifA ∈ (L : Lk), or, equivalently, by Lemma
1.7,

∞,∞∑
m,n=0

|Amnrv|
k = |A0000|

k +

∞,∞∑
n=v+1

|A0n0v|
k + |A0v0v|

k +

∞,∞∑
m=r+1

|Am0r0|
k + |Ar0r0|

k +

∞,∞∑
m=r+1

∣∣∣Am,v,r,v

∣∣∣k + ∞,∞∑
n=v+1

∣∣∣Ar,n,r,v

∣∣∣k
+

∞,∞∑
m=r+1

∑
n=v+1

∣∣∣Am,n,r,v

∣∣∣k + ∣∣∣Ar,v,r,v

∣∣∣k
=

8∑
i=0

Ik
i = O(1).

which holds if and only if

Ii = O(1), i = 0, 1, 2, 3, 3, 5, 6, 7, 8. (21)
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It is clear from (16) that

∞∑
m=r+1

|dmv|
k =

 β1/k∗
v q′v

Q′vQ′v−1

k

W k
r

(
α, p′

)
,

∞∑
n=v+1

|drn|
k =

α1/k∗
r p′r

P′rP′r−1

k

W k
v

(
β, q′

)
,

∞,∞∑
m,n=r+1,v+1

|dmn|
k =W k

r
(
α, p′

)
W k

v
(
β, q′

)
and so

I1 =
∣∣∣λ0e(2)

v

∣∣∣ Wv(β, q′), I2 = β
1/k∗
v

Qvq′v
qvQ′v

∣∣∣λ0µv

∣∣∣ ,
I3 =

∣∣∣µ0e(1)
r

∣∣∣ Wr(α, p′), I4 = α
1/k8

r
Prp′r
prP′r

∣∣∣µ0λr

∣∣∣ ,
I5 = β1/k8

v
Qvq′v
qvQ′v

∣∣∣µve(1)
r

∣∣∣ Wr(α, p′),

I6 = α1/k8

r
Prp′r
prP′r

∣∣∣λre
(2)
v

∣∣∣ Wv(β, q′),

I7 =
∣∣∣e(1)

r e(2)
v

∣∣∣ Wr(α, p′)Wv(β, q′),

I8 =
(
αrβv

)1/k∗ PrQvp′vq′v
prqvP′rQ′v

∣∣∣λrµv

∣∣∣ .
It is also easily seen from the last statements that the boundedness of I1 and I3 imply the boundedness of
I7; the boundedness of I2 and I4 imply the boundedness of I8; the boundedness of I1 and I4 imply I6; the
boundedness of I2 and I3 imply the boundedness of I5. Therefore the proof of the theorem is completed
with (21).

Now we determine the class of summability factors generated by changing the roles of the methods in
Theorem 2.1, which, even it looks similar to the previous one, has a very different structure.

Theorem 2.2. Let
(
λr, µv

)
and γ =

(
αr, βv

)
.be double sequence of complex and nonnegative numbers, respectvely.

Then,
(
λr, µv

)
∈

(∣∣∣R, pm, qn : γmn

∣∣∣
k ,

∣∣∣R, p′m, q′n∣∣∣) , k > 1, if and only if

∞∑
r=0

1
αr

(
1
P′r

∣∣∣e(1)
r

∣∣∣)k∗

< ∞,
∞∑

r=0

1
αr

(
Prp′r
prP′r

|λr|

)k∗

< ∞, (22)

∞∑
v=0

1
βv

(
1

Q′v

∣∣∣e(2)
v

∣∣∣)k∗

< ∞,
∞∑

v=0

1
βv

(
Qvq′v
qvQ′v

∣∣∣µv

∣∣∣)k∗

< ∞. (23)

Proof. Let the notations Umn, U′mn, ∆Umn, ∆U′mn and cmn as in Theorem 2.1. Choose xmn =
(
αmβn

)1/k∗ ∆Umn,

and ymn = ∆U′mn for m,n ≥ 0. Then, the double seriesΣ∞,∞r,v=0arv andΣ∞,∞r,v=0λrµvarv are summable
∣∣∣R, pm, qn;γmn

∣∣∣
k
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and
∣∣∣R, p′m, q′n∣∣∣ if and only if (xmn) ∈ Lk and

(
ymn

)
∈ L, respectively. Further, using P−1 = Q−1 = 0, it follows

from (15) , (16) , (17) and (19) that

m∑
r=1

cr0ar0 = µ0P′m−1λm
Pm

pm

(
αmβ0

)−1/k∗ xm0 + µ0

m−1∑
1=1

e(1)
r

(
αrβ0

)−1/k∗ xr0, (24)

n∑
v=1

c0va0v = λ0Q′n−1µn
Qn

qn

(
α0βn

)−1/k∗ x0n + λ0

n−1∑
v=1

e(2)
v

(
α0βv

)−1/k∗ x0v (25)

and
m,n∑

r,v=1

crvarv = P′m−1Q′n−1λmµn
PmQn

pmqn

(
αmβn

)−1/k∗ xm,n +
Qn

qn
Q′n−1µn

m−1∑
r=1

e(1)
r

(
αrβn

)−1/k∗ xrn (26)

+
Pm

pm
.P′m−1λm

n−1∑
v=1

e(2)
v

(
αmβv

)−1/k∗ xm,v +

m−1,n−1∑
r,v=1

e(1)
r e(2)

v
(
αrβv

)−1/k∗ xr,v.

Let us put

dm0 =
p′m

P′mP′m−1
, d0n =

q′n
Q′nQ′n−1

, dmn =
p′mq′n

P′mP′m−1Q′nQ′n−1
; m,n ≥ 1. (27)

Then, ymn = dmn
∑m,n

r,v=1 Amnrvxrv, that is, the double sequence
(
ymn

)
becomes theA−transform sequence of the

double sequence (xmn) ,where the four dimensional matrixA = (Amnvr) is given by

Amnrv =



d0nλ0e(2)
v

(
α0βv

)−1/k∗ , m = 0, 1 ≤ v < n
d0nλ0Q′n−1µn

Qn
qn

(
α0βn

)−1/k∗ , m = 0, v = n
dm0µ0e(1)

r
(
αrβ0

)−1/k∗ , n = 0, 1 ≤ r < m
dm0µ0P′m−1λm

Pm
pm

(
αmβ0

)−1/k∗ , n = 0, r = m
dmn(αrβn)−1/k∗ Qn

qn
Q′n−1µne(1)

r , v = n, 1 ≤ r < m
dmn(αmβv)−1/k∗ Pm

pm
P′m−1λme(2)

v , r = m, 1 ≤ v < n
dmn(αrβv)−1/k∗e(1)

r e(2)
v , 1 ≤ r < m, 1 ≤ v < n

dmn(αmβn)−1/k∗Pm−1Qn−1λmµn
PmQn
pmqn
, r = m, v = n

0, r > m, v > n

Therefore, the consequence of theorem is true if and only ifA ∈ (Lk : L) , or, by Lemma 1.8,

∞,∞∑
r,v=0

 ∞,∞∑
m,n=0

|Amnrv|


k∗

< ∞. (28)

Further, since

∞,∞∑
m,n=0

|Amnrv| =

∞∑
n=v+1

|A0n0v| + |A0v0v| +

∞∑
m=r+1

|Am0r0| + |Ar0r0|

+

∞∑
m=r+1

|Amvrv| +

∞∑
n=v+1

|Arnrv| +

∞,∞∑
m,n=r+1,v+1

∣∣∣Am,n,r,v

∣∣∣ + |Arvrv| ,

(28) is equivalent to (29) stated as
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Ji =

∞∑
v=1

(
Âi

)k∗
< ∞, i = 1, 2,

Ji =

∞∑
r=1

(
Âi

)k∗
< ∞, i = 3, 4, (29)

Ji =

∞,∞∑
r,v=1

(
Âi

)k∗
< ∞, i = 5, 6, 7, 8.

where

Â1 =

∞∑
n=v+1

|A0n0v| , Â2 = |A0v0v| , Â3 =

∞∑
m=r+1

|Am0r0| ,

Â4 = |Ar0r0| , Â5 =

∞∑
m=r+1

|Amvrv| , Â6 =

∞∑
n=v+1

|Arnrv| ,

Â7 =

∞,∞∑
m,n=r+1,v+1

∣∣∣Am,n,r,v

∣∣∣ , Â8 = |Arvrv| .

Also, it follows from (27) that

∞∑
n=v+1

|d0n| =
1

Q′v
,
∞∑

m=r+1

|dm0| =
1
P′r
,
∞∑

n=v+1

|drn| =
p′r

P′rP′r−1Q′v
,

∞∑
m=r+1

|dmv| =
q′v

Q′vQ′v−1P′r
,

∞,∞∑
m,n=r+1,v+1

|dmn| =
1

P′rQ′v

and

J1 =
λk∗

0

α0

∞∑
v=0

1
βv

∣∣∣∣∣∣ e(2)
v

Q′v

∣∣∣∣∣∣
k∗

. J2 =
|λ0|

k∗

α0

∞∑
v=0

1
βv

∣∣∣∣∣Qvq′v
qvQ′v

µv

∣∣∣∣∣k∗ ,
J3 =

∣∣∣µ0

∣∣∣k∗
β0

∞∑
r=0

1
αr

∣∣∣∣∣∣ e(1)
r

P′r

∣∣∣∣∣∣
k∗

, J4 =

∣∣∣µ0

∣∣∣k∗
β0

∞∑
r=0

1
αr

(
Prp′r
prP′r

|λr|

)k∗

,

J5 =

∞,∞∑
r,v=0

1
αrβv

Qvq′v
qvQ′v

∣∣∣∣∣∣∣µve(1)
r

P′r

∣∣∣∣∣∣∣


k∗

, J6 =

∞,∞∑
r,v=0

1
αrβv

Prp′r
prP′r

∣∣∣∣∣∣λre
(2)
v

Q′v

∣∣∣∣∣∣
k∗

,

J7 =

∞,∞∑
r,v=0

1
αrβv

∣∣∣∣∣∣ e(1)
r e(2)

v

P′rQ′v

∣∣∣∣∣∣
k∗

, J8 =

∞,∞∑
r,v=0

1
αrβv

(
PrQvp′rq′v
prqvP′rQ′v

∣∣∣λrµv

∣∣∣)k∗ .

.

Further, since the convergence of J1 and J3 imply convergence of J7, the convergence of J2 and J4 imply
convergence of J8, the convergence of J2 and J3 imply convergence of J5, and the convergence of J1 and
J4 imply convergence of J6, then, (29) holds if and only if (22) and (23) are satisfied, which ends the proof.
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3. Special cases

Theorem 2.1 and Theorem 2.2 contain some well known results as special cases. We note that the
summability method

∣∣∣R, pm, qn;γmn

∣∣∣
k for the case γmn = mn and γmn = PmQn/pmqn are reduced to the

summability methods
∣∣∣R, pm, qn

∣∣∣
k and

∣∣∣N, pm, qn

∣∣∣
k respectively, and also if we take ar0 = ar for r ≥ 0, zero

otherwise, then, these methods
∣∣∣R, pm, qn

∣∣∣
k and

∣∣∣N, pm, qn

∣∣∣
k are same as

∣∣∣R, pm

∣∣∣
k and

∣∣∣N, pm

∣∣∣
k , respectively, and

hence Theorems 1.1-1.4 follow from Theorems 2.1-2.2.
In the special case γmn = mn, Theorem 2.1 leads to the following result.

Corollary 3.1.
(
λr, µv

)
∈

(∣∣∣R, pm, qn

∣∣∣ , ∣∣∣R, p′m, q′n∣∣∣k) , k ≥ 1, if and only if

∣∣∣∣∣Pr

pr
∆

(
P′r−1λr

)
+ P′rλr+1

∣∣∣∣∣ Wr(p′) = O(1), r1/k8 Pr

pr

p′r
P′r
|λr| = O(1), (30)∣∣∣∣∣Qv

qv
∆

(
Q′v−1µv

)
+Q′vµv+1

∣∣∣∣∣ Wv(q′) = O(1), v1/k∗ Qvq′v
qvQ′v

∣∣∣µv

∣∣∣ = O(1), (31)

where Wv(p′) and Wv(q′) are defined by (2) .
If γmn = PmQn/pmqn, then Wr(α, p′) ≍ 1/P′r and Wv(β, q′) ≍ 1/Q′v. Therefore, by Lemma 1.5 and Lemma 1.6,

Theorem 2.1 reduces to the following result.

Corollary 3.2.
(
λr, µv

)
∈

(∣∣∣N, pm, qn

∣∣∣ , ∣∣∣N, p′m, q′n∣∣∣k) , k ≥ 1, if and only if

∣∣∣∣∣−Pr

pr
∆λr + λr+1

∣∣∣∣∣ = O(1),
(

p′r
P′r

)1/k Pr

pr
|λr| = O(1),∣∣∣∣∣Qv

qv
∆µv + µv+1

∣∣∣∣∣ = O(1),
(

q′v
Q′v

)1/k Qv

qv

∣∣∣µv

∣∣∣ = O(1).

The case of λv = µv = 1 of Corollary 3.2 leads to the following result of the author [16], the case k = 1 of
which also extends the result of Sunouchi [33] and Bosanquet [4].to double summability.

Corollary 3.3. (1, 1) ∈
(∣∣∣N, pm, qn

∣∣∣ , ∣∣∣N, p′m, q′n∣∣∣k) , k ≥ 1, if and only if

p′r
P′r

(
Pr

pr

)k

= O(1),
q′v
Q′v

(
Qv

qv

)k

= O(1).

For pm = qn = 1, the summability
∣∣∣N, pm, qn

∣∣∣
k reduces to the absolute double summability |C, 1.1|k , given by

Rhoades [4], and Wm(p′) =Wm(p′) = 1/m. So, Corollary 3.2 reduces to the result of [16] as follows;

Corollary 3.4. (1, 1) ∈
(
|C, 1, 1| ,

∣∣∣N, p′m, q′n∣∣∣k) , k ≥ 1, if and only if

rk p′r
P′r
= O(1), vk q′v

Q′v
= O(1).

Further, for λv = µv = 1, Corollary 3.1 gives another inclusion result for
∣∣∣R, pm, qn

∣∣∣
k . Then, by (30), since

Prp′r
prP′r
= O

(
r−1/k∗

)
→ 0 as r → ∞, the condition

∣∣∣∣P′r − Pr
pr

p′r
∣∣∣∣ Wr

(
p′

)
= O(1) is equivalent to P′rWr

(
p′

)
= O(1).

Analogously, Q′vWv
(
q′
)
= O(1). Hence we have
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Corollary 3.5. (1, 1) ∈
(∣∣∣R, pm, qn

∣∣∣ , ∣∣∣R, p′m, q′n∣∣∣k) , k ≥ 1, if and only if

r1/k∗ Prp′r
prP′r

= O(1), Wr
(
p′

)
P′r = O(1),

v1/k∗ Qvq′v
qvQ′v

= O(1), Wv
(
q′
)

Q′v = O(1),

where Wv(p′) and Wv(q′) are defined by (2) .

Also, one can be obtain the following results from Theorem 2.2 by putting γmn = PmQn/pmqn.

Corollary 3.6.
(
λr, µv

)
∈

(∣∣∣N, pm, qn

∣∣∣
k ,

∣∣∣N, p′m, q′n∣∣∣) , k > 1, if and only if

∞∑
r=0

(
Pr

pr

)k∗−1 ∣∣∣∣∣∆λr −
p′rλr

P′r
+

prλr+1

Pr

∣∣∣∣∣k∗ < ∞,
∞∑

r=0

(
Pr

pr

)k∗−1 (
p′r
P′r
|λr|

)k∗

< ∞,

∞∑
v=0

(
Qv

qv

)k∗−1 ∣∣∣∣∣∆µv −
q′vµv

Q′v
+

qvµv+1

Qv

∣∣∣∣∣k∗ < ∞,
∞∑

v=0

(
Qv

qv

)k8
−1 (

q′v
Q′v

∣∣∣µv

∣∣∣)k∗

< ∞.

Corollary 3.7.
(
λr, µv

)
∈

(
|C, 1.1|k ,

∣∣∣N, p′m, q′n∣∣∣) , k > 1, if and only if

∞∑
r=1

rk∗−1
∣∣∣∣∣∆λr −

p′rλr

P′r
+
λr+1

r + 1

∣∣∣∣∣k∗ < ∞,
∞∑

r=1

rk∗−1

(
p′r
P′r
|λr|

)k∗

< ∞,

∞∑
v=1

vk∗−1
∣∣∣∣∣∆µv −

q′rµv

Q′v
+
µv+1

v + 1

∣∣∣∣∣k∗ < ∞,
∞∑

v=1

vk8
−1

(
q′v
Q′v

∣∣∣µv

∣∣∣)k∗

< ∞.
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