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A fractional stochastic model for aerosol transmission of fluid droplets
and virus exposure in closed spaces
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Abstract. Considering fractional Brownian motion B and fractional white noise W as a generalized
stochastic processes in the framework of white noise analysis, we use them to model aerosol transmission
of fluid droplets and virus exposure in closed space. The model is based on an airflow produced during
coughing or sneezing governed by the incompressible Navier-Stokes equation, leading to the expulsion of
contaminated aerosols that diffuse in a closed room and are subjected to random movements due to collision
with other particles in the air. The proposed model involves stochastic components to grasp the uncertain
nature of the aerosol diffusion and fractional derivatives to grasp the possibilities of a sub-diffusion or
super-diffusion effect due to various physical conditions in the room. We prove existence and uniqueness
of the solution to the proposed model, supported by numerical simulations and experiments.

Introduction

The problem of turbulent aerosol transmission of fluid droplets in a jet or puff, turned out to be very
important in many areas of science and engineering after the global pandemic caused by the COVID-19
infection. Many papers have dealt with various models to describe the diffusion of contaminated aerosols
in a coffined space, e.g. closed rooms or cabins in transport vehicles, [7], [10], [11], [12], [28], [29], [40],
[41], [44], [46], [50], [51], [52], [53], to enlist just a few of them. Due to the now endemic nature of the
SARS-CoV-2 virus with constantly upcoming new mutations that might break the vaccination barrier or
other respiratory viruses lurking to cause a new global pandemic, it is of utmost importance to develop
novel models that are capable of grasping both the inherent stochastic nature of the aerosol diffusion and
the divergence from a normal diffusion. Stochastic partial differential equations (SPDEs) arise therefore
as a natural context compared to deterministic PDEs to capture the random phenomena that influence
the virus-containing droplets” diffusion. The framework of white noise analysis [20] and Wiener-Itd chaos
expansion methods [21] has proven as a powerful tool for solving SPDEs; some techniques related to a
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more direct approach avoiding complex transformations and relying on a coefficient-based calculation
can be found in [13], [24], [25], [27], [31], and the references cited therein. A recent study has developed
fractional Wiener-Hermite chaos expansions [16] for stochastic models with fractional Brownian motion.
Another nuanced understanding of virus-contaminated aerosol dispersion leads to the fact that ordinary
derivatives might not be optimal to describe these models. Fractional order derivatives can introduce
a temporal element that captures the memory-dependent behavior of aerosol particles within the given
environment, which enables the representation of diffusion processes that might deviate from a normal
diffusion. Fractional order derivatives have a long-standing tradition not just as a well-studied theory
but also as an important modeling tool in mechanics, engineering and material science [4], [32], [36], as
well as in compartmental models used in epidemiology, sociology and computer science [1], [2], [14], [22],
[35], to name only a few of them. In context of aerosol transmission, fractional derivatives allow for the
inclusion of memory-related behaviors, such as the persistence of droplet movement or the prolonged
influence of initial conditions. Allowing for a more realistic representation of the long-term behavior of
droplets is particularly relevant in scenarios where air currents might not dissipate droplets quickly. The
fractional order can capture the rate at which droplets disperse over an extended period, providing insights
into potential exposure risks over time. By carefully choosing the order of the fractional derivative to be
greater than one or less than one, it is possible to incorporate the effect of superdiffusion and subdiffusion,
respectively, into the model. Superdiffusion occurs when particles spread more quickly than predicted by
classical diffusion. In the context of virus-laden droplet dispersion in a closed room, superdiffusion might
manifest as droplets covering larger distances than expected over a given time period. This behavior can
be attributed to factors like the presence of strong air currents or irregular airflow patterns. Subdiffusion,
on the other hand, entails slower particle spreading compared to classical diffusion. It is often observed
when particles encounter obstacles, adhere to surfaces, or experience confinement, that might correspond
to a reduced rate of droplet movement due to interactions with surfaces, corners, or air stagnation. There
exist many definitions of a fractional derivative starting from the classical Riemann-Liouville and Caputo
ones up to novel ones [48]. A recent type of fractional derivative is the Caputo-Fabrizio derivative [4], [8],
[30], [43], that has a non-singular kernel and allows to reduce the fractional order derivative to an integer
order derivative in PDEs. The Caputo-Fabrizio derivative has been used in many applications modeling
the spread of viruses within population or other medical effects [3], [23], [38], [47], [49].

This paper aims to provide a model of a two-phase mixture of liquid droplets dispersed into an unsteady
turbulent airflow caused by a violent expiratory event, such as coughing and sneezing. We will consider
aerosol transmission within a finite time frame [0, T] in a cube-shaped closed room centered in the origin
[-L, L]’. The model is described as a set of well-known equations with respect to velocity U(t) and position
X(t) of a droplet, but unlike the standard aproach (see [34]), our model is enriched with the Caputo-Fabrizio
fractional derivative instead of the ordinary derivative with respect to the time variable. Moreover, we
suppose that each droplet is affected by some unpredictable airflows or collisions with air-molecules and
other particles, which are simulated by adding a fractional Brownian motion B to the equations of the
model. Independently of that, the velocity of airflow exhaled from mouth during expulsion u = (1, v, w), is
ruled by the incompressible Navier-Stokes equations. Since it is known that exhaled air during coughing
or sneezing makes a flow with extremely high Reynolds number (i.e. fully turbulent flow), we assume that
it follows the so-called Trkal flow. Such an assumption, which means that vorticity and velocity fields are
aligned, i.e. d X u = u, could seem as a strong simplification, but it has turned out to be a reasonable choice
in situations where we deal with incompresssible and turbulent flow fields. In contrast to recent papers (for
instance see [40]) whose approach was to find numerical solution of the considered system, we are looking
for a solution in form of the Wiener-It6 chaos expansion, i.e.

P(t, @) = (Ut @), X(t, @) = ) Pal®)Ha(w),
ael

where P,(t) € CY([0, T],[-L, L]®), for T,L > 0, and w € S’(R). Our main result is the theorem (supported by
several appropriate lemmas) that guarantees the existence and uniqueness of a solution P(t, w), in the space
C([0, T], [-L, L]°) ® (FS)’ that was introduced in [26]. In order to achieve these results, first we apply white
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noise analysis ([20], [21]) and consider chaos expansion of fractional white noise and fractional Brownian
motion [33] in the form WH(t, w) = ¥,2, Y20 bjéj(tw, &) and BH(t,w) = Y02, Y20 cixj(t)w, &), where
coefficients bjx and cj are given in Appendix (C), while &; denotes the jth Hermite function and H € (0, 1)
is the Hurst parameter. These results are in detail derived in [42] and might be of independent interest for
readers who need algorithms for the simulation of fractional Brownian motion or fractional white noise,
since they are novel and rely on computing the coefficients in a recursive manner. In the next step we utilize
those coefficients to calculate the coefficients of the chaos expansion representation of the solution P(t, w),
and ultimately to provide some numerical approximations by truncating the infinite series. We also provide
error estimates for the truncated series to validate the numerical approximation. Finally, we validate the
model by comparing our model and the obtained simulation of aerosol trajectories with several realistic
scenarios of expiratory events and photographs of aerosol clouds obtained from [17].

In conclusion we note that there is a vast literature on aerosol dispersion models that use only a
theoretical approach with no model validation (e.g. [37], [39]), as well as a large number of papers that
deal with various software-based simulation techniques (e.g. [40], [50]), closer to reality but again without
a model validation. Our paper has the advantage that it not only develops a novel theoretical model and
provides simulations for several parameter scenarios, but also validates the model on a realistic database.

The paper is organized as follows:

Section 1 contains the main results of this paper and is devoted to the aerosol transmission model as
described above, and to proving the existence and uniqueness of the solution to the underlying fractional
stochastic system in an appropriate space of generalized stochastic processes. In Section 2 we provide some
numerical simulations of the approximate solutions to illustrate our results. An interesting result is that the
approximations are verified by an error estimate on the truncation of the chaos expansion series to a finite
sum, which can be expressed via the Hurwitz zeta function. Simulations are given for different fractional
orders of the Caputo-Fabrizio derivative, as well as different values of the Hurst parameter H € (0,1).
In Section 3 we compare our model with some realistic scenarios of aerosol diffusion based on an open
database of expiratory images and videos. All results in Sections 1-3 are original and novel. The Appendix
at the end contains details on the theoretical framework on Wiener-It6 chaos expansions, Caputo-Fabrizio
calculus, formulae regarding the Hermite polynomials and functions, as well as an explanation of feasible
physical parameters that were used in the simulation of aerosol diffusion.

1. A fractional stochastic model for the droplet diffusion dynamics

In a recent paper [40], the airflow, exhaled from the mouth during a human cough, was ruled by the
incompressible Navier-Stokes equations given by

8tu+u-8u=—lap+v82u, d-u=0, @)

Pa

with v being the air kinematic viscosity and p, the air density. It is known that exhaled air during expulsion
makes a flow with extremely high Reynolds number, and the flow field is thus fully turbulent which causes
a number of problems from a numerical point of view. In our model the air during expulsion is assumed
to follow a Trkal flow, which means that vorticity and velocity fields are aligned, i.e. d X u = u. Such
an assumption has proven as an reasonable choice in situations where we deal with incompressible and
turbulent flow fields. Hence, we consider a particular form of the exact solution of 3-D Navier-Stokes
equations given in [5],

U= (A sin(kz) + C cos(ky))e_szt,
v= (B sin(kx) + A cos(kz))e"’kzt, (2)
w= (C sin(ky) + B cos(kx))e_"kzt,
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and
P=—pa (BC cos(kx) sin(ky) + AB sin(kx) cos(kz) + AC sin(kz) cos(ky))ez"kzt,

where A, B, C and k are arbitrary constants, while u = (1, v, w) and (x, y,z) € R3.

Taking system of deterministic equations considered in [40] as a starting point, we are now ready to
introduce our model for the dynamics of an individual droplet exhaled from the mouth during coughing.
It is the system of fractional stochastic differential equations with fractional Brownian motion given by

cFpoy(r o) = LEED), ? UG | B w0) -t @), UO) = Uw), o

FDX(t, ) = U(t, w) + V21:B7 (1, ) = 13(t, @),  X(0) = X'(w),

where a € [0,1] is the order of the Caputo-Fabrizio fractional derivative, and x; and x, are Brownian
diffusivity constants, whose sum is equal to the water vapor diffusivity D, in the limit of tracer particles,
T — 0. The vector X(t,w) = (X(t,w), Y(t, w), Z(t, w)) represents the position of droplet, while U(f, w) =
(U(t, w), V(t, w), W(t, w)) represents its velocity. The last terms r(l)(t, w) and 79(, w) are regularization terms,
that are required to make the problem well-posed in Caputo-Fabrizio sense (see Appendix E), respectively
given by

. (#°(X°@),0) - U (@)) _,
1’1(1', w) = T e =,

() = U'(w)e =

These terms introduce an effect that vanishes as t — oo, so that the regularization has a larger effect at
initial time t = 0 where the Caputo-Fabrizio derivative must be equal to zero, while at later time-points this
effect becomes negligible and the fractional Brownian motion takes over to have greater influence on the
diffusion. The function u®(X(t, w),t) = (u®(X(t, w),t), v*(X(t, ), t), w*(X(t, w), t)) is the Wick version of the
analytical Trkal solution of the 3-D incompressible Navier-Stokes equations given by

w(X(t @), 1) = (Asin® (kZ(t, w)) + Ccos® (kY (t, ) )e ",
(X (t, @), t) = (Bsin® (kX (t, @)) + A cos(kZ(t, w)) e,
W (X(t,),1) = (Csin’ (kY (¢, ) + Beos® (kX(t, @) ).

Details related to the Caputo-Fabrizio derivative are given in Appendix E while for the Wick product and
Wick version of analytic functions we refer to Appendix C at the end of this paper. The stochastic process
B (t, w) is the 3-D fractional Brownian motion [21] defined by

t s
T H ) f if é](T)(S - T)H_%deSH 1+3(7;1))(a))
+
~ T H+ )f dsf 61(7)(5—T)H77d’[dsH @+3(j- 1))((4)), (4)
j=

i r f f &(t)(s — D" ddsH, con (@),
=

We are looking for a solution to (3) as a generalized stochastic processes U(t,w) € [-L1,Li]*> ® (FS)’ and
X(t, w) € [-Ly, L,]* ® (FS)’ which are represented as

Bi(t,w) =

Mz

Fl

Mg

Ut ) = ) U(OHo(@), X(tw)= ) Xe(Haw), tel0,T], weQ, 5)

ael ael
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where X, (t) = (Xo(t), Yalt), Zo(t)), and U,(t) = (Un(t), Valt), We(t)). Details on chaos expansions and the
definition of the space (FS)’ are given in Appendix C. Applying the Caputo-Fabrizio fractional integral to
both equations of our model (3), and using the fact that FI°(#(t, )) = 0, FI°(r)(t, w)) = 0 we obtain

CEIu®(X(t, w), t) — SFICULL,
(DU w)) = L T) GO | aeerrBie, o),

(DX, w)) = FIUE w) + 2 T Bt ),

which by using definition (E.2) and the identity (E.3) results in

t
0 (X @), )~ X0, 0,001+ f 1 (X(s, @), $)ds—
0

U(t,w) - U0, w) =

t
- %[U(t,w) —u©)] - g fo U(s, w)ds+

+ v2i1(1 = )[BH(t, w) — BY(0, w)] + v2Kx10a f B (s, w)ds,
0
t
X(t,w) — X(0,w) = (1 — o)[U(t, w) — U0, w)] + a f U(s, w)ds+
0

+ 2K2(1 - Q)[B(t, ) — BY(0, w)] + 2Kz f B(s, w)ds.
0

Finally, after differentiating both equations with respect to t, the model obtains a new interesting form on
the right hand side, as a convex combination of the first order derivatives and the zeroth order derivatives,
giving the Caputo-Fabrizio fractional order operator a natural interpretation as an interpolated derivative:

[ —
't ) = (1- a)%[” (X(t’“’)’;) Ut.o) | peBt, )]+ ©6)
+ a[u°(X(t, w),;) — Ut ) + \/27lBH(t, a))], u@) = U'(w),

X'(tw)=(1- a)%[U(t, w) + V21,B (1, )]+
+a[U(t, w) + V2B (L w)],  X(0) = X(w). 7)

By using (D.1) and (D.2) for all components of the Wick version of the analytical Trkal solution #°(X(t, w), t) =
W (X(t, w), 1), 0°(X(t, w), ), w®(X(t w), t)) we rewrite all processes that figure in (6) and (7) in their corre-
sponding Wiener-It6 chaos expansion form. For (6) we obtain the following equations

¥ UL OHo@) = (= 0% (g0t + ) + 0 (g0t + (1),

ael

Y ViOH@) = (05 (g ) + 1a(8) + 0 (g0v(0) + 1 (1),

ael

Y Wi OH@) = (1~ 05 (o) + () + 0 (g8 + In(5),

ael

Y Ua(OHa(w) = ) USHo(w),

ael ael

while the system (7) obtains the form

Z U (OHa(@) + ha(1) |,

ael

Y X 0Ha@) = (- )5 | Y UaOHow) + h2<t>] +a

ael ael
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Y YiHu() = (1 - a)% {Z Va(HHa(@) + hz(t)] +a [Z Va()Ha(w) + hz(t)],

ael ael ael

Y Zi(OHo(w) = (1- a)% [Z Wa(HHa(w) + hz<t>] +a [Z Walt)Ha(w) + hz(f)],

ael ael ael

Y X O)Ho(@) = ) X3Ho (@),

ael ael
where

go®) =~ Y Ua(DHa (@)

ael

+ 2 (sinZo()How) + Y (ksinG + KZaO)Za(6) + rsinrn @) Ha(w)Je™**

|a|>0

* %(COS@Yo(t))Ho(w) + ) (k cos(5; + KYo(t)Ya(t) + m,msm(t))Ha<w>)e-vk2t,

la|>0

gor(®) = —2 Y VaOH(0)

ael

+ 2(sindXa@)Ho(@) + Y (ksin(S + KXOIXa(0) + rasini () Huleo))e ™"

la|>0

+ 2 costkza(®)Ha(@) + Y (keosG + KZoD)Zu(0) + rasosin ) Hule))e ™,

|a|>0
Jaw(t) = —% Z Wa()He(w)
ael
+ S (sinYa@)Ho(@) + Y (ksinS + KYo()Yat) + st () Hal)e "
|a|>0

+ 2 cos(tXa(®)Ho(@) + Y (keos(5 + KXpO)Xalt) + rucostns () Halw)e ™,

|a|>0

and forn € {1, 2},

V2, v (Cd (T .
K Zf —f éj(’()(s—T)H_?des(H€(1+3<,--1))(a)),He(z+3<,--1)>(a)),H€(3/>(a))).
r(H+1) S Jo 5 Jw

h(t) =

By applying the orthogonality of {H,(w)}aer this system reduces to a system of infinitely many deterministic
systems of ordinary differential equations:

1° fora =0,

uy(t) = (1- a)% [—%Uo(t) + LR (A sin(kZo(1)) + Ccos(kYo(t)))]
+a[-LUo(t) + LeF (Asin(kZo(1)) + Ccos(kYo(t)];  Us(0) = LI,

V() = 1- a)% [—%Vo(t) + 1ot (Bsin(kXo(t) + A cos(kZO(t)))] (8)
+a[-1Vo(t) + Le (Bsin(kXo(t) + A cos(kZo(®)];  Vo(0) = V§,

W () = (1- a)% [—%Wo(t) + Lot (Csin(kYo(t) + B cos(kXo(t)))]
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+a[—lw (t) + Le¥t (Csin(kYo(t))+Bcos(kX0(t)))]; Wo(0) =

Xo(t) =(1 = )Uy(h) + allo(t);  Xo(0) = X7
Y)(t) =(1 — a)Vj(t) + aVo(t);  Yo(0) = YY; ©9)
Zg(t) =(1 = )Wo(t) + aWo(t);  Zo(0) = Z

with initial conditions U,(0) = (U}, V3, W) and X, = (X, YD, ZD).

2° forlaj=1,ie.a=€P, ieN,

u;m (t) =

(1- a)% [—%Uem(t) ; %e*vsz (Ak sin(G + KZa(t) Zeo (t) + Ckcos(5 + kYO(t))YEm(t))

V2K1 t d s H-1 ]
v %)fo £Lo () ~ oy Advds)

+a [—%ue(,-, ) + %e—vsz (Ak sin(5 + KZo(D)Zen (1) + Ccos(5. + kYg(t))Y€<i>(t))
V2 Yd [ ]
+1;4 al f 7 f Ei(T)(s — T)H_%d’cds ; Uw(0) = 1),
0 —00 ]

T(H + 1)

“ [—%Vem )+ %e-vsz (Bk sin(. + kXo()Xeo (1) + Ak cos(S.+ kZo(t))Z€<f>(t))

VZK ! d s 1
”r(Tf %[ s - ot

+a[—% Veo(t) + i _th(Bksm(—+kX0(t))Xe<x>(f)+AkCOS(—+kzo(f)) )

F(H+ f s f £ =" szdS} Ve (0) = V3,

6(’ (t) =
(1- a)% [—%Ws(f)(t) ; %e-vsz (Ck sin(Z:+ KYa(t)Yeo (¢) + Bcos( + kXo(t))Xdi;(t))

. /2K1 t d s ‘ Hi% .
T ) fo ds Lo &1 deSA (10)

+a [—%wem () + %e—vsz (Ck sin(5 + KYo(t)Yen (1) + B cos(5 + kXo(t))X€<,>(t))

V2K1 g d s H-1 ]
+1i,01_‘(H—+%)£ %f_m &i(T)(s — 1) ZdeS_; Wi (0) = ew
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Ueo(t) + 151 <2K fdsf Ei(D)(s — 1) 2drds
U€<z>(t)+1i,1mf dsf Ei(T)(s—1) 1drds|;
vg(i)<t>+1i,zr(HL7 f a4 f £1(2)(s — 7)1~ deds

Vo) + 15— Y22 f 4 f /(x)(s — 1) Hlrds
F(H+%) 0 45 J

YN t S
Zlo(t) =(1- a)% [Wem(t) + 1i,oﬁ [) % f Ei(T)(s = T)H_%des
> —00

W€<‘)(f)+1i,o% f 2 f £i(2)(s — 1)~ hdds|;

where i = 3(j — 1) + [ for ] eN, I €{0,1,2}, while 1;; = 1if i _3 1, otherwise it is zero. Initial conditions
are given by U (0) = (U2, V9, WY,), and X0 (0) = (X2, YO, Z5,).
3° for|a| > 1,

X)) =1~ ) & U

+a E(’) (O) (z) ’

, d
Ye(i) (t) =(1- a)a

(11)

+a i Yeo(0) =YY,

+a

Ze(i) (0) = Zg(i)/

(1) 4

Uy (t) =
a- a)i [—1Ua(t) 4+ Lo (Aksin(Z + kZo(£)Za(t) + Ckcos(§ + kYo(H)Ya(t)
dtl T
+Ara,sin(kZ) (t) + Cra,cos(kY)(t))]
+a —%Ua(t) + %e—vsz (Ak sin(% + kZo(t))Za(t) + Ckcos(% + kYo (t)) Ya(h)
+ At singz) () + Cracostin ()] 5 Ua(0) = U
Vi) =
1- a)di [—1v (t) + e VR (Bk sm(— + kXo(1) X, () + Ak cos(— + kZo())Z4(t)
+Bra,sin(kX)(t) + Ara,cos(kZ)(t))]
a [—1va(t) R (Bk Sin(Z + kXo()Xa() + Ak cos(Z + kZo(H)Za(b)
T T 2 2

+Bra,sin(kX)(t) + Ara,cos(kZ)(t))]; Vat(o) = VO (12)
We(t)

1-al [—1wa(t) 4 Lo (Ck sin(Z + KYo(£) Ya(t) + Bk cos(Z + kXo(£) Xa(t)
dtl = T 2 2
+Cra,sin(kY)(t) + Bra,cos(kX)(t))]
a [—%Wa(t) + %e—kat (Ck sin(g + kYo(t))Y,(t) + Bk cos(g + kXo(£) X, (£)
+Cra,sin(kY)(t) + Bra,cos(kX)(t))]/' sz(o) = WO

with 7,0(t) denoting the remainder terms of a Wick-analytical function ®, now taken as either the
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sine or cosine function, as described in (D.2), and

X, (H) =(1 = aq)U,(t) + ala(t);,  Xa(0) =
Y (1) =(1 — )V () + aV,(t);  Ya(0) =YY, (13)
Z! (1) =(1 — Q)W () + aW,(t);  Za(0) = Z°

with initial conditions U,(0) = (UY, V9, W?) and X,(0) = (XY, Y9, Z0).

Now, we define the matrix valued functions S(t), N(t) : R = R®, by

[0 0 0 ﬂekTC sin(kYo(t)) 2 ’f;‘;, cos(kZo(t))]
0 L o kB, cos(kXo(t)) 0 L kAt sin(kZo(t))
0 0 lmwr lx kké sin(kXo(t)) =S cos(kYo(t)) ’ 0
S(t) = T T Lkzt 0 T vkzt 0 ’ (14)
a-1 0 0 1 0 0
0 a-1 0 0 1 0
| 0 0 a-1 0 0 1
- 0 0 0 —4-C sin(kYo(t)) - cos(kZO(t))
0 -2 0 to cos(kXO(t)) 0 —4 L5 sin(kZo(1))
N(t) = 0 0 -z -z szt sin(kXo(t)) : e cos(kYq(t)) 0 . (15)
a 0 0 0 0 0
0 a O 0 0 0
[0 0 a 0 0 0

The determinant of S(t) is equal to

Det(S(t)) = % [(1 —a+1)° + (1 - a+ 1)(1 - a)'e 2 (BC cos(kXo(t)) sin(kYo(t))
+AB cos(kZo(t)) sin(kXo(t)) + AC cos(kYo(t)) sin(kZo(1)))
+13(1 = a)°e™ ¥ ABCe™('sin(kX (t)) sin(kYo(t)) sin(kZo(t))
— cos(kXo(t)) cos(kYo(t)) cos(kZo(1))) |

The constants A, B and C are determined by the initial values of the Navier-Stokes equation (1), and our
model (3), solet us suppose that max{|A|, |B|, |C|} < n. Furthermore, the range of functions cos(kX(f)) sin(kYo(t))+
cos(kZy(t)) sin(kXy(t))+cos(kYy(t)) sin(kZo(t)) and sin(kXo(t)) sin(kYq(t)) sin(kZo(t))—cos(kXo(t)) cos(kYo(t)) cos(kZy(t))
are intervals [—%, %] and [-1, 1], respectively. Hence, fora € [0,1], 7 > 0, v > 0, t € [0, T], it is straightforward

to obtain

Det(S(t)) > % (1-a+1)— gkz(l —a+ 1)1t — 131 - a)6n3] .

Finally, since we know that parametar k is arbitrary in Trkal solution (2), then for any n > 0, we can choose
k = k(n) small enough to ensure that Det(S(t)) > 0, which gives that 5(t) is a regular matrix for any ¢ € [0, T].
Further, let us denote by P, the vector P,(t) = (U (t), Va(t), Wa(t), Xa(t), Yal(t), Z.t)T, a € I. In the sequel,
we prove two auxiliary results, which will lead to the main theorem.

Lemma 1.1. The system of ODEs (8)-(9) has a unique solution Po(t) € C'([0, T], [-L, L]®), and it is satisfied that

3-3a+71 _aT
sup |[Po(H)llj-r,s < ||P0|| +@2-a+aT) [2 (IA] + |B| + |C|) — +|uy| eTe . (16)
te[0,T] —a+t
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Proof. The system (8)-(9) after simple rearrangement, can be written in matrix form
S(£)Po(t) = Fo(t), (17)
where

[—2 U () + (=2 (—vk?) + %)e‘”‘zt (A sin(kZy(t)) + C cos(kYo(1)))]
—2V(t) + (12 (-vk?) + 2) et (Bsin(kXo(t)) + A cos(kZo(t)))
Fo(t) = |~ 2Wo(®) + (52(=vk?) + 2) ™! (Csin(kYo(t)) + B cos(kXo(1))) .

allp(t)

aVo(t)

aWo(t)

[l

By taking into account that 5(t) is a regular matrix for ¢ € [0, T], we obtain
Py(t) = STH(HFo(H). (18)

By observing that all components of the matrix valued functions S(t) and F(t) are either constants or prod-
ucts of cosine, sine, and exponential functions, hence continuous w.r.t. t € [0, T], and clearly since S~ (t)Fy(t)
is Lipschitz continuous with respect to any component function of Py(t), we conclude by the Picard-Lindelof
theorem that there is a unique solution Py(t) of system (8)-(9) and it belongs to C'([0, T], [-L, L]®).

In order to obtain the desired estimate (16) for the solution Py(t) in the supremum norm, let us consider the
first equation of system (8), which is given by

() =(1 - a)% —%Uo(t) + %e—”sz (Asin(kZo(t)) + Ccos(kYo(t)))]
ta [—%ug(t) + %e-vsz (A sin(kZo (b)) + Ccos(kYo(t)))] .

After integration over the interval [0, t], and by using the initial values Xo(0) = (X}, Y9, Z0) and U (0) = U},
we arrive to

(1 + %) (Uo(t) - ud) = % (7 (Asin(kZo(1)) + C cos(kYo(£))) — A sin(kZ3) - C cos(kY))
t
+ % f (~Uo(s) + e (A sin(kZo(s)) + Ccos(kYo(s))))ds,
0
which by taking the absolute value of both sides and using the triangle inequality leads to

(1= a+DUo(B)] <2(1 = a)(JIAl + ICl) + (1 — a+ 7)|Ug| + af (Al + ICl + [Uo(s)I) ds
0

¢
=2(1 - a)(JAl + ICl) + (1 — a + DU + a(|A| + |C)t + af [Uo(s)|ds.
0

After dividing by 1 — a + 7, we are able to apply Grénwall’s inequality and obtain

1-a 0 a
<2— -
Uo(6] < 25— (Al +1CD + [U§| + ———— (Al + O
t
a 1-a 0 a aft=s)
_— —n+’rd.
+1—a+ff0 (21_a+T(lA|+|Cl)+|U0|+1_a+T(|A|+|C|)s)e1 s

By using integration by parts, we straightforwardly obtain

1-a _at_
TT(|A| +[Cl) + U] + 1Al + |C|)€1‘“*T - (IAl+1C)),

Ua(8) < (2=
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and since t € [0, T], it implies that
]. - al’
Ua(B) < (25— (A1 + IC) + U] + AT + Cl) ™5 = (A, C, 0,7, T, UD).
By following exactly the same approach, we obtain estimates for solutions V() and Wy(t), i.e.

Vot < K(B,A, 0,7, T, Vg), [Wo(t)l < K(C,B,a,1,T,W).

In the sequel we derive similar estimates for the solutions Xy(t), Yo(t) and Zy(t). Firstly, let us focus on the
equation of system (9) given by

X((t) = (1 — Q)Uj(t) + allp(t).

After integration over the interval [0, t], and using initial values X¢(0) = Xg, and Up(0) = Ug, we arrive to

Xo(t) = X9 = (1 — a)(Up(t) — UJ) + a f Uy (s)ds,
0
thus
IXo(Hl < IXg] + (1 — a)|UJ| + (1 — a)|Uo(t)] + a f |Uo(s)lds.
0

By the previous inequality obtained for |Uy(t)|, we obtain
IXo(®)] < [X5] + (1 — a)lUy| + (1 — a+ aT)K(A, C, a, 7, T, Up).

Again, by following the same approach we derive that Y(t) and Zy(t) are dominated by similar terms which
correspond to estimates obtained for Vi (t) and Wy(t), respectively, i.e. we know that

[Yo()] < Y31+ (1= @)IV3 + (1~ a + aTYK(B, A, 0,7, T, Vo),
1Zo()] < 1Z3] + (1~ )[W3] + (1~ a + aTYK(C, B, o, 7, T, Wo).

Finally, after using the definition of norm sup;(y 1y Il - lli-1,js, inequality (16) follows directly. [

Before we formulate the next lemma, let us denote

t i AH(t) — AH(0
fiulh=1 ﬂn)f %f &i(T)(s — 1) 2duds = 1 2, A0~ A )‘
0 o0

il
I(H+ 3% I(H+3) lzj].! VR

Lemma 1.2. The system of ODEs (10)-(11) has a unique solution P (t) € CX([0, T], [-L, L1°), and it holds that

wherei=3(j—1)+1for jeIN,/€{0,1,2},and n € {1,2}.

sup [IPeo (Blli-,110 < (IISOMIPS Il + 8Vt + Vi2)(d + T)MGH(T)) IS je™ 1T, (19)
t€[0,T]
where Pgm = P.»(0), and the matrices N and S™! are given as upper bounds of N(t) and S7(t), i.e. IN(t)| < N, and

ISTY ()| < S7L, for t € [0, T, and the matrix inequalities are considered as explained in Appendix F.

Proof. Similarly as in the previous lemma, since we defined matrix valued functions S(t) and N(t), after
integration over [0, t], our system becomes equivalent to

t
S(t)Peo(t) = SO)P, + Fea(t) + fo N(s)P.o (s)ds, (20)
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where
f
Eaolt) = (1-)fo(®) +a f fo(e)ds,

for feo(t) = (FL (1), £, o), f2(1), f5,(1), f7,(t))". Notice, for fixed i € N only two functions in the vector
valued funct1on fe(,)(t survive, while the other four become equal to zero, depending on whether the
remainder on division i by 3 is equal to 1, 2 or 0. By using (F.1), we differentiate equation (20) with respect
to t, and get

S' (WP (t) + S()P (t) = FL (£) + N(t)Peo (£).
Since the matrix S(t) is regular for any ¢ € [0, T], we can multiply the above equation by S~!(t), and obtain
P (8) = S7U(E) (FLo (B + (N(t) — S'()Peo(t))

Clearly, the matrix valued functions S~'(t), §’(t), and N(t) are continuous in t on [0, T]. The vector valued
function F;u) (t) contains functions % f!}, which are up to a constant equal to %A? (), which are by (A.5) and

(A.6) continuous in ¢ on the interval [0, T]. Moreover, Lipschitz continuity in P, is satisfied, thus according
to the Picard-Lindel6f theorem there is a unique solution of system (10)-(11) on [0, T]. Furthermore, let us
multiply by S~!(t) equation (20), to obtain

t
Peo(t) = STHBS(0)PY, + ST (B)Feo () + ST\ (1) f N(s)P.o (s)ds,
0

which implies
t
IPeo(B)] < 15~ 1(t)IIS(O)IIPE(,)|+IS1(t)||Fe<f>(t)|+|S1(t)|f IN($)I[Pe (5)lds.
0

Since the components of S71(f) and N(t) are continuous functions over [0, T], there exist matrices S™' and N
such that |S7'(#)] < S;!, N(f) < N for t € [0, T], which imply the inequality

Peor ()] < STHS(O)IPY | + ST Feor ()] + S~ f NIPeo (s)lds,

so by using Gronwall’s inequality Theorem F.1, one gets

t
[P (F)] < s-1 <|S(O)||P2(i)| + |F€(i)(t)|) +571 f(; NS (=9 N1 (lS(O)||Pg(’)| +1|F.0 (s)|)ds

Hence, by taking the norm SUP;c(o,1) I - llj=r,js on both sides, we arrive to

sup [[Peo (Dlli-r,j < IIS‘lll(IS(O)IIIIP"(,Jl + sup |[Feo (£l LL]"]
t€[0,T] t€[0,T]

t
+Is7 f 6”N””S_l”“’s)IINIIIIS’l||(IIS(O)IIIIP&)II+ sup [IFeo (&)l 1y )ds
0

s€[0,¢]

t
<|Is” 1II[IIS(O)IIIIPO(,)II + sup [|Feo (B)ll-L,wpe ](1 +f 6”N”S_l'(t_S)IINIIIIS_llldS).
0

te[0,T]

AT (AT ()]

V2jiNr

Note that by Lemma A.3, it follows that <4MGH (t), and for H € (0,1), j € N we have

|AE (1) — AF(0)|
27 / 1, —Y25_4MGH(T) < 4‘/_1 VEMGH(T

<
T(H+3) hiiir T(H +3) T(H+ 3)

£40) < 1,
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thus since a € [0,1] and D

< 8for H € (0,1), one gets

sup IFao @)l < (1 - (VT + ViR)BMGH(T) + aT(vi7 + Vi2)8MGH(T)
t€[0,T]
< 8(Vi1 + Vi) + TIMGH(T).
Finally, by using this estimate and simple integration one obtains (19), fort € [0,T]. O

Lemma 1.3. The system of ODEs (12)-(13) has a unique solution P,(t) € C'([0, T], [-L, L]°) where |a| > 1, and for
L, = SUPyeio,7] IPo(t)llf=r, 16, and Pg = P,(0), it is satisfied that

Lo </ISO)IIPC|NIS ™ [les ™I

2 _ .
+ Z(1 + T)ymax{JAl, |Bl, ICI}IS~|e/™1s™IT
T (21)

la|

Z n' Z Z Z “ Y1 Vl V2 * 'LVn—Z_Vn—lLVn—lf

0<y1<a 0<y2<yq 0<Yn-1<Vn-2

Proof. In the two previous lemmas we proved uniqueness of a solution for the systems obtained for o = 0
and & = €', i € N. We proceed now by induction on the multiindex a. Let us suppose that there is a unique
solution of system (12)-(13) for every g € I, ) < B < a. Then, for fixed |a| > 1 our system after integration
over [0, t] becomes equal to

t
SPa() = SOPY + Fa(t) + f NE)Pa(s)ds, (22)
0

where

t
Fat) = (1 - 0)fult) + 0 f f(s)ds,
0
for
1
fa(t) =;€_Vk2t ((Ara,s'm(kZ)(t)/ Br g sinex)(t), Crasingen) (1), 0,0,0)7

T
+ (Cra,cos(kY) (t)/ Ara,cos(kZ)(t)r Bra,cos(kX) (t)/ O/ O/ 0)) .

By (D.2), the functions 7, gin¢) and 74 cos(-) involve only solutions Xg, Y, Zg, for lesser multiindexes < a,
and they all belong to C'([0, T], [-L, L]) by assumption. Hence, after differentiating and then multiplying
the obtained equation by S71(f) one arrives to

Pi(t) = STHH (F () + (N(H) = S'()Pa(1)),
from which it follows by the standard Picard-Lindel6f argument that there exists a unique solution of

system (12)-(13), which belongs to C'([0, T], [-L, L]°). Now, let us return to (22), which we multiply by S71(#)
to obtain

P, (t) = STH(H)S(0)PY + STH(H)F,(t) + S7(t) f N(s)P,(s)ds,
0

ie.,

t
Po(B) < ISTHEISONIPG] + ST (B)IIFa(t)] + IS‘l(t)IfO IN(s)I[Pa(s)lds.
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Again, for the same matrices S~! and N as in the previous lemma, we arrive to
t
Pa()] < STHSO)IIPG] + STHFa(B)] + 571 f NIPa(s)lds,
0

so once more, Gronwall’s inequality Theorem F.1 gives that

IPo(H)] < ST (ISO)IPY] + IFa(t)]) + S~ fo NTEINST (ISOIPY + [FaB)]) ds.

Taking the norm SUP;e(0,7] I lli=z,j¢, one obtains

Lo < IIS_lll(IIS(O)IIIIPgII + sup IIFa(t)II[-L,L]e]

t€[0,T]

t
+||S‘1llf e”N””S_l”“‘s)IINIIIIS’l|I(IIS(O)IIIIPOII+ sup |IFa(s)llj-r,wpe ]ds
0

s€[0,t]

t
< ||S_1|| (”S(O)”HPg” + sup ”Fa(t)”[_L,L]e](l + f eN||||S'1||(t—5)”N””S—l”ds) . (23)
0

t€[0,T]

Before we continue, let us recall the definition of #,gin()(f) and 74 cos((f). In particular for X € [-L, L] ® (FSY’,
by (D.2), we have

lal k" sin n +kX0

ra,sin(kX)(t) Z Z Z Z Xa 71 t)X)/l—Vz(t) )’n 2=Yn- 1(t)X} n— 1(t)

n=2 0<y1<a 0<y2<yq 0<yy-1<yn-2

al, k" cos (n% + kX,
ra,cos(kX)(t) = Z © (1,;2' i 0) Z Z Z Xa -1 t)X)/l )/z(t) )’n 2= Vn- 1(t)X)/n 1(t)

n=2 0<y1<a 0<y2<y1 0<yn-1<yYn-2

Hence, by applying these formulas for the processes Y, Z € [-L, L]®(FS)’, and denoting LY = sup e[0,T] 1 X (Elj-L,L1,
Ly = supyepor I a®lli-L11, L = sup,qo 1y 1Zalli-,1), one obtains

sup [[Fall-rp < = ((1 =) sup [[fa®ll-r,cp + aT sup || fa(®)ll-r, 156 ]

te[0,T] te[0,T] te[0,T]

2]

X X X
Z Z Z Z a VlL)’l V2 LVn 27 Vn- 1L7n 1

0<y1<a 0<y2<y1 0<yn-1<YVn-2

y Y Y Yy z z z
+L0‘ )’1L71 -2 Lyn 2=V n- 1L)/n 1 + La 7’1LV1 =2 LVn 2=V n- 1LVn 1)
0‘ 71 }’1 Y2 L}’u-z—)/n—lL)/n—l'
0<y1<a 0<y2<y1 0<yn-1<yVn-2

Finally, by combining this estimate and (23), one obtains (21). [

Theorem 1.4. There exists a unique solution P(t,w) € C([0, T], [-L, L]®) ® (FS)’ to the stochastic fractional model
system (3), where P(t, w) = (U(t, w), X(t, w)). Moreover, the expected value of this solution is E(P(t, w)) = Py(t)
given in Lemma 1.1.

Proof. According to Lemma 1.1, Lemma 1.2, and Lemma 1.3, for every a > 0 the system of corresponding
ODEs has a unique solution P, € CY([0, T], [-L, L]°). Thus, the expansion P(t, ) = Y., Po(t)Ha(w), t € [0, T1,
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w € Q) has coefficients that are all unique solutions to the system of ODE obtained for corresponding a.
The uniqueness of our solution P(t, w) will follow from the uniqueness of the coordinatewise solutions P,
a € I, and due to uniqueness of the Wiener-It6 chaos expansion of stochastic processes. Moreover, after
we show that this expansion P(t, w) is convergent, its continuity follows directly from the continuity of the
coefficients P,.

In Lemma 1.3 we derived a recurrent formula for L, = SUPye(o.7] IPalli=1,Lje, lal > 1. Now, we prove that
P(t,w) € C([0, T],[-L,L]®) ® (FS)'.

Let P’(w) := P(0, w) € [-L,L]° ® (FS)’ be an initial condition, hence there exist 7 > 2 and p > g such that
Ywer IP2| a7 1)-2(2IN)-%* = K2 for some K > 0. Equivalently,

@ >2)Fp> AK = 0)(Ya e I) [P < KalF 12NY*, (24)

where g > 1 is chosen so that B(t) € S(R) ® S_1,-4 as stated in (C.5). As the first step we give an upper
bound for L,, |a| > 0, i.e. we prove that there exist 7 > 2 and p > p such that

Ly < al@NY* /P ol >0, a €T, (25)

where r > r; for

ro =2 7+ 115N () + #D max(lAL [BLCll+ +4(¥i + V(1 + DIMGHM))),  (@6)

and D > 0. In [26] it was proved that for « € 7 \ 0 and given k € IN, k < |a|, the number N(a, k) of all
possible combinations in which a multiindex a can be written as a sum of k strictly smaller and nonzero
multiindeces is less then or equal to 2K,

Firstly, for |a| = 1 one directly obtains from (19) and (24) that (25) is satisfied.

Secondly, let us examine the case |a| = 2. Denote by |, = Zo<y1 <a La—y,Ly,, and note that

1+T k? _ 4
Ly < IIS(O)IIIIP2||+ZT max{|A|, IBI,ICI}EIz |5 je!NIIS T,

Notice, for any k € IR, there exists D > 0 such that ’;—': < D" foranyn > 2. Thesum [,overy; € 7,0<y; <«
has N(a,2) < 224 = 24 terms, and since |a — yil = 1, Iy1l = 1, by using the estimate for |a| = 1, and the
estimate for the initial condition, one has

Lo < [ISO)[[IIS (1™ K 7P 12N P
1+T
T

+2—— max{|Al IBl, ICIIS ™ [|e™ 15 1T Dl (@ — 1) 12N) @ PP 1) 12N PP,

where D = (2D)2. Hence, by (a — y1)!y1! < o, p > P this implies
ofy o1+ T Dl 1), NS T «
L, < (IISO)IKA1 + ZT max{|Al, |B|, |CI}D""rtr! ) [|S™ |le al(2IN)y“.
By using (r!)" < (r")! for n € N, and r > r one obtains

Ly < a!QN)P4781. (27)

Now, we suppose that (25) is satisfied for 0 < |a| < m, where m € IN. It remains to prove the same for
|a| = m + 1. Let us denote by

]n = Z Z o Z LO“YILVl—VZ T Ll/n—z—)/n—ll‘)’n—l' (28)

0<y1<a 0<y2<y1 0<yp-1<Vn-2
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Notice that J,, has less than or equal to 2"l terms, and 1 < |or — Yil,lyi=val, ... 1Yn—2 = Vn-l, lyn-1l £ m. From
the inductive hypothesis and fact that (o — y1)!(y1 = y2)! - (Yu-2 — Vn-1)!Yn-1! < a!, one gets

. < onlal a!(ZN)p(a—)q)r\a—}qIS !(2N)p(y1—yz)rly1—yzl3 1. (ZN)P(%t—Z_Vrz—l)r‘Vn—l_Vrzles !(ZN)WH,,I)/HIS!

< 2"l gl QNP P el iyl ey

Note that for > 2 and positive numbers 2 and b it holds that P < (7 4+ ) < L < @) thus for
| — y1l, [y1 — y11 > 0 it follows that P yn-rfy < r'“‘V2|3!, so one concludes that

Pa=rPypn=raPy eyl v lPy < plasyua Pyl

Moreover, for g € 7 it holds that (la| — |B])* + |8 < (lal — 1) + 1, where B < a, |B| > 1, so one obtains
Pa=rPyn=raPy eyl Py < plal=17%+1

Hence, we obtain that
Ju < 2Ny =0 . (29)

Now, by using this estimate, one has that

]

1+T K B
Ly < | ISP + 2—— max{Al, |B|, |C|} Z =7 s ems i
T = n!
< [ISO)|IIIS™le™MIS™IT K g 7l 1 (2N P
lal
+225 L axqiaL 1Bl s s T Y, K ety a1y
~ n!
and since
] K [ ol 2 -
Z; 2l <y Dl =} D2kl < (D2 < D) < DT
n= n=2 n=2

and once more p > p and r > 1y, it follows that
Ly < ISO)NIS™ [le™MSIT K 7P 12N + 2# max{|Al, |B|, ICI}[IS~||e/NISITDlaF g1y plat=17+1y
< al@N)PaS 1INl T (||S(0)|| K7eP + 2# max{|A|, B, C| }5"*'2r<‘“'-1>3+1)
< al NP
In the second step it is left to show that P(t, w) € C([0, T], [-L, L]°) ® (FS)’, i.e. that there exist s > 2 and g > 0

such that P(t,w) € C([0,T],[-L,L]°) ® (FS)-s-4- Indeed, we show that for P(t,w) = }.,c; Pa(t)Ha(w) there
exist s > 2 and g > 0 such that

2, sup PO et )T @NY = )7 L2al(s ) @N) ™ < oo, (30)

aeg t€0T] ael

Forall @ € 7, |a| > 0 by (25) it holds that
L2 < (a!2@IN)>2 (A 1)2 < (a2l

Moreover, since a! < #91, then for all a € 7, |a| > 0 follows that

3
L2 < (2IN)Zaptel,
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Finally, if we once more use that a! < 7?1, and then choose s = 7° and g > 2p + 1, we arrive to

Z L2l 1y T @IN) " < 12+ Z (2IN)2e 1l Slaf 1y =1 Ny e
ael ael\0
<I2+ Z QN)@D < oo,
ael\0

Since the zeroth coefficient in the Wiener-Itd6 chaos expansion equals to the expectation of a stochastic
process, it follows that the function Py(t) from Lemma 1.1 has an important interpretation itself, namely it
corresponds to the expectation of the solution to (3). O

2. Numerical experiments and simulations

In this section we provide some simulations of the expiratory event and aerosol diffusion by using the
proposed model (3) with Caputo-Fabrizio derivatives for a vanishing temporal lag in the Navier-Stokes
airflow and fractional Brownian motion as a chaotic source term.

2.1. Numerical estimates of truncation errors

Before we turn to the simulation part, we provide results related to norm error estimation of two types
of truncated chaos expansions. Let Index(a) = max{j, a; # 0} for & € I and consider the truncated chaos
expansion of the solution P(t, w) as Py (t, @) = Xndex(@)<n Pa(t)Ha(@).

Theorem 2.1. Let N € Ny, then the norm error estimate of the truncated chaos expansion Py(t, w) can be expressed
as

”P(t/ C‘)) - PN(t/ a))||%([0,T],[*L,L](’)®(FS)_5,_q S fi 2P+1 C(q ZP’N + 1) 5 2 rS’ q > zp + 2’ (31)

where r and p are chosen so that (25) is satisfied, while C(-, -) represents the Hurwitz zeta function defined by

1
by=) —— 1, b#-1,-2,-3,....
Cab=) ooy 021 b#E-1,-25
n=0
Proof. By using the same notation as in the proof of Theorem 1.4, we obtain that
”p(t/ a)) PN(t w)”C([O T1,[-L,L]6)®(FS)_s - Z P (t)H (w)llc([() T,[-L,L1®)®(FS)-. g

Index(a)>N

- Z L2al(s 1)~ (2IN) 9@
Index(a)>N

< ) @EN@Ee,

Index(a)>N

Taking into account the ideas given in [21] and [54], we can rewrite the obtained sum as

Z (2IN)@-92 = Ji Z (2IN)@-a

= a
Index(a)>N n=N+1 Index(@)=n

_ i Z ﬁ(z j)@r=0a;

n=N+1ay,az,...,0,-120 j=1
a,>1

i(zj)w q)a/ ] i (2n) - q)an

a;j=0 a,=1

o)

z[g

n=N+1
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@)%
= Z (2n)‘7 2p H Qjyr -

n=N+1

N2
It is straightforward to check that the sequence I,(q — 2p) = H7=1 Q(Jz)]q)fquil is monotonically increasing

and convergent for any g > 2p + 1, and that 11m I,(2) = 11m H] . (2(]2)12) = 7. Consequently, we see that

I.(g —2p) < 1,(2) so 11m In(q —2p) < 7, for any q N 2p +2. Fmally by applymg this inequality, we arrive to

2
IP(t, @) = Putt, o 1y ipyoesy, S D oy A=W <5 Z )2’
n=N+1 n=N+

which by definition of the Hurwitz zeta function (32) gives the desired estimate forg > 2p +2. [

In order to prove visualization of our solution, we have to truncate it not only up to some fixed index
N = Index(a), but also up to some fixed M = |a| = a1 + ap + - - + a,. Let us define another truncated chaos
expansion with Pyy(t, @) = Yindex@)<n Zjajsm Pa(t)Ha(@), and provide a norm error estimate for it in the
next theorem.

Theorem 2.2. Let N,M € Ny and C(:,-) be the Hurwitz zeta function defined by (32). The norm error estimate of
the truncated chaos expansion P (t, w) is given by

1 g-2p-1LN+1)
24-2p — 1 2(q=2p)(M+1) ’

2
”P(t/ CL)) - PN,M(t/ a))||C([O,T],[—L,L]6)®(FS),5/,q < s> 7’5, q > Zp + 2,

where r and p are chosen so that (25) is satisfied.

Proof. Once more we exploit the obtained inequality in the proof of Theorem 1.4, thus for some g > 2p + 1,

IP(t, @) - Y @Nere,

Index(a)>N |a|>M

2
P, O)icqo - opers)-., <

Now, by applying similar ideas as in the proof of Theorem 2.1, we obtain that

[ee) [e9) n
MCNGEED D M NI | i
Index(a)>N |a|>M n=N+1m=M+1 ay,a2,...,a,-120 j=1

ay>1
artay+t+a,=m

- i i (21’1 )i Qn)i-2r Z Z Z(2k1)2p q(2k2)2p 1 ~(2km)2p7q

n=N+1 m=M+1 k=1

n2~@p-qm

A
D
D

®
x|~
v

n=N+1 m=M+
B q9-2p-1 (q-2p)(m+1) 7
n=N+1 n m=M+1 2

which gives the desired estimate for g > 2p+2. 0O

By applying truncated chaos expansionsi.e. finite partial sums, we approximate and simulate sample paths
of the solution. To achive that, notice that H.»(w) = {w, &) has a standardized Gaussian distribution for each
k € N, see [21]. Hence, we simulate the polynomial basis by generating a sequence of normally distributed
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pseudo-random numbers ¢, k = 1,2,...,N, and consider Pn(t) = Z” OZI deiayon Pyt TTq hayei), as a

realization of the sample paths of the truncated solution

N N
=Z Z Pu(hHa(@) = Y | Z P(t)]_[ha,<w,é>)

"= Index(a) n n=0 Index(a) n

where w € S'(R), a € 1. Indeed, by Theorem 2.1, it is reasonable to consider Py(t, w) as an approximation of
the solution P(t, w), since ||P(t, w) — Pn(t, a))||C([O,T],[_L,L]6)®(Fs)_5,_q — 0asN — oo, forany s > 7 and q>2p+2,
where p and r satisfy (25). However, the truncated sum Py(t, w) is still infinite since there is an infinite
number of multiindexes that satisfy condition Index(a) < N, so we are forced to define another truncation,
some M = |a| = a; +ax + -+ + ap, n < N, and consider Pyum(t, w) as a finite sum that approximates the
theoretical solution. Theorem 2.2 implies that Pxa(t, w) converges to our solution as both parameters N
and M tend to infinity.

2.2. Numerical simulations of the aerosol diffusion

Now we turn to the simulation part with particularly chosen data that fit physical conditions such as
room temperature, aerosol density etc. For the initial conditions of our model we take U(0) = (0,0, 0) and
X(0) = (0,0,0). In order to derive the constants A, B, C and k, let us impose that the initial conditions of the
Navier-Stokes equation (1) are given by #(X(0),0) = (2,1/5,1/10). After we apply the Trkal solution (2), it
implies that A = 1/5, B = 1/10, and C = 2 and to ensure that matrix 5(f) has determinant different from
zero, we choose k = 1/3. Hence, for such a choice of constants A, B, C, and k, there exists an unique solution
P(t,w) = ¥ aer Pa(t)Ha(w), which belongs to the space C([0, T], [-L, L]°) ® (FS)—s 4, for some s and 4. The
figures in the sequel are obtained for the approximation with N = 750 and M = 2,

750
Prsoa(t) = Po(t) + Z Poft) [ [ e
la]=1 i=1
750 750 750
= Py(t) + Z P.o(fe; + Z P e (t)ekej + Z Py (lf)(el2 -1),
i=1 i i=1

k#j

for different values of the Hurst parameter, Caputo-Fabrizio fractional order, and polynomial bases. Notice
that Py(t) is of particular interest since E[P(t, w)] = Py(t). To obtain the solution of the system (10)-(11) i.e. to
calculate P (t), it is necessary to approximate integrals

;fif &) — 1) 21drds ;if ()t — D)2t
T(H+1)Jo ds J oo’ " OTH+Yydt ) '

In order to achive that, we make use of chaos expansions of W!(t, w) and B(t, w) (see (C.1),(C.2),(C.3)), i.e.
of its three dimensional counterparts given by (4), which coefficiants are those integrals. Thus, with the

—H —=H
aim of obtainig integral approximations, truncated sums W,z (t) and Bys(t) are applied, since the solution
is simulated by 750 additions,

250 250

—H
W (t) = Z Z bk (1) (e1+30-1), €2430-1), €3¢) (32)
=1 k=1
. 250 250
Bys(t) = Z Z ¢k j(t)(€143k-1), €243(k-1), €3) " - (33)

=1 k=1
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A norm error estimate for Pyso(t, @) can be derived by Theorem 2.2, all that is needed are precise lower
bounds for the parameters s and 4. By Theorem 1.4, p > p > g > 1, and r > ry, where 1y is equal to (26). The
chosen initial conditions for our model imply by (24) that 7 > 2, p > 1 and K = 0. On the other hand, the
obtained values of A = 1/5, B =1/10, C =2 and k = 1/3 give that D = 1/4, and max{A, B, C} = 2. Physical
parameters are taken from Appendix G, x; = x; = 5/4 - 1075, and 7 = 0.0016, while time and fractional
order are elected to be T = 20 and a = 0.9. In order to obtain values for ||N||, ||S(0)||, and ||S7!||, recall
that throughout the paper, we have been using norm || - ||; for vectors and vector valued functions, so the
induced matrix norm is the same one. Therefore, by (15) and (14), we get that |[N]| = 2250, ||S(0)|| = 253/3,
and [|S7Y|| = 3.1605. Moreover, by Lemma A.3, M = 71, and GH(T) = 20, for Hurst parameter H = 1. To
sum up, it is obtained that r > ry = 4 + 41540¢'422225, which implies that for s > r° > (4 + 20770¢'42222%)> and
g > 2p +2,norm estimates from Theorem 2.1 and Theorem 2.2 can be applied, hence for the particular value
of g — 2p = 3, we obtain the error estimate

IP(t, ) = Pr502(t, @)llcqo,11 -LLp)sEFs)., ., < 0.0006097.

The results of the simulation of the sample paths P75 (t) are presented on the following figures. Figure 1
illustrates how different fractional derivative orders have an effect to sample paths of a droplet. Note, as the
Caputo-Fabrizio fractional order a increases, the sample path has a longer delay. The figures depict what
we expect from experience, droplets tend to progress in an almost linear fashion up front (x direction) and to
the side (y direction), while gravity pulls down the droplets resulting in a curved progress to downwards (z
direction). Diametar of droplets are taken to be equal to 107%m. From Figures 2, 3, and 4, we can see that as
the Hurst parameter H increases, droplets have a larger dispersion. The Hurst parameter, too, has weakest
effect in the frontal x direction and largest effect in the downwards z direction where the Naviere-Stokes
airflow wears down and the collision events with air molecules and other particles have more influence
than in the beginning. We point out that these values of a and H are chosen for illustrative purposes only,
they are not fitted to real data.

4 04 g
e 005 \
3- 03
z Y z 04 N
2- 02 N\
——CF order 0.8 ——CForder 0.8 CF order 0.8
015
1 —CForder0.85 - 01 CF order 0.85 CF order 0.85
CF order 0.9 CF order 0.9 CF order 0.9
CF order 0.95 CF order 0.95 02 ——CF order 0.95
or CF order 0.99 ~ of CF order 0.99 CF order 0.99
CF order 1 CF order 1 CF order 1

Figure 1: Simulation of the sample path of an individual droplet exhaled from mouth during first 20s along
all three axes, for different fractional order, fixed Hurst parameter H = 1 and fixed polynomial basis.
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Figure 2: Simulation of the sample paths of several droplets during first 20s along all three axes, obtained
for Caputo-Fabrizio fractional order a = 0.9, and fixed Hurst parameter H = 1. Blue lines correspond to
several realizations of the models sample paths, while the red one corresponds to the expected trajectory.

Figure 3: Simulation of sample paths of several droplets during first 20s along all three axes, obtained for
Caputo-Fabrizio fractional order a = 0.9, and fixed Hurst parameter H = 1. Blue lines correspond to several
realizations of the models sample paths, while the red one corresponds to the expected trajectory.
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Figure 4: Simulation of sample paths of several droplets during first 20s along all three axes, obtained for
Caputo-Fabrizio fractional order a = 0.9, and fixed Hurst parameter H = 2. Green lines correspond to

several realizations of the models sample paths, while the red one corresponds to the expected trajectory.

Finally, in Figure 5 we simulate a snapshot of 50 aerosols exhaled during the cough (up to 5000 are
exhaled during regular cough), and give their positions in four fixed time moments. Let us stress that the
initial radii of droplets for all 50 aerosols are taken randomly from 1 to 50um. Obviously, as time goes on, the
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dispersion of aerosols increases. The red dot in those four figures corresponds to the expected position, i.e.
to Py. All figures are produced for x; = x, = D, /2, where D, is given in the Appendix G. With an increase
of these two parameters the diffusion would increase and the droplet swarm would get more scattered in
time.

t=Dhs t=10s
*  (Xo(5),Yo(5), Z0(5))
(X5505(5). Y1505(5): Zig(5)

% (Xo(10),%(10), Z(10))
(X50(10), V1505(10), Z10(10))

0.5 05

t =15s t=20s
* (Xo(15),Yo(15), Zo(15))
(XZ502(15), Y 1505(15), Z550,(15))

* (Xo(20).%(20), Z0(20))
(X3502(20), Y50(20), Z550,(20)

0.5 05

Figure 5: Snapshot of the expiratory event 5s, 10s, 15s, and 20s after start of coughing obtained from our
numerical solution, for Hurst parameter H = 1 and Caputo-Fabrizio fractional order a = 0.9.

3. Model validation

Since the major goal of our work is to model turbulent transport of droplets, we recall and point out
the two primary physical actors that are involved in that process. On the one hand, it is the airfow and
turbulence, while on the other hand it is the humidity field and droplet evaporation. Firstly, let us say a few
words about the physical properties of the exhaled air through coughing. Namely, each cough has a limited
duration, and we need to distinguish between two different stages for the evolution of the exhaled airflow.
In the first stage, which is known as the jet phase, the mouth is open and the source is still pushing the air
out into space. The second stage, known as the puff phase, starts when the airflow or the cloud has lost its
source, i.e. when the mouth is closed, and the droplets begin freely to spread through airspace. By [6], [19]
a typical cough lasts around 0.2 — 0.5, and the average mouth opening area is (4 + 0.95)cm?, while the peak
velocity of air is about 13m/s, which results in an extremely high Reynold number 10%. In order to validate
the presented model, we take some results that were obtained in research [17], and the rich database of
images collected therein and given in the repository of that paper. The research material includes video
recordings of actual people breathing, breathing heavily, or coughing, both with and without face covering
masks. Among the 280 tests, in which they aimed to examine how different surgical masks prevent or
reduce the spreading of aerosol dispersion and lessen virus transmission risk, two are of particular interest
to us. Namely, test No. 188 presents a man in standing position and test No. 253 presents a woman in a
sitting position, both of them while coughing and without wearing a mask. The images and videos in [17]
were obtained by the Background Oriented Schlieren (BOS) technique, which is an optical method used to
visualize and measure refractive index variations in a transparent medium (in this case in the air) that are
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caused by density gradients in fluid flows (in this case the exhaled air from the mouth). To simulate the
airflow generated by those two persons, we impose the inlet air velocities for the proposed Trkal solution
by considering the results obtained in [17]. In both tests, the peak velocity in the x direction is around 8m/s,
while along the z axis it is in both cases negative and equal to —0.2m/s and —2m/s, respectively for test
No. 188 and test No. 253. Since we do not have any information about direct measurements along the y
direction, we suppose that particles spread along the y axis with an initial velocity uniformly distributed
between —1/5 and 1/5m/s. For these assumptions, the obtained constants for tests No. 188 and No. 253 are
B=-1/2,C=-52,and B = -2, C = 7.5, respectively, while A ~ U(-1/5,1/5) for both tests. In order to
provide the greatest degree of matching between the test results and our model, the constant k is taken to be
k = 1/3 for test No. 188, and k = —1/3 for test No. 253. All droplets are initially at rest, which implies that
the initial conditions for velocity in each direction are equal to zero. The results (images) from the tests are
given in boxes with a range given in meters and equal to [-0.575,0.65] x [-0.175, 0.575]. The air is injected
out through a mouth opening of area ~ 5cm?, which is simulated in our model by a sphere of diameter
2.6cm centered in (0.4,0.225) and (0.475, 0.375) respectively for test No. 188 and test No. 253. As we stated
at the beginning, droplet transmission depends also on the humidity field and droplet evaporation rate
in addition to the injected airflow through the mouth and turbulence. Since these factors are not ruled in
our model, a lack of information is evident about how evaporation influences the size of injected droplets
and further how it influences their transport process. By [15], it is known that the initial size of droplets is
between 1—-1000um, but due to evaporation in the jet phase (where the air is saturated) it drops to 1 —50um.
Thus, in our model we take that the size of droplets is randomly distributed to follow the histogram given
in the figure below.

frequency

0 5 10 15 20 25 30 35 40 45 50
R(pm)

Figure 6: Distributon of initial radius size for droplets according to [40].

In addition to the mentioned initial conditions for the airflow and for the droplets, as well as for the
system of equations of the model, we use the same truncation of the solution as in the previous section
5750,2(1‘). The results for test No. 188 are fitted for the Caputo-Fabrizio fractional order a = 0.87, and the
Hurst parameter H = 4/5, whereas the results for test No. 253 are fitted for a = 0.9 and H = 7/8. To validate
our model and perform the final comparison, we present frames of the two prominent tests, as provided in
the database available in [17], both captured in time at moment ¢ = 1.2s after the cough started, juxtaposed
to the simulations provided by our model as presented on Fig. 7 and Fig. 8.



D. Selesi, S. Tosi¢ / Filomat 39:22 (2025), 7647-7681 7670

Model

0.1

0.1

Test 188

] 3 . - F Linear regression ‘ B
J! 2 =0.1061z + 0.1882]

0.08 04 i 0.08

05

0.09 : ‘l 0.09

Linear regression ‘
2 =0.1566z + 0.1601 |
=

05F

0.07 0.07

0.06 0.06

0.05 0.05

0.04 0.04

0.03 0.03

0.02
0.02

0.01 -01 1

0.01

-04 -0.2 0 0.2 0.4 0.6

-0.4 -0.2 0 0.2 04 0.6

Figure 7: Left: Exhaled cloud 1.2 seconds after coughing in test No. 188 given in [17], with linear regression
z = 0.1566x + 0.1601. Right: Cloud of 5000 droplets 1.2 seconds after coughing started, obtained from the
model for A uniformly distributed between —1/5 and 1/5, B = -1/2, C = =5.2, a = 0.87 and H = 4/5, with
obtained linear regression z = 0.1061x + 0.1882.
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Figure 8: Left: Exhaled cloud 1.2 seconds after coughing in test No. 253 given in [17], with linear regression
z = —0.2589x + 0.2185. Right: Cloud of 5000 droplets 1.2 seconds after coughing started, obtained from the
model for for A uniformly distributed between —1/5and 1/5,, B = -2,C =75, a = 0.9 and H = 7/8, with
obtained linear regression z = —0.2882x + 0.2319.

The left part of the figures stands for the realistic scenario according to the results provided in the
database with a linear regression as estimation of the droplet propagation, while the right part of the figures
corresponds to the simulated clouds of droplets by using our theoretical model and its truncated solution.
By comparing those pairs of linear regressions we may observe that the errors are given as in Table 1.

In the context of BOS, displacement refers to the apparent shift of background points when viewed through
a medium with varying refractive index. This shift is caused by the deflection of light rays as they pass
through regions with different refractive indices, which in turn are related to density variations in the
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medium. The displacement observed in BOS is proportional to the integral of the density gradient along
the optical path, indicating that regions with higher density gradients cause larger displacements of the
background pattern. Although this displacement is not directly related to the velocity of the airflow and the
aerosols therein, rather it measures the L?—norm of the density gradient, it can be used as an approximate
metric to indicate what happens with the particles” velocities.

The displacement of the exhaled droplets and room airflows in both images is measured by the density
gradient given by (uy(t)* + 1,(H)?)2, where 11,(t) and 1u,(f) are displacements along the x and z axes at a
moment £. It is then scaled to the interval [0,0.1] and color-coded via the heat legend, i.e. color-bar on the
right of each figure. If we take a look at the realistic scenario images obtained from the tests we notice
that the displacement of particles is the highest at the beginning of the clouds, around the mouth, which
corresponds to the red color. Afterwards, it becomes lower as the speed of the exhaled airflow starts losing
momentum, which corresponds to the color blue. The figures obtained in the simulations corresponding to
our theoretical model also follow the same logic. Indeed, by using the same approach, droplets are colored
with respect to their displacement scaled to the same interval, and derived by the norm of the gradient
calculated as

(Xt + Af) = X(B) + (Z(t + At) - Z(t))z)%, for At = 0.01.

In comparison to the realistic scenario of test images No. 188 and No. 253, our model captures very well
the displacement and projected trajectories of the aerosol particles, as proven by the regression models and
low error rates. It also captures the global behavior of the displacements of the aerosol swarm particles.
A negligible imperfection of the model is that it does not perfectly capture the local behavior of the
displacements, i.e. the gradient colors in the test images No. 188 and No. 253 are more mixed further away
from the mouth, which is a consequence of the vorticity field that produces micro-local turbulences. Our
model does not provide that kind of behavior of droplets, the gradient colors on the simulation images
exhibit a more radial propagation. The reason for that lies in the assumption that in our model velocity and
vorticity fields are aligned i.e. d X u = u, which implied that the airflow exhaled from the mouth follows
a Trkal flow. However, this assumption was necessary to obtain the nonlinear stochastic chaos expansion
solutions in a closed form, tractable by the Wick product model. Since no model can ever be perfect, only
an approximation of reality, the micro-local airflow turbulences were neglected as minor contributors of
the global spreading of aerosol particles.

Conclusion and discussion

In recent years, the study of aerosol dispersion within closed spaces has gained significant attention
due to its implications in various fields, including indoor air quality management, pollutant control, and
public health. Accurate modeling of aerosol transport and dispersion in such environments is crucial
for understanding the spread of contaminants and designing effective mitigation strategies. Traditional
mathematical models based on ordinary or partial differential equations have been extensively used for
this purpose. However, these models often fail to capture the complex behaviors observed in real-world

Linear regressions
z=kx+n Test Model Error Test Model Error
No. No.
188 253
k 0.1566 0.1061 0.0505 -0.2589 -0.2882 0.0293
n 0.1601 0.1882 0.0281 0.2185 0.2319 0.0134

Table 1: Error estimates for the regression coefficients.
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scenarios. To overcome the limitations of traditional models, there has been a growing interest in incorpo-
rating fractional calculus and stochastic processes into the field of aerosol dispersion modeling. Fractional
derivatives provide a powerful tool for describing anomalous diffusion phenomena that are not adequately
captured by classical derivative operators. On the other hand, stochastic differential equations offer a nat-
ural framework for accounting for the inherent randomness and uncertainty present in aerosol dispersion
processes.

In this paper, we proposed a novel approach that combines fractional derivatives and stochastic differ-
ential equations to model aerosol dispersion in closed spaces. Specifically, we leveraged the Navier-Stokes
equations as a foundation for our modeling framework, combined with the Wiener-Itd chaos expansion
methods and the Caputo-Fabrizio derivative to propose a novel fractional stochastic model. The underlying
SPDE system was solved via polynomial chaos expansions in the manner of white noise analysis, com-
pletely avoiding the classical It6 calculus. By expanding all terms in the SPDE into formal sums and taking
orthogonal projections, it has transformed into an infinite system of PDEs. Due to the nice properties of the
Wick product, this system was lower triangular and hence could be solved by recursion. In this manner we
have obtained all coefficients in the chaos expansion of the solution sought. Controlling and estimating the
growth rate of these coefficients was necessary to prove the convergence of the series. Due to the complex-
ity of the model equation, i.e. the Wick-nonlinearities in the airflow equation u, it has been important to
properly estimate also sums of finite products of the previous solutions in the recursion scheme. Solution
to the model SPDE was hence obtained in form of an infinite series, with the fixed stochastic orthogonal
basis H,. From a numerical point of view, this was also very convenient for numerical approximations and
simulations. For this purpose we have simulated a fixed number of pseudo-random numbers following the
normal distribution, used them as arguments for the Hermite polynomials, inserted them into the obtained
chaos expansion solution and truncated the series at a finite (large) number N. The model incorporated
fractional Brownian motion as a model for random perturbations in the position and velocity of aerosol
particles. Fractional Brownian motion has also been modeled by a novel approach based on a recursion
formula obtained for its Hermite expansion. Finally, the rate of change of particle positions was modeled
not by the ordinary derivative but the Caputo-Fabrizio fractional derivative. The nonsingular kernel of the
Caputo-Fabrizio derivative is one of its most attractive features and it has made the computational issues
somewhat more feasible. In contrast to the classical Caputo derivative that would require dealing either
with the Laplace transform and its complex inverse or numerical approximate schemes for interpolated
solutions, the Caputo-Fabrizio derivative has simply turned our model equations into a linear combination
(more precisely convex combination w.r.t. a) of the original model with zeroth derivatives and an enhanced
model with first derivatives.

Although some authors criticize the Caputo-Fabrizio derivative derivative for not having a singular
kernel and for not being a true fractional derivative, rather being a pass filter [48], or that it cannot describe
nonlocality and memory effects [45], we have found it to be still useful for modeling purposes since
it echoes similar subdiffusion and superdiffusion effects as the classical Caputo and Riemann-Liouville
fractional derivatives, which paired with the already complicated tools of stochastic calculus turned out as
an extraordinary tool for viable calculations. The Wick product has also received some critiques for not
capturing the property of probabilistic independence and for supposedly having statistical flaws. However,
the Wick product, by replacing ordinary products, helps regularize integrals in the equation, ensuring that
the solutions remain well-defined and physically meaningful, even in the presence of singularities. The Wick
product also involves integrating over all possible outcomes or sample paths of the underlying stochastic
processes. This integration captures the combined influence of random variables across the entire sample
space, rather than focusing solely on individual outcomes or pointwise interactions. Similarly as fractional
derivatives with memory effects capture the influence of past states or trajectories on current behavior,
emphasizing the temporal evolution of processes, the Wick product captures the joint influence of random
variables on overall system dynamics, emphasizing the collective behavior of stochastic processes across
all possible outcomes. One important consequence is the unbiasedness of the solution to the model SPDE:
The expected value of the SPDE is equal to the solution of the SPDE with no noise (in our case the zeroth
coefficient in the chaos expansion).

The final simulations of the model illustrate all these effects and aerosol swarm diffusion scenarios under
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various fractional orders and various Hurst parameter values. In comparison with real-life scenarios and
video-captured BOS images of aerosol dispersion flows after coughing and sneezing events, our model
has turned out to be a promising one that captures the nature of trajectories of the droplet diffusion in
a computationally efficient way. At this point we have to note that the BOS images provide valuable
qualitative insights into the airflow and mixing dynamics following a cough; the density gradient data help
identify regions of turbulent mixing and potential pathways for aerosol dispersion. However, for precise
aerosol measurements and tracking the individual trajectories of aerosol particles, additional methods and
equipment would be required, such as aerosol detectors and direct aerosol sampling or particle image
velocimetry (PIV) techniques, to which we did not have access.

Through this research, we have made a further step to enhance our understanding of aerosol dispersion
processes, improve the accuracy of existing predictive models, and contribute to the development of more
effective strategies for managing indoor air quality and mitigating airborne hazards.
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A. Hermite polynomials and Hermite functions with other auxiliary functions

For a comprehensive overview of known formulae related to Hermite polynomials we refer to [18].
Here we list their definition and some results obtained in our upcoming paper [42] that are used in the
proofs of the simulation of fractional white noise and fractional Brownian motion.

Definition A.1. Let 1, denote the (physicist’s) Hermite polynomials defined by

h(x) = (—D”exch?(e—xz), n=0,1,2,... (A1)
and let &, denote the Hermite functions given by
Enl) = ! CE ), n=1,23,... (A.2)
2m-1(n — 1)1\

Moreover, for H € (0, 1), we define functions A : R — R by
t 2~ 1
All(t) = f e Th, ()t -x)f2dx, n=0,1,2,..., (A.3)

and coefficients Bﬁ( € R with

B!, = f e Thia(WAT (hdt, jk=1,23,.... (A4)
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Lemma A.2. For every t € R, the sequence Afl(t), H € (0,1) satisfies the recursion relation
d
A (= —2 AH(t) 2nAf (), n=1,23,... (A.5)

Moreover, we know that for forn =0,1,2,...

Hopy =\ nkot-beldogp(n _k H 1 1 _H n k1 £
An<t>—;0()< e I FRE Rt s
n
n Ak n_kiH_1 E_E E § §_I;I_E Eg_ﬁ
+kZ=04(k)( 2y 4r(2 R LU i S S vy | (8.6

Lemma A.3. There exists M > 0 such that for every t > 0, the function AH(t), H € (0, 1), satisfies

|Af (1) — AT (0)] tH=3  +e(0,1),
= <4MGH), GM(y = el t>(1 ) (A7)
NPAIRV/ oo
Theorem A.4. Let
BH
Jk .
7 ]/k:1/2131"'/ (A8)
\/21 1(j— DIVA 21k - )l VR
with initial values given by
T(F+4%-3) i+ o
a;—Il ( )( I- 2 J ) |'l ]—%+H—1 \/%/ ]: 1[2’3’.“’ (A9)
©or(51+3) VG-
T l H_3 2 — 1)1
ZHF(ZI Z) h= G+d-Das)-o DITTE I, j=2,3,4,.. (A.10)

r(Z1+1) VG-

Then for j,k = 2,3,4,..., the numbers satisfy the recurrence relation

- k j
\/;aé_-li—l,k + \/Eafkﬂ — ﬁaf’(_l - \/j__lll?_llk =0.

Moreover, for all j,k € N it follows that aﬁc = (—1)f+kaH],, and

L] Y1
— Z \/_ (k 1 I'/1'| i Sk —3i+H- (All)

(k—2i—1)!

G0e) oD @G +2i— 21+ nGi— -k + HT(f+5-1+4-3)
X , : — : ,
Lo TG-1-1) Qi — 1+ DI(=1)21 r((G+i-1+3)

We note that the family &,, n € IN, constitutes an orthonormal basis of L?(R), thus each function fe L*(R)
has a unique representation f(t) = Z}il fi&j(t), where f; = f_o; f(x)&j(x)dx, j € N, and ):‘;1 |fj|2 < 0. The
Schwartz space of tempered distributions 5’(IR) consists of formal expansions of the form F = }.72, c;&;,
¢j € R, j € N, such that ||F||§7p(]R) =X lcjl*(2j)77 < oo, for some p > 0.
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B. White noise space and Wiener-Itd chaos expansion

For the purpose of white noise analysis we use the (probabilist’s) renormalization of the Hermite
polynomials and define h,,(x) = 2‘%}17,(%), n=0,1,2,.... The Gaussian white noise space [20] is defined on

the probability space Q) = 5’(IR) endowed with the Borel c—algebra # generated by the weak topology and
the Gaussian measure u given by the Bochner-Minlos theorem. Let 7 = (N{¥). be the set of multiindeces

and ¢® =(0,---,0,1,0,--), k € N, the unit multiindeces. Let (L)> = L*(S'(R), ¥, 1) be the Hilbert space of
random variables with finite second moments. Then,

Hy(w) = Hhak«w/ &), weSR), a=(a,ar..)€eT,

constitutes the Fourier-Hermite orthogonal basis of (L)*. The prominent Wiener-Itd chaos expansion theo-
rem states that each element F € (L)? has a unique representation of the form F(w) = Y. .7 coHa(w), w € S'(R),
cr € R, a € T, such that IIFII(L)2 =Y o7 Cial < oo,

Definition B.1. The space of the Kondratiev generalized random variables (S)-1 consists of formal expansions of the
formF =% 71 baHa by € R, @ € T, such that

[ Z V3(2N)™" < oo,  for some q > 0,

ael
with respect to the weight factor (2IN)* = H]f”:l(Z 7).

Definition B.2. Generalized stochastic processes in sense of [24] are elements of the space

SR)®(S)1= | | SR @)1,

p.9€N

with expansion of the form F = }.er Yjen faj €j Ha, foj € R, a € I, j € N, such that

s mposy, . = D, D, faiP@)P@NY™ < oo,  for some p,q > 0.

ael jeN

C. Fractional Brownian motion and fractional white noise

Important examples of generalized stochastic processes are fractional white noise and fractional Brow-
nian motion with Hurst parameter H € (0, 1) that play a crucial role in modeling phenomena more complex
than regular white noise and fractional Brownian motion.

Theorem C.1. Fractional white noise and fractional Brownian motion are respectively given by the chaos expansions
W@ =YY bixg(OHm @), Bt =Y Y cixéi(DHew (@), (C1)
k=1 j=1 k=1 j=1

where the coefficients by and c;x can be expressed in terms of afk (see Appendix (A)) as

b; _;(_L) H
& r(H+) iz

-1 4
bik = (\/;]kﬂ NV 2 ik 1), k=234,...,

(C.2)
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and

o, . 0, j=246...,

Cik = a — A (0)2%1"(1) ) . (C.3)
T(H+1) " r(H+1 8] 2 , i=1,3,5,...
( 2) ( 2) V2 (=) R V-1 VR J

For a proof of these formulae we refer the readers to [42]. As generalized stochastic processes with
expansions in bjx and cj, WH(t, w) and BH(t, w) must be regarded as elements of the space S'(R) ® (S)_1.
This means that

W] b)) (2k) 7 < o, (C4)

2
S f(R)&(S)-1,~

IB™IE. yes) 1., ciulP ) (2K < oo, (C5)

=22
k=1 j=1
=22
k=1 j=1
for some f, g > 1. Also, in sense of weak derivatives in S’(RR) it holds that %BH () = WH(t). Finally, we note
that for H = % one retrieves the classical white noise and classical Brownian motion case.

D. The Wick product

The Wick product is used in white noise analysis as a renormalization of the ordinary product, since
generalized stochastic processes cannot be multiplied in the usual way (mirroring the famous Schwartz
impossibility result). Hence, one has to take out the infinite (divergent) part of the ordinary product of
two generalized random variables and restrict (or in terms of quantum physics to “renormalize”) to the
well-defined part of the product [20], [21], etc.

Definition D.1. The Wick product of two random variables X, Y € (S)_1 in the chaos expansion form X = ), xoHa,

Y = Y5 ygHg, is defined by
X0Y = Z[ Z Xalp

Y L’k+ﬁ:)/

H,.

Furthermore, one can define also Wick-powers by letting X*" = X0X°""D, n € N.

The Wick product is inherently incorporated into the It6 integrals and It6 calculus, as one can see e.g.
from [} B(w)dBy(w) = 3(BX(w) — ) = 1B*(w). More generally, [ Xs(w)dBy(@) = [ Xs(@)0Ws(w) and the
latter can be evaluated by usual Riemann integration rules. Due to its convolutional nature, the Wick
product is non-local, that is the value of X(w)¢Y(w) depends not only on one outcome w but it involves
integrating over all possible outcomes of the involved random variables, or integrating over all sample
paths in case of stochastic processes.

In order to consider not only Wick-powers of random variables but also Wick-versions of analytic
functionals of random variables and to solve SPDEs with such terms one has to relate to an even larger
space of generalized random variables than the Kondratiev space. In [26] the authors have dealt with this
situation, hence we recall the definition of the space (FS)" and results related to it.

Definition D.2. The space (FS)’ consists of formal expansions of the form F = Y .7 faHa, fo € R, such that

IFIssy = ) allfuP( ) @IN) P < oo, for somer =2, p 2 0.

ael
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This now allows to capture higher levels of singularity in generalized random variables, namely (S)-; C
(FSY.
The Wick-version of analytic functionals of stochastic processes is straightforward to be considered

following [21]. If @ is analytic at xo := E(X), where X € (FS)’, one can establish the Taylor expansion, i.e.

. e ) o .
there exists an infinite sequence a, = (Dn—(,x“), n > 0 such that ®(x) = Y. a,(x — x0)", x € U, where U is a

neighborhood of xy. Then the Wick version ®°(X) of ® applied to X is defined by

0o

PX) = ) an(X —x0)°".

n=0
Furthermore, if @ is an entire function, then ®(x) = )" a,x", which implies that ®°(X) is defined for all
X € (FS)’, and we have

®O(X) = Z 4, X%, X e (FS).
n=0

Lemma D.3 ([26]). If X € C([0, T; R") ® (FSY’, then ®°(X) is a well defined element of C([0, T]; R") ® (FS)’ and it
can be represented in the form

0o

X)) = ) aX""(t, @) = P(Xo(B)Ho(@) + Y (@' (Xo)Xal) + ra(t) Ha(w), (D.1)

n=0 la|>0

wheret € [0,T], w € Q. Fora € I, |a| = 1r,0(t) =0, t € [0, T] and for o € I, |a| > 1 the functions r,q are of the
form

la

(X,
ro =Y O Yy Y XX X 0,0, tEDT], (D2)

k=2 0<y1<a 0<y2<y1 0<Yk—1<Vk—2

80 as one can see, 1,0 depends only on the coefficients Xg, for p < a.

E. Caputo-Fabrizio fractional calculus

We refer to [8] for a more extensive overview of known formulas related to Caputo-Fabrizio fractional
calculus. Here we list the formulas and definitions used in this article.

Definition E.1. For a function f € H([0, T]) the Caputo-Fabrizio fractional derivative of order 0 < a < 1, is given
by

t
CFDaf(t) — % L f/(,l,)e—l%n(t—r)d,[, (E.1)

while the corresponding fractional integral is

t
Ll = (1 - )[f() ~ FO)] + fo f(oyr. E£2)

Lemma E.2. The relation between the Caputo-Fabrizio fractional derivative and the corresponding integral is given
by

CPIa(CFDaf(t)) = f(t) - £(0), (E.3)
CD(TIfD) = £ - 0T (E4)
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Since lim;_o, “FD*f(t) = 0 for all functions, ODEs of the form “FD%y(t) = g(t) need to satisfy g(0) = 0 as a
compatibility criterion for well-posedness. For g(0) # 0 equations can be regularized by “ D*y(t) = g(t)—g(0)
or even better by “"D°y(t) = g(t) — g(0)e"T='. In contrast to the classical Caputo derivative where the first
derivative f’ is convoluted with a singular kernel t=%, the Caputo-Fabrizio definition uses a regular kernel
e~ ! for this purpose. Note that this function is also in the kernel of the integral operator, i.e.,

CFIa (e—ﬁt) =0. (ES)

F. On matrix and vector valued functions

In order to stay clear about notation related to matrix and vector valued functions we enlist several
rules and definitions. Let S(t), N(t) : R —» R™™, N(f) : R — lR"’Xk be given by S(t) = [S,](t)]nxm, and N(t) =
[Nij(H)]mxk- Differentiation of matrices acts componentwise as (S(t) = [4 5Sii(B)]nxm and dtN(t) =[4 NG (O ]k,
and the Leibniz rule holds:

(S(t)N(t)) = —S(t)N(t) + S(t) N(t) (1)
For two matrices F,H € R™", F = [fiiluxn, H = [hijluxn, We say that F is dominated by H, and we write

F < H, if fij < hjj holds for any pair i,j = 1,...,n, while the absolute value of a matrix F is considered as

|F| = [|f1]|]n><n
The space C([0, T], [-L, L1®) for T > 0, L > 0, consists of vector valued functions P(t) : [0, T] = [-L,L]® given
by P(t) = (P1(f), ..., Ps(t)), such that

6
IPOllcqoryi-vip = sup IPOll-rae = ), sup [P0, (F2)
t€[0,T] i—1 t€l0,T]

where we have choosen the norm 1 on [-L, L]®. Notice, we could pick any other norm since all norms are
equivalent on finite-dimensional spaces.
The following theorem provides a linear generalization of Gronwall’s inequality, for more details see [9].

Theorem E1. Let G(t) and H(t) be square, continuous, and nonnegative matrices for ty < t. If
¢
U(t) < a(t) + G(t) f H(s)U(s)ds, to<t,
to
then
¢
U(t) <a(t) + G(t)f V(t,s)H(s)a(s)ds, to<t,
to
where V(t,s) satisfies,
¢
Vi(t,s) =1+ f H(G@)V(r,s)dr, ty<s<t.
S
Moreover, if H(t) := H and G(t) := G are constant matrices, it follows that V(t,s) = e#=9HC,

G. Physical and chemical properties of aerosols produced in expiratory events

The complete representation of physical and chemical parameters appearing in our model simulation
in Section 2 is presented in the following table. For a more comprehensive view see [40].
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Density of liquid water pw  9.97 x 10%kg/m®

Density of soluble aerosol part (NaCl) ps  22x10%kg/m?

Density of insoluble aerosol part (mucus) Pu 1.5 x 10%kg/m?>
Mass fraction of soluble material (NaCI) with respect to the total droplet €, 0.75
Mass fraction of dry nucleus with respect to the total droplet C 1%

Diffusivity of water vapor D, 25x107°m?/s

Density of air Pa 1.18kg/m3
Kinematic viscosity of air % 1.8 x10°m?/s
Initial diameter of a droplet R 1076 = 1073m

We point out that initial droplet radii, by [19] and [15], is approximately from 1 to 1000um. Due to
evaporation, almost 95% of them are falling between 1 and 50um, so that is the droplet range used in all

simulations.

By using the listed parameters, we derive 7, Stokes relaxation time of the droplet for given R as its radius.

The overall density of the dry nucleus can be expressed as

Pu
—en(l— pu/ps)

PN =7

while the density of the entire droplet turns out to be

3
PD = Puw + (pN - Pw) (EN) ’
where the radius of the dry solid part of the droplet is given by

Chr )1 /3

N =R|———F7—
N (C,Dw + PN(l - C)
Finaly, the Stokes relaxation time is equal to

_ ZpDR2

9p.v

References

=1.97 x 10°kg/m®,

[1] AM. Sayed Ahmed, M. Hamdy Ahmed, A. Taher Nofal, Adel Darwish, and A.M Othman Omar. Hilfer-Katugampola fractional
epidemic model for malware propagation with optimal control. Ain Shams Engineering Journal, 15:102945, 2024.
[2] M. Hamdy Ahmed, A. Reda Elbarkouky, A.M Othman Omar, and Maria Alessandra Ragusa. Models for COVID-19 daily

confirmed cases in different countries. Mathematics, 9:659, 2021.
[3

Fractal and Fractional, 6:517, 09 2022.
[4

Fractional Calculus and Applied Analysis, 21(1):29-44, 2018.

Kholoud Albalawi and Ibtehal Alazman. On study of modified Caputo—Fabrizio omicron type COVID-19 fractional model.

T. Atanackovi¢, S. Pilipovi¢, and D. Zorica. Properties of the Caputo-Fabrizio fractional derivative and its distributional settings.

[5] David Barbato, Luigi Berselli, and Carlo Grisanti. Analytical and numerical results for the rational large Eddy simulation model.

Journal of Mathematical Fluid Mechanics, 9:44-74, 01 2007.



6

[7

[8

191
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]

[31]

[32]
[33]
[34]
[35]

[36]
[37]

[38]

D. Selesi, S. Tosi¢ / Filomat 39:22 (2025), 7647-7681 7680

Lydia Bourouiba, Eline Dehandschoewercker, and John Bush. Violent expiratory events: On coughing and sneezing. Journal of
Fluid Mechanics, 745, 03 2014.

Alexandre Caboussat. Mathematical modeling of atmospheric flow and computation of convex envelopes. Mathematical Modelling
of Natural Phenomena, 6:44 — 66, 01 2011.

Michele Caputo and Mauro Fabrizio. A new definition of fractional derivative without singular kernel. Prog Fract Differ Appl,
1:73-85, 04 2015.

Jagdish Chandra and Paul Davis. Linear generalizations of Gronwall’s inequality. Proceedings of The American Mathematical Society
- PROC AMER MATH SOC, 60, 10 1976.

Swetaprovo Chaudhuri, Saptarshi Basu, Prasenjit Kabi, Vishnu Rajasekharan Unni, and Abhishek Saha. Modeling the role of
respiratory droplets in Covid-19 type pandemics. Physics of Fluids, 32:063309, 06 2020.

Swetaprovo Chaudhuri, Saptarshi Basu, and Abhishek Saha. Analyzing the dominant SARS-CoV-2 transmission routes toward
an ab initio disease spread model. Physics of Fluids, 32:123306, 12 2020.

Sergio Chillén, Ainara Ugarte-Anero, Iiiigo Iradi, Unai Fernandez-Gamiz, and Ekaitz Zulueta. Numerical modeling of the spread
of cough saliva droplets in a calm confined space. Mathematics, 9:574, 03 2021.

Sandro Coriasco, Stevan Pilipovi¢, and Dora Selesi. Solutions of hyperbolic stochastic PDEs on bounded and unbounded
domains. Journal of Fourier Analysis and Applications, 27(77):42, 2021.

Jasmina Djordjevi¢, Ivan Papi¢, and Nenad Suvak. A two diffusion stochastic model for the spread of the new coronavirus
SARS-CoV-2. Chaos Solitons & Fractals, 148:110991, 04 2021.

J Duguid. The size and the duration of air-carriage of respiratory droplets and droplet-nuclei. The Journal of hygiene, 44:471-9, 09
1946.

Mohamed El-Beltagy, Ahmed Etman, and Sroor Maged. Development of a fractional Wiener-Hermite expansion for analyzing
the fractional stochastic models. Chaos Solitons & Fractals, 156, 03 2022.

Ignazio Maria Viola et al. Face coverings, aerosol dispersion and mitigation of virus transmission risk. Engineering in Medicine
and Biology, 2:26-35, 2021.

Izrail Solomonovich Gradshteyn and Iosif Moiseevich Ryzhik. Table of integrals, series, and products. Elsevier/Academic Press,
Amsterdam, seventh edition, 2007.

J Gupta, C.-H Lin, and Q Chen. Flow dynamics and characterization of a cough. Indoor air, 19:517-25, 07 2009.

Takeyuki Hida. White Noise: An Infinite Dimensional Calculus. Mathematics and Its Applications. Springer Netherlands, 1993.
Helge Holden, Bernt Qksendal, Jan Ubge, and Tusheng Zhang. Stochastic Partial Differential Equations: A Modeling, White Noise
Functional Approach. Springer Berlin Heidelberg, 2010.

Haojie Hou, Youguo Wang, Qiqing Zhai, and Xianli Sun. Optimal control of stochastic fractional rumor propagation model in
activity-driven networks. Applied Mathematical Modelling, 142:115968, 2025.

Muhammad Khan, Zakia Hammouch, and Dumitru Baleanu. Modeling the dynamics of hepatitis E via the Caputo-Fabrizio
derivative. Mathematical Modelling of Natural Phenomena, 14, 04 2019.

Tijana Levajkovi¢, Stevan Pilipovi¢, Dora Selesi, and Milica Zigié Stochastic evolution equations with multiplicative noise.
Electronic Journal of Probability, 20(19):23, 2015.

Tijana Levajkovi¢, Stevan Pilipovi¢, Dora Selesi, and Milica Zigi¢. Stochastic evolution equations with Wick-polynomial nonlin-
earities. Electronic Journal of Probability, 23(116):25, 2018.

Tijana Levajkovi¢, Stevan Pilipovi¢, Dora Selesi, and Milica Zigi¢. Stochastic evolution equations with Wick-analytic nonlineari-
ties, 2023.

Tijana Levajkovi¢ and Dora Sele$i. Malliavin calculus for generalized and test stochastic processes. Filomat, 31:4231-4259, 01
2017.

Chin-Lung Li, Chang-Yuan Cheng, and Chun-Hsien Li. Global dynamics of two-strain epidemic model with single-strain
vaccination in complex networks. Nonlinear Analysis: Real World Applications, 69:103738, 02 2023.

Shichao Liu and Atila Novoselac. Transport of airborne particles from an unobstructed cough jet. Aerosol Science and Technology,
48,11 2014.

Jorge Losada and Juan J. Nieto. Properties of a new fractional derivative without singular kernel. Progress in Fractional Differen-
tiation and Applications, 1(2):87-92, 2015.

S. Lototsky, R. Mikulevicius, and B. Rozovsky. Intrusive and non-intrusive chaos approximation for a two-dimensional steady
state Navier-Stokes system with random forcing. Stochastics and Partial Differential Equations: Analysis and Computations, 11, 01
2022.

S. Lototsky and B. Rozovsky. Classical and generalized solutions of fractional stochastic differential equations. Stochastics and
Partial Differential Equations: Analysis and Computations, 8, 12 2020.

Benoit B. Mandelbrot and John W. van Ness. Fractional Brownian motions, fractional noises and applications. SIAM Review,
10:422-437, 1968.

Martin Maxey and James Riley. Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids, 26:883-889, 04
1983.

AM Othman Omar, A. Reda Elbarkouky, and M. Hamdy Ahmed. Fractional stochastic modelling of COVID-19 under wide
spread of vaccinations: Egyptian case study. Alexandria Engineering Journal, 61:8595-8609, 2022.

Manuel D. Ortigueira. Fractional Calculus for Scientists and Engineers. Springer, 2011.

Virender Panwar, P.S. Uduman, and J.F. Gémez-Aguilar. Mathematical modeling of coronavirus disease COVID-19 dynamics
using CF and ABC non-singular fractional derivatives. Chaos Solitons & Fractals, 145:110757, 02 2021.

Mohammad Partohaghighi, Ali Akgiil, Liliana Guran, and Monica Bota. Novel mathematical modelling of platelet-poor plasma
arising in a blood coagulation system with the fractional Caputo-Fabrizio derivative. Symmetry, 14:1128, 05 2022.



[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]

[50]

[51]
[52]
[53]

[54]

D. Selesi, S. Tosi¢ / Filomat 39:22 (2025), 7647-7681 7681

Mati Rahman, Muhammad Arfan, Kamal Shah, and J.F. Gémez-Aguilar. Investigating a nonlinear dynamical model of COVID-19
disease under fuzzy Caputo, random and ABC fractional order derivative. Chaos, Solitons & Fractals, 140:110232, 08 2020.

Marco Rosti, Mattia Cavaiola, Stefano Olivieri, Agnese Seminara, and A. Mazzino. Turbulence role in the fate of virus-containing
droplets in violent expiratory events. Physical Review Research, 3, 01 2021.

Ali Asghar Sedighi, Fariborz Haghighat, Fuzhan Nasiri, Shi-Jie Cao, and Chen Ren. Approaches in CFD modeling of respiratory
droplet dispersion - issues and challenges. Sustainable Cities and Society, 97:104696, 06 2023.

Dora Selesi and Stefan To$i¢. The chaos expansion of fractional Brownian motion and fractional white noise with distributed
order Hurst parameter, Preprint.

S.A. Seminara, ML.I. Troparevsky, M.A. Fabio, and G. la Mura. Anomalous diffusion with Caputo-Fabrizio time derivative: an
inverse problem. Trends in Computational and Applied Mathematics, 23(3), 2022.

Alireza Shadloo Jahromi, Omid Bavi, Mohammad Hossein Heydari, Masoud Koopaee, and Zakieh Avazzadeh. Dynamics of
respiratory droplets carrying SARS-CoV-2 virus in closed atmosphere. Results in Physics, 19:103482, 10 2020.

Vasily E. Tarasov. Caputo-Fabrizio operator in terms of integer derivatives: memory or distributed lag? Computational and
Applied Mathematics, 38(113):15, 2019.

Gilles Tissot, André Cavalieri, and Etienne Mémin. Stochastic linear modes in a turbulent channel flow. Journal of Fluid Mechanics,
912, 01 2020.

Nguyen Tuan, Nguyen Tuan, Donal O’Regan, and Vo Viet Tri. On the initial value problem for fractional Volterra integrodiffer-
ential equations with a Caputo - Fabrizio derivative. Mathematical Modelling of Natural Phenomena, 16, 01 2021.

Duarte Valério, Manuel D. Ortigueira, and Anténio M. Lopes. How many fractional derivatives are there? = Mathematics,
10(737):18, 2022.

Pratibha Verma and Dr Kumar. Analysis of a novel coronavirus (2019-nCOV) system with variable Caputo-Fabrizio fractional
order. Chaos Solitons & Fractals, 142, 11 2020.

Ville Vuorinen, Mia Aarnio, Mikko Alava, Ville Alopaeus, Nina Atanasova, Mikko Auvinen, Nallannan Balasubramanian, Hadi
Bordbar, Panu Erasto, Rafael Grande, Nick Hayward, Antti Hellsten, Simo Hostikka, Jyrki Hokkanen, Ossi Kaario, Aku Karvinen,
Ilkka Kivists, Marko Korhonen, Risto Kosonen, and Monika Osterberg. Modelling aerosol transport and virus exposure with
numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors. Safety Science, 130:104866, 06 2020.

Jim Walker, Justice Archer, Florence Gregson, Sarah Michel, Bryan Bzdek, and Jonathan Reid. Accurate representations of the
microphysical processes occurring during the transport of exhaled aerosols and droplets. ACS Central Science, XXXX, 01 2021.
Hongping Wang, Zhaobin Li, Xin-Lei Zhang, Lixing Zhu, Yi Liu, and Shizhao Wang. The motion of respiratory droplets produced
by coughing. Physics of Fluids, 32:125102, 12 2020.

Malia Zee, Angela Davis, Andrew Clark, Tateh Wu, Stephen Jones, Lindsay Waite, Joshua Cummins, and Nels Olson. Compu-
tational fluid dynamics modeling of cough transport in an aircraft cabin. Scientific Reports, 11,12 2021.

Tusheng Zhang. Characterizations of the white noise test functionals and Hida distributions. Stochastics and Stochastic Reports,
41(1-2):71-87,1992.



