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Abstract. This paper is devoted to studying the Drazin inverse of certain structured matrices under newly
introduced restrictive conditions. Specifically, we focus on the Drazin inverse of two types of anti-triangular
block matrices. Moreover, several special cases of these results are also discussed. New representations
for the Drazin inverse of an arbitrary block matrix are provided under certain conditions, extending recent
results in the literature. Furthermore, a numerical example is presented to illustrate the theoretical findings.

1. Introduction

Let Cn×n denote the set of n × n complex matrices, and let A ∈ Cn×n. The smallest non-negative integer
k such that rank(Ak) = rank(Ak+1) is called the index of A, denoted by ind(A). For a matrix A ∈ Cn×n with
ind(A) = k, the Drazin inverse of A is the unique matrix Ad, satisfying the following equations

AdAAd = Ad, AAd = AdA, Ak = Ak+1Ad.

Now, we recall some basic facts about the Drazin inverse. When ind(A) = 1, we denote the Drazin inverse
of A by A# and it is referred to as the group inverse of A. If ind(A) = 0, then Ad = A−1 and A is said to be
nonsingular. It is known that Aπ = I − AAd, where I denotes the identity matrix.

Additionally, we denote by Cm×n (orRm×n) the set of m×n complex (real) matrices. The range space and
the null space of A ∈ Cm×n are denoted by R(A) and N(A), respectively. Throughout this paper, we adopt

the convention that a sum is zero if its lower limit exceeds its upper limit; that is,
−1∑
k=0
∗ = 0. Furthermore,

we use the conventions A0 = I and Adn = And = (Ad)n, for any non-negative integer n, since (Ad)n = (An)d.
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A valuable problem in matrix theory involves finding representations for the Drazin inverse of a 2×2
block matrix

M =
[
A B
C D

]
, (1)

where A and D are assumed to be square matrices. In [27], the general solution of the 2 × 2 block structure
system included M is obtained by the Krylov subspace method as follows

x =Mdb +Mπz,

where b ∈ R(Mk) and z ∈ R(Mk−1) +N(M) such that ind(M) = k. The system originates from generalized
saddle-point problems [22], which are of the form Mx = b, i.e.,[

A B
C D

] [
x1
x2

]
=

[
f
1

]
,

where A ∈ Rn×n and BT,C ∈ Rm×n with n > m. Recently, there has been some relevant research in matrix
equations involving generalized inverses and iterative algorithms [16, 25, 26, 30, 35].

The representation of the Drazin inverse of an anti-triangular block matrix remains an open problem,
originally posed by Campbell and Meyer in the context of second-order systems of differential equations. In
recent years, the Drazin inverse problem has been investigated in many published papers [10, 15, 21, 31, 32],
and plays a significant role in various areas, including tensor analysis, optimization, singular differential
and difference equations, iterative methods, Markov chains, structured matrices and perturbation bounds,
etc., as discussed in [1, 4, 5, 14, 19, 20, 23, 24].

We note that the following two anti-triangular block matrices will be instrumental in the proof of our
main theorem:

N̄ =
[
A B
I 0

]
, (2)

and

N =
[
A B
C 0

]
. (3)

Numerous studies have investigated the Drazin inverse of the matrix N partitioned as in (3) (see
[2, 3, 6, 13, 18]).

It is worth noting that [11] presents several results on the representation of the Drazin inverse of the
anti-triangular block matrix N, as defined in (3). In [17], Li and Wei derived a formula for the Drazin inverse
of the matrix M, given in (1), under the assumptions AAπB = 0,CAπB = 0,BCAAd = 0 and DCAAd = 0.

Here, we derive appropriate conditions under which several existing formulae for Md are established:

1. BC = 0 and BD = 0 (in [8]);
2. BC = 0,BD = 0 and DC = 0 (in [9]);
3. BC = 0,BD = 0 and D is nilpotent (in [12]);
4. AB = 0 and CB = 0 (in [28]);
5. ABC = 0,CBC = 0,ABD = 0 and CBD = 0 (in [28]);
6. BC = 0 and DC = 0 (in [8]);
7. BC = 0,DC = 0 and D is nilpotent (in [12]).

In this paper, our primary objective is to determine the Drazin inverse of the matrix N̄, given by (2),
under the conditions AAπB = 0, BAπB = 0 and AeBAe = 0. As a consequence, the expression for N̄d is
obtained under the assumptions AπB = 0 and BAe = 0. Furthermore, we present an explicit formula for
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the Drazin inverse of an anti-triangular block matrix N, as defined in (3). We also verify that the results
obtained in [11] and [17] can be recovered as special cases of our framework. Eventually, the derived
results are applied to compute the Drazin inverse of the 2 × 2 block matrix M, given in (1), under a new
set of conditions. To demonstrate the applicability of our results, several special cases are analyzed, and a
numerical example is provided.

The structure of the paper is as follows. Section 2 presents several key lemmas. In Section 3, we derive
explicit expressions for the Drazin inverse of N̄ and N. New representations for Md are established in
Section 4. Section 5 provides a numerical example that verifies the results obtained in Sections 3 and 4.

2. Key lemmas

Before proceeding to the next section, we present several well-known results that will be useful in the
proofs of our main theorems.

Lemma 2.1. [7] (Cline’s Formula) For A ∈ Cm×n and B ∈ Cn×m, (BA)d = B[(AB)2d]A.

The problem of finding (P + Q)d is closely related to deriving formulas for the Drazin inverse of block
matrices. Our main theorem can be established based on the following lemmas.

Lemma 2.2. [28, Theorem 2.2] Let QPQ = 0 and P2Q = 0, where P,Q ∈ Cn×n such that ind(P) = p and ind(Q) = q.
Then

(P +Q)d = Qπ
q−1∑
i=0

QiP(i+1)d +

p−1∑
i=0

Q(i+1)dPiPπ + P
p−1∑
i=0

Q(i+2)dPiPπ + P
q−2∑
i=0

QπQi+1P(i+3)d

− PQdPd
− PQQdP2d.

By imposing an additional condition, the formula given in Lemma 2.2 admits the following simplified
and useful form.

Lemma 2.3. Let QPQ = 0, P2Q = 0 and P be nilpotent, where P,Q ∈ Cn×n such that ind(P) = p. Then

(P +Q)d =

p−1∑
i=0

Q(i+1)dPi + P
p−1∑
i=0

Q(i+2)dPi.

We also require the following lemma concerning the Drazin inverse of an anti-triangular block matrix.

Lemma 2.4. [29, Remark 1] Let AeBAe = 0, where A and B are square matrices of the same size. Then, for i ≥ 1,[
AAe B
Ae 0

]id
=

[
Aid + BA(i+2)d A(i+1)dB + BA(i+3)dB

A(i+1)d A(i+2)dB

]
.

The following theorems can be derived using the preceding lemmas.

3. Main results

This section aims to present new formulae for the Drazin inverse of anti-triangular block matrices N̄
and N, as defined in (2) and (3), respectively. Our approach utilizes the expression for the Drazin inverse
of a special anti-triangular block matrix involving the idempotent Ae, as given in Lemma 2.4.
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Theorem 3.1. Let N̄ be a matrix of the form (2), where A and B are square matrices of the same size. If AAπB = 0,
BAπB = 0 and AeBAe = 0, then

N̄d =

[
(I + BA2d)Φ (I + BA2d)A2dB

(I + BA2d)AdΦ (I + BA2d)A3dB

]
,

where

Φ =

r∑
i=1

A(i+2)dBAi−1 + Ad (4)

such that r = ind(A).

Proof. One can see the next splitting

N̄ =
[
AAπ 0
Aπ 0

]
+

[
AAe B
Ae 0

]
. (5)

We assume that P and Q are the left matrix and the right matrix of the right-hand side in (5), respectively.

Since r = ind(A) and, for a positive integer i, Pi =

[
AiAπ 0

Ai−1Aπ 0

]
, it can be simply determined that P is

nilpotent and ind(P) = r + 1. We check that

QPQ = 0 and P2Q = 0.

Hence, Lemma 2.3 implies that

N̄d =

r∑
i=0

Q(i+1)dPi + P
r∑

i=0

Q(i+2)dPi. (6)

Integrating (6) and Lemma 2.4, we may simply calculate and deduce the rest.

Furthermore, by combining the result of Theorem 3.1, we deduce that Corollary 3.2 holds under the
assumptions AπB = 0 and BAe = 0.

Corollary 3.2. Let N̄ be a matrix of the form (2), where A and B are square matrices of the same size. If AπB = 0
and BAe = 0, then

N̄d =

[
Φ A2dB

AdΦ A3dB

]
,

where Φ is given by (4).

Moreover, we utilize the relationship between N̄ and N to derive an explicit expression for Nd, under
the assumptions AAπBC = 0, BCAπBC = 0 and AeBCAe = 0. In this way, we generalize a few existing results
in the literature.

Theorem 3.3. Let N be a matrix of the form (3), where A and BC are square matrices of the same size. If AAπBC = 0,
BCAπBC = 0 and AeBCAe = 0, then

Nd =

[
(I + BCA2d)Γ(ΥA + A2dBC) (I + BCA2d)ΓΥB

C(I + BCA2d)AdΓ(ΥA + A2dBC) C(I + BCA2d)AdΓΥB

]
,

where

Υ =

r∑
i=1

A(i+2)dBCAi−1 + Ad (7)
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and

Γ = Υ(I + BCA2d) + A2d(BC)2A3d (8)

such that r = ind(A).

Proof. We observe that the matrix N can be decomposed as follows:

N =
[
I 0
0 C

] [
A B
I 0

]
. (9)

We use G and H to denote the left matrix and the right matrix of the right-hand side in (9), respectively.
Then

HG =
[
A BC
I 0

]
.

By Theorem 3.1, we obtain the expression for (HG)d as

(HG)d =

[
(I + BCA2d)Υ (I + BCA2d)A2dBC

(I + BCA2d)AdΥ (I + BCA2d)A3dBC

]
,

where Υ is given by (7). We can simply calculate Υ2 = AdΥ and deduce that

(HG)2d =

[
(I + BCA2d)ΓΥ (I + BCA2d)ΓA2dBC

(I + BCA2d)AdΓΥ (I + BCA2d)AdΓA2dBC

]
,

where Γ is represented as in (8).
In addition, by performing elementary computations and applying Lemma 2.1, we obtain the expression

Nd = G(HG)2dH, which completes the proof.

Under corresponding restrictions, we obtain several special cases of 3.3, which recover some notable
results from the literature.

Corollary 3.4. Let N be a matrix of the form (3), where A and BC are square matrices of the same size. If AπBC = 0
and BCAe = 0, then

Nd =

[
AdΥA + A3dBC AdΥB

CA2dΥA + CA4dBC CA2dΥB

]
, (10)

where Υ is given by (7).

We notice that the same formula as (10) appears under the conditions AAπB = 0,CAπB = 0 and BCAe = 0,
as shown in [17, Theorem 2.1] for the case when D = 0. Furthermore, by combining the conditions AπBC = 0
and ABCAd = 0, another crucial expression for Nd can be obtained by Theorem 3.3.

Corollary 3.5. Let N be a matrix of the form (3), where A and BC are square matrices of the same size. If AπBC = 0
and ABCAd = 0, then

Nd =

[
(I + BCA2d)Λ(ΥA + A2dBC) (I + BCA2d)ΛΥB

C(I + BCA2d)AdΛ(ΥA + A2dBC) C(I + BCA2d)AdΛΥB

]
, (11)

where

Λ = Υ + A3d(BC)2A2d + A2d(BC)2A3d (12)

and Υ is given by (7).

It is worth noting that the formula in (11) also holds under the restrictions AAπBC = 0,CAπBC = 0 and
ABCAd = 0, as presented in [11, Theorem 2.6].
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4. Application to a block matrix

This section summarizes explicit expressions for the Drazin inverse of the matrix M, given by (1), by
applying the formulae for the Drazin inverse of N, as defined in (3). We also present lists of results which
are special cases of results obtained in this section.

Theorem 4.1. Let M be a matrix of the form (1) and N be a matrix of the form (3), where A, D and BC are square
matrices such that A and BC are of the same size. If

AAπBC = 0, BCAπBC = 0, AeBCAe = 0, ABD = 0 and CBD = 0,

then

Md =

[
I 0
0 Dπ

] s−1∑
i=0

[
0 0
0 D

]i
N(i+1)d +

t−1∑
i=0

[
0 BD(i+2)d

0 D(i+1)d

]
Ni

×

[
I − (I + BCA2d)Γ[(ΥA + A2dBC)A + ΥBC] −(I + BCA2d)Γ(ΥA + A2dBC)B

−C(I + BCA2d)Γ(ΥA + A2dBC) I − C(I + BCA2d)ΓΥB

]
−

[
BDdC(I + BCA2d)AdΓ(ΥA + A2dBC) BDdC(I + BCA2d)AdΓΥB

0 0

]
+

s−2∑
i=0

[
0 BDπDi+1

0 0

]
N(i+3)d

−

[
0 BDDd

0 0

]
N2d,

where Nd,Υ and Γ are represented as in Theorem 3.3 such that ind(N) = t and ind(D) = s.

Proof. Notice that M = N +Q, where

N =
[
A B
C 0

]
and Q =

[
0 0
0 D

]
.

It can be readily verified that

Qd =

[
0 0
0 Dd

]
and Qπ =

[
I 0
0 Dπ

]
.

Then Nd is given as in Theorem 3.3 and

Nπ =
[

I − (I + BCA2d)Γ[(ΥA + A2dBC)A + ΥBC] −(I + BCA2d)Γ(ΥA + A2dBC)B
−C(I + BCA2d)AdΓ[(ΥA + A2dBC)A + ΥBC] I − C(I + BCA2d)AdΓ(ΥA + A2dBC)B

]
.

Utilizing the identity NNd = NdN, the expression simplifies as follows:

−C(I + BCA2d)AdΓ[(ΥA + A2dBC)A + ΥBC] = −C(I + BCA2d)Γ(ΥA + A2dBC)

and

I − C(I + BCA2d)AdΓ(ΥA + A2dBC)B = I − C(I + BCA2d)ΓΥB.

Given that QNQ = 0 and N2Q = 0, the proof follows directly from Lemma 2.2.

In the following, we examine specific cases of Theorem 4.1 that arise under certain suitable assumptions.
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Corollary 4.2. Let M be a matrix of the form (1) and N be a matrix of the form (3), where A, D and BC are square
matrices such that A and BC are of the same size. If

AAπB = 0, CAπB = 0, BCAe = 0, ABD = 0 and CBD = 0,

then

Md =

[
I 0
0 Dπ

] s−1∑
i=0

[
0 0
0 D

]i
N(i+1)d +

t−1∑
i=0

[
0 BD(i+2)d

0 D(i+1)d

]
Ni

×

[
I − A3dBCA − AdΥA2

− AdΥBC −A3dBCB − AdΥAB
−CAdΥA − CA3dBC I − CAdΥB

]
+

s−2∑
i=0

[
0 BDπDi+1

0 0

]
N(i+3)d

−

[
0 BDDd

0 0

]
N2d

−

[
BDd(CA2dΥA + CA4dBC) BDdCA2dΥB

0 0

]
,

where Nd and Υ, respectively, are represented as in (10) and (7) such that ind(N) = t and ind(D) = s.

Corollary 4.3. Let M be a matrix of the form (1) and N be a matrix of the form (3), where A, D and BC are square
matrices such that A and BC are of the same size. If

AAπBC = 0, CAπBC = 0, ABCAd = 0, ABD = 0 and CBD = 0,

then

Md =

[
I 0
0 Dπ

] s−1∑
i=0

[
0 0
0 D

]i
N(i+1)d +

t−1∑
i=0

[
0 BD(i+2)d

0 D(i+1)d

]
Ni

×

[
I − (I + BCA2d)Λ[(ΥA + A2dBC)A + ΥBC] −(I + BCA2d)Λ(ΥA + A2dBC)B

−C(I + BCA2d)Λ(ΥA + A2dBC) I − C(I + BCA2d)ΛΥB

]
+

s−2∑
i=0

[
0 BDπDi+1

0 0

]
N(i+3)d

−

[
0 BDDd

0 0

]
N2d

−

[
BDdC(I + BCA2d)AdΛ(ΥA + A2dBC) BDdC(I + BCA2d)AdΛΥB

0 0

]
,

where Nd,Υ and Λ, respectively, are represented as (11) , (7) and (12) such that ind(N) = t and ind(D) = s.

Remark that Theorem 4.1 recovers a list of the following results:

1. BC = 0 and BD = 0 (in [8, Theorem 2(1)]);
2. BC = 0,BD = 0 and DC = 0 (in [9, Theorem 5.3]);
3. BC = 0,BD = 0 and D is nilpotent (in [12, Corollary 2.3]);
4. AB = 0 and CB = 0 (in [28, Corollary 3.4]);
5. ABC = 0,CBC = 0,ABD = 0 and CBD = 0 (in [28, Theorem 3.2]).

In an analogous way to the proof of Theorem 4.1, we establish a new formula for the Drazin inverse of
the block matrix M, thereby generalizing several existing results in the literature.

Theorem 4.4. Let M be a matrix of the form (1) and N be a matrix of the form (3), where A, D and BC are square
matrices such that A and BC are of the same size. If

AAπBC = 0, BCAπBC = 0, AeBCAe = 0, BDC = 0 and D2C = 0,
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then

Md =

[
I − (I + BCA2d)Γ[(ΥA + A2dBC)A + ΥBC] −(I + BCA2d)Γ(ΥA + A2dBC)B

−C(I + BCA2d)Γ(ΥA + A2dBC) I − C(I + BCA2d)ΓΥB

]
×

t−1∑
i=0

Ni
[
0 0
0 D(i+1)d

]
+

[
I 0

DC(I + BCA2d)AdΓ(ΥA + A2dBC) I +DC(I + BCA2d)AdΓΥB

]

×

s−1∑
i=0

N(i+1)d
[
0 0
0 D

]i [
I 0
0 Dπ

]

+

t−2∑
i=0

[
0 0

−DC(I + BCA2d)Γ(ΥA + A2dBC) D −DC(I + BCA2d)ΓΥB

]
Ni+1

[
0 0
0 D(i+3)d

]
−

[
0 0
0 DC(I + BCA2d)AdΓΥBDd +DC(I + BCA2d)ΓΥBD2d

]
,

where Nd,Υ and Γ, respectively, are represented as in Theorem 3.3 such that ind(N) = t and ind(D) = s.

The following are further particular cases of Theorem 4.4, obtained by imposing appropriate restrictions.

Corollary 4.5. Let M be a matrix of the form (1) and N be a matrix of the form (3), where A, D and BC are square
matrices such that A and BC are of the same size. If

AAπB = 0, CAπB = 0, BCAe = 0, BDC = 0 and D2C = 0,

then

Md =

[
I − A3dBCA − AdΥA2

− AdΥBC −A3dBCB − AdΥAB
−CAdΥA − CA3dBC I − CAdΥB

] t−1∑
i=0

[
A B
C 0

]i [
0 0
0 D(i+1)d

]

+

[
I 0

D(CA2dΥA + CA4dBC) I +DCA2dΥB

] s−1∑
i=0

N(i+1)d
[
0 0
0 D

]i [
I 0
0 Dπ

]

+

t−2∑
i=0

[
0 0

−DCAdΥA −DCA3dBC D −DCAdΥB

] [
A B
C 0

]i+1 [
0 0
0 D(i+3)d

]
−

[
0 0
0 DCA2dΥBDd +DCAdΥBD2d

]
,

where Nd and Υ, respectively, are given by (10) and (7) such that ind(N) = t and ind(D) = s.

Corollary 4.6. Let M be a matrix of the form (1) and N be a matrix of the form (3), where A, D and BC are square
matrices such that A and BC are of the same size. If

AAπBC = 0, CAπBC = 0, ABCAd = 0, BDC = 0 and D2C = 0,
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then

Md =

[
I − (I + BCA2d)Λ[(ΥA + A2dBC)A + ΥBC] −(I + BCA2d)Λ(ΥA + A2dBC)B

−C(I + BCA2d)Λ(ΥA + A2dBC) I − C(I + BCA2d)ΛΥB

]
×

t−1∑
i=0

[
A B
C 0

]i [
0 0
0 D(i+1)d

]
+

[
I 0

DC(I + BCA2d)AdΛ(ΥA + A2dBC) I +DC(I + BCA2d)AdΛΥB

]

×

s−1∑
i=0

N(i+1)d
[
0 0
0 D

]i [
I 0
0 Dπ

]

+

t−2∑
i=0

[
0 0

−DC(I + BCA2d)Λ(ΥA + A2dBC) D −DC(I + BCA2d)ΛΥB

] [
A B
C 0

]i+1 [
0 0
0 D(i+3)d

]
−

[
0 0
0 DC(I + BCA2d)AdΛΥBDd +DC(I + BCA2d)ΛΥBD2d

]
,

where Nd,Υ and Λ, respectively, are represented as (11), (7) and (12) such that ind(N) = t and ind(D) = s.

Notice that Theorem 4.4 generalizes the next well-known results:

1. BC = 0 and DC = 0 (in [8, Theorem 3(2)]);
2. BC = 0,BD = 0 and DC = 0 (in [9, Theorem 5.3]);
3. BC = 0,DC = 0 and D is nilpotent (in [12, Lemma 2.2]).

5. Illustrative example

In this section, we present some example to illustrate the results of Section 3 and Section 4.

Example 5.1. Consider the 4 × 4 complex block matrices

A =


1 0 0 0
0 0 1 0
0 0 0 2
0 0 0 0

 , B =


0 1 1 1
0 2 2 2
0 0 0 0
0 0 0 0

 , C =


0 0 1 2
1 1 1 2
−1 −1 1 2
0 0 1 2

 , D =


1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
We observe the following:

BCAd = 0, BD = 0, BCAπBC = 0, AAπBC = 0,

yet

BC , 0, ABC , 0, CAπB , 0, CAπBC , 0.

Thus, the conditions of [11, Thm. 2.6], [17, Thm. 2.1], and the standard results in Section 4 are not satisfied, while
the hypotheses of Theorems 3.3 and 4.1 hold.

Furthermore, we have:

AdBCA2 = AdBCAB = AdBCB = 0, Dd = D, Dπ =


0 −1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , Ad =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
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Using Theorem 3.3, we compute

Nd =



1 0 3 12 0 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 3 12 0 1 1 1
−1 0 −3 −12 0 −1 −1 −1
0 0 0 0 0 0 0 0


,

where the index is found by observing that

NkNπ = Nk
−Nk+1Nd = Nk

−Nd = 0 when k = 5.

Hence, ind(N) = 5 and Nd = N5.
Note that DπD = 0. By Theorem 4.1, the Drazin inverse of M is given by

Md =

[
I 0
0 Dπ

]
Nd +

4∑
i=0

[
0 0
0 D

]
Ni
[

Aπ − A3dBCA − A2dBC −AdB
−CAd

− CA4dBCA − CA3dBC I − CA2dB

]
.

Finally, a direct computation yields

Md =



1 0 3 12 0 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−2 1 −3 −20 1 0 −1 −1
1 0 3 12 0 1 1 1
−1 0 −3 −12 0 −1 −1 −1
0 0 0 0 0 0 0 0


.
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