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Abstract. This paper is devoted to studying the Drazin inverse of certain structured matrices under newly
introduced restrictive conditions. Specifically, we focus on the Drazin inverse of two types of anti-triangular
block matrices. Moreover, several special cases of these results are also discussed. New representations
for the Drazin inverse of an arbitrary block matrix are provided under certain conditions, extending recent
results in the literature. Furthermore, a numerical example is presented to illustrate the theoretical findings.

1. Introduction

Let C™" denote the set of n X n complex matrices, and let A € C"™". The smallest non-negative integer
k such that rank(A*) = rank(A¥*!) is called the index of A, denoted by ind(A). For a matrix A € C"™" with
ind(A) = k, the Drazin inverse of A is the unique matrix A4, satisfying the following equations

ATAAY = AT AAY = A%A, AR = AT AY,

Now, we recall some basic facts about the Drazin inverse. When ind(A) = 1, we denote the Drazin inverse
of A by A* and it is referred to as the group inverse of A. If ind(A) = 0, then AY = A~ and A is said to be
nonsingular. It is known that A™ = [ - AA? where I denotes the identity matrix.
Additionally, we denote by C"*" (or R"*") the set of m x n complex (real) matrices. The range space and
the null space of A € C"™*" are denoted by R(A) and N(A), respectively. Throughout this paper, we adopt
-1

the convention that a sum is zero if its lower limit exceeds its upper limit; that is, ), * = 0. Furthermore,

k=0
we use the conventions A? = I and A% = A™ = (A9)", for any non-negative integer 1, since (A%)" = (A")".
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A valuable problem in matrix theory involves finding representations for the Drazin inverse of a 2x2
block matrix
A B]

C D’ )

M= [
where A and D are assumed to be square matrices. In [27], the general solution of the 2 X 2 block structure
system included M is obtained by the Krylov subspace method as follows

x =M+ Mz,

where b € R(MF) and z € R(M*1) + N (M) such that ind(M) = k. The system originates from generalized
saddle-point problems [22], which are of the form Mx = b, i.e,,

A B X1| _ f

C Df|x| g/’
where A € R™" and BT,C € R™" with n > m. Recently, there has been some relevant research in matrix
equations involving generalized inverses and iterative algorithms [16, 25, 26, 30, 35].

The representation of the Drazin inverse of an anti-triangular block matrix remains an open problem,
originally posed by Campbell and Meyer in the context of second-order systems of differential equations. In
recent years, the Drazin inverse problem has been investigated in many published papers [10, 15,21, 31, 32],
and plays a significant role in various areas, including tensor analysis, optimization, singular differential
and difference equations, iterative methods, Markov chains, structured matrices and perturbation bounds,
etc., as discussed in [1, 4, 5, 14, 19, 20, 23, 24].

We note that the following two anti-triangular block matrices will be instrumental in the proof of our
main theorem:

A4 B

N=11 o @)
and
‘A B
N:_C 0| 3)

Numerous studies have investigated the Drazin inverse of the matrix N partitioned as in (3) (see
[2,3, 6,13, 18]).

It is worth noting that [11] presents several results on the representation of the Drazin inverse of the
anti-triangular block matrix N, as defined in (3). In [17], Li and Wei derived a formula for the Drazin inverse
of the matrix M, given in (1), under the assumptions AA™B = 0,CA™B =0, BCAA? = 0 and DCAA? = 0.

Here, we derive appropriate conditions under which several existing formulae for M? are established:

BC = 0and BD = 0 (in [8]);

BC =0,BD =0and DC =0 (in [9]);

BC =0,BD =0 and D is nilpotent (in [12]);

AB = 0and CB = 0 (in [28]);

ABC =0,CBC =0,ABD =0 and CBD = 0 (in [28]);
BC = 0and DC = 0 (in [8]);

BC =0,DC = 0 and D is nilpotent (in [12]).

NSOl ®N =

In this paper, our primary objective is to determine the Drazin inverse of the matrix N, given by (2)
under the conditions AA™B = 0, BA™B = 0 and A°BA° = 0. As a consequence, the expression for N“ is
obtained under the assumptions A"B = 0 and BA® = 0. Furthermore, we present an explicit formula for
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the Drazin inverse of an anti-triangular block matrix N, as defined in (3). We also verify that the results
obtained in [11] and [17] can be recovered as special cases of our framework. Eventually, the derived
results are applied to compute the Drazin inverse of the 2 X 2 block matrix M, given in (1), under a new
set of conditions. To demonstrate the applicability of our results, several special cases are analyzed, and a
numerical example is provided.

The structure of the paper is as follows. Section 2 presents several key lemmas. In Section 3, we derive
explicit expressions for the Drazin inverse of N and N. New representations for M“ are established in
Section 4. Section 5 provides a numerical example that verifies the results obtained in Sections 3 and 4.

2. Key lemmas

Before proceeding to the next section, we present several well-known results that will be useful in the
proofs of our main theorems.

Lemma 2.1. [7] (Cline’s Formula) For A € C"™" and B € C™", (BA)? = B[(AB)*]A.

The problem of finding (P + Q) is closely related to deriving formulas for the Drazin inverse of block
matrices. Our main theorem can be established based on the following lemmas.

Lemma 2.2. [28, Theorem 2.2] Let QPQ = 0and P*Q = 0, where P, Q € C™" such that ind(P) = p and ind(Q) = g.
Then
q-1 p-1 p-1 q-2
(P + Q)d - Q" Z Qi pltdd Z Q(i+1)d PPt 4 p Z Q(i+2)d PipT 4+ PZ Q" Qi+1 pli+3)d
i=0 i=0 i=0 i=0
PQPY — PQQPH.

By imposing an additional condition, the formula given in Lemma 2.2 admits the following simplified
and useful form.

Lemma 2.3. Let QPQ = 0, P*Q = 0 and P be nilpotent, where P,Q € C™" such that ind(P) = p. Then
p-1 p-1
(P + Q)d — Q(i+1)dpi +P Q(i+2)dpi'
We also require the following lemma concerning the Drazin inverse of an anti-triangular block matrix.

Lemma 2.4. [29, Remark 1] Let A°BA® = 0, where A and B are square matrices of the same size. Then, fori > 1,

Aid + BA(i+2)d A(i+1)dB + BA(i+3)dB

= [ AG+Dd Al+2idp

Aae BlY
A0

The following theorems can be derived using the preceding lemmas.

3. Main results

This section aims to present new formulae for the Drazin inverse of anti-triangular block matrices N
and N, as defined in (2) and (3), respectively. Our approach utilizes the expression for the Drazin inverse
of a special anti-triangular block matrix involving the idempotent A%, as given in Lemma 2.4.
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Theorem 3.1. Let N be a matrix of the form (2), where A and B are square matrices of the same size. If AA™B = 0,
BA™B = 0 and A°BA® = 0, then

Nio| @+ BAY™)Y®d (I + BA*)A%B
|1 +BA*)A'D (I + BA*)A¥B|’

where
D= ZA(HZ)dBAifl +Ad (4)
i=1
such that r = ind(A).

Proof. One can see the next splitting

- _|AA™ 0] |AA° B

vl ol o) 5
We assume that P and Q are the left matrix and the right matrix of the right-hand side in (5), respectively.

iAT
Since r = ind(A) and, for a positive integer i, P' = [ A

Ai-Lgm 8] , it can be simply determined that P is

nilpotent and ind(P) = r + 1. We check that
QPQ=0 and P?’Q=0.
Hence, Lemma 2.3 implies that
r r
Nd — Q(i+1)dpi +P Q(i+2)dpi. (6)

Integrating (6) and Lemma 2.4, we may simply calculate and deduce the rest. [

Furthermore, by combining the result of Theorem 3.1, we deduce that Corollary 3.2 holds under the
assumptions A"B = 0 and BA® = 0.

Corollary 3.2. Let N be a matrix of the form (2), where A and B are square matrices of the same size. If A"B = 0
and BA® = 0, then

N A%B
~ (At A¥B|

where O is given by (4).

Moreover, we utilize the relationship between N and N to derive an explicit expression for N%, under
the assumptions AA™BC = 0, BCA™BC = 0 and A°BCA* = 0. In this way, we generalize a few existing results
in the literature.

Theorem 3.3. Let N be a matrix of the form (3), where A and BC are square matrices of the same size. If AATBC = 0,
BCA™BC = 0 and A°BCA®¢ = 0, then

(I + BCA2)[(YA + A%BC) (I + BCA*)I'YB

d _
N'= C(I + BCA*)AT(YA + A%BC) C(I + BCA*)A‘TYB|’

where

Y = Z AEABC Al 4 Ad 7)
=1
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and
I = Y(I + BCA*) + A*(BC)*A% (8)
such that r = ind(A).

Proof. We observe that the matrix N can be decomposed as follows:

I 0||[A B
N=|o CHI o]' ®)
We use G and H to denote the left matrix and the right matrix of the right-hand side in (9), respectively.
Then

no=ft ).

I 0

By Theorem 3.1, we obtain the expression for (HG) as

2d 2dy A2d
(HG)‘I:[ (I+BCA¥)Y  (I+BCA*)A BC]’

(I + BCA*)A?Y (I + BCA*)A%BC

where Y is given by (7). We can simply calculate Y2 = A?Y and deduce that

2d 2d 2d
(HG)Zd:[ (I+BCAX)[Y (I + BCA¥)TA2BC ]

(I + BCA*™)ATY (I + BCA*)ATA%BC

where I is represented as in (8).
In addition, by performing elementary computations and applying Lemma 2.1, we obtain the expression
N? = G(HG)*'H, which completes the proof. [

Under corresponding restrictions, we obtain several special cases of 3.3, which recover some notable
results from the literature.

Corollary 3.4. Let N be a matrix of the form (3), where A and BC are square matrices of the same size. If A"BC =0
and BCA® = 0, then

AYYA + A¥BC AYYB

d _
N =lca%ya + ca¥Bc ca¥vB|

(10)

where Y is given by (7).

We notice that the same formula as (10) appears under the conditions AA™B = 0, CA™B = 0 and BCA® =0,
as shownin [17, Theorem 2.1] for the case when D = 0. Furthermore, by combining the conditions A*BC = 0
and ABCA? = 0, another crucial expression for N can be obtained by Theorem 3.3.

Corollary 3.5. Let N be a matrix of the form (3), where A and BC are square matrices of the same size. If A"BC =0
and ABCA? = 0, then

(I + BCA2)A(YA + A¥BC) (I + BCA*)AYB

N =1 (1 + BCAM)AIA(YA + A¥BC)  C(I + BCAZYATAYB)" (11)
where

A =7+ AMBC)PAM + A¥(BC)?A™ (12)
and Y is given by (7).

It is worth noting that the formula in (11) also holds under the restrictions AA™BC = 0, CA™BC = 0 and
ABCA? =0, as presented in [11, Theorem 2.6].
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4. Application to a block matrix

This section summarizes explicit expressions for the Drazin inverse of the matrix M, given by (1), by
applying the formulae for the Drazin inverse of N, as defined in (3). We also present lists of results which
are special cases of results obtained in this section.

Theorem 4.1. Let M be a matrix of the form (1) and N be a matrix of the form (3), where A, D and BC are square
matrices such that A and BC are of the same size. If

AATBC =0, BCA™BC=0, A°BCA°=0, ABD=0 and CBD =0,

then

r s—1 i t—1 :

o]0 o] 0 BDH

i _ (i+1)d ,

M=o D“] Z;‘ [0 D] N Z(; [0 psnd [N

1 - (I+ BCA¥)T[(YA + A¥BC)A + YBC] (I + BCAX)[(YA + AZdBC)B]

—C(I + BCA*)[(YA + A*BC) I—C(I + BCA*)TYB

[BDYC(I + BCAX)A'T (YA + A¥BC) BDC(I + BCAZd)AdFYB]
0 0

52 A
0 BD™D™'| aa |0 BDD|, o4
¥ Zo:[o 0 ]N o o [N

i=
where N%, Y and T are represented as in Theorem 3.3 such that ind(N) = t and ind(D) = s.
Proof. Notice that M = N + Q, where

N=[Ié IS’] and Q:[g g]

It can be readily verified that
0 0 I 0
d _ T _
Q= [O Dd] and Q"= [O D”] .
Then N is given as in Theorem 3.3 and

[ I-(+BCA™)[[(YA + A¥BC)A + YBC] —(I + BCAX)[(YA + A*BC)B
= |-C(I + BCAX)AT[(YA + A¥BC)A + YBC] I- C(I + BCA*)AT(YA + A%BC)B|’

NT
Utilizing the identity NN“ = NN, the expression simplifies as follows:

—C(I + BCA™AT[(YA + A¥BC)A + YBC] = —C(I + BCA*)T (YA + A*BC)
and

I— C(I + BCA*)AT(YA + A¥BC)B = I — C(I + BCA*)I'YB.
Given that QNQ = 0 and N?Q = 0, the proof follows directly from Lemma 2.2. []

In the following, we examine specific cases of Theorem 4.1 that arise under certain suitable assumptions.
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Corollary 4.2. Let M be a matrix of the form (1) and N be a matrix of the form (3), where A, D and BC are square
matrices such that A and BC are of the same size. If

AA™B =0, CA™B=0, BCA°=0, ABD=0 and CBD=0,
then
-1 i t—1 .
I olvfo ol.. 0 BD(+2d
d i+1)d
M= [o D“]Z[O D] N +Z[o plsnd |N
i=0 i=0

" I— A¥BCA — A%YA? — A%YBC -A%BCB - AYYAB
—CAYYA — CAYBC I — CAYYB

5—2 .
0 BD™D™'| iaa |0 BDD|, o4
Z[O 0 ]N oo |V

i=0
BDYCA*YA + CA*BC) BDYCA*YB
0 0 !
where N and Y, respectively, are represented as in (10) and (7) such that ind(N) = t and ind(D) = s.

Corollary 4.3. Let M be a matrix of the form (1) and N be a matrix of the form (3), where A, D and BC are square
matrices such that A and BC are of the same size. If

AA™BC =0, CA™BC=0, ABCA‘=0, ABD=0 and CBD =0,

then

Md

-1 .
I 0 0 i1 d 0 BD(z+2)d
[0 Dﬂ] [ ] NG Z [0 D+ N’
I-(I+ BCAZd)A[(TA + AZdBC)A +YBC] —(I+BCA™)A(YA + A¥BC)B
—C(I + BCA*)A(YA + A*BC) I - C(I + BCA*)AYB

5—2

0 BD"D*] ma [0 BDDI|
[o 0 }N oo |V

i=0
~ [BDdC(I + BCA™AIA(YA + A%BC) BDC(I + BCAZd)AdAYB]
0 0 ’

where N, Y and A, respectively, are represented as (11) , (7) and (12) such that ind(N) = t and ind(D) = s.

Remark that Theorem 4.1 recovers a list of the following results:

. BC=0and BD = 0 (in [8, Theorem 2(1)]);

. BC=0,BD =0and DC = 0 (in [9, Theorem 5.3]);

. BC=0,BD = 0and D is nilpotent (in [12, Corollary 2.3]);

. AB =0and CB = 0 (in [28, Corollary 3.4]);

5. ABC =0,CBC =0,ABD = 0 and CBD = 0 (in [28, Theorem 3.2]).

=~ W N =

In an analogous way to the proof of Theorem 4.1, we establish a new formula for the Drazin inverse of
the block matrix M, thereby generalizing several existing results in the literature.

Theorem 4.4. Let M be a matrix of the form (1) and N be a matrix of the form (3), where A, D and BC are square
matrices such that A and BC are of the same size. If

AA™BC=0, BCA™BC=0, A°BCA°=0, BDC=0 and D*C=0,
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then

Y (I + BCAX)T[(YA + A¥BC)A + YBC] —(I + BCA*™)I'(YA + A*BC)B
- —C(I + BCA*)[(YA + A¥BC) 1—C(I + BCA)I'YB

S 0
X ZNZ[O pl+na |+

1=

I 0
[DC(I + BCA2)AYT(YA + A¥BC) T+ DC( + BCAz")AdFYB}
I 0
0 D~

+ 0 0 N+ 0 0
2 |-DC( + BCAM)I(vA + A¥BC) D~ DC( + BCA¥)rYB|N [0 DE

5—

o o]
(i+1)d
X N [O D]

N-N
NO

i=
O 0
0 DC(I + BCA*)A‘TYBD? + DC(I + BCA*\I'YBD* |’
where N%, Y and T, respectively, are represented as in Theorem 3.3 such that ind(N) = t and ind(D) = s.
The following are further particular cases of Theorem 4.4, obtained by imposing appropriate restrictions.

Corollary 4.5. Let M be a matrix of the form (1) and N be a matrix of the form (3), where A, D and BC are square
matrices such that A and BC are of the same size. If

AA™B =0, CA™B=0, BCA°=0, BDC=0 and D?’C=0,

then
v - A%BCA — A"YA? — A"YBC A3dBCB AYYAB ti: 0
—CA™YA - CA¥BC — CA"YB _0 D+
s=1
" NG+ [0 of
D( AZdYA+CA4dBC) I+DCA2dYB - 0 D o D”
i=
R 0 0 0
i | -DCAYA - DCA¥BC D - DCA*YB D<l+3>d

1

o

0
[o DCA*YBD* + DCAWBDM]'

where N* and Y, respectively, are given by (10) and (7) such that ind(N) = t and ind(D) = s.

Corollary 4.6. Let M be a matrix of the form (1) and N be a matrix of the form (3), where A, D and BC are square
matrices such that A and BC are of the same size. If

AA™BC =0, CA™BC=0, ABCA‘=0, BDC=0 and D*C=0,
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then
M = I—(I+BCAY)A[(YA + A¥BC)A + YBC] —(I + BCA*)A(YA + A*BC)B
- —C(I + BCA*)A(YA + A*BC) I - C(I + BCA*)AYB

y i A Blfo o N I 0
Zi|c o [0 D] T |DC(I + BCA*)AIA(YA + A¥BC) 1+ DC(I + BCA*)AYAYB

s—1 i
; 0 of|I O
(i+1)d
x )N [o D] [o D”]

N =2 0 0 A B0 o
Ly |-DC(I+ BCAX)A(YA + ABC) D - DC(I+ BCA¥)AYB|[C 0| |0 D

—_—

0 0
0 DC(I +BCA*)A*AYBD? + DC(I + BCAZd)AYBDZd] !
where N%, Y and A, respectively, are represented as (11), (7) and (12) such that ind(N) = t and ind(D) = s.

Notice that Theorem 4.4 generalizes the next well-known results:

1. BC =0and DC = 0 (in [8, Theorem 3(2)]);
2. BC=0,BD =0and DC =0 (in [9, Theorem 5.3]);
3. BC =0,DC = 0 and D is nilpotent (in [12, Lemma 2.2]).

5. Illustrative example
In this section, we present some example to illustrate the results of Section 3 and Section 4.

Example 5.1. Consider the 4 x 4 complex block matrices

100 0 011 1 0 0 1 2 1100
0010 02 2 2 1 1 1 2 000 0
A=10 0 0 2" B=lo 0 0 o] €=|-1 -1 1 2/ P=lo 0 0 o
0000 0000 0 0 1 2 0000

We observe the following:
BCA’=0, BD=0, BCA™BC=0, AA™BC=0,
yet
BC+0, ABC#0, CA™=#0, CA™BC=#0.
Thus, the conditions of [11, Thm. 2.6], [17, Thm. 2.1], and the standard results in Section 4 are not satisfied, while

the hypotheses of Theorems 3.3 and 4.1 hold.
Furthermore, we have:

0 -1 00 1 0 0O
0 1 00 0 00O

d 2 _ ad _ ad _ d_ no_ d_
A'BCA” = A"BCAB=A“BCB=0, D"=D, D =lo 0o 1 ol A—0 00 0
0 0 01 0 00O
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Using Theorem 3.3, we compute

12
0

HOOOO;
SO OO OO OO
WO OO O W
o
SO OO OO OO
_ O o oo
_ o o oo
_ o o oo

where the index is found by observing that
NN™ = N - N¥IN = NF - N? =0 whenk =5.

Hence, ind(N) = 5 and N* = N°.
Note that D™D = 0. By Theorem 4.1, the Drazin inverse of M is given by

4
1o 0 0].[ A"-A¥BCA-A¥BC — -aiB
d _ d i
M ‘[o D“]N +Z[o D]N [—CAd—CA4dBCA—CA3dBC 1-cA¥B|

i=0

Finally, a direct computation yields

(1 0 3 12 0 1 1 17
0 0 O 0 0 0 0 O
0 0 O 0O 0 0 0 O
M = 0 0 O 0O 0 0 0 O
-2 1 -3 =201 0 -1 -1
1 0 3 12 0 1 1 1
-1 0 -3 -12 0 -1 -1 -1
[0 0 O 0O 0 0 0 0]
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