

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Geometric characteristics of a manifold associated with a GQSC transform group

Di Zhao^{a,*}, Tal-Yun Ho^b, Chol-Yong Jon^b, Fengyun Fu^c

^aCollege of Science, University of Shanghai for Science and Technology, 200093 Shanghai, P. R. China.

^bFaculty of Mathematics, Kim Il Sung University, Pyongyang, D. P. R. K

^cSchool of Statistics and Mathematics, Guangdong University of Finance & Economics, Guangzhou, P. R. China.

Abstract. The present paper investigates the flatness of a Riemannian manifold associated with a generalized quarter-symmetric connection transform group (in briefly, GQSC) and confirms some interesting geometrical flatness. In particular, some special Ricci flatness of a manifold with a generalized quarter-symmetric connection homotopy via the projective invariant and the conformal invariant are obtained.

1. Introduction

Since the concept of the semi-symmetric connection was introduced for the first time by Friedman and Schouten in [8], there are very many geometricians who focus their attention on the study of such issues. For instance, K. Yano in [23] defined a semi-symmetric metric connection and studied its geometric properties. S. Golab in [6], as early as 1975, investigated a semi-symmetric connection and obtained its geometric properties. Recently De, Han and Zhao in [3] investigated the semi-symmetric non-metric connection and considered the geometric characteristics. Subsequently, the researches on the geometry and analysis of semi-symmetric or non-metric connections have sprung up. The relevant research results, for instance, several types of semi-symmetric metric (non-metric) connections and the geometric and physical properties of these class connections, can be referred to the following references therein ([1, 2, 7, 11, 13, 15– 19, 25, 30]). In particular, the Schur's theorem of this class of connections, for example, a semi-symmetric non-metric connection, was investigated and confirmed extensively ([12, 14]) based only on the second Bianchi identity. Of course, as an interesting geometric model, a semi-symmetric non-metric connection that is also a geometric model for scalar-tensor theories of gravitation was studied ([4, 5, 9, 22-24, 29]) and a sufficient and necessary condition that a Riemannian manifold is an Einstein manifold by imposing some conditions on W_2 -curvature tensor was studied by Zhao and Ho in ([28]) and Han et al in ([10]). It is worth noting that a quarter-symmetric connection in [7, 11] was defined fully and deeply studied during this period. Afterwards, several types of quarter-symmetric non-metric connection were studied ([20, 21, 26, 27]).

2020 Mathematics Subject Classification. Primary 53C20; Secondary 53D11, 65M15.

Keywords. quarter-symmetric connection homotopy, projective invariant, conformal connection.

Received: 25 March 2025; Accepted: 31 May 2025

Communicated by Mića Stanković

The authors were supported in part by the NNSF of China(No.11671193).

* Corresponding author: Di Zhao

Email addresses: jszhaodi@126.com (Di Zhao), jcy19630320@163.com (Tal-Yun Ho), cioc1@ryongnamsan.edu.kp (Chol-Yong Jon), ffy1984229@163.com (Fengyun Fu)

ORCID iD: https://orcid.org/0000-0003-3332-5621 (Di Zhao)

Motivated by the foregoing works we define newly in this note a generalized quarter-symmetric connection homotopy and study its geometric properties.

This paper is organized as follows. Section 1 states the previous known results. Section 2 studies the generalized quarter-symmetric connection homotopy and its geometrical properties. Section 3 investigates the projective invariant for the generalized quarter-symmetric connection homotopy. Section 4 derives at a conformal invariant of the generalized quarter-symmetric connection family and the projective conformal quarter-symmetric connection homotopy.

2. A generalized quarter-symmetric connection homotopy

Let $(M, g)(dim M \ge 3)$ be a Riemannian manifold, g be the Riemannian metric on M and $\overset{\circ}{\nabla}$ be the Levi-Civita connection with respect to g. Let T(M) denote the collection of all vector fields on M.

Definition 2.1. A connection homotopy $\overset{t}{\nabla}$ is called a generalized quarter-symmetric connection homotopy if it satisfies the relation

$$(\overset{t}{\nabla}_{Z}g)(X,Y) = -2t[\pi(Z)U(X,Y) + \pi(X)U(Z,Y) + \pi(Y)U(Z,X)], \ T(X,Y) = \pi(Y)\varphi X - \pi(X)\varphi Y \tag{2.1}$$

where $X, Y, Z \in T(M)$, π is 1-form, φ is a (1,1)-type tensor field, $t \in [0,1]$ and $U(X,Y) = \frac{1}{2}[\varphi(X,Y) + \varphi(Y,X)]$, $V(X,Y) = \frac{1}{2}[\varphi(X,Y) - \varphi(Y,X)]$.

Remark 2.1. If t = 0, then $\overset{t}{\nabla}$ is a quarter-symmetric metric connection and if t = 1, then $\overset{t}{\nabla}$ is a generalized quarter-symmetric non-metric connection. So the connection homotopy $\overset{t}{\nabla}$ is a connection homotopy from a quarter-symmetric metric connection $\overset{t}{\nabla}$ to a generalized quarter-symmetric non-metric connection $\overset{t}{\nabla}$. If $\pi(X) = \omega(X)$ and U(X,Y) = g(X,Y), then $\overset{t}{\nabla}$ is a generalized quarter-symmetric metric recurrent connection ([20]).

Let (x^i) be the local coordinate, then g, $\overset{\circ}{\nabla}$, $\overset{t}{\nabla}$, φ , U, V, π , T have the local expressions g_{ij} , $\binom{k}{ij}$, Γ^k_{ij} , φ^k_i , U^k_i , V^k_i , π_i , T^k_{ij} , respectively.

At the same time the expression (2.1) can be rewritten as

$$\nabla_{k} g_{ij} = -2t(\pi_{k} U_{ij} + \pi_{i} U_{jk} + \pi_{j} U_{ik}), T_{ij}^{k} = \pi_{j} \varphi_{i}^{k} - \pi_{i} \varphi_{j}^{k}.$$
(2.2)

From the expression (2.2), the coefficient of $\overset{t}{\nabla}$ is

$$\overset{t}{\Gamma}_{ij}^{k} = \left\{ \begin{matrix} k \\ ij \end{matrix} \right\} + t\pi_i U_j^k + (t+1)\pi_j U_i^k + (t-1)U_{ij}\pi^k - \pi_i V_j^k.$$
(2.3)

From the expression (2.3), by a direct computation, the curvature tensor of $\overset{t}{\nabla}$ is

$$\begin{array}{rcl}
\overset{t}{R}_{ijk}{}^{l} & = & K_{ijk}{}^{l} + U_{j}^{l}{}^{t}_{aik} - U_{i}^{l}{}^{t}_{ajk} + \overset{t}{b}{}^{l}{}^{l}_{i}U_{jk} - \overset{t}{b}{}^{l}{}^{l}_{j}U_{ik} + U_{ik}^{l}\pi_{j} - U_{jk}^{l}\pi_{i} + (t+1)(U_{ij}^{l} - U_{ji}^{l})\pi_{k} \\
& + (t-1)(U_{ijk} - U_{jik})\pi^{l} + tU_{k}^{l}\pi_{ij} - V_{k}^{l}\pi_{ij} + \pi_{i}V_{jk}^{l} - \pi_{j}V_{ik}^{l}
\end{array} \tag{2.4}$$

where $K_{ijk}^{\ \ l}$ is the curvature tensor of the Levi-Civita connection $\overset{\circ}{
abla}$ and the other notations are given as

follows

From the expressions (2.2) and (2.3), the coefficient of dual connection homotopy $\overset{t}{\nabla}$ of the connection homotopy $\overset{t}{\nabla}$ is

$$\Gamma_{ij}^{t*} = {k \brace ij} - t\pi_i U_j^k - (t-1)\pi_j U_i^k - (t+1)U_{ij}\pi^k - \pi_i V_j^k.$$
(2.6)

And from this expression by a direct computation the curvature tensor of $\overset{t*}{\nabla}$ is

$$\overset{t^*}{R_{ijk}}{}^{l} = K_{ijk}{}^{l} + U_{i}^{l}{}^{t}_{jk} - U_{j}^{l}{}^{t}_{jk} + U_{ik}{}^{t}_{a}{}^{l}_{j} - U_{jk}{}^{t}_{a}{}^{l}_{i} - \overset{*}{U}_{ik}^{l}\pi_{j} + \overset{*}{U}_{jk}^{l}\pi_{i} - (t-1)(U_{ij}^{l} - U_{ji}^{l})\pi_{k}
+ (t+1)(U_{ijk} - U_{jik})\pi^{l} - tU_{k}^{l}\pi_{ij} - V_{k}^{l}\pi_{ij} - \pi_{i}\overset{*}{V}_{ik}^{l} + \pi_{j}\overset{*}{V}_{ik}^{l},$$
(2.7)

where

$$\begin{cases} \overset{*}{U}_{ik}^{l} &= t [\overset{\circ}{\nabla}_{i} U_{k}^{l} - (t+1) U_{k}^{p} U_{ip} \pi^{l} - (t+1) U_{i}^{p} U_{p}^{l} \pi_{k}], \\ \overset{*}{V}_{ik}^{l} &= \overset{\circ}{\nabla}_{i} V_{k}^{l} + (t-1) V_{i}^{p} V_{p}^{l} \pi_{k} + (t+1) U_{ik} V_{p}^{l} \pi^{p} - (t-1) U_{i}^{l} V_{k}^{p} \pi_{p} - (t+1) U_{ip} V_{k}^{p} \pi^{l}. \end{cases}$$

$$(2.8)$$

From the expressions (2.2) and (2.3), the coefficient of the mutual connection homotopy $\overset{tm}{\nabla}$ of the connection homotopy $\overset{t}{\nabla}$ is

$$\Gamma_{ij}^{tm} = {k \brace ij} + (t+1)\pi_i U_j^k + t\pi_j U_i^k + (t-1)U_{ij}\pi^k - \pi_j V_i^k,$$
(2.9)

and the mutual connection homotopy $\overset{\mathit{tm}}{\nabla}$ satisfies the relation

$$\nabla^{m}_{k}g_{ij} = -2(t+1)\pi_{k}U_{ij} - (2t-1)\pi_{i}U_{jk} - (2t-1)\pi_{j}U_{ik} - \pi_{i}V_{jk} - \pi_{j}V_{ik}, \quad T_{ij}^{m}{}^{k} = \pi_{i}\varphi_{i}^{k} - \pi_{j}\varphi_{i}^{k}, \quad (2.10)$$

By a direct computation, one gets the curvature tensor of $\overset{tm}{\nabla}$ is

$$\begin{array}{rcl}
\overset{tm}{R_{ijk}}^{l} & = & K_{ijk}^{l} + \overset{tm}{a_{ik}} U_{j}^{l} - \overset{tm}{a_{jk}} U_{i}^{l} + \overset{tm}{b_{i}}^{l} U_{jk} - \overset{tm}{b_{j}}^{l} U_{ik} - \pi_{i} \overset{tm}{U_{jk}}^{l} + \pi_{j} \overset{tm}{U_{ik}}^{l} + t (U_{ij}^{l} - U_{ji}^{l}) \pi_{k} \\
& + (t-1)(U_{ijk} - U_{jik}) \pi^{l} + (t+1) U_{k}^{l} \pi_{ij} + V_{i}^{l} f_{jk} - V_{j}^{l} f_{ik} - (V_{ij}^{l} - V_{ji}^{l}) \pi_{k},
\end{array} \tag{2.11}$$

where

Let $A_{ijk}^{l} = U_{j}^{l} a_{ik}^{l} + U_{jk}^{l} b_{i}^{l} + U_{ik}^{l} \pi_{j} + (t+1)U_{ij}^{l} \pi_{k} + (t-1)U_{ijk} \pi^{l} + tU_{k}^{l} \nabla_{i} \pi_{j} - V_{k}^{l} \nabla_{i} \pi_{j} + \pi_{i} V_{jk}^{l}$, then from the expression (2.4), we get

$$R_{ijk}^{l} = K_{ijk}^{l} + A_{ijk}^{l} - A_{iik}^{l}$$

So there exists the following

Theorem 2.1. When $A_{ijk}^l = A_{jik}^l$, then the curvature tensor $\overset{t}{\nabla}$ will keep unchanged under the connection transformation $\overset{\circ}{\nabla} \to \overset{t}{\nabla}$.

Let α , β and γ be of 1-from with the corresponding components below respectively

$$\alpha_i = U_i^k \pi_k, \beta_i = U_k^k \pi_i, \gamma_i = V_i^k \pi_k \tag{2.13}$$

Theorem 2.2. In a Riemannian manifold (M, g) if 1-form α, β are closed, then the volume curvature tensor of $\overset{\cdot}{\nabla}$ is zero, namely

$$\stackrel{t}{P}_{ij} = 0 \tag{2.14}$$

where $P_{ij}^t = R_{ijk}^t$ is a volume curvature tensor of ∇ .

Proof. Contracting the indices k and l of the expression (2.4), then we have

$$\overset{t}{P}_{ij} = \overset{\circ}{P}_{ij} + U^{k}_{j} \overset{t}{a}_{ik} - U^{k}_{i} \overset{t}{a}_{jk} + U_{jk} \overset{t}{b}^{k}_{i} - U_{ik} \overset{t}{b}^{k}_{j} + U^{k}_{ik} \pi_{j} - U^{k}_{jk} \pi_{i} + (t+1)(U^{k}_{ij} - U^{k}_{ji})\pi_{k} + (t-1)(U_{ijk} - U_{jik})\pi^{k} + tU^{k}_{ik} \pi_{ij} - V^{k}_{i} \pi_{ij} + \pi_{i} V^{k}_{ik} - \pi_{j} V^{k}_{ik},$$

where $\stackrel{\circ}{P}_{ij} = K_{ijk}{}^k$ is a volume curvature tensor of $\stackrel{t}{\nabla}$. On the one hand, from the expression (2.5) we have

$$U_{j}^{k} \dot{a}_{ik} - U_{i}^{k} \dot{a}_{jk}^{k} = (t+1)(U_{j}^{k} \mathring{\nabla}_{i} \pi_{k} - U_{i}^{k} \mathring{\nabla}_{j} \pi_{k}) + t(t+1)(\pi_{j} U_{i}^{k} - \pi_{i} U_{j}^{k}) U_{k}^{p} \pi_{p},$$

$$U_{jk}^{l} \dot{b}_{i}^{k} - U_{ik}^{l} \dot{b}_{j}^{k} = (t-1)(U_{kj} \mathring{\nabla}_{i} \pi^{k} - U_{ki} \mathring{\nabla}_{j} \pi^{k}) - t(t-1)(\pi_{j} U_{ik} - \pi_{i} U_{jk}) U_{k}^{p} \pi^{p},$$

$$U_{ik}^{k} \pi_{j} - U_{jk}^{k} \pi_{i} = t(\mathring{\nabla}_{i} U_{k}^{k} \pi_{j} - \mathring{\nabla}_{j} U_{k}^{k} \pi_{i}) + t(t-1)(\pi_{j} U_{ip} - \pi_{i} U_{jp}) U_{k}^{p} \pi_{p} - t(t+1)(\pi_{j} U_{i}^{p} - \pi_{i} U_{j}^{p}) \pi_{k} U_{p}^{k},$$

$$(t+1)(U_{ij}^{k} - U_{ji}^{k}) \pi_{k} = (t+1)(\mathring{\nabla}_{i} U_{j}^{k} \pi_{k} - \mathring{\nabla}_{j} U_{i}^{k} \pi_{k}),$$

$$(t-1)(U_{ijk} - U_{jik}) \pi^{k} = (t-1)(\mathring{\nabla}_{i} U_{jk} \pi^{k} - \mathring{\nabla}_{j} U_{ik} \pi^{k}),$$

$$t U_{k}^{k} \pi_{ij} = t U_{k}^{k} \mathring{\nabla}_{i} \pi_{j} - t U_{k}^{k} \mathring{\nabla}_{j} \pi_{i},$$

$$V_{k}^{k} = 0,$$

$$V_{k}^{k} = 0,$$

$$V_{ik}^{k} = \mathring{\nabla}_{i} V_{k}^{k} - (t+1) U_{i}^{p} V_{p}^{k} \pi_{k} - (t-1) U_{ik} V_{p}^{k} \pi^{p} + (t+1) U_{i}^{k} V_{p}^{p} \pi_{p} + (t-1) U_{ip} V_{k}^{p} \pi^{k} = 0$$

Hence using these expressions and the expression (2.13), we obtain

$$\stackrel{t}{P}_{ij} = 2t(\mathring{\nabla}_{i}\alpha_{j} - \mathring{\nabla}_{j}\alpha_{i}) + t(\mathring{\nabla}_{i}\beta_{j} - \mathring{\nabla}_{j}\beta_{i})$$
(2.15)

If a 1-form α and β are closed, then $\overset{\circ}{\nabla}_i \alpha_j - \overset{\circ}{\nabla}_j \alpha_i = 0$ and $\overset{\circ}{\nabla}_i \beta_j - \overset{\circ}{\nabla}_j \beta_i = 0$. Hence from expression (2.15), we obtain the expression (2.14). \square

Remark 2.2. From the expression (2.15), if t = 0, then $P_{ij} = 0$. So the volume curvature tensor of the quarter-symmetric metric connection is always zero.

Theorem 2.3. In a Riemannian manifold (M, g) if 1-form α, β, γ are of closed 1-form, then the volume curvature tensor of $\overset{tm}{\nabla}$ is zero, namely

$$P_{ii}^{tm} = 0$$
 (2.16)

where $P_{ij}^{tm} = R_{ijk}^{tm}$ is the volume curvature tensor of ∇ .

Proof. Contracting the indices k and l of the expression (2.11), we have

$$\stackrel{tm}{P_{ij}} = \stackrel{\circ}{P_{ij}} + U_j^k \stackrel{tm}{a_{ik}} - U_i^k \stackrel{tm}{a_{jk}} + U_{jk} \stackrel{tm}{b_i}^k - U_{ik} \stackrel{tm}{b_j}^k + U_{ik}^k \pi_j - \stackrel{m^k}{U_{jk}} \pi_i + t(U_{ij}^k - U_{ji}^k) \pi_k + (t-1)(U_{ijk} - U_{jik}) \pi^k + (t+1)U_i^k \pi_{ij} + V_i^k f_{jk} - V_i^k f_{ik} - (V_{ij}^k - V_{ij}^k) \pi_k,$$

On the one hand, from the expression (2.12), we have

$$U_{j}^{ktm} \dot{a}_{ik} - U_{i}^{ktm} \dot{a}_{jk} = t(U_{j}^{k} \mathring{\nabla}_{i} \pi_{k} - U_{i}^{k} \mathring{\nabla}_{j} \pi_{k}) + t(t+1)(\pi_{j} U_{i}^{k} - \pi_{i} U_{j}^{k}) U_{k}^{p} \pi_{p},$$

$$U_{jk}^{tm} \dot{b}_{i}^{k} - U_{ik}^{tm} \dot{b}_{j}^{k} = (t-1)(U_{jk} \mathring{\nabla}_{i} \pi^{k} - U_{ik} \mathring{\nabla}_{j} \pi^{k}) - (t^{2} - 1)(\pi_{j} U_{ik} - \pi_{i} U_{jk}) U_{k}^{p} \pi^{p},$$

$$U_{ik}^{mk} \pi_{j} - U_{jk}^{mk} \pi_{i} = (t+1)(\mathring{\nabla}_{i} U_{k}^{k} \pi_{j} - \mathring{\nabla}_{j} U_{k}^{k} \pi_{i}) - t(t+1)(\pi_{j} U_{i}^{p} - \pi_{i} U_{j}^{p}) U_{p}^{k} \pi_{k} - (t^{2} - 1)(\pi_{j} U_{ip} - \pi_{i} U_{jp}) \pi^{k} U_{k}^{p},$$

$$t(U_{ij}^{k} - U_{ji}^{k}) \pi_{k} = t(\mathring{\nabla}_{i} U_{j}^{k} \pi_{k} - \mathring{\nabla}_{j} U_{i}^{k} \pi_{k}),$$

$$(t-1)(U_{ijk} - U_{jik}) \pi^{k} = (t-1)(\mathring{\nabla}_{i} U_{jk} \pi^{k} - \mathring{\nabla}_{j} U_{ik} \pi^{k}),$$

$$(t+1) U_{k}^{k} \pi_{ij} = (t+1)(U_{k}^{k} \mathring{\nabla}_{i} \pi_{j} - t U_{k}^{k} \mathring{\nabla}_{j} \pi_{i}),$$

$$V_{i}^{k} f_{jk} - V_{i}^{k} f_{ik} = (V_{ij}^{k} - V_{ij}^{k}) \pi_{k} + V_{i}^{k} \mathring{\nabla}_{j} \pi_{k} - V_{j}^{k} \mathring{\nabla}_{i} \pi^{k} - \mathring{\nabla}_{i} V_{i}^{k} \pi_{k} + \mathring{\nabla}_{j} V_{i}^{k} \pi_{k}.$$

Substituting these expressions into the above expression and using the expression (2.13), we obtain

$$P_{ij}^{tm} = (2t - 1)(\overset{\circ}{\nabla}_{i}\alpha_{i} - \overset{\circ}{\nabla}_{i}\alpha_{i}) + (t + 1)(\overset{\circ}{\nabla}_{i}\beta_{i} - \overset{\circ}{\nabla}_{i}\beta_{i}) - (\overset{\circ}{\nabla}_{i}\gamma_{i} - \overset{\circ}{\nabla}_{i}\gamma_{i}). \tag{2.17}$$

If a 1-form α, β, γ are of closed, then $\overset{\circ}{\nabla}_i \alpha_j - \overset{\circ}{\nabla}_j \alpha_i = 0$, $\overset{\circ}{\nabla}_i \beta_j - \overset{\circ}{\nabla}_j \beta_i = 0$ and $\overset{\circ}{\nabla}_i \gamma_j - \overset{\circ}{\nabla}_j \gamma_i = 0$. Hence from the expression (2.17), it is easy to see that the expression (2.16) is tenable. \Box

It is known that if a sectional curvature at a point p for a Riemannian manifold (M, g) is independent of E (a 2-dimensional subspace of $T_p(M)$), the curvature tensor is

$${\stackrel{t}{R}}_{ijk}{}^{l} = k(p)(\delta_{i}^{l}q_{jk} - \delta_{i}^{l}q_{jk})$$
(2.18)

In this case, if k(p) = const, then the Riemannian manifold is a constant curvature manifold.

Theorem 2.4. Suppose that $(M, g)(dim M \ge 3)$ is a connected Riemannian manifold associated with an isotropic generalized quarter-symmetric connection homotopy. If there holds

$$s_h = 0 ag{2.19}$$

then the Riemannian manifold $(M, g, \overset{t}{\nabla})$ is a constant curvature manifold, where $s_h = \frac{1}{n-1}T_{hp}^p$.

Proof. Substituting the expression (2.18) into the second Bianchi identity of the curvature tensor of the generalized quarter-symmetric connection homotopy $\overset{t}{\nabla}$, we get

$$\overset{t}{\nabla}_{h}\overset{t}{R}_{ijk}{}^{l} + \overset{t}{\nabla}_{i}\overset{t}{R}_{jhk}{}^{l} + \overset{t}{\nabla}_{j}\overset{t}{R}_{hik}{}^{l} = T^{p}_{hi}\overset{t}{R}_{jpk}{}^{l} + T^{p}_{ij}\overset{t}{R}_{hpk}{}^{l} + T^{p}_{jh}\overset{t}{R}_{ipk}{}^{l},$$

and using the expression (2.2), then we have

$$\overset{t}{\nabla}_{h}k(\delta_{i}^{l}g_{jk} - \delta_{j}^{l}g_{ik}) + \overset{t}{\nabla}_{i}k(\delta_{j}^{l}g_{hk} - \delta_{h}^{l}g_{jk}) + \overset{t}{\nabla}_{j}k(\delta_{h}^{l}g_{ik} - \delta_{i}^{l}g_{hk}) = k[\pi_{h}(\delta_{i}^{l}\varphi_{jk} - \delta_{j}^{l}\varphi_{ik}) + \pi_{i}(\delta_{j}^{l}\varphi_{hk} - \delta_{h}^{l}\varphi_{jk}) + \pi_{i}(\delta_{j}^{l}\varphi_{hk} - \delta_{h}^{l}\varphi_{jk}) + \pi_{i}(\phi_{i}^{l}g_{hk} - \phi_{h}^{l}g_{ik}) + \pi_{i}(\phi_{i}^{l}g_{hk} - \phi_{h}^{l}g_{ik}) + \pi_{i}(\phi_{h}^{l}g_{ik} - \phi_{h}^{l}g_{hk})],$$

Contracting the indices *i*, *l* of both sides of this expression, then we have

$$(n-2)(\overset{t}{\nabla}_{h}g_{jk}-\overset{t}{\nabla}_{j}g_{hk})=k[(n-2)(\pi_{h}\varphi_{jk}-\pi_{j}\varphi_{hk})+\pi_{h}(\varphi_{i}^{i}g_{jk}-\varphi_{jk})+\pi_{i}(\varphi_{j}^{i}g_{hk}-\varphi_{h}^{i}g_{jk})+\pi_{j}(\varphi_{hk}-\varphi_{i}^{i}g_{hk})]$$

Multiplying both sides of this expression again by g^{jk} , then we obtain

$$(n-1)(n-2)\nabla^{t}_{h}k - 2(n-2)k(\pi_{h}\varphi^{i}_{h} - \pi_{i}\varphi^{i}_{h}) = 0$$

Using $dimM \ge 3$ and $s_h = \frac{1}{n-1}T_{hp}^p = -\frac{1}{n-1}(\pi_h \varphi_i^i - \pi_i \varphi_h^i)$, from this equation above we obtain

$$\overset{t}{\nabla}_{h}k + 2s_{h} = 0.$$

Consequently, we know from that k = const if and only if $s_h = 0$. \square

3. A projective invariant of the generalized quarter-symmetric connection homotopy

Definition 3.1. A connection homotopy $\overset{p}{\nabla}$ is called a generalized projective quarter-symmetric connection homotopy if $\overset{p}{\nabla}$ is a projective equivalent to $\overset{t}{\nabla}$.

From the expression (2.3) the coefficient of $\overset{p}{\nabla}$ is

$$\Gamma_{ij}^{p} = \{_{ij}^{k}\} + \delta_{j}^{k}\psi_{i} + \delta_{i}^{k}\psi_{j} + t\pi_{i}U_{j}^{k} + (t+1)\pi_{j}U_{i}^{k} + (t-1)U_{ij}\pi^{k} - \pi_{i}V_{j}^{k},$$

$$(3.1)$$

where ψ is a projective component of $\overset{p}{\nabla}$.

From (3.1), by a direction computation, we get the curvature tensor

$$\begin{array}{rcl}
P_{ijk}^{l} & = & K_{ijk}^{l} + U_{j}^{l} \dot{a}_{ik} - U_{i}^{l} \dot{a}_{jk} + \delta_{j}^{l} c_{ik} - \delta_{i}^{l} c_{jk} + U_{jk}^{l} \dot{b}_{i}^{l} - U_{ik}^{l} \dot{b}_{i}^{l} + (t+1)(U_{ij}^{l} - U_{ji}^{l}) \pi_{k} + (t-1)(U_{ijk} - U_{jik}) \pi^{l} \\
& + & t U_{k}^{l} \pi_{ij} - V_{k}^{l} \pi_{ij} + \pi_{i} V_{ik}^{l} - \pi_{j} V_{ik}^{l} + \delta_{k}^{l} \psi_{ij} + T_{ij}^{l} \psi_{k},
\end{array} \tag{3.2}$$

where

$$\begin{cases} c_{ik} &= \overset{\circ}{\nabla}_{i} \psi_{k} - \psi_{i} \psi_{k} - t \pi_{i} U_{k}^{p} \psi_{p} - (t+1) \pi_{k} U_{i}^{p} \psi_{p} - (t-1) \pi^{p} U_{ik} \psi_{p} + \pi_{i} V_{k}^{p} \psi_{p}, \\ \psi_{ij} &= \overset{\circ}{\nabla}_{i} \psi_{j} - \overset{\circ}{\nabla}_{j} \psi_{i}. \end{cases}$$
(3.3)

Using the expression (2.4), from the expression (3.2), then we obtain

$${\stackrel{p}{R}}_{ijk}{}^{l} = {\stackrel{t}{R}}_{ijk}{}^{l} + \delta^{l}_{ij}c_{ik} - \delta^{l}_{ij}c_{jk} + \delta^{l}_{ij}\psi_{k} + T^{l}_{ij}\psi_{k}, \tag{3.4}$$

On the one hand, the coefficient of the mutual connection homotopy $\overset{pm}{\nabla}$ of the projective quarter-symmetric connection homotopy $\overset{p}{\nabla}$ is

$$\Gamma_{ij}^{pm} = \begin{Bmatrix} k \\ ij \end{Bmatrix} + \delta_j^k \psi_i + \delta_i^k \psi_j + (t+1)\pi_i U_j^k + t\pi_j U_i^k + (t-1)\pi^k U_{ij} - \pi_j V_i^k,$$
(3.5)

From the expression and by a direction computation, the curvature tensor $\overset{pm}{\nabla}$ of is

$$\begin{array}{lll}
R_{ijk}^{pm} & = & K_{ijk}^{l} + \delta_{j}^{l} c_{ik} - \delta_{i}^{l} c_{jk} + U_{j}^{l} a_{ik}^{m} - U_{i}^{l} a_{jk}^{m} - U_{ik}^{tm} b_{j}^{l} + U_{jk}^{tm} b_{i}^{l} + W_{ik}^{l} \pi_{j} - W_{jk}^{m} \pi_{i} + t(U_{ij}^{l} - U_{ji}^{l}) \pi_{k} \\
& + (t - 1)(U_{ijk} - U_{jik}) \pi^{l} + V_{i}^{l} f_{jk} - V_{i}^{l} f_{ik} - (U_{ij}^{l} - U_{ij}^{l}) \pi_{k} - T_{ij}^{l} \psi_{k} + \delta_{k}^{l} \psi_{ij},
\end{array} \tag{3.6}$$

where

$$\overset{m}{c}_{ij} = \overset{\circ}{\nabla}_{i} \psi_{j} - \psi_{i} \psi_{j} - (t+1) \pi_{i} U_{i}^{p} \pi_{p} - (t-1) U_{ij} \psi_{p} \pi^{p} - t U_{i}^{p} \psi_{p} \pi_{j} + V_{i}^{p} \psi_{p} \pi_{j}. \tag{3.7}$$

Using the expression (2.11), the expression (3.6) becomes

$$R_{ijk}^{pm} = R_{ijk}^{l} + \delta_i^{l} c_{ik}^{m} - \delta_i^{l} c_{jk}^{m} - T_{ij}^{l} \psi_k + \delta_k^{l} \psi_{ij}.$$
(3.8)

Theorem 3.1. In a Riemannian manifold (M, g), if 1-form ψ, α, β are of closed 1-form, then the volume curvature tensor of $\overset{p}{\nabla}$ is zero, namely

$$P_{ij}^{pm} = 0,$$
 (3.9)

where $\overset{p}{P}_{ij} = \overset{p}{R}_{ijkl} g^{kl}$ is a volume curvature tensor of $\overset{p}{\nabla}$.

Proof. Contracting the indices k, l of the expression (3.4), then we have

$$\stackrel{p}{P}_{ij} = \stackrel{t}{P}_{ij} + c_{ij} - c_{ji} + n\psi_{ij} + T^{k}_{ij}\psi_{k}.$$

On the one hand, from the expression (3.3), we have

$$c_{ij} - c_{ji} = \psi_{ij} - T_{ii}^p \psi_p.$$

Substituting this expression into the above expression, we obtain

$$P_{ij} = P_{ij} + (n+1)\psi_{ij}.
 (3.10)$$

If a 1-form α , ψ , β are closed, then $\stackrel{t}{P}_{ij} = 0$ (Theorem 2.2) and $\psi_{ij} = 0$. Hence from the expression (3.10), we obtain the expression (3.9).

Theorem 3.2. In a Riemannian manifold (M, g), if 1-form $\psi, \alpha, \beta, \gamma$ are closed, then a volume curvature tensor of is zero, namely

$$P_{ij}^{pm} = 0,$$
 (3.11)

where $\overset{pm}{P}_{ij} = \overset{pm}{R}_{ijkl} g^{kl}$ is the volume curvature tensor of $\overset{p}{\nabla}$

Proof. Contracting the indices k and l of the expression (3.8), then we have

$$\overset{pm}{P}_{ij} = \overset{tm}{P}_{ij} + \overset{m}{c}_{ij} - \overset{m}{c}_{ji} + n\psi_{ij} - T^k_{ij}\psi_k.$$

On the other hand, from the expression (3.7), we have

$$\overset{m}{c}_{ij} - \overset{m}{c}_{ji} = \psi_{ij} + T^{p}_{ij}\psi_{p}.$$

Substituting this expression into the above expression, we obtain

$$P_{ij}^{pm} = P_{ij}^{tm} + (n+1)\psi_{ij}. \tag{3.12}$$

If a 1-form ψ , α , β , γ are of closed form, then $\stackrel{tm}{P}_{ij} = 0$ (Theorem 2.3) and $\psi_{ij} = 0$. Hence from the expression (3.12), we obtain the expression (3.11).

Theorem 3.3. In a Riemannian manifold (M, g), if a 1-form ψ is closed, the tensor below

$${\overset{t}{W}_{ijk}}^{l} + {\overset{tm}{W}_{ijk}}^{l} \tag{3.13}$$

is a projective invariant under the projective connection transformation $\overset{t}{\nabla} \to \overset{p}{\nabla}, \overset{tm}{\nabla} \to \overset{pm}{\nabla}$, where

$$\begin{cases} W_{ijk}^{l} &= \overset{t}{R}_{ijk}^{l} - \frac{1}{n-1} (\delta_{i}^{l} \overset{t}{R}_{jk} - \delta_{j}^{l} \overset{t}{R}_{ik}), \\ \overset{tm}{W_{ijk}^{l}} &= \overset{tm}{R}_{ijk}^{l} - \frac{1}{n-1} (\delta_{i}^{l} \overset{tm}{R}_{jk} - \delta_{j}^{l} \overset{tm}{R}_{ik}). \end{cases}$$
(3.14)

where W_{ijk}^{t} , W_{ijk}^{t} are the Weyl projective curvature tensor of ∇ and ∇ respectively

Proof. Adding the expressions (3.4) and (3.8), we obtain

$$R_{ijk}^{l} + R_{ijk}^{l} = R_{ijk}^{l} + R_{ijk}^{l} +$$

where $\alpha_{ik} = c_{ik} + \overset{t}{c}_{ik}$, If 1-form ψ is closed, then $\psi_{ij} = \overset{\circ}{\nabla}_i \psi_j - \overset{\circ}{\nabla}_j \psi_i = 0$. From this fact, the expression (3.15) becomes

$$R_{ijk}^{l} + R_{ijk}^{l} = R_{ijk}^{l} + R_{ijk}^{l} +$$

Contracting the indices i, l of (3.16), we get

$$R_{jk}^{p} + R_{jk}^{pm} = R_{jk}^{t} + R_{jk}^{tm} - (n-1)\alpha_{jk}$$

From this expression above we find

$$\alpha_{jk} = \frac{1}{n-1} (R_{jk}^t + R_{jk}^t - R_{jk}^p - R_{jk}^{pm})$$

Substituting this expression into (3.16) and by a direct computation, we obtain

$${\overset{t}{W}_{ijk}}^{l} + {\overset{tm}{W}_{ijk}}^{l} = {\overset{p}{W}_{ijk}}^{l} + {\overset{pm}{W}_{ijk}}^{l}$$
(3.17)

where $W_{ijk}^{p}^{l}$, W_{ijk}^{pm} are defined just as (3.14) below

$$\begin{cases}
W_{ijk}^{l} = R_{ijk}^{l} - \frac{1}{n-1} (\delta_{i}^{l} R_{jk} - \delta_{j}^{l} R_{ik}), \\
P_{ml} = P_{ml} P_{ml}$$

This ends the proof of Theorem 3.3. \square

Remark 3.1. The expression (3.18) is a Weyl projective curvature tensor of $\overset{p}{\nabla}$ and $\overset{pm}{\nabla}$ respectively. The expression (3.17) is independent of the parameter t.

Theorem 3.4. In a Riemannian manifold (M, q), the tensor below

$$\frac{t}{W_{ijk}}^l + \frac{tm}{W_{ijk}}^l \tag{3.19}$$

is a projective invariant under the projective connection transformation $\overset{t}{\nabla} \to \overset{p}{\nabla}$ and $\overset{tm}{\nabla} \to \overset{pm}{\nabla}$, where

$$\begin{cases} \frac{t}{W_{ijk}}^{l} &= \overset{t}{R_{ijk}}^{l} - \frac{1}{n-1} (\delta_{i}^{l} \overset{t}{R}_{jk} - \delta_{j}^{l} \overset{t}{R}_{ik}) + \frac{1}{n^{2}-1} [\delta_{i}^{l} (\overset{t}{R}_{jk} - \overset{t}{R}_{kj}) - \delta_{j}^{l} (\overset{t}{R}_{ik} - \overset{t}{R}_{ki}) + (n-1)\delta_{k}^{l} (\overset{t}{R}_{ij} - \overset{t}{R}_{ji})], \\ \frac{tm}{W_{ijk}}^{l} &= \overset{tm}{R_{ijk}}^{l} - \frac{1}{n-1} (\delta_{i}^{l} \overset{tm}{R}_{jk} - \delta_{j}^{l} \overset{tm}{R}_{ik}) + \frac{1}{n^{2}-1} [\delta_{i}^{l} (\overset{tm}{R}_{jk} - \overset{tm}{R}_{kj}) - \delta_{j}^{l} (\overset{tm}{R}_{ik} - \overset{tm}{R}_{ki}) + (n-1)\delta_{k}^{l} (\overset{tm}{R}_{ij} - \overset{tm}{R}_{ji})]. \end{cases}$$
(3.20)

where $\frac{t}{W_{ijk}}^l$, $\frac{tm}{W_{ijk}}^l$ are a generalized Weyl projective curvature tensor of $\overset{t}{\nabla}$ and $\overset{tm}{\nabla}$, respectively.

Proof. Contracting the indices i, l of expression (3.15) and using $\psi_{ij} = -\psi_{ji}$, we get

$$R_{ik}^{p} + R_{ik}^{pm} = R_{ik}^{t} + R_{ik}^{tm} - (n-1)\alpha_{ik} - 2\psi_{ik}$$
(3.21)

Alternating the indices *j* and *k* of this expression and using $\alpha_{jk} - \alpha_{kj} = 2\psi_{jk}$, we obtain

$$\overset{p}{R}_{jk} - \overset{p}{R}_{kj} + \overset{pm}{R}_{jk} - \overset{pm}{R}_{jk} = \overset{t}{R}_{jk} - \overset{t}{R}_{kj} + \overset{tm}{R}_{jk} - \overset{tm}{R}_{kj} - 2(n+1)\psi_{jk}$$

From this expression above we find

$$\psi_{jk} = \frac{1}{2(n+1)} \begin{bmatrix} t \\ R_{jk} - R_{kj} + R_{jk} - R_{kj} - R_{kj} - R_{kj} - R_{kj} + R_{jk} - R_{jk} \end{bmatrix}$$

Using this expression from the expression (3.21), we have

$$\alpha_{jk} = \frac{1}{n-1} \left\{ (R_{jk} + R_{jk}^{tm}) - (R_{jk} + R_{jk}^{pm}) - \frac{1}{n+1} [(R_{jk} - R_{kj} + R_{jk}^{tm} - R_{kj}^{tm}) - (R_{jk} - R_{kj} + R_{jk}^{pm} - R_{kj}^{pm})] \right\}$$

Substituting the above two expressions into the expression (3.15) and putting

$$\begin{cases} \frac{p}{W_{ijk}}^{l} &= \underset{l=0}{\overset{p}{R_{ijk}}}^{l} - \frac{1}{n-1} (\delta_{i}^{l} \overset{p}{R_{jk}} - \delta_{j}^{l} \overset{p}{R_{ik}}) + \frac{1}{n^{2}-1} \left[\delta_{i}^{l} \overset{p}{(R_{jk} - R_{kj})} - \delta_{j}^{l} \overset{p}{(R_{ik} - R_{ki})} + (n-1) \delta_{k}^{l} \overset{p}{(R_{ij} - R_{ji})} \right], \\ \frac{pm}{W_{ijk}}^{l} &= \underset{l=0}{\overset{pm}{R_{ijk}}}^{l} - \frac{1}{n-1} (\delta_{i}^{l} \overset{pm}{R_{jk}} - \delta_{j}^{l} \overset{pm}{R_{ik}}) + \frac{1}{n^{2}-1} \left[\delta_{i}^{l} \overset{pm}{(R_{jk} - R_{kj})} - \delta_{j}^{l} \overset{pm}{(R_{ik} - R_{ki})} + (n-1) \delta_{k}^{l} \overset{pm}{(R_{ij} - R_{ji})} \right]. \end{cases}$$
 (3.22)

then by a direct computation, we obtain

$$\frac{p}{W_{ijk}}^{l} + \frac{pm}{W_{ijk}}^{l} = \frac{t}{W_{ijk}}^{l} + \frac{tm}{W_{ijk}}^{l}$$
(3.23)

where \overline{W}_{ijk}^l , \overline{W}_{ijk}^l are a generalized Weyl projective curvature tensor of ∇ and ∇ , respectively. \square

4. A conformal invariant of the generalized quarter-symmetric connection homotopy

Definition 4.1. A connection homotopy $\overset{c}{\nabla}$ is called a generalized conformal quarter-symmetric connection homotopy, if $\overset{c}{\nabla}$ is conformal equivalent to $\overset{t}{\nabla}$.

From the expression (2.3) the coefficient of $\overset{c}{\nabla}$ is

$$\overset{c}{\Gamma}_{ij}^{k} = \{_{ij}^{k}\} + \delta_{i}^{k} \sigma_{i} + \delta_{i}^{k} \sigma_{j} - g_{ij} \sigma^{k} + t \pi_{i} U_{i}^{k} + (t+1) \pi_{j} U_{i}^{k} + (t-1) U_{ij} \pi^{k} - \pi_{i} V_{j}^{k},$$
(4.1)

where σ_i is a conformal component of the connection homotopy $\overset{c}{\nabla}$ with respect to the conformal transformation of g_{ij} , namely, $\bar{g}_{ij} = e^{2\sigma}g_{ij}(\sigma_i = \partial_i\sigma)$.

And from the expression (4.1), by a direction computation the curvature tensor of $\overset{\circ}{\nabla}$ is

$$\overset{c}{R}_{ijk}{}^{l} = K_{ijk}{}^{l} + \delta^{l}_{j}d_{ik} - \delta^{l}_{i}d_{jk} + g_{ik}e^{l}_{j} - g_{jk}e^{l}_{i} + U^{l}_{j}a_{ik} - U^{l}_{i}a_{jk} + U_{jk}b^{l}_{i} - {}_{ik}b^{l}_{j} - {}_{ik}b^{l}_{jk} + \pi_{j}b^{l}_{ik} + (t+1)(U^{l}_{ij} - U^{l}_{ji})\pi_{k} + tU^{l}_{k}\pi_{ij} + (t-1)(U_{ijk} - U_{jik})\pi^{l} - V^{l}_{k}\pi_{ij} + \pi_{i}V^{l}_{ik} - \pi_{j}V^{l}_{ik} + T^{l}_{ij}\sigma_{k} - T_{ijk}\sigma^{l}, \tag{4.2}$$

where

$$\begin{cases}
d_{ik} = \overset{\circ}{\nabla}_{i}\sigma_{k} - \sigma_{i}\sigma_{k} - t\pi_{i}U_{k}^{p}\sigma_{p} - (t+1)U_{i}^{p}\sigma_{p}\pi_{k} - (t-1)U_{ik}\sigma_{p}\pi^{p} + \pi_{i}V_{k}^{p}\sigma_{p} + g_{ik}\sigma^{p}\sigma_{p}, \\
e_{ik} = \overset{\circ}{\nabla}_{i}\sigma_{k} - \sigma_{i}\sigma_{k} + t\pi_{i}U_{k}^{p}\sigma_{p} + (t+1)U_{i}^{p}\sigma_{p}\pi_{k} + (t-1)U_{ik}\sigma_{p}\pi^{p} - \pi_{i}V_{kp}\sigma^{p}.
\end{cases} (4.3)$$

Using the expression (2.4), from the expression (4.2), then we obtain

$$\overset{c}{R_{ijk}}^{l} = \overset{t}{R_{ijk}}^{l} + \delta^{l}_{i} d_{ik} - \delta^{l}_{i} d_{jk} + g_{ik} e^{l}_{i} - g_{jk} e^{l}_{i} + T^{l}_{ij} \sigma_{k} - T_{ijk} \sigma^{l}.$$
(4.4)

On the one hand, the coefficient of the dual connection homotopy $\overset{c*}{\nabla}$ of the generalized conformal quarter-symmetric connection homotopy $\overset{c}{\nabla}$ is

$$\Gamma_{ij}^{c*} = \{_{ij}^{k}\} - \delta_{i}^{k} \sigma_{i} + \delta_{i}^{k} \sigma_{j} - g_{ij} \sigma^{k} - \pi_{i} U_{i}^{k} - (t-1) \pi_{j} U_{i}^{k} - (t+1) \pi^{k} j U_{ij} - \pi_{i} V_{j}^{k}, \tag{4.5}$$

From the expression, by a direction computation the curvature tensor of $\overset{c*}{\nabla}$ is

$$\hat{R}_{ijk}^{l} = K_{ijk}^{l} + \delta_{j}^{l} e_{ik} - \delta_{i}^{l} e_{jk} + g_{ik} d_{j}^{l} - g_{jk} d_{i}^{l} - U_{j}^{l} b_{ik}^{m} + U_{i}^{l} b_{jk}^{m} + U_{ik}^{t} a_{j}^{l} - U_{jk}^{t} a_{i}^{l} + U_{jk}^{t} \pi_{i} - U_{ik}^{t} - U_{ik}^{t} \pi_{i} - U_{ik}^{t} - U_{$$

Using the expression (2.7), the expression (4.6) becomes

$$\overset{c^*}{R_{ijk}}^l = \overset{t^*}{R_{ijk}}^l + \delta^l_{i} e_{ik} - \delta^l_{i} e_{ik} + g_{ik} d^l_{i} - g_{ik} d^l_{i} + T^l_{ij} \sigma_k - T_{ijk} \sigma^l.$$
(4.7)

Theorem 4.1. In a Riemannian manifold (M, g), the tensor below

$$\stackrel{t}{V_{ijk}}^l - \stackrel{t*}{V_{ijk}}^l \tag{4.8}$$

is a conformal invariant under the conformal connection transformation $\overset{t}{\nabla} \to \overset{c}{\nabla}, \overset{t*}{\nabla} \to \overset{c^*}{\nabla}$ where

$$\begin{cases}
 V_{ijk}^{l} &= R_{ijk}^{l} - \frac{1}{n} (\delta_{i}^{l} R_{jk} - \delta_{j}^{l} R_{ik}^{l} + g_{ik} R_{ij}^{l} - g_{jk} R_{i}^{l}), \\
 V_{ijk}^{l} &= R_{ijk}^{l} - \frac{1}{n} (\delta_{i}^{l} R_{jk}^{j} - \delta_{i}^{l} R_{ik}^{k} + g_{ik} R_{ij}^{l} - g_{jk} R_{i}^{l}).
\end{cases}$$
(4.9)

Proof. Subtracting the expression (4.6) from the expression (4.4)

$${\stackrel{c}{R}}_{ijk}{}^{l} - {\stackrel{c*}{R}}_{ijk}{}^{l} = {\stackrel{t}{R}}_{ijk}{}^{l} - {\stackrel{t*}{R}}_{ijk}{}^{l} + \delta_{i}^{l}\beta_{jk} - \delta_{i}^{l}\beta_{ik} + g_{ik}\beta_{i}{}^{l} - g_{jk}\beta_{i}{}^{l}$$

$$(4.10)$$

where $\beta_{ik} = d_{ik} - e_{ik}$. Contracting the indices i, l of (4.10), we get

$$\overset{c}{R}_{jk} - \overset{c*}{R}_{jk} = \overset{t}{R}_{jk} - \overset{t*}{R}_{jk} + n\beta_{jk} - g_{jk}\beta_{l}^{l}$$

From this expression above we find

$$\beta_{jk} = \frac{1}{n} [(R_{jk} - R_{jk}) - (R_{jk} - R_{jk}) + g_{jk}\beta_l^l]$$

Substituting this expression into (4.10) and putting

$$\begin{cases} \stackrel{c}{V}_{ijk}{}^{l} &= \stackrel{c}{R}_{ijk}{}^{l} - \frac{1}{n} (\delta_{i}^{l} \stackrel{c}{R}_{jk} - \delta_{j}^{l} \stackrel{c}{R}_{ik} + g_{ik} \stackrel{c}{R}_{i}^{l} - g_{jk} \stackrel{c}{R}_{i}^{l}), \\ \stackrel{c^{*}}{V}_{ijk}{}^{l} &= \stackrel{c^{*}}{R}_{ijk}{}^{l} - \frac{1}{n} (\delta_{i}^{l} \stackrel{c^{*}}{R}_{jk} - \delta_{j}^{l} \stackrel{c^{*}}{R}_{ik} + g_{ik} \stackrel{c^{*}}{R}_{i}^{l} - g_{jk} \stackrel{c^{*}}{R}_{i}^{l}). \end{cases}$$

$$(4.11)$$

then by a direct computation, we obtain

$$\overset{t}{V_{ijk}}^{l} - \overset{t*}{V_{ijk}}^{l} = \overset{c}{V_{ijk}}^{l} - \overset{c*}{V_{ijk}}^{l} \tag{4.12}$$

This ends the proof of Theorem 4.1. \Box

Definition 4.2. A connection homotopy ∇ is called a generalized projective conformal quarter-symmetric connection homotopy, if it is projective equivalent to $\overset{c}{\nabla}$.

From the expression (4.1) the coefficient of ∇ is

$$\Gamma_{ij}^{k} = \{_{ij}^{k}\} + \delta_{j}^{k}(\sigma_{i} + \psi_{i}) + \delta_{i}^{k}(\sigma_{j} + \psi_{j}) - g_{ij}\sigma^{k} + t\pi_{i}U_{j}^{k} + (t+1)\pi_{j}U_{i}^{k} + (t-1)U_{ij}\pi^{k} - \pi_{i}V_{j}^{k}, \tag{4.13}$$

From the expression (4.13), the curvature tensor of ∇ , by a direct computation, is

$$R_{ijk}^{l} = K_{ijk}^{l} + \delta_{j}^{l} a_{ik} - \delta_{i}^{l} a_{jk} + g_{ik} b_{j}^{l} - g_{jk} b_{i}^{l} + U_{j}^{l} a_{ik}^{l} - U_{ik}^{l} a_{jk}^{l} + U_{jk}^{l} b_{i}^{l} - U_{ik}^{l} b_{j}^{l} + U_{ik}^{l} \pi_{ij} - U_{jk}^{l} \pi_{i}$$

$$+ (t+1)(U_{ij}^{l} - U_{ji}^{l}) \pi_{k} + (t-1)(U_{ijk} - U_{jik}) \pi^{l} + t U_{k}^{l} \pi_{ij} - V_{k}^{l} \pi_{ij} + \pi_{i} V_{jk}^{l} - \pi_{j} V_{ik}^{l} + \delta_{k}^{l} \psi_{ij}$$

$$+ T_{ij}^{l} (\sigma_{k} + \psi_{k}) - T_{ijk} \sigma^{l}, \qquad (4.14)$$

where

$$\begin{cases}
 a_{ij} &= \overset{\circ}{\nabla}_{i}(\sigma_{j} + \psi_{j}) - (\sigma_{i} + \psi_{i})(\sigma_{j} + \psi_{j}) - t\pi_{i}U_{j}^{p}(\psi_{p} + \sigma_{p}) - (t - 1)U_{ij}(\sigma_{p} + \psi_{p})\pi^{p} + g_{ij}(\sigma_{p} + \psi_{p})\sigma^{p} \\
 &+ \pi_{i}V_{j}^{p}(\psi_{p} + \sigma_{p}), \\
 b_{ij} &= \overset{\circ}{\nabla}_{i}\sigma_{j} - \sigma_{i}\sigma_{j} + \pi_{i}U_{jp}\sigma^{p} + (t - 1)U_{ip}\sigma^{p}\pi_{j} + (t + 1)U_{ij}\sigma_{p}\pi^{p} - \pi_{i}V_{jp}\sigma^{p}
\end{cases}$$
(4.15)

Using the expression (2.4), from the expression (4.14), then we obtain

$$R_{ijk}^{\ \ l} = \stackrel{t}{R}_{ijk}^{\ \ l} + \delta_i^l a_{ik} - \delta_i^l a_{jk} + g_{ik} b_i^l - g_{jk} b_i^l + \delta_k^l \psi_{ij} + T_{ij}^l (\sigma_k + \psi_k) - T_{ijk} \sigma^l. \tag{4.16}$$

Theorem 4.2. *In a Riemannian manifold* (M, g)*, if* 1-form ψ , α , β are closed, then the volume curvature tensor of ∇ is zero, namely,

$$P_{ij} = 0 (4.17)$$

where $P_{ij} = R_{ijkl}g^{kl}$ is a volume curvature tensor of ∇ .

Proof. Contracting the indices *k* and *l* of the expression (4.16), then we have

$$P_{ij} = P_{ij}^{t} + a_{ij} - a_{ji} + b_{ji} - b_{ij} + n\psi_{ij} + T_{ii}^{k}(\sigma_{k} + \psi_{k}) - T_{ijk}\sigma^{k}.$$

On the one hand, from the expression (4.15), we have

$$a_{ij} - a_{ji} = \psi_{ij} - T_{ij}^{p}(\psi_p + \sigma_p), \ b_{ji} - b_{ij} = T_{ijp}\sigma^p.$$

Substituting these expressions into the above expression, we obtain

$$P_{ij} = \stackrel{t}{P}_{ij} + (n+1)\psi_{ij} \tag{4.18}$$

If a 1-form α, β are closed, then $\stackrel{t}{P_{ij}} = 0$. And if 1-form ψ is closed, then $\psi_{ij} = \stackrel{\circ}{\nabla}_i \psi_j - \stackrel{\circ}{\nabla}_j \psi_i = 0$. Hence form the expression (4.18), we obtain the expression (4.17).

From the expression (4.13) the coefficient of the mutual connection homotopy $\overset{\text{\tiny{\it m}}}{\nabla}$ of the projective conformal quarter-symmetric connection homotopy ∇ is

$$\Gamma_{ij}^{mk} = \{i_{ij}^{k}\} + \delta_{i}^{k}(\sigma_{i} + \psi_{i}) + \delta_{i}^{k}(\sigma_{j} + \psi_{j}) - g_{ij}\sigma^{k} + (t+1)\pi_{i}U_{i}^{k} + t\pi_{j}U_{i}^{k} + (t-1)U_{ij}\pi^{k} - \pi_{j}V_{i}^{k},$$

$$(4.19)$$

And from this expression, by a direct computation, the curvature tensor of $\overset{m}{\nabla}$ is

$$\begin{array}{lll}
\overset{m}{R}_{ijk}{}^{l} & = & K_{ijk}{}^{l} + \delta_{j}^{l}\overset{m}{a}_{ik} - \delta_{i}^{l}\overset{m}{a}_{jk} + g_{ik}\overset{m}{b}_{j}^{l} - g_{jk}\overset{m}{b}_{i}^{l} + U_{j}^{l}\overset{m}{a}_{ik} - U_{i}^{l}\overset{tm}{a}_{jk} + U_{jk}\overset{t}{b}_{i}^{l} - U_{ik}\overset{t}{b}_{j}^{l} + \pi_{j}\overset{m}{U}_{ik}^{l} - \pi_{i}\overset{m}{U}_{jk}^{l} + t(U_{ij}^{l} - U_{ji}^{l})\pi_{k} \\
& + & (t-1)U_{k}^{l}\pi_{ij} + (t-1)(U_{ijk} - U_{jik})\pi^{l} + V_{i}^{l}f_{jk} - V_{j}^{l}f_{ik} - (V_{ij}^{l} - V_{ji}^{l})\pi_{k} + \delta_{k}^{l}\psi_{ij} - T_{ij}^{l}(\sigma_{k} + \psi_{k}) \\
& - & 2(\pi_{i}U_{ik} - \pi_{i}U_{ik})\sigma^{l} - 2V_{ij}\pi_{k}\sigma^{l},
\end{array} \tag{4.20}$$

where

Using the expression (2.11), the expression (4.20) becomes

$$R_{ijk}^{pm}{}^{l} = R_{ijk}^{l}{}^{l} + \delta_{i}^{l}{}^{m}{}_{ik} - \delta_{i}^{l}{}^{m}{}_{jk} + g_{ik}^{m}{}^{l}{}^{l}{}_{j} - g_{jk}^{m}{}^{l}{}^{l}{}^{l} + \delta_{k}^{l}\psi_{ij} - T_{ij}^{l}(\sigma_{k} + \psi_{k}) - 2(\pi_{j}U_{ik} - \pi_{i}U_{jk})\sigma^{l} - 2V_{ij}\pi_{k}\sigma^{l}.$$
 (4.22)

Theorem 4.3. In a Riemannian manifold (M, g), if 1-form $\psi, \alpha, \beta, \gamma$ are closed, then a volume curvature tensor of $\overset{m}{\nabla}$ is zero, namely,

$$P_{ij}^{m} = 0.$$
(4.23)

where $\overset{m}{P}_{ij} = \overset{m}{R}_{ijkl} g^{kl}$ is the volume curvature tensor of $\overset{m}{\nabla}$.

Proof. Contracting the indices k and l of the expression (4.22), then we have

$$P_{ij}^{m} = P_{ij}^{tm} + A_{ij}^{tm} - A_{ij}^{tm} + B_{ij}^{tm} - B_{ij}^{tm} + D_{ij}^{tm} - D_{ij}^{tm} D$$

On the one hand from the expression (4.21), we have

$$\begin{cases} \begin{array}{ll} m & m \\ a_{ij} - m \\ m & m \\ b_{ii} - b_{ii} \end{array} = \psi_{ij} + T_{ij}^{p}(\psi_{p} + \sigma_{p}), \\ \end{array}$$

Substituting this expression into the above expression, we obtain

$$\stackrel{m}{P}_{ij} = \stackrel{tm}{P}_{ij} + (n+1)\psi_{ij}.$$
 (4.24)

If a 1-form α , β and γ are of closed 1-form, then $\stackrel{tm}{P}_{ij} = 0$. And if 1-form ψ is closed then $\psi_{ij} = 0$. Hence from the expression (4.24), we obtain the expression (4.23).

Ackonowedement

The third author would like to thank Professors U. C. De and H. Li for their encouragement and help!

References

- [1] K. Chaubey and R. H. Ojha: On semi-symmetric non-metric connection, Filomat, 2012, 26(2): 269-275
- [2] S. S. CHERN, W. H. CHEN and K. S. LAM: Lectures on Differential Geometry, World Scientific Press, 2000
- [3] U. C. De, Y. L. Han and P. B. Zhao: A special type of semi-symmetric non-metric connection on a Riemannian manifold, Facta Universitatis, Series, Math and Informatics, 2016, 31(2): 529-541
- [4] U. C. De, P. Zhao, K. Mandal and Y. Han: Certain curvature conditions on P-Sasakian manifolds admitting a quarter-symmetric metric connection, Chinese Annals of Mathematics, Ser B, 2020, 41(1): 133-146
- [5] K. A. Dunn: Geometric model for scalar-tensor theories of gravitation, Tensor. N. S, 1975, 29, 214-216
- [6] S. Golab: On semi-symmetric and quarter-symmetric linear connections, Tensor. N. S. 1975, 29, 249-254
- [7] M. K. Dwivedi: A Quarter-symmetric connection in a Kenmotsu manifold, IEJG. 2011, 4(1): 115-124
- [8] A. FRIDMAN and A. Schouten: Uber die Geometric der halb-symmetrischen Übertragungen, Math. Zeitschrift. 1924, 21, 211-233
- [9] F. Fu, X. Yang and P. Zhao: Geometrical and physical characteristics of a class of conformal mappings, Journal of Geometry and Physics, 2012, 62(6): 1467-1479
- [10] Y. L. HAN, A. De and P. Zhao: On a semi-Quasi-Einstein Manifold, Journal of Geometry and Physics, 2020, 155, 3739
- [11] Y. L. HAN, T. Y. Ho and P. Zhao: Some invariants of quarter-symmetric metric connections under the projective transformation, Filomat, 2013, 27(4): 679-691
- [12] T. Y. Ho: On a semi-symmetric non-metric connection satisfying the Schur's theorem on a Riemannian manifold, arXiv 1212 4748
- [13] T. Y. Ho, J. H. An and C. G. An: Some properties of mutual connection of semi-symmetric metric connection and its dual connection in a Riemannian manifold, Acta Scientiarum Naturalium Universtatis Nankaiensts. 2013, 46(4): 1-8
- [14] T. Y. Ho, C. Y. Jen and Z. G. Jin: A semi-symmetric projective conformal connection satisfying the Schur's theorem on a Riemannian manifold, J. of Yanbian University (Natural Science), 2014, 40(4): 290-294
- [15] T. Y. Ho, C. Y. Jen and D. Z. Piao: A constant curvature of α -type (π , ω)-semi-symmetric non-metric connection in a Riemannian manifold. J. of Yanbian University (Natural Science), 2015, **41**(4), 275-278
- [16] V. G. IVANCEVIC, T. T. IVANCEVIC: Applied differential Geometry, World Scientific, (2007), 278-279
- [17] J. Li, G. He, and P. Zhao: On submanifolds in a Riemannian manifold with a semi-symmetric non-metric connection, Symmetry, 2017, 9, 112
- [18] E. S. Stepanova: Dual symmetric statistical manifolds, J. Math. Sci., 2007, 147: 6507-6509
- [19] I. Suhendro: A New semi-symmetric unified field theory of the classical fields of gravity and electromagnetism, Progress in physics, 2007, 4, 47-62
- [20] W. TANG, T. Y. Ho, F. Y. Fu and P. Zhao: On Generalized Quarter-symmetric metric recurrent connection, Filomat, 2018, 32(1): 207-215
- [21] W. Tang, P. Majhi, P. Zhao and U. C. De: Legendre curves on 3-dimensional Kenmotsu manifolds admitting semi-symmetric metric connection, Filomat, 2018, 32(10): 3651-3656
- [22] M. M. Tripathi: A new connection in a Riemannian manifold, IEJG, 2008, 1(1): 15-24
- [23] K. Yano: On semi-symmetric metric connection, Rev. Roum. Math. Pures et Appl., 1970,15, 1579-1586
- [24] K. Yano, J. Imai: Quarter-symmetric and their curvature tensors, Tensor. N. S, 1982, 13-18
- [25] D. Zhao, T. Y. Ho and J. H. An: Geometries for a mutual connection of semi-symmetric metric recurrent connections, Filomat, 2020, 34(13): 4367-4374
- [26] D. Zhao, C. Y. Jen and T. Y. Ho: On a Ricci quarter-symmetric metric recurrent connection and a projective Ricci quarter-symmetric metric recurrent connection in a Riemannian manifold, Filomat, 2020, 34(3): 795-806
- [27] D. Zhao, T. Y. Ho, K. Kwak and C. Jon: On quarter symmetric connections preserving geodesics, Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45: 3255-3276
- [28] D. Zhao and T. Y. Ho: Geometrical and Physical of W2-symmetric and -Recurrent manifolds, Filomat, 2022, 36(4): 1195-1202
- [29] P. Zhao, U. C. De, B. Unal and K. De: Sufficient conditions for a Pseudosymmetric spacetime to be a perfect fluid spacetime, International J. of Geometric Methods in Modern Physics, 2021, 18(13), 2150217
- [30] P. Zhao, H. Song and X. Yang: Some invariant properties of semi-symmetric metric recurrent connection and curvature tensor expressions, Chinese Quarterly J. of Math. 2004, 19(4): 355-361