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On the solutions of conformable stochastic differential equations

Ngo Ngoc Hung?, Nguyen Duc Phuong®*

®Faculty of Fundamental Science, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam

Abstract. In this study, we investigate the solution properties of conformable stochastic differential
equations, with a fractional order a € (1/2,1) in the context of spaces L9(Q, ¥, IP), g > 2. Under some
assumptions on the drift and diffusion terms, including Lipschitz continuity and essential boundedness,
we derive four main results: Firstly, we establish the existence and uniqueness of solutions. Secondly, we
show the continuous dependence of solutions on the initial values. Thirdly, we show that the solutions
possess Holder continuous regularity. Lastly, we demonstrate the continuous dependence of solutions on
the fractional order. To prove these results, we employ a variety of analytical techniques from stochastic

calculus and fractional analysis. In particular, we utilize the Gronwall inequality as well as the Burkholder-
Davis-Gundy inequality.

1. Introduction

Let (Q, ¥, P) be a complete probability space equipped with a natural filtration F = {¥¢},»0, which is an
increasing and right-continuous family of sub-c-algebras of #. Intuitively, #; represents the information

available up to time t. In this paper, we investigate the fractional Conformable stochastic differential
equations (SDEs) of order a € (1/2,1) given by the form:

DU = alt £0) + b, £0) W

where a,b : [0,T] Xx R" — R" are measurable functions, and W; is an n-dimensional standard Brownian
motion defined on the filtered probability space (Q3, 7, IF, IP).

Stochastic differential equations are powerful mathematical tools used to model systems affected by ran-
domness and uncertainty. These equations have become fundamental in various scientific and engineering
fields, with important applications as outlined below:

Finance: SDEs are extensively applied in financial modeling, particularly in option pricing and risk
management. The famous Black-Scholes model, a stochastic partial differential equation, is used to
evaluate the fair price of financial derivatives in uncertain markets [1].
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Physics and Engineering: In these fields, SDEs are used to describe systems influenced by random
fluctuations, such as diffusion processes, random vibrations, and stochastic resonance [2—4].

Control and Optimization: SDEs play a crucial role in optimal control problems under uncertainty.
They allow the design of control strategies that account for randomness and uncertain parameters in
dynamic systems [5].

Data Science and Machine Learning: In machine learning, especially in the stochastic gradient descent
method, SDEs help describe the evolution of model parameters updated based on random subsets of
data [6, 7].

The conformable derivative, a relatively recent concept in fractional calculus, offers a more intuitive and
simpler alternative to classical fractional derivatives such as Caputo or Riemann-Liouville [8]. One of its
key advantages is that it retains many familiar properties of the classical derivative, such as the product
rule, chain rule, integration by parts, and the exponential function [9]. These features make it easier to
apply traditional analytical techniques when solving differential equations.

Although the conformable derivative may not fully capture non-local effects or long-term memory
behaviors typical in some physical systems (e.g., viscoelasticity or anomalous diffusion), its simplicity
makes it suitable for many applications where such effects are negligible. As a result, it has gained
popularity in modeling physical and engineering systems with relatively local behavior.

In modern scientific research, randomness and noise are unavoidable in the modeling of real-world
systems. This has led to growing interest in stochastic modeling techniques such as stochastic differential
equations (SDEs) and stochastic partial differential equations (SPDEs). Recent works have addressed issues
such as existence, uniqueness, stability, and regularity of solutions under various frameworks [10-18].

Specifically, several authors have studied fractional SDEs under different definitions of fractional deriva-
tives. For instance, in [19], the authors established global existence and uniqueness of solutions and in-
vestigated the continuity of the solution with respect to the fractional order. In [20], the authors applied
techniques from stochastic analysis and fixed point theory to examine approximate and null controllability.

In [21], the authors focused on the asymptotic behavior of solutions to Caputo-type fractional SDEs
and demonstrated existence and uniqueness in £? spaces. However, the well-posedness and regularity of
solutions in L7 spaces for 4 > 2 remain less explored in the literature.

Therefore, the main goal of this paper is to fill this gap by establishing the existence, uniqueness, and
time-regularity of solutions to conformable stochastic differential equations in £ spaces for g > 2.

This paper is organized as follows: In Section 2, we provide some preliminaries, assumptions, and useful
results necessary for our analysis. In Section 3, we present our main results, including global existence
and uniqueness of solutions, continuous dependence on initial conditions, and regularity properties of the
solutions.

2. Preliminaries

Let X = (X1,Xp,...,X,) : Q — R” be a random vector. For g > 2 and ¢t > 0, we define the space
L9(Q) := L9Q, F;,P) as the set of all F;-measurable random variables such that the 4"-moment is finite.
The corresponding norm is given by

an E|X;/7

i=1

1/q
Xl £1) =

Definition 2.1 (Mild solution). Let £(0) = g € L7(Q, Fo,P) be a given initial condition. A stochastic process
&[0, T] = LIQ, F,IP) is said to be a mild solution to equation (1) if it is F-adapted and satisfies

t t
Ety=g+ fo 1 ta(n, &) dn + fo 1 tb(n, E(n) AW, (2)
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To ensure the well-posedness of the problem, we impose the following conditions on the drift and
diffusion coefficients:

Assumption 2.2 (Conditions on drift and diffusion). The functionsa,b : [0, TIXIR" — R" are measurable and
satisfy the following:

(A1) Lipschitz continuity: There exists a constant K > 0 such that for all t € [0, T] and &1, &, € R?,

lla(t, &1) — a(t, E)I1 + 1Ib(t, £1) = b(t, ) < Kl[E1 = &ol.

(A2) Essential boundedness: The drift and diffusion terms are essentially bounded at the origin, i.e.,

max qesssup |la(t,0)ll, esssupllb(t,0)]|} < B < 0.
t€[0,T] te[0,T]

Definition 2.3 (Conformable derivative [9]). Let f : [0,00) — IR be a function. The conformable derivative of
order a € (0,1) is defined by

f(t+et'™) = f(t)

€

t>0.

9f f(t) == lin(}

If f is a-differentiable on some interval (0,a), a > 0, and the limit lim;_o- 97 f(t) exists, we define J¢ f(0) :=
limtg,(y a?f(t)

Lemma 2.4 ([9D). If a function f : (a,00) — R is differentiable at a point t > 0, then its conformable derivative is
given by

Af(t) =t , ae(0,1).

df()
dt
We also recall a fundamental inequality that will be used in the analysis:

Lemma 2.5 (Gronwall’s inequality [22]). Let &, h, and k be continuous functions on [0, T], with h non-decreasing
and k(t) > 0 for all t € [0, T]. If

&(t) < h(t) + fo‘ k(mé(mdn, Vtel0,T],

then it holds that

t
£ < hB)exp ( [k dn)-

3. Main results

In this section, we present the main results on conformable stochastic differential equations (SDEs),
building on the Lipschitz continuity and essential boundedness conditions from Section 2. First, we prove
the well-posedness of solutions, ensuring their existence and uniqueness. Next, we explore the regularity
of solutions through Hélder continuity. Finally, we analyze the continuity of solutions with respect to the
fractional order, a key factor for applications in physics and finance.
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3.1. Well-posedness of Solutions
Theorem 3.1 (). Let us assume that the drift and the diffusion term satisfy Assumptions 2.2-A1 and A2. Given
initial value £(0) = g € L1(Q, F,P), integral equation (2) has a unique solution.

To prove this result, we use the fixed point theorem. For any £(0) = g € L(Q, 7, IP), we define an operator
PE() - L([0, T, L7(CY) — L=([0, T], L(Q))

where

t t
P&(t) =g+ fo 1 Da(n, Em))dn + fo 1 Vb, E(m))dW,,.

To prove this theorem, we use the following lemma.
Lemma 3.2 (Well-defined). Let g € L9(Q, Fo, IP), assume that E(t) € L*([0, T], L9(Q)) the operator

t f
PEW =g+ fo 1@ Da(n, E()dn + fo 1@, £m)AW, 3
is well-defined.

Proof. [Proof of Lemma 3.2]To prove this lemma as well as the following results, we need the following
inequality
llc + w1l < 277 (llxel| + [lyll")

where x, y belongs to a Banach space with norm || - ||.
For any t € [0, T], we have

IPEBNY, @) < 27 (910 ) + ” f @ Da(n, Em)dn + f @b, Em)dW,

Using the above inequality again, we obtain

£ (Q)>

1 2(g-1) (a-1)
IPEDI ) < 2791 07, + 297 f ot £y,

(4)

+22070) f @D, EAW,|

L1 (Q)

Let us consider the second term of the right side

L[l = S [ bracn ok

by Holder inequality, we derive
' e !
-
|| fo d a(mé(n»dnl\m

(f [n*ai(n, & )|d77)
n t (a=1)q -1
< n dn) ( ai(n, £()) qd'?)
) (f [ tn o

i=

g-1 3 !
= aq — T’i i=1 (f |a e 77))| d’])
T = f lla(n, E@I Yy 0ydn B
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Since the Lipschitz property of the drift term

lla(n, £()) — a(, Ol £s) < KIEM £1).

then it is easy to check that

lla(n, EN o) < KIEMI 21) + la(n, O)ll o)

Using essential boundedness in time for the drift (Assumption 2.2-A2), then

lla(n, E)ll 2o < KIEM 1) + B- (6)

Hence, (5) and (6) jointly imply that

||f Dy, zya], < T2

,U(Q) aq—1
For the third term, we have

|| fo eV, s, = Y E ( fo b, an»dwq)q.
i=1

T

T (KT +TBY). (7)

<([0,T1,£7(Q))

According to Burkholder-Davis-Gundy inequalities, there exists a constant C; which depend on g such that

|| f “Dun, &AW, < qZ ( fo ttzm1>|b,-<n,a<n)>|2dw)2.

It’s easy to see that
4o — 4 . (9-2)Q2a-2)

=2a-2,
9 q
we get
I "

n , ng
<G ) E ( fo Uz(“_l)(bi(n,é(n))(qdn) ( fo ,72<a—1>d,7)

i=1

TZa—l %2 st

=G (Za - 1) fo DN, EMIy0ydn ©

Due to the assumption of Lipschitz of diffusion term

1b(n, Em)) = b(n, 0)ll 1@y < KIEMI 210

this leads to

16(1, El 1) < KIEMIza + 116(1, 0|l 21
< KllEMl ) + B.

Then, the following estimation also holds

b, £ 0 < 207 (KNI g + BY)

-1 q
<277 (KIIE] =qom,.L10) t BY). ©)
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Combine (8) with (9), we obtain

q
L1(Q)

g+4(a-1)

<o () T e (K7l +BY) (10)
- \2a-1 =([0,T].£7(C) :

|| fo b, )W,

Substitute (7) and (10) into (4), we have

q -1 q
IPEDN, cy <27 N9
g-1)2%6-D o

Ui s (KITIIEN]

o + TBY)

*([0,T],.£7(€2)

a1 q+4(a-1)
T a—

2
- 3@-1) q
tG (Za - 1) 220D (KNl o, 21y *+ BY):

The last inequality imply that IIIPE(t)IIqﬁ @ < . The proof of Lemma is finished. [

Proof. [Proof of Theorem 3.1] Let us start with

t t
P& (f) — PE(H) = fo 1 Da(n, E1(n) — a(n, E(m))dn + fo N D(b(n, E1() = b, E2(m))dW,,
this leads to

t
qul(”fo 1 Va(n, &1(n)) — a(n, E2(n))dn

q
L1(Q)

q
L1(Q)

t
+| fo 1 b, E1n) - b, 2w ). (1)

We will give the proof in two steps:

Step 1. For the first term, we have

q
L1(Q)

| [ 5t 0 - atr x|

t
= Z E (f n(“_l)‘ai(n, &1(n) —ai(n, 52(77))|d77)
0

i=1

q
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The Holder inequality leads to

L1(Q)

(a=1)(g-2 -1
<Z ( f NP n) ( fo nz(“”|ai(n,51(n))—ai(n,éz(n)))qdn)

Tlag—2a+1)(g-1)" -1

| [ et s - atn xcoman]|.

< @ =22+ 1T ;‘ E (j; P Dlai(n, &1(n)) - ain, 52(72)))qd’7)

T(ozq—204+1)(q—1)q‘1
< -
T (g —2a+ 1)1

'1"(tm—20z+1)(q—1)’7’1

t
A 2(a-1)
K 2ar j(; P INE M) = EMI g dn 1

Step 2. For the second term, we have

t
fo PP Da(n, 1) - a(, S,

Hf Db, &) = b, SN

L1(Q)
q

=Y ([ e e - aan,
P

According to Burkholder-Davis—-Gundy inequalities, there exists a constant C; which depend on g such
that

| [ neom. o - excomans |

L1(Q)
q
2

<q Z E ( fo Dby, &) — biCn, Ex () o
i=1

It’s easy to see that
4o —4 N g-2)2a-2)

=2a -2,
q q
applying Holder inequality, we get
| [ =m0 - ven cxcmam,

n t Z
<G ) E ( fo P Dbin, & () - bin, éz(n))lqdn) ( fo nz(“‘”dn)

i=1

TZa—l L;Z
<G ( — 1) fo Db, £1(m) = by, 2D,
-2

<xic, () [ PE ) - S (13)
- P\ 2a-1 0 oo

By letting the constant

q-2

'1"((ch—25)(+1)(q—1)’7’1 T20-1\7
L KC
(ag —2a + 1)1 f’(za—1)

7
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and combines (11), (12), and (13) we obtain

t
IPE (1) ~ P&, ) < C fo P DNE ) =~ E2)I (14)

To conclude that PE(t) a contraction mapping, we must consider using another norm instead of the
II - ll 3) norm. To overcome this, we realize that

t 2a—-1
2a-1) 20-1 exp(tt™)
fo Y exp (o) dn < o

So, we need to transform (14) into its equivalent form

exp(T™*)dn

ft 722(0(*1) “51 (n) - EZ(n)“q_Cq(Q)
0

P& () = P&y exp(T )

1
exp(tt?e-1) - exp(tt2aT) (15
On the space L*([0, T], £L7(€)), we define a weighted norm || - || as following
[ 50Nz | £ e L0, T], L1(Q 16
L([0,T1,£9(Q) = efes[os;lp oxp(eET) | € L=([0, T1, L7(€2)). (16)

The norm || - [|r~([0,77,£7()) and the weight norm || - ||~ 0,11,£9(q)) are equivalent. So the space L*([0, T], £L7(€))
is also Banach space.
The inequality (15) with the new norm

t
2(a-1) 20-1
IPE1(t) = PE(DI] j()"? Hexp(tn™)dn
< Cliér = Eallf ooy, 1)

_C q
= Qa1 €1 = Eallpee o7y, 0000

exp(tt2e-1) exp(tt2e-1)

Thus

C
P&, — P&l <|———] &1 - &l :
IPEr — P&l (0,11, £9() (T(Za— 1)) I€1 = Eallz=qo,m1,£9(2)

By choosing the constant 7 such that
Cc27-!
Z Qa-1y
it follows that the operator IP¢ is a contractive mapping on L°([0, T], £L7(€2)) space. By applying Banach
fixed point theorem, there exists a unique fixed point of this mapping in L*([0, T], £L7(Q2)) space. O

For a fixed fractional order o € (1/2,1), let g,9¢ € L9(Q, Fo,P), we investigate the continuity of input
data by considering two problems

e dwt
Cpag (t) a(t, &) + b(t, £(1) 3 (17)
£0) =
and
e dw,
D E(t) a(t, &(t)) + b(t, £(1) =3 (18)
&0) =
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We call &,(t) and & (t) respectively the solutions of (17) and (18), which have the following form

t t

&) =g+ fo 1eVa(, &, ()dn + fo 1 Db, &, ()W,
t t

e =g+ fo 1 Va(n, &g (m)dn + fo 197Vb(1, Ege(m)dW,,

Theorem 3.3. Given fractional order a € (1/2,1). For any the initial data g,g¢ € L9(Q, Fo,P), there exist a
constant

-2

T(aq-2a+1)(g-1)" T20-1 \ 7

= Kq(—71 + chp CY ,
ag—2a+ 1)1 200 —1

such that

q -1 e exp(t* ™)
”5g(t) - éye(t)”_iq(g) < 211 ”g - g ||Lq(Q,'7’-0,]P) exp (Cm

Proof. [Proof of Theorem 3.3] First, we have
155 = £SO 0

£
<27(lg - e+ | fo 1 atn, &9(m) = al, g ()dn

q

t
o [ 00 ) b e[,
then

I1€5(t) = E5ON

q

t
fo n“(a(n, &) - a(n, Exm))dn

-1 q 2(3-1
<2179 - gelqu(Q,‘ﬁJ,]P) + 22(4-1)

L9(Q)
t q
#2000 | [ 000, £, 0) = b, & (DDA (19)
0 L1(Q)
The Holder inequality leads to
e i
| [ et eyt = aton, e ome,
Y ] o 2(a-1) q
SZIE n ot dn n lai(n, £,n)) — ai(n, & )|y
i=1 0 0
Tlag-2a+1)g-1)1" t
< " " V'E 2a-1)| —a (l’d
< G2 Zl ( fo 7 Dai(n, £9m) = i, £ ()| dn
T(HQ*ZLY+1)(17*1)‘771 t )
0 (a-1) _ q
< (@ —2a+ 1y fo 17 lla(n, E4(m) = a(, Ege M)y )N
T(aq—ZUzH)(q—l)’7‘1 t
i — 2(a-1) —_E (I
= (aq_za + 1)q—1 ](; n ||5g(77) ‘59 (TI)Hg(Q)dTY- (20)
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Applying Burkholder-Davis—Gundy and Hoélder inequality

Hf “Db(iy, £(m) ~ b, £ (M)W,

Qe
q-2

t 2
<) ( fo o, &) — bit, ége(n))(qdn) ( fo nz(“)om)
i=1

q-2

T2a71 Fa
= CP (20[ _ 1) f 2e-1) ”b(n/ Eg(n)) - b(T], ég (n))||£q(g)

c10e, ()T [ e e i - £ 1)
= P\oq 1 077 g\ g\l y(g)

By letting the constant

N o

(ag—2a+1)(g-1)7"! 2a-1\"7

(ocq 2a + 1)7-1
and combines (19), (20), and (21) we obtain

IE5(E) = Ege Dy < 277119 = N0y,

+C f 20D, (1) = Ege DIy 7
0
We derive

1€ = & Ol _ 2719 = 9z m
eXp(tZa—l) - exp(t2a—1)

q
C ' 2(a—1)”£y(n) ~ S Ml 2a-1
T exp(t**~1) jo‘ 1 exp(**~) eXpUrT)dn

Applying Gronwall inequality, we have

1€4(E) = Ege I 217 Ylg - g4I, t
g g\ L) < L9(Q,Fo,P) Xp (C f nz(aq) exp(t2“1)dr])
0

exp(t2a—1) - exp(t2a—1)
2071 g- g€||7£ QT D) o [c exp(tZa—l)
exp(t2¢-1) a-1)

Thus

~ . ex (tZa—l)
1€5(5) = Ege Bl < 277119 = 9Ny, ) ©XP (Cﬁ)

The proof is completed. O

3.2. Regularity of solutions

Theorem 3.4 (Holder continuous regularity). Suppose Assumption 2.2-A1 and A2 hold. Given the initial value
g € L1Q, Fo,P), and fractional order o € (1/2,1) then

IE(E) = EGIYy ) S L(E=9)*2, >,

where L is a constant determined by

_, Ha-DTE Gy
L = 1 (K “é“Loo ([0,T],L7(€2)) +Bq)q ( (qa — 1)‘]71 + (2a — 1);) '
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Proof. [ Proof of Theorem 3.4]From

f t
ém—a@=jVW*wmamMn+jVﬁ“wmammml

S S

we derive

q
“E(t) - é(s)”iq(g) S2q71

jVﬁ”umamMn

L1(Q)
q
+ 2071

f
fVﬂ”Mmamqu

S

L1(Q)

Step 1. Let us consider

”f Datr, s, £1Q)

q
= a_ll', d)
Z;E([“ ai(n, E(n)|dn

Using the Holder inequality, we derive

”f Dty £yt £1(0)
g -1
< Z]E(f 77(1:7*1) dr])q (ft |ﬂi(77,'5(77))‘qd77)
([ an] ([ oo i),
with note

t (a=1)q a1 q—l ga—1 ga-1 4-1
(fanl d”) :(qa—l(t S ))

: qqa_—ll (t =",
we derive
(a-1)
|| f a(n, £G)dn| Q)
_(g-1)1" T3 q
= a1t = (KN o 21 + B)-

Step 2. Using Burkholder-Davis-Gundy and Holder inequality, we obtain

L9(Q)

Wf Dy, £y

t 2
<C, ( fo Do, Em|[} )( fo nz(“‘”drz) .

8041

(22)

(23)
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Using Assumption 2.2, we obtain

| [ ot amam

L9(Q)

t
2(a—
Cy (KNENT o 0,11, 2000 + Bq)( fo U ”dn)

(2a-1)q

+Bq)(t—s) 2

q

CP
< ——— (K7L .
(2a - 1)% ( L=([0,T],£9(Q2))

This together with (22), and (23) implies that
q
I8 — EGM T

1) 1T2 zv 1)q
- 1(11— - K71&N17 q
2 e ¢ 9 (Kl o1y 1y + B)
C a1y
-1 4 q
2 (Qa - 1) (Kq||‘5||L°°<[0,T1,m(Q>> +B )(t -9 T
By letting

e L(g-1)7"T3 C, i
— q q q
L =27 (KNI 01y e *+ B7) ( T )

then
IE(E) = EGIFYy ) < L(E—9)*2
The proof is complete. [J

3.3. Continuity of solutions with respect to fractional order
Given the initial data g € £9(€2). For any fractional order «, a’ € (1/2,1), we consider two problems

CD“é(t) = a(t, £(1) + b(t, (1) 4 (24)
£0) =

and
cpe é(t) = a(t, (1)) + b(t, &(£) (25)
£0) =

We call £.(f) and & (t) respectively the solutions of (24) and (25), which have the following form
t
&) =g+ f @Da(n, Ea(n))dn + f 1 Db(n, Ea(n)dW,,

Lw®) =g+ f N Va(n, Ex(m)dn + f Db, Ea (M)AW,,
0 0
Theorem 3.5. Suppose Assumption 2.2-A1 and A2 hold. Given fractional orders a, &’ € (1/2,1). For any the initial

value g € L7(Q, Fo,P), Problem (1) continuous dependence on the fractional order, i.e

lim [|&, - =0,
a—a

Ear ||L°"([0 T1,L(Q))

where T(2a — 1) > C2771,
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Proof. [Proof of Theorem 3.5]We have
t
Ealt) = Ew(t) = f (7D = 1) a(y, £ (n)dn
0
¢
[ et a0 = ot £ O

t
N fo (1D = DY b(n, & () AW,

t
+ fo NV, Ea(m) = b(, Ex (M)W,

it follows that

£
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t
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t
2g-2 (a-1) _ (a -1)
+2 ﬁ(n b0, S AW, ||,
t
29-2 (a-1) _ ,
+2 Ln (b1, Ea(n)) = b1, £ e (26)

We divide it into three steps:

Step 1. By Holder inequality, we get

| [ f @) _ @ Doy, &(m))dn| o

(f|W“ Wﬂwwwwﬂ
1

q-1
(a=1) _ ,(@-1) 91 . q
JQ£@ 1;)dﬂ(memwﬂ

i=

q g-1
(f(; (n(a 1 _ n(a 1) - 1d17) f lla(n, 5(17))”.0(0) (27)

Using Holder inequality, we find that

! , % q-1 t
(-]
0 0
72 t

i

0

Using Lipschitz property and essential boundedness in time for the drift term (Assumption 2.2-A1, A2),
then

=

IN
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q-2

, 2 % t 2
rretof([

r_ 2 2
e — | dn) : (28)

<
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This together with (28) and (27), we obtain

| [ = e e[,

q
2 2
1hg-1 (a=1) _ (a’~1) q
=T (fo |17 i ' dn) (K71l =(10,T].£1(C) +BY).

Step 2. Applying Burkhélder-Davis—-Gundy and Hoélder inequality
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t N
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Using Assumption 2.2, we obtain
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q
2 2
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Step 3. Do the same as in the proof of Theorem 3.1, we have
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Taking (26), (29), (30), and (31) into account, we obtain
I€a(®) = Ear Dl

t
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we can infer
q
“éa(t) - éa’(t)”[:q(g)
eXp(TfZ“_l )

_ q
ft nZ(a—l) Héa(n) éa’ (n)”.ﬂl(ﬂ)
0 exp(t**!)
exp(tt2-1)

t

A —
+ 2257 (KEN o g0 17 29 + B) ( f
0

exp(T**)dn
<277C

q
’_ 2 2
e _ pla 1)‘ dﬂ)

q
’_ 2 2
e _ pla 1)‘ dTI)

t
2q-2 q
+C,p2% (quléll smo0) T Bq) (fo

and from the definition weighted norm (16), we have
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By bring the first term of the right side to the left side, we get
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this implies the theorem has been proven. [

8045



N. N. Hung, N. D. Phuong / Filomat 39:23 (2025), 8031-8046 8046

References

(1]
[2]
[3]
[4]

[5]
(6]

[7]
(8]

[9]
[10]

[11]

[12]
[13]

[14]
[15]
[16]
[17]
[18]
[19]

[20]
[21]

[22]

F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ. 81(3) (1973), 637-654.

E. Planten, Stochastic differential equations and diffusion processes, Biometrical J. 32(7) (1990), 896-896.

Y. Wang, Y. Wang, X. Han, P. E. Kloeden, A two-dimensional stochastic fractional non-local diffusion lattice model with delays, Stoch.
Dyn. 22(8) (2022), 22400329.

G. A. Pavliotis, Stochastic processes and applications: Diffusion processes, the Fokker-Planck and Langevin equations, Springer, New
York, 2014.

L. H. Duc, P. Kloeden, Numerical attractors for rough differential equations, SIAM J. Numer. Anal. 61(5) (2023), 2381-2407.

Z. Wang, ]. Sirignano, Continuous-time stochastic gradient descent for optimizing over the stationary distribution of stochastic differential
equations, Math. Finance 34(2) (2023), 348—424.

J. Sirignano, K. Spiliopoulos, Stochastic gradient descent in continuous time, SLAM J. Finan. Math. 8(1) (2017), 933-961.

S. K. Panda, Rdssler attractor-based numerical solution of the fractal-fractional operator: A fixed point approach, Lett. Nonlinear Anal.
Appl. 3(1) (2025), 48-64.

R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65-70.
P. T. Huong, P. E. Kloeden, D. T. Son, Well-posedness and regularity for solutions of Caputo stochastic fractional differential equations in
L? spaces, Stoch. Anal. Appl. 41(1) (2021), 1-15.

Y. Duan, Y. Jiang, Y. Wei, J. Zhou, The solution of stochastic evolution equation with the fractional derivative, Phys. Scr. 99(2) (2024),
025219.

X. Su, M. Li, The regularity of fractional stochastic evolution equations in Hilbert space, Stoch. Anal. Appl. 36(4) (2018), 63-653.

M. Boulekbache, A. Salim, Study of a similarity boundary layer equation by using the shooting method, Lett. Nonlinear Anal. Appl.
3(2) (2025), 126-134.

M. Yiicel, O. S. Mukhtarov, A new algorithm for solving two-linked boundary value problems with impulsive conditions, TWMS ]. Pure
Appl. Math. 15(2) (2024), 174-182.

Y. Awad, H. Fakih, Existence and uniqueness results for a two-point nonlinear boundary value problem of Caputo fractional differential
equations of variable order, TWMS J. Appl. Eng. Math. 14(3) (2024), 1068-1084.

C. Park, H. Rezaei, M. H. Derakhshan, An effective method for solving the multi time-fractional telegraph equation of distributed order
based on the fractional order Gegenbauer wavelet, TWMS J. Appl. Eng. Math. 24(1) (2025), 16-37.

E. Karapinar, R. Sevinik-Adigtizel, U. Aksoy, I. M. Erhan, A new approach to the existence and uniqueness of solutions for a class of
nonlinear q-fractional boundary value problems, Appl. Comput. Math. (2025), 235-249.

M. A. Sadygov, H. S. Akhundov, Optimal control problem described by the Goursat-Darboux equations, TWMS ]. Appl. Eng. Math.
24(1) (2025), 146-161.

W. Wang, S. Cheng, Z. Guo, X. Yan, A note on the continuity for Caputo fractional stochastic differential equations, Chaos 30(7) (2020),
071105.

H. M. Ahmed, Conformable fractional stochastic differential equations with control function, Systems Control Lett. 158 (2021), 105062.
Y. Wang, J. Xu, P. E. Kloeden, Asymptotic behavior of stochastic lattice systems with a Caputo fractional time derivative, Nonlinear Anal.
Theory Methods Appl. 135 (2016), 205-222.

C. Corduneanu, Principles of differential and integral equations, (2nd edition), Allyn and Bacon, New York, 1971.



