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Spectra of some complete bipartite signed graphs
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Abstract. In this paper, we determine the Laplacian spectrum and the net Laplacian spectrum of a
complete bipartite signed graph whenever its negative edges induce either a matching or a complete
bipartite subgraph. Moreover, we deliver the spectrum, the Laplacian spectrum and the net Laplacian
characteristic polynomial whenever negative edges induce a double star tree.

1. Introduction

A signed graph Y. is the ordered pair (G, 0), where G = (V, E) is a finite simple undirected graph without
loops or multiple edges, called the underlying graph, and o: E(G) — {+1, -1} is a sign function or a signature
of X.

The adjacency matrix A(X) = (a;;) of L is the n X n matrix such that a;; = o(ij) if i and j are adjacent, and 0
otherwise. The Laplacian matrix of L is defined as L(X) = D(X) — A(Z), where D(X) is the diagonal matrix of
vertex degrees in . To arrive at an other matrix associated with ¥, we need the notion of a net degree. For
a fixed vertex of X, the net degree is the difference between the number of positive edges and the number
of negative edges incident with this vertex. Accordingly, D*(X) is the diagonal matrix of net degrees and
the net Laplacian matrix N(Z) of L is obtained by replacing D(X) with D*(X) in the defining equality for the
Laplacian matrix.

We write ®y;(x) and Spec(M) to denote the characteristic polynomial and the spectrum of a square matrix
M, respectively. In particular, if M is the adjacency matrix of a signed graph X, this notation is simplified
to @y (x) and Spec(X). For convenience, we will write Wy (x) and W5 (x) for the characteristic polynomial of
the Laplacian matrix and the net Laplacian matrix of L, respectively, as well as LSpec(X) and NSpec(X) for
the corresponding spectrum. The spectrum of any matrix is considered as a multiset, say {a;"l,a;"z, ) },
in which an exponent denotes the multiplicity (or the repetition) of the corresponding eigenvalue.

In contrast to the former two matrices, the net Laplacian is less studied. It can be considered as a
counterpart to the standard Laplacian matrix of an ordinary graph; moreover, in case of graphs these
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matrices coincide. Although it appears sporadically in earlier publications, it is known under the given
name since 2020 [10]. Observe that 0 belongs to the net Laplacian spectrum of every signed graph; an
associated eigenvector is the all-1 vector. Other spectral properties and relationships with the standard
Laplacian can be found in [4, 8]. A relevance in control theory has been recognized in [3, 9]. Some spectral
properties and relations with other graph matrices are given in [8, 11]. In [4] the net Laplacian spectrum of
complete signed graphs is examined and signed graphs with exactly two distinct net Laplacian eigenvalues
are characterized.

In recent years, the study of spectra of signed graphs has garnered growing attention from researchers.
In[1], Akbarietal. determined the spectrum of complete signed graphs and complete bipartite signed graphs
whenever negative edges form a matching. More recently, Pirzada et al. [5], determined the spectrum of
complete bipartite signed graphs whose negative edges induce either a complete bipartite subgraph, or a
regular subgraph, or a path. For similar results on signed graphs, we refer the reader to [6, 7, 9, 10, 12].

The results of this paper mostly follow the line of [1] and [5]. To announce them, we fix X to a complete
bipartite signed graph. In what follows, we compute the Laplacian spectrum and the net Laplacian spectrum
of ~ whenever its negative edges induce either a matching or a complete bipartite subgraph. In addition,
we establish the spectrum, the Laplacian spectrum and the net Laplacian characteristic polynomial of X
whenever negative edges induce a double star, where a double star is defined as a tree of diameter three.

Section 2 is preparatory. In particular, it contains a specified notation used in this paper. Our contribution
is reported in Sections 3 and 4. Precisely, the former section deals with the cases in which negative edges
induce either a matching or a complete bipartite graph, and the latter section deals with the remaining case
when negative edges induce a double star. Short concluding remarks are separated in Section 5.

2. Preliminaries

We write I, to denote the p X p identity matrix, and J,x, (or ], if p = g) for the p X g all-1 matrix. Also, O
denotes the all-0 matrix and its size is given in the subscript when required. Following the same line, we
denote the all-1 (resp. all-0) column vector of size p by j, (0,).

In what follows, we will frequently deal with a complete graph K, ; with p vertices in one colour class
and g vertices in the other colour class. In this context, we assume that p < g holds. A subgraph induced
by a matching with ¢ edges is denoted by M;. A double star Dy, , is obtained by taking the stars K, and
Kk, and inserting an edge between the vertex of degree k; in the first star and the vertex of degree k; in the
second one.

The following notation can be seen as a convention for the sign function adapted to this paper. We have
said that a signed graph is an ordered pair (G, o), where G is the corresponding underlying graph. In this
context, if H is a subgraph of G, then we write (G, H™) to denote the signed graph underlined by G whose
edge is negative if and only if it belongs to H. According to the previous notation, (K,,, M;) denotes a
signed graph underlined by K, with exactly t independent negative edges, along with t < p.

We proceed with some known results. Let M be an n X n matrix blocked as:

My My -+ My
My My -+ My
M=] . . P
My Mp - My

where M;; is an n; X nj matrix, for1 <i,j < t,andn = Zle n;. If bj; denotes the average row sum of M;;, then
Q = (bjj) is called the quotient matrix of M. If, in addition, M;; has a constant row sum, then Q is called the
equitable quotient matrix of M. The following result is a part of a folklore.

Theorem 2.1 ([13, Theorem 2.3]). Let Q be the equitable quotient matrix of M. Then Spec(Q) C Spec(M).

The next result is concerned with the determinant of a 2 X 2 block matrix.
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Lemma 2.2 (Schur complement formula, [2, Lemma 2.2]). Let My, My, M3, My be the p X p,p X q,9 X p, and
q X q matrices, with My and My being invertible. Then

det (%; ﬁj) = det(M;) det(My — MsM;~'M,) = det(My) det(M; — MoMy~'Ms).

We prove a lemma, which will be used throughout the paper without explicit mention.

Lemma 2.3. Let P and Q be non zero polynomials in a single variable of degree at most n. If, for a real x, P(x) # nQ(x),
then the matrix P(x)I,, — Q(x)], is invertible and

Lo, QW
P(x) ~ P(x)(P(x) — nQ(x))
Proof. The eigenvalues of P(x)I, — Q(x)], are P(x) with multiplicity n — 1 and P(x) — nQ(x). Consequently,

det (P(x)I,, - Q(x)]n) = (P(x))n_l(P(x) - nQ(x)) # 0, which means that P(x)I, — Q(x)], is invertible. Next, we
compute

(PEIL - Q@) = T

I, QW) oW QY
(P@L = QW) 55 * Fyers —naey™) =~ P "~ FPR) =m0y "
oW . QW . QWP®-7Qw), - QW, QW,
P -na@” =T @t PP —nQm) = T eyt Py =

which completes the proof. 0O

3. Laplacian and net Laplacian spectrum of (Kj,5, M) and (K},4, K7)

We first deal with complete bipartite signed graphs L whose negative edges induce a matching. The
latter situation is considered in the forthcoming subsection.

3.1. Case L = (K, 4, My)

If U, = {ug,uz,...,uy} and V,; = {v1,0,...,7,} are colour classes of K, 4, then without loss of generality
we set M; = {uq01, upvy, ..., U0}

We first compute the Laplacian spectrum.

Theorem 3.1. Let & = (K, 5, M;) be a complete bipartite signed graph whose negative edges form a matching M;.
The Laplacian spectrum of X consists of
(i) p with multiplicity g —t -1,
(ii) q with multiplicity p —t -1,
(iii) %(p +q++(g-p?+ 16) with multiplicity t — 1 and
(iv) %(p +q++@G-p?+ 4ai), i € {1,2}, where ay and a, are the roots of the quadratic equation (in x): (x — 4 +
G- —(p -t —tq -2 -t =0.

Proof. With a suitable labelling of the vertices of X, its adjacency matrix is

O, B T=2L oo
A =[5 pxq), where By, = ( ! f @0 |
®) (BqTXp Oy T\ Tt Ji—txg-)

The diagonal matrix of vertex degrees is

_[ 9 Opxg
D(Z)_(OW rly |
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Therefore, for the corresponding Laplacian characteristic polynomial, we find

BB

Wy (x) = det ((xB—;qu)Ip (xB_p;q)Iq) = det ((x - P)Iq) det ((x -l - . ;Xp)
= (v = p)" det (= P)(x = )l = ByxgB)
= (r— )Py, (5= P& — ). &)
The matrix ByxBj,, is given by

Ji =2I:  Jixg-t) ) (]t =2l  Jixp-t) )

By, BT, =
Pz (hpt)xt Jo-ox@-n)\Ja-oxt - Jq-nx-t

_ (4It -@-9 (@G- 2)]t><(p—t))
(q - 2)](p—t)><t q]p—t !
and therefore its characteristic polynomial is
-+ @E-9: 2- q)]tx(p—t))
2- Q)I(p—t)xt XIp—t - EIIp—t
= det ((x — DL+ @ =) — (@ = 2 Jixpn (XLt — QIp—t)ilj(p—t)xt)
x T x = (p — 1))

CDB BT (X) = det(

PXq=gxp

I,_ -
= det ((x — D+ @ -9 —(q- 2)2]tx(p—t)(p7t + #;}t_t)q))](p—t)xt)

X X7 x = (p - 1)g)
= det((x - 9L + 4 - )i - (9 - 2%(p - f)(i + #g_ﬂﬂq))ﬁ)
XX (x — (p - t)g)

= (- (v 4+ ) - - 27— 0 + #p_—t)tm)))

x = (p - 1))
= - 4 (- 4+ @ - Hx - (p - D) - Ha - 27 (p - D),
and the result follows by substituting in (1). O

Remark 3.2. For p = q in the previous theorem, the multiplicity of the Laplacian eigenvalue p is the sum of the
multiplicities given in items (i) and (ii), and similarly for other possible matchings. This remark refers to the
forthcoming results, as well.

Theorem 3.1 generalizes the result of [1] where the case p = g is considered. We also observe that, by
setting t = p = g, we obtain

LSpec(Kyy, M;) = {p = A+ plp =4, (£ 277"}
We proceed with the net Laplacian spectrum.

Theorem 3.3. Let & = (K, 4, M) be a complete bipartite signed graph whose negative edges form a matching M;.
The net Laplacian spectrum of X consists of

(i) 0 with multiplicity 1,
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(ii) p with multiplicity q —t -1,
(iii) q with multiplicity p —t -1,
(iv) %(p +g—-4+\(g-p)P+ 16) with multiplicity t — 1 and
(v) the roots of the cubic equation (x +2 — p)(x2 —-(p+q)x+pg—-(p-tH)(g- t)) -2- q)(x2 -(p+qx+pg—(p-
t)(q—t)+(2—P)(x—p—q)—t(p—t))—t(q—t)(x—p—q+2)—(t—2)2(x—P—t7) —Hp—-bx+tp(p—-1) = 0.

Proof. If the vertex labellings are consistent with the proof of the previous theorem, then the diagonal matrix
of net degrees is

D*(X) = diag ((q = 211, g1, (p — 2L, ply-1).

Accordingly, the net Laplacian matrix is

(q - 2); @) 2 =] =Jix@-b
@ gl —]( —t)xt —]( —t)x(q—t)
NI = p p p q .
(%) 21y - J; —]tx(p—t) (r -2 O
~Ja-oxt  ~Jg-nxp-) o Plo-t

For the corresponding characteristic polynomial, we find

(x—q+2); @) Ji = 2I Jix(g-1
+ @ (x = lpt Jp—-tyxt Jo-nx@—t)
W (x) = det P v p=pxtat |
() € Ji = 2L Jixp—t) (x=p+2)
Jaq-nxt Ja-xp-n o (x =)
By performing row operations R; — I’x%q;)&; — Ry, Ry — ]“’%;””Rzl — R, and using Lemma 2.2, we obtain
4t (x—qg+2); - %]t _(Z::,)]tx(p—t) Ji = 2I;
Pi(x) = (x - p) det —(Z:;) Jo—txt (x =)t — (Z—:;) Jp—t Jo—-txt
Je — 21 Jixp-t) (x—p+2)
q—t t
=(x—p) (x+2—p)
— —2I; 2 _ _
(x—qg+2);— %]t - —(£+22£;), —%]tx(p—t) - —X(izz,)p]tx(p—t)
xdet| " (--2) Lo — (it 1 ’
= J-oxt = sy Jp-tyxt (x =g, — (g + 25 -t

where the second equality is obtained by the application of R; — %Rg — Ry, Ry — i(fT’:;Rg — R, and
Lemma 2.2. Solving further, we obtain

Pi(x) = (x - p)‘H(x +2- p)f det ((x — s — (Z:; + o ; — p)]p,t)

(g-1 (Je =2L)* (q-t t-2
xdet((x—q+2)1t— x—p]t_ X+2-p _(x—p+x+2—P

)]tx(p—t)
X ((x - q)Ip—t - (JIZ :; + X+ ; — p)]p—t)_l(z%; + %)](p—t)xt)

= (x - p)q_t_l(x - q)p_t_l((x +2-q)(x+2-p) - 4)t_10¢(x)(x +2-g- %

_up—o«q—ﬂu+z—p>+a—2Xx—mf( 1
(= PP+ 2 pP = pa)

1 (t—2)?
=00 - 06+ 2-p)+ )= )

(tx—pp-b
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where for brevity, we write a(x) for (x —g)(x —p)x+2-p) - (p -G —-H)(x +2 —p) — t(p — t)(x — p). The
previous equality transforms to

Wi = (x-p) (x-q) (@+2-pa+2-p)-4) (k+2-px-p)
— g = B)((x— = p)x+2=p) = (p = (g = H(x = p +2) — Hp — )(x — p))
—(t=2*((x ==’ = (p =g —H&x = p)) ~ tp = DG~ (x —p +2)
= 2t(p - t)(t - 2)(q - H(x —p))

t—

= (x-p) (x—q) (a2 +2-p)-4) (@+2-0(tpp-D
—Hp—Dx+ (+2-p)(P — P+ +pg—(p-Bg—1)) - Hq—1)
X (= (p+q-2x+ (-2 - tp—H) = (t=2*(x* = (p+ g)x +pq
—(p=tg-bH)-2tp - )t -2)(q - 1)

=(x-s(pra-a+ Ja-pr+16) (- 2(p+g-4- ylg-pr+16)”
x(x=p) T (x=q) " x(x+2-p)(E =+ x+pr—p-HG-1)
Q- +rPr+pa—(p-HE@-H+Q-plx-p-q) —tp-1)
—Hg-Hx—p-q+2) = (t=2Px—p—q) - tp—thx + tp(p - 1)),

and the proof is completed. [

In a particular case, we have

NSpec(K,,,, My) = {0, (p = 4y, p~", 2p - 4}.

We illustrate the previous results in an example.

Example 3.4. Consider the complete bipartite signed graph (K3 4, M) depicted in Figure 1. By plugging (p,q,t) =
(4,3,2) in Theorem 3.1(iv) (resp. Theorem 3.3(v)), the quadratic (cubic) polynomial reduces to x> —8x +8 (x> —10x> +
27x — 14), and its roots are 4 + 22 (0.677, 3.642, 5.681). Thus, we have

LSpec(Kz 4, M;) = {%(7 + V17 +8V2), %(7 + V17 -812), %(7 + V17),3}

and

1
NSpec(K34,M;) = {0, EE V17),0.677,3,3.642,5.681}.

Figure 1: The signed graph (K34, M3 ). Negative edges are dashed.
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3.2. Case ¥ = (K, 4, K,)

We assume that ¥ < p,s < g, along with the previous setting p < g. The forthcoming results extend the
result of [5], where the spectrum (of the adjacency matrix) of the same graph is computed. The proof of the
first one is a modification of the proof of Theorem 3.1, and so it is omitted.

Theorem 3.5. Let (K, , K}), be a complete bipartite signed graph whose negative edges induce a subgraph K, 5. Then
its Laplacian spectrum consists of
(i) p with multiplicity q -2,
(ii) q with multiplicity p -2,
(iii) (p +gx+(g-p)?+ 4041»), i € {1,2}, where ay and a, are the roots of the quadratic equation (x — qr)(x — (p —
ng) = r(p = 1r)(2s —g)* = 0.
We proceed with the net Laplacian spectrum.
Theorem 3.6. Let X = (K, 4, K7 ;) be a complete bipartite signed graph whose negative edges induce a subgraph K.
The net Laplacian spectrum of L consists of

(i) 0 with multiplicity 1,
(ii) p with multiplicity g —s—1,
(iii) q with multiplicity p —r — 1,
(iv) p — 2r with multiplicity s — 1,
(v) q — 2s with multiplicity r — 1 and
(vi) the roots of the cubic equation (x — g)(x —p)(x +2r —p) — (p — r)((q —s)(x+2r—p) +s(x— p)) + (25— q)(x2 -

p+x+pg+Qr-pa-p-q —ap-n)-r(@q-)x+2r—p) +sx-p)—¢) =0
Proof. As in the previous proofs, we write the adjacency matrix of I as

0, B iy Tocto
AZ pxq), where By, = ( s (-9) )
®)= (BqTxn Oy P Jp-nxs  To-rxa-s)

And the diagonal matrix of net degrees is

D*(x) = diag ((q — 29I, qly-r, (p — 21)Ls, ply—s)-

Hence,
(q - ZS)Ir O ]r><s _]rx(q—s)
@) qI —r _]( —r)Xs _]( —1)x(g—s)
N(T) = P p p-)x(q
( ) Joxr _]sx(p—r) (P - 27’)15 @)
_](q—s)xr _](q—s)x(p—r) O pIq—s

The corresponding net Laplacian characteristic polynomial is given by

(x—g+29); O —Jixs ]rx(q—s)
00N O (x = Ly Jip-ryxs Jip-r)x(g-s)
\I’Z(x) B _str ]sx(p—r) (X -p + 27’)15 O )
Jq-sxr J (g—-s)x(p-7) (@] (x— P)y-s

By performing row operations R; — ]';(T‘*;)Rzl — Ry, Ry — ](”%S‘S)RAL — Ry and using Lemma 2.2, we obtain

g-s (x q + ZS)I — ,U ] q ) ]rX(p 7) _]rxs
W) = (x-p) e - Dy s~ 2 o s
]s><r ]sx(p r) (x -p + 27’)15
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Again by the application of R; + Jrxs R; > Ry, Ry — ~R3 — R, and Lemma 2.2, we obtain

x—p+2r X— p+2r
Wi(x) = (x - p)q_s(x +2r— p)s det(M), o)
where
( (q-s)
det(M) = det < (q -i)- 29)l Z ; Jr= X+2Sr7p]r _%]rx(p nt str p]rx(p—r)
= q :

](p rxr T x+2r—p ](P—V)Xf (x - Q)Ip—r ('1 5 ]P r x+25r—p ]P*"
U - > ],,_,) det ((x —q+2s)l,

=det((x—q)l,,_r— Joer
_(q—s+ S_p)]’_(q_s+ S_ )]VX(P—f)

x—p'f X+2r—p
X—p Xx+2r xX—-p x+2r

x (= ey - (= 4 —2 —he) (‘7 Jimrr)

X—p x+2r xX—p x+2r )
= (x—q)p_r_l(x+25—q)r_1(<x+2s—q— (q—s )r)
s

xX—p x+2r—p
— 2
<(x=0= =N+ ) == (= x+2r_p)>

e g er g - )

s 4rs(p —r)(g —s)
-p +x+2r—]0)Jr (x—p)(x+2r—p))

= (x-p) (x+2r=p) (x-q) (x+25-q) (x+25-9)
X ((x = ) = p)c+2r = p) = (p = (@ = $)(x +2r = p) + s(x = p))) = r(x = q)
X ((q =) +2r = p) + s(x = p)) + 4rs(p — 1)(q ~ 5))

—x(x-p) (x+2r-p) (x-a)  (x+25-q) (- x-p)x+2r—p)
—(p=)((q=9)x+2r—p)+s(x—p)) + (25 = ) = (p + q)x + pq
+@r-p)—p-q) —qp-n)-r(@g-)+2r-p)+s(x—p) - ¢)).

The result follows from the equality (2) and the previous one. [

—r(x— q)(

It is worth noting that, for all the net Laplacian eigenvalues given by Theorem 3.6 (except those given by
cubic equation of (vi)), a complete description of the corresponding eigenvectors can be provided.

Clearly, jp.q is the eigenvector of N(Z) corresponding to the net Laplacian eigenvalue 0. Letx € R7™° be a
vector orthogonal to j,s. By setting z = (o], 0/_,, 0f,xT)T € RP", we immediately obtain N(X)z = pz. Since
there are g — s — 1 linearly independent column vectors of size q — s that are orthogonal to j,s, the algebraic
multiplicity of p as an eigenvalue of L is (at least) g —s — 1.

Next, by considering a vector (o/,xT, 0/, 0;_5)T € RP*1, where x is one of p — r — 1 vectors that belong to
RP™" and are orthogonal to j,-,, we obtain N(¥L)z = gz.

Similarly, for p — 2r, we consider a vector (o;, 0;,,, XT,0 0g- T_,)T € RP*, where x € R°and x L j;, with (s — 1)
possible linearly independent choices for x. Finally, (xT,0;_,,0,07_,)7 € R"*7, where x € R'and x L j,, is an
eigenvector of N(L) corresponding to the net Laplacian elgenvalue q—2s.

Observe, that the 4 X 4 equitable quotient matrix of N(X) is given by

g—2s 0 s s—q
0 q -5  s—q
T r-p p=-2r 0
-r r-p 0 p

Q:
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Since the sum of each row in Q is zero, it follows that zero is one of its eigenvalues. The remaining
three eigenvalues of Q are determined by solving det(x] — Q), which leads to a biquadratic polynomial
Do (x) = xp(x), where p(x) is the same cubic polynomial as given in Theorem 3.6(vi). Consequently,

Vi) = (x=p) == g " = p + 207 (0 = g + 25) T Do (x).

This observation becomes particularly relevant in the context of Theorem 4.3 in the next section, where it
may inspire a compelling research problem for future exploration.

Figure 2: The signed graph (K34, K3 5).

We conclude this section with an example.

Example 3.7. Consider a signed graph (Ksa,K5,) of Figure 2. By replacing (p,q,7,5) = (3,4,2,3) in Theo-
rem 3.5(iii) (resp. Theorem 3.6(vi)), the corresponding polynomial becomes x* — 12x + 24 (x> — 4x> — 19x + 70).
The roots of the these polynomials are 6 + 2 V3 and -1+ V/57), 5, respectively. Therefore,

LSpec(Kz4, K35) = { %(7 + 4/25 +8V3), %(7 + V25— 8V3),32, 4}

NSpec(Kss, K35) = { -2, (1,0, 3(-1:+ V57),5).

and

4. Spectrum, Laplacian spectrum and net Laplacian characteristic polynomial of (K, ,, D . )
1,42

There mustbe k; < g —1and k, <p — 1. We proceed with the spectrum.
Theorem 4.1. Let & = (K4, Dy | ) be a complete bipartite signed graph whose negative edges induce a double star
Dy, k,- The spectrum of L consists of
(i) 0 with multiplicity p + q — 6 and
(i) £+, i €{1,2,3}, where a1, ap and oz are the roots of the cubic equation (x — qkz)((x -x—qglp—ky—-1)) -
2k +2 - qP(p - ko = 1)) = ka(2h1 — 9)P(x — q(p — ko = 1)) = ka2 = 9)2(p — ko = 1)(x — ) + 2ka(2k1 — 9)(2 -
DN2k1 +2-q)p -k —1)=0.

Proof. The adjacency matrix is given by

O, B, -1 ~Jixky Jixg-ki-1)
A(X) = (BTP 5 q), where Bpx; = —Jix1 Jioxky Jkox(g—ki-1)
LA Jo-ka-1x1 Jp-ka-1ks  Jp—ka=1)x(g—ki-1)

Therefore, the characteristic polynomial is

Op(x) = det[ T TBra) Z Get (xl,) det (x1 BraBosy
w(x) = de Bl x, |7 e(xq) e(xp— " )

= xT7 det (lep - Bpqu;xp) = xq_p(DanqBpr (xz)' (3)
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It remains to deal with ByxB/,,. We first compute

(q=2k))ixk,  (q—2ki =2)] 1><(pk21)]

q
BpxgBixy = [ (q — 2k1) Ji a1 A ixk, @ = DJkoxp-ka-1)
(@ =2k = 2)Jp-tp-1x1 (@ = 2)p—ky-1)xk, 9 p—kr-1)x(p—ka-1)

Therefore, the characteristic polynomial of Byx,B},, is given by

gxp
x—q k1 = QJixk,  (2k1 +2 = @) Jixp-k-1)
(DBquB;xp (x) = (2k1 - Q)]kle xlkz - q]kz (2 - q)]kzx(p—kz—l)
k1 +2=9Jp-tk-1x1 2= DJp-ko-)xks  Xptyo1 = GJp—tp—1

= det (XIp—kz—l - qu—kz—l)

x=q- @k +2-qPn0)  (Zk-q-@Q- q)n(x))hxkz]

x det
((Zkl -q-(2- Q)rl(x))]kle Xy, = (@ + (2 = 9)*r200) ],

p—kz—l

_ (2ki+2-q)(p—ko—1)
x—q(p—ka—-1)"

where for brevity, we set r1(x) = —- D and r,(x) = Thus, we have

Dg,...5

;x,,(x) = x”‘kz_z(x —qp—ky - 1))xk2‘1((x -q—Qk+2- q)zrz(x))
X (x = kg + 2 = *ra(x) ~ ko2 — g — @ = Pra ()’

: (ki +2-g)Pp -k —1)
= x’ S(X—q(p—kz—1))((x—k2q)(x—q— 1X—q(l9—k2—12) )
22k = PR - PRk +2 - Pp -k = 1)

x=qlp—k—1)
_ ka(x = q)(2 - ‘1)2(? —k - 1))
x=qp -k —1)
= (¢ - gk)((x = P — glp — ko = 1)) = 21 +2 = 9 (p k2 = 1))
—ka(2k1 = ) (x = q(p = k2 = 1)) = k22 = 9)*(p — k2 = 1)(x = q)
+ 2ka(2ks = 9)(2 = q)(2k1 +2 - )(p — 2 — 1),

- k2(2k1 - q)z +

which completes the proof in view of (3). O

The next in the line is the Laplacian spectrum. We omit the proof, since it is analogous to the previous one.

Theorem 4.2. Let (Kyq, D, | ) be a complete bipartite signed graph whose negative edges induce a double star graph
Dy, k,- Then its Laplacian spectrum consists of

(i) p with multiplicity q -3,
(it) q with multiplicity p — 3 and
(iii) %(p +q++@q-pP+ 4a,-), i €{1,2,3}, where ay ap and ag are the roots of the cubic equation (x — qkz)((x -

D —q(p -k = 1)) = (21 +2 = 92—k — 1)) — ka(2ks = 9)*(x = g(p — k2 = 1)) — ka2 = 9)*(p — ke = )(x —
q) + 2k (2ky = )2 = q)(2k1 + 2 = g)(p — k2 = 1) = 0.
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Finally, to formulate the statement of Theorem 4.3 concerning the net Laplacian characteristic polynomial
of X, we need to observe that

q—2k1—2 0 0 1 k1 k1+1—q
0 q—2 0 1 —k1 k1+1—b]
_ 0 0 q -1 —k1 k1+1—q
Q_ 1 k2 k2+1—p p—2k2—2 0 0 (4)
1 —k2 k2+1—p 0 p—2 0
-1 —k2 k2+1—p 0 0 p

features as the equitable quotient matrix of the net Laplacian of (K4, D, ). To see this, we observe that
with suitable vertex labellings

D*(X) = diag ((q —2k1 = 2)I1,(q = 2)Ik,, qlp—k,-1, (p — 2k = 2)I, (p - 2)Ik1,plq_kl_1),

is the diagonal matrix of vertex degrees, and then the net Laplacian matrix is

N(E) = (_Eg;p _g’fq)r (5)

where Dy, = diag ((q — 2k - 2)I1, (¢ = 2)Ik,, 1y-r,1), Dy = diag ((p — 2k = 2)I1, (p = 21k, , plyt,-1) and

-1 —Jixk, Jix(g-ki-1)
Byxg =| —Jixa Jipxky Jiox(q-ki-1)
Jo-k-1x1 Jp—to-1xki Tp-ko-1)x(3-k1-1)

Now, the conclusion for Q follows directly.
The following result remains only partially proven; therefore, we present it as a research problem for
further proof or refutation.

Theorem 4.3. Let & = (K4, D} | ) be a complete bipartite signed graph whose negative edges induce a double star

Dy, k,- The net Laplacian characteristic polynomial of L. is
W) = (x = p) T2 - g R @ - p + 2)0 T (- g+ 2R g (x),
where Og(x) is the characteristic polynomial of the matrix Q of (4).

The net Laplacian eigenvalues p, g, p — 2 and q -2 (together with multiplicities) are obtained by constructing
the corresponding eigenvectors. Accordingly, if x € R is a vector orthogonal to j,_,-1, then by taking

_ T AT T +
z=(0, okz,opikzil,O, okl,xT)T e RPFI,

we immediately obtain N(X)z = pz, where N(X) is given in (5). Therefore, p is the net Laplacian eigenvalue
whereas its multiplicity follows since there are g — k; — 2 linearly independent choices for x.
The next three net Laplacian eigenvalues are considered analogously. So, for g we deal with (0, 0., xT,

O,olj,oT )T, for p — 2 we deal with (0,0] , 0" ,0,x7,07 )T, and for g — 2 we deal with (0,xT, 0" ,
1 q*kl -1 kz p*szl q*kl -1 pszfl
0, 0;1, o;klfl)T, where in each case x is orthogonal to the all-1 vector of the corresponding dimension.

We now consider the remaining six net Laplacian eigenvalues of . In the light of Lemma 2.1, the
eigenvalues of Q (given by (4)) are contained in the spectrum of N(X). However, determining whether p, g,
p —2 or g — 2 are not the roots of the characteristic polynomial @p(x) is a complex task, since the polynomial
is too robust. Note that if any of these net Laplacian eigenvalues appears as a root of ®@g(x), then we cannot
conclude that the remaining six net Laplacian eigenvalues correspond to Q and, in that case, an alternative
way to find them is needed. We propose this part of the proof as a research problem.

By setting k, = 0in Theorems 4.1, 4.2 and 4.3, we arrive at the spectrum, the Laplacian spectrum and the
net Laplacian characteristic polynomial of a complete bipartite signed graphs whose negative edges induce
a star tree.
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Figure 3: The signed graph (Ky 4, D} 5).

As before, we provide an example.

Example 4.4. Consider (Kya, D, 5) of Figure 3. On the basis of Theorems 4.1, 4.2 and 4.3, we obtain

Spec(Ky4, D2_’3) = : +2 \/5, +2, 04},

LSpec(Ky4, D3 ;) = {202 £ V3),2,4% 6

and
NSpec(Ks4, D5 5) = { — 4.865,-2.511,0,2°,3.674, 5.702}.

5. Concluding remarks

We have considered complete bipartite signed graphs X whose negative edges induce either a matching,
or a complete bipartite signed graph, or a double star tree. Observe that if —X is a signed graph obtained
by reversing the sign of every edge of X, then A(-Z) = —A(X) and N(-X) = —N(Z). This means that the
analogous results when positive edges (instead of negative ones) induce any of the aforementioned graphs
are obtained easily whenever we deal with the adjacency matrix or the net Laplacian matrix: The desired
spectrum of —X. is established by negating every eigenvalue of X.

On the contrary, L(-X) = —L(X) does not hold, unless L is edgeless, as the main diagonal remains
unchanged. However, the corresponding results for —X are obtained analogously, i.e., by following the
proofs for .

In the spirit of the obtained results, we formulate a research problem.

Problem 5.1. Determine the spectrum or the Laplacian spectrum or the net Laplacian spectrum of a complete bipartite
signed graph L. whose negative edges induce either a tree, or a reqular graph.

Concerning the ‘regular’ case of the previous problem, we provide the following starting point for a
particular case: Observe that if the graph induced by positive edges is also regular, then the corresponding
colour classes of ~ are equal, and the corresponding adjacency matrix has the form

0 B, - B,
(B,~B)T O )

where B, (resp. B,) is induced by positive (negative) edges between colour classes. It remains to manipulate
with this matrix.
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