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Higher derivatives and some more identities involving generalized
harmonic numbers and Bernoulli polynomials and Bernoulli numbers

Said Zriaaa,∗, Otmane Benchiheba

aChouaib Doukkali University. Department of Mathematics, Faculty of science Eljadida, Morocco

Abstract. In the present work, we focus on the higher derivatives of polynomials and certain rational
fractions expressed in terms of the well-known complete Bell polynomials. As consequences, we obtain
explicit formulas of the higher derivatives of the binomial coefficient and its reciprocal. Our results represent
a unified generalization of many previously presented works and provide a natural way to establish several
new algebraic identities. Furthermore, we provide various interesting combinatorial identities involving
the harmonic numbers, the generalized harmonic numbers, the Bernoulli numbers, and the Bernoulli
polynomials.

1. Introduction

Throughout this work, we shall use the following notations.
We denote the generalized harmonic numbers by H(r)

n which are defined to be partial sums of the Riemann-
Zeta series:

H(r)
0 := 0 and H(r)

n :=
n∑

k=1

1
kr for n, r = 1, 2, . . . . (1)

In particular for r = 1, we get the classical harmonic numbers Hn = H(1)
n .

For αs[ j] = (α1, . . . , α j−1, α j+1, . . . , αs) and [αs] = (α1, α2, . . . , αs), let

Hl,αs[ j](x) :=
s∑

i=1,i, j

1
(x − αi)l

.

H
[αs]
l (x) :=

s∑
i=1

1
(x − αi)l

.
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For a nonnegative integer n the shifted factorial is defined by

(x)n := x(x + 1) · · · (x + n − 1) and (x)0 := 1.

Harmonic numbers and their generalizations play a central role in many branches of mathematics such
as numbers theory, probability, statistics, analysis, combinatorics and computer science. Recently, nu-
merous specialist articles have been presented for studying the harmonic numbers and their properties.
Andrews and Uchimura showed in [2] that it is possible to express several harmonic number identities by
differentiating the classical hypergeometric series identities because of the interesting connection

d
dx

(
x + n

n

)
x=0
= Hn.

Thus, by means of the derivative of the binomial coefficients, we can handle various harmonic number
identities by reducing them to an equivalent hypergeometric problem. This idea was used by many
authors. For example in [2], it is pointed out that the famous mathematician Issac Newton [22], the first,
who expressed harmonic numbers identities using the connection between differentiation and the binomial
coefficients, so Paule and his coauthor Schneider [23] called this technique the Newton-Andrews method,
and they combined this way with Zeilberger’s algorithm for definite hypergeometric sums to establish five
conjectured harmonic number identities and compute the interesting family of series:

Wn(α) =
n∑

k=0

(
n
k

)α(
1 + α(n − 2k)Hk

)
,

with α = 1, 2, 3, 4, 5. Subsequently, W. Chu and De Donno [9] recaptured Paule and Scneider’s results as
well as providing some new identities, such as

n∑
k=0

(n+k
k
)(2n

k
) (

1 + (n − 2k)Hn+k

)
= (1 + 2n)(H2n+1 −Hn).

and established several different closed formulas on harmonic numbers by applying the derivative operator
to many hypergeometric summation formulas. Forαbeing an integer Krattenthaler and Rivoal [19] explored
general Paule-Schneider type formulas with the aid of the derivative operator and Andrew’s q-series
transformation. In 2011, Y. Chen, Q. Hou and H. Jin [6] proposed the following four elegant identities:

n∑
k=1

Hk = (n + 1)Hn − n,

n∑
k=1

kHk =
n(n + 1)

2
Hn −

n(n − 1)
4

,

n∑
k=1

k2Hk =
n(n + 1)(2n + 1)

6
Hn −

(n − 1)n(4n + 1)
36

,

n∑
k=1

k2Hn+k =
n(n + 1)(2n + 1)

6
(2H2n −Hn) −

n(n + 1)(10n − 1)
36

,

and many others identities through the Abel-Zeilberger Algorithm. By means of the derivative opertor and
the telescoping method, C. Wei et al. [34] provided a generalization these identities as

n∑
k=1

Hp+k = (p + n + 1)Hp+n − (p + 1)Hp − n,
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n∑
k=1

kHp+k =
(n − p)(p + n + 1)

2
Hp+n +

p(p + 1)
2

Hp −
n(n − 2p − 1)

4
,

n∑
k=1

k2Hp+k =
(n + p + 1)(2n2 + n − 2pn + p + 2p2)

6
Hp+n −

p(p + 1)(2p + 1)
6

Hp

−
n(4n2

− 3n − 6pn + 12p + 12p2
− 1)

36
,

with p is a nonnegative integer.
Among the essential recent papers, we can cite the work of J. Wang and C. Wei [30] in which the authors

established new closed expressions for two kinds of series involving generalized harmonic numbers

n∑
k=0

(
2n − k

n

)(
x + k

k

)
2kksHk(x),

n∑
k=0

(−1)k
(
n
k

) (n+k
k
)(x+k

k
) ks

2k
Hk(x),

where

H(l)
k (x) :=

k∑
j=1

1
(x + j)l

,

and many other results.
It should be mentioned that although the derivative operator has been used for many times to provide

harmonic number identities, several new closed formulas can be developed when we add clever tricks. For
example, by applying the bijection method of two-term difference, C. Wei et al. [35] explored interesting
closed expressions for three kinds of series which involves the generalized harmonic numbers

n∑
k=0

(−1)k
(
n
k

) (2x+n+k
k

)(x+k
k
) ktHk,

n∑
k=0

(
2n − k

n

)(
x + k

k

)
ktH(2)

k (x),

n∑
k=0

(
2n − k

n

)(
x + k

k

)
ktH2

k (x).

It should be noticed that there exist numerous papers investigating and developing identities involving
harmonic numbers the reader may refer to [20, 24–26, 32, 33, 37, 38].

In this paper, we make use of the higher derivatives of polynomials and some rational fractions to estab-
lish several general identities, from which series of generalized harmonic number formulas are presented.
In particular, besides the generalized harmonic numbers, many new identities involving the Stirling num-
bers, the Bernoulli polynomials, and Bernoulli numbers are provided. We note that in the large literature
there are not many summation formulas involving both the generalized harmonic numbers and other spe-
cial combinatorial numbers. For this purpose, the present work extends the range of generalized harmonic
number identities.
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2. Higher derivatives of some rational functions and polynomials

The derivative of the binomial coefficient
(x+k

l
)

and its reciprocal
(x+k

l
)−1

can be used to provide various
identities involving harmonic numbers. In [2, 9, 23], it can be found that the authors used only the first
derivatives, while in [10, 11, 15], the second derivatives are presented. However, no other higher derivatives
are considered in these works. A more careful observations shows that in [14, 24, 25, 27–29] the third or
fourth derivatives are employed. We note that some derivatives of binomial coefficient can be found in [17,
Eqs. (3.19) and (3.24)]. However, we can also note that no general results on the higher derivatives of

(x+k
l
)

and
(x+k

l
)−1

have been presented in these papers.

In terms of the Bell polynomials, W. Chu and Q. Yan [12] considered higher derivatives of
(x+k

k+1
)−1

and
H. Gould [16] considered higher derivatives of

(x+k
k
)
. They employed the explicit expressions of these

derivatives to provide a series of harmonic number identities. However, it can be noted they did not
explore further this procedure.
In order to extend the above referred works, W. Wang and C. Jia [31] presented an intersecting work in
which they established curious expressions of the higher derivatives of the binomial coefficient and its
reciprocal based on the famous Bell polynomials and derived more general harmonic number identities
and other results. From this point of view, we aim in this section to extend these results and develop our
recently published work [37].

Following Krantz and Parks [18], the exact expression of the higher derivatives of h = ϕ ◦ f can be
computed by Faà di Bruno’s formula

h(k)(x) =
∑

m1+2m2+···+kmk=k

k!
m1!m2! · · ·mk!

ϕ(m1+m2+···+mk)( f (x))
k∏

l=1

( f (l)(x)
l!

)ml

.

where m1,m2, . . . ,mk ≥ 0. Now recall the complete Bell polynomials expression [13]

Bn(x1, x2, . . . , xn) =
∑

m1+2m2+···+nmn=n

n!
m1!m2! · · ·mn!

(x1

1!

)m1(x2

2!

)m2

· · ·

(xn

n!

)mn

,

where m1,m2, . . . ,mn ≥ 0. For example, the first few complete Bell polynomials are given by

B0 =1,
B1(x1) =x1,

B2(x1, x2) =x2
1 + x2,

B3(x1, x2, x3) =x3
1 + 3x1x2 + x3,

B4(x1, x2, x3, x4) =x4
1 + 6x2

1x2 + 4x1x3 + 3x2
2 + x4,

B5(x1, x2, x3, x4, x5) =x5
1 + 10x3

1x2 + 15x1x2
2 + 10x2

1x3 + 10x2x3 + 5x1x4 + x5.

Now, based on the explicit expression of the complete Bell polynomials, we provide the following
general result, which presents explicit formulas of the higher derivatives of some rational functions and
polynomials. In particular, we obtain the higher derivatives of the binomial coefficient and its reciprocal.

Theorem 2.1. Let α1, α2, . . . , αs be pairwise distinct elements ofC, and let m be a positive integer and r a nonnegative
integer. For j = 1, 2, . . . , s, let h j(x) = xr ∏s

i=1,i, j(x − αi)−m. Then for k = 1, 2, . . ., the following identity holds

h(k)
j (x) = (−1)kh j(x)Bk(y1(x), . . . , yk(x)), j = 1, 2, . . . , s, (2)

where

yl(x) =
(l − 1)!

xl
(mxl
Hl,αs[ j](x) − r).
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Proof. Let ϕ(x) = exp(mx) and f j(x) = log(x
r
m
∏s

i=1,i, j(x − αi)−1). It is clear that ϕ(k)(x) = mk exp(mx) and

f (k)
j (x) = (−1)k−1 (k−1)!

mxk

(
r −mxk

Hk,αs[ j](x)
)
. It is easy to check that h j = ϕ ◦ f and by Faà di Bruno’s formula we

have

h(k)
j (x) = (−1)kh j(x)

∑
m1+2m2+···+kmk=k

k!
m1!m2! · · ·mk!

k∏
l=1

( (l − 1)!(mxl
Hl,αs[ j](x) − r)

xll!

)ml

.

This gives the desired formula.

Corollary 2.2. Letα1, α2, . . . , αs be pairwise distinct elements ofC. For any positive integer m let 1 j(x) =
∏s

i=1,i, j(x−
αi)−m. Then for k = 1, 2, . . ., the following identity holds

1
(k)
j (x) = (−1)k1 j(x)Bk(y1(x), . . . , yk(x)), j = 1, 2, . . . , s, (3)

where yl(x) = m(l − 1)!Hl,αs[ j](x).

Corollary 2.3. Let α1, α2, . . . , αs be pairwise distinct elements of C. Let 1 j(x) =
∏s

i=1,i, j(x − αi)−1. Then for
k = 1, 2, . . ., the following identity holds

1
(k)
j (x) = (−1)k1 j(x)Bk(y1(x), . . . , yk(x)), j = 1, 2, . . . , s, (4)

where yl(x) = (l − 1)!Hl,αs[ j](x).

Similar to Theorem 2.1, we can also obtain the following result.

Theorem 2.4. Let α1, α2, . . . , αs be pairwise distinct elements of C. For any integer m let P(x) =
∏s

i=1(x − αi)m.
Then kth derivative of P(x) is

P(k)(x) = (−1)kP(x)Bk(y1(x), . . . , yk(x)), (5)

where

yl(x) = −m(l − 1)!H [αs]
l (x).

Proof. Following the same argument as in the proof of Theorem 2.1, we can easily prove this result. We
have

ϕ(k)(x) = mk exp(mx) and f (k)(x) = (−1)k−1(k − 1)!
s∑

i=1

1
(x − αi)k

,

where ϕ(x) = exp(mx) and f (x) = log(
∏s

i=1(x − αi)). By means of Faà di Bruno’s formula, we can write

P(k)(x) = (ϕ ◦ f )(k)(x) = (−1)kP(x)
∑

m1+2m2+···+kmk=k

k!
m1!m2! · · ·mk!

k∏
l=1

(−m(l − 1)!H [αs]
l (x)

l!

)ml

.

This completes the proof.

Corollary 2.5. Let α1, α2, . . . , αs be pairwise distinct elements of C and let P(x) =
∏s

i=1(x − αi). For k = 1, 2, . . .,
the following identity holds

P(k)(x) = (−1)kP(x)Bk(y1(x), . . . , yk(x)), (6)

where yl(x) = −(l − 1)!H [αs]
l (x).
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Corollary 2.6. Let α1, α2, . . . , αs be pairwise distinct elements of C and let P(x) =
∏s

i=1(x − αi)−1. For k = 1, 2, . . .,
we have

P(k)(x) = (−1)kP(x)Bk(y1(x), . . . , yk(x)), (7)

where yl(x) = (l − 1)!H [αs]
l (x).

The following two corollaries was the main results presented by W. Wang and C. Jia [31] in order to compute
the higher derivatives of the binomial coefficient and its reciprocal:

Corollary 2.7. Let m be a positive integer and n be an integer. Let P(x) =
(x+n

m
)

:= (x+n)(x+n−1)···(x+n−m+1)
m! the binomial

coefficient. Then the kth derivative of P(x) is

P(k)(x) = (−1)k
(
x + n

m

)
Bk(y1(x), . . . , yk(x)), (8)

where

yl(x) = −(l − 1)!
m∑

i=1

1
(x + n − i + 1)l

.

In particular we have

d
dx

(
x + n

m

)
=

(
x + n

m

) m∑
i=1

1
(x + n − i + 1)

,

and

d
dx

(
x + n

m

)
x=m−n

= Hm ,
d
dx

(
x
m

)
x=−1
= (−1)m+1Hm,

here d
dx denotes the derivative with respect to x.

Corollary 2.8. Let m be a positive integer and n be an integer. Let P(x) =
(x+n

m
)−1 the reciprocal of the binomial

coefficient. Then the kth derivative of P(x) is

P(k)(x) = (−1)k
(
x + n

m

)−1

Bk(y1(x), . . . , yk(x)), (9)

where

yl(x) = (l − 1)!
m∑

i=1

1
(x + n − i + 1)l

.

In particular we have

d
dx

(
x + n

m

)−1

= −

(
x + n

m

)−1 m∑
i=1

1
(x + n − i + 1)

,

and

d
dx

(
x + n

m

)−1

x=m−n
= −Hm ,

d
dx

(
x
m

)−1

x=−1
= (−1)mHm.

In the sequel of this section, we need the following recent result of [37] which has been proven based on
an interesting result from the theory of polynomials appeared in [21].
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Theorem 2.9. Let α1, α2, . . . , αs be pairwise distinct elements of C and m1,m2, . . . ,ms be positive integers. Let
P(x) = (x − α1)m1 (x − α2)m2 · · · (x − αs)ms and Q(x) be a polynomial such that deg(Q) < deg(P). We have

Q(x)
P(x)

=

s∑
j=1

m j−1∑
i=0

(1 jQ)(i)(α j)

i!(x − α j)m j−i ,

where

1 j(x) =
s∏

i=1,i, j

(x − αi)−mi .

Based on Theorem 2.9 and Corollary 2.2, we can check the following general result.

Theorem 2.10. Let α1, α2, . . . , αs be pairwise distinct elements of C. For a positive integer m let 1 j(x) =
∏s

i=1,i, j(x−
αi)−m and P(x) = (x − α1)m(x − α2)m

· · · (x − αs)m. For any polynomial Q(x) such that deg(Q) < deg(P). We have

Q(x)
P(x)

=

s∑
j=1

1 j(α j)
m−1∑
i=0

1
i!(x − α j)m−i

i∑
k=0

(
i
k

)
(−1)kBk(x1, . . . , xk)Q(i−k)(α j), (10)

where

xl = m(l − 1)!
s∑

i=1,i, j

1
(α j − αi)l

.

The following result is of eminent importance and will plays a crucial role in this work.

Theorem 2.11. Let α1, α2, . . . , αs be pairwise distinct elements of C. For a positive integer m let 1 j(x) =
∏s

i=1,i, j(x−
αi)−m and P(x) = (x− α1)m(x− α2)m

· · · (x− αs)m. For any polynomial Q(x) such that deg(Q) < deg(P) and for any
nonnegative integer r the following algebraic identity holds

s∑
j=1

1 j(α j)
m−1∑
i=0

(
m + r − i − 1

r

)
1

i!(x − α j)m+r−i

i∑
k=0

(
i
k

)
(−1)kBk(x1, . . . , xk)Q(i−k)(α j) =

(−1)r

r!P(x)

r∑
l=0

(
r
l

)
(−1)lQ(r−l)(x)Bl(y1(x), . . . , yl(x)),

where

yl(x) = m(l − 1)!
s∑

i=1

1
(x − αi)l

and xl = m(l − 1)!
s∑

i=1,i, j

1
(α j − αi)l

.

Proof. If we differentiate the both side of (10) repeatedly with respect to x, then we obtain the result.

Lemma 2.12. Let u and v be two differentiable functions, then the kth derivative of
u
v

can be given in the following
determinantal expression [4, p.40]

dk

dxk

(u(x)
v(x)

)
=

(−1)k

vk+1(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u v 0 · · · 0 0
u′ v′ v · · · 0 0
u′′ v′′

(2
1
)
v′ · · · 0 0

...
...

...
. . . 0 0

u(k−2) v(k−2) (k−2
1
)
v(k−3)

· · · v 0
u(k−1) v(k−1) (k−1

1
)
v(k−2)

· · ·
(k−1

k−2
)
v′ v

u(k) v(k) (k
1
)
v(k−1)

· · ·
( k

k−2
)
v′′

( k
k−1

)
v′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.



S. Zriaa, O. Benchiheb / Filomat 39:23 (2025), 8075–8096 8082

With the aid of the last lemma, we can produce the result of Theorem 2.11 in another form as in the following.

Theorem 2.13. Let α1, α2, . . . , αs be pairwise distinct elements ofC. For a positive integer m let P(x) = (x−α1)m(x−
α2)m

· · · (x − αs)m. For any polynomial Q(x) such that deg(Q) < deg(P) and for any nonnegative integer r the
following algebraic and determinantal identity holds true

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q(x) P(x) 0 · · · 0 0
Q′

(x) P′ (x) P(x) · · · 0 0
Q′′

(x) P′′ (x)
(2

1
)
P′ (x) · · · 0 0

...
...

...
. . . 0 0

Q(r−2)(x) P(r−2)(x)
(r−2

1
)
P(r−3)(x) · · · P(x) 0

Q(r−1)(x) P(r−1)(x)
(r−1

1
)
P(r−2)(x) · · ·

(r−1
r−2

)
P′ (x) P(x)

Q(r)(x) P(r)(x)
(r

1
)
P(r−1)(x) · · ·

( r
r−2

)
P′′ (x)

( r
r−1

)
P′ (x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(P(x))r

r!

r∑
l=0

(
r
l

)
(−1)lQ(r−l)(x)Bl(y1(x), . . . , yl(x)),

where

yl(x) = m(l − 1)!
s∑

i=1

1
(x − αi)l

.

Some special cases of Theorem 2.11 provide clean results. Particularly, we can produce the following
corollaries.

Corollary 2.14. Let α1, α2, . . . , αs be pairwise distinct elements ofC. Let Q(x) be a polynomial such that deg(Q) < s.
For any nonnegative integer r the following algebraic identity holds

(−1)r

r!(x − α1)(x − α2) · · · (x − αs)

r∑
l=0

(
r
l

)
(−1)lQ(r−l)(x)Bl(y1(x), . . . , yl(x)) =

s∑
j=1

Q(α j)∏s
i=1,i, j(α j − αi)(x − α j)r+1

,

where

yl(x) = (l − 1)!
s∑

i=1

1
(x − αi)l

.

In particular, the following identities hold true

1.

Q(x)
(x − α1)(x − α2) · · · (x − αs)

=

s∑
j=1

Q(α j)∏s
i=1,i, j(α j − αi)(x − α j)

,

2.

−1
(x − α1)(x − α2) · · · (x − αs)

(
Q
′

(x) −Q(x)
s∑

i=1

1
(x − αi)

)
=

s∑
j=1

Q(α j)∏s
i=1,i, j(α j − αi)(x − α j)2

,
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3.

1
2(x − α1)(x − α2) · · · (x − αs)

(
Q(2)(x) − 2y1(x)Q

′

(x) +Q(x)(y2(x) + y2(x))
)
=

s∑
j=1

Q(α j)∏s
i=1,i, j(α j − αi)(x − α j)3

.

Corollary 2.15. Letα1, α2, . . . , αs be pairwise distinct elements ofC. Let Q(x) be a polynomial such that deg(Q) < 2s.
For any nonnegative integer r the following algebraic identity holds

(−1)r

r!(x − α1)2(x − α2)2 · · · (x − αs)2

r∑
l=0

(
r
l

)
(−1)lQ(r−l)(x)Bl(y1(x), . . . , yl(x)) =

s∑
j=1

Q(α j)∏s
i=1,i, j(α j − αi)2(x − α j)r+1

( r + 1
x − α j

+
Q′

(α j)
Q(α j)

− 2
s∑

i=1,i, j

1
(α j − αi)

)
,

where

yl(x) = 2(l − 1)!
s∑

i=1

1
(x − αi)l

.

Particular cases are

1.
s∑

j=1

Q(α j)∏s
i=1,i, j(α j − αi)2(x − α j)

( 1
x − α j

+
Q′

(α j)
Q(α j)

− 2
s∑

i=1,i, j

1
(α j − αi)

)
=

Q(x)
(x − α1)2(x − α2)2 · · · (x − αs)2 ,

2.

−1
(x − α1)2(x − α2)2 · · · (x − αs)2

(
Q
′

(x) −Q(x)
s∑

i=1

1
(x − αi)

)
=

s∑
j=1

Q(α j)∏s
i=1,i, j(α j − αi)2(x − α j)2

( 2
x − α j

+
Q′

(α j)
Q(α j)

− 2
s∑

i=1,i, j

1
(α j − αi)

)
,

3.

1
2(x − α1)2(x − α2)2 · · · (x − αs)2

(
Q(2)(x) − 2y1(x)Q

′

(x) +Q(x)(y2(x) + y2(x))
)
=

s∑
j=1

Q(α j)∏s
i=1,i, j(α j − αi)2(x − α j)3

( 3
x − α j

+
Q′

(α j)
Q(α j)

− 2
s∑

i=1,i, j

1
(α j − αi)

)
.

For the value r = 1, 2, 3 we obtain

Corollary 2.16. 1.

s∑
j=1

m−1∑
i=0

i∑
k=0

(m − i)
(−1)k1 j(α j)Bk(x1, . . . , xk)Q(i−k)(α j)

k!(i − k)!(x − α j)m−i+1
=

1
P(x)

(
mQ(x)

s∑
i=1

1
(x − αi)

−Q
′

(x)
)
,
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2.
s∑

j=1

m−1∑
i=0

i∑
k=0

(m + 1 − i)(m − i)
(−1)k1 j(α j)Bk(x1, . . . , xk)Q(i−k)(α j)

k!(i − k)!(x − α j)m+2−i =

1
P(x)

(
Q(2)(x) − 2y1(x)Q

′

(x) −Q(x)(y2
1(x) + y2(x))

)
,

3.

−1
P(x)

(
Q(3)(x) − 3y1(x)Q(2)(x) + 3Q

′

(x)(y2
1(x) + y2(x)) −Q(x)(y2

1(x) + 3y1(x)y2(x) + y3(x))
)
=

s∑
j=1

m−1∑
i=0

i∑
k=0

(m + 2 − i)(m + 1 − i)(m − i)
(−1)k1 j(α j)Bk(x1, . . . , xk)Q(i−k)(α j)

k!(i − k)!(x − α j)m+3−i ,

where

yl(x) = m(l − 1)!
s∑

i=1

1
(x − αi)l

and xl = m(l − 1)!
s∑

i=1,i, j

1
(α j − αi)l

.

3. Applications to Binomial sums

In this section, we present an interesting and potentially useful particular case of Theorem 2.11. By
exploiting this result, we will obtain numerous striking formulas.
Taking αi = i in Theorem 2.11, we can achieve the following general result.

Theorem 3.1. Let m and n be two positive integers. Let Q(x) be a polynomial such that deg(Q) < nm. For any
nonnegative integer r the following algebraic identity holds

(−1)r

r!(x − 1)m(x − 2)m · · · (x − n)m

r∑
l=0

(
r
l

)
(−1)lQ(r−l)(x)Bl(y1(x), . . . , yl(x)) =

n∑
j=1

(−1)m(n− j) jm

(n!)m

(
n
j

)m m−1∑
i=0

(
m + r − i − 1

r

)
1

i!(x − j)m+r−i

i∑
k=0

(
i
k

)
(−1)kBk(x1, . . . , xk)Q(i−k)( j),

where

yl(x) = m(l − 1)!
n∑

i=1

1
(x − i)l

and xl = m(l − 1)!
(
H(l)

j−1 + (−1)lH(l)
n− j

)
.

Setting x = 0 in Theorem 3.1, we obtain an interesting identity described in the following.

Proposition 3.2. Let m and n be two positive integers. Let Q(x) be a polynomial such that deg(Q) < nm. For any
nonnegative integer r the following algebraic identity holds

n∑
j=1

(−1)m( j+1)

(
n
j

)m m−1∑
i=0

(
m + r − i − 1

r

)
(−1)i

i! jr−i

i∑
k=0

(
i
k

)
(−1)kBk(x1, . . . , xk)Q(i−k)( j) =

1
r!

r∑
l=0

(
r
l

)
Q(r−l)(0)Bl(y1, . . . , yl),

where

yl = m(l − 1)!H(l)
n and xl = m(l − 1)!

(
H(l)

j−1 + (−1)lH(l)
n− j

)
.
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Choosing Q(x) = 1 in Proposition 3.2, we get the following corollary.

Corollary 3.3. Let m and n be two positive integers. For any nonnegative integer r, we have

n∑
j=1

(−1)m( j+1)

(
n
j

)m m−1∑
i=0

(
m + r − i − 1

r

)
1

i! jr−i Bi(x1, . . . , xi) =
1
r!

Br(y1, . . . , yr),

where

yl = m(l − 1)!H(l)
n and xl = m(l − 1)!

(
H(l)

j−1 + (−1)lH(l)
n− j

)
.

When m = 1, Proposition 3.2 offers the following result.

Proposition 3.4. Let n be a positive integer and Q(x) be a polynomial such that deg(Q) < n. For any nonnegative
integer r the following algebraic identity holds

n∑
j=1

(
n
j

)
(−1) j+1

jr
Q( j) =

1
r!

r∑
l=0

(
r
l

)
Q(r−l)(0)Bl(Hn, 1!H(2)

n , . . . , (l − 1)!H(l)
n ).

In particular, we have

n∑
j=1

(−1) j+1

(
n
j

)
Q( j) = Q(0),

n∑
j=1

(−1) j+1

j

(
n
j

)
Q( j) = Q

′

(0) +Q(0)Hn,

n∑
j=1

(−1) j+1

j2

(
n
j

)
Q( j) =

1
2

(
Q(2)(0) + 2Q

′

(0)Hn +Q(0)(H2
n +H(2)

n )
)
.

According to different choices of the polynomial Q(x) in Proposition 3.4, we can produce several identities.

Corollary 3.5. If Q(x) = 1, then

n∑
j=1

(
n
j

)
(−1) j+1

jr
=

1
r!

Br(Hn, 1!H(2)
n , . . . , (r − 1)!H(r)

n ), n, r ≥ 1.

In particular, we get for r = 1, 2, 3, 4, 5 the following identities, respectively:

n∑
j=1

(
n
j

)
(−1) j+1

j
= Hn,

n∑
j=1

(
n
j

)
(−1) j+1

j2
=

H2
n +H(2)

n

2
,
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n∑
j=1

(
n
j

)
(−1) j+1

j3
=

H3
n

6
+

HnH(2)
n

2
+

H(3)
n

3
,

n∑
j=1

(
n
j

)
(−1) j+1

j4
=

H4
n

24
+

H2
nH(2)

n

4
+

HnH(3)
n

3
+

(H(2)
n )2

8
+

H(4)
n

4
,

n∑
j=1

(
n
j

)
(−1) j+1

j5
=

1
120

(
H5

n + 10H3
nH(2)

n + 15Hn(H(2)
n )2 + 20H2

nH(3)
n

+ 20H(2)
n H(3)

n + 30HnH(4)
n + 24H(5)

n

)
.

Remark 3.6. The result of the last corollary is one of the main results of [3], precisely the equation (2.1).

Corollary 3.7. If Q(x) =
(x+n

m
)

is the binomial coefficient with 1 ≤ m < n. Then for every nonnegative integer r, we
have

n∑
j=1

(
n
j

)(
n + j

m

)
(−1) j+1

jr
=

(
n
m

)
1
r!

r∑
l=0

(
r
l

)
(−1)r−lBr−l(z1, . . . , zr−l)Bl(y1, . . . , yl),

where yl = (l − 1)!H(l)
n and zl = (l − 1)!

(
H(l)

n−m −H(l)
n

)
. In particular, we have

n∑
j=1

(−1) j+1

(
n
j

)(
n + j

m

)
=

(
n
m

)
,

n∑
j=1

(
n
j

)(
n + j

m

)
(−1) j+1

j
=

(
n
m

)(
2Hn −Hn−m

)
,

n∑
j=1

(
n
j

)(
n + j

m

)
(−1) j+1

j2
=

1
2

(
n
m

)(
(2Hn −Hn−m)2 +H(2)

n−m

)
.

Opting m = 2 in Proposition 3.2, we gain another algebraic identity stated in the following result.

Proposition 3.8. Let n be a positive integer and Q(x) be a polynomial such that deg(Q) < 2n. For any nonnegative
integer r the following algebraic identity holds

n∑
j=1

(
n
j

)2 1
jr

(
(r + 1)Q( j) − jQ

′

( j) + 2 jQ( j)(H j−1 −Hn− j)
)
=

1
r!

r∑
l=0

(
r
l

)
Q(r−l)(0)Bl(y1, . . . , yl),

where yl = 2(l − 1)!H(l)
n .

For r = 0, 1, 2, we obtain respectively:

1.
n∑

j=1

(
n
j

)2(
Q( j) − jQ

′

( j) + 2 jQ( j)(H j−1 −Hn− j)
)
= Q(0),



S. Zriaa, O. Benchiheb / Filomat 39:23 (2025), 8075–8096 8087

2.
n∑

j=1

(
n
j

)2 1
j

(
2Q( j) − jQ

′

( j) + 2 jQ( j)(H j−1 −Hn− j)
)
= Q

′

(0) + 2HnQ(0),

3.
n∑

j=1

(
n
j

)2 1
j2

(
3Q( j) − jQ

′

( j) + 2 jQ( j)(H j−1 −Hn− j)
)
=

1
2

(Q(2)(0) + 4Q
′

(0)Hn +Q(0)(4H2
n + 2H(2)

n )).

Choosing Q(x) = 1 in the last proposition, we get the following corollary.

Corollary 3.9. Let n be a positive integer. For any nonnegative integer r the following algebraic identity holds true

n∑
j=1

(
n
j

)2 1
jr

(
(r + 1) + 2 j(H j−1 −Hn− j)

)
=

1
r!

Br(y1, . . . , yr),

where yl = 2(l − 1)!H(l)
n .

Theorem 3.10. Let n be a positive integer and Q(x) be a polynomial such that deg(Q) < n. For any nonnegative
integer r the following algebraic identity holds

Q(n)
nr =

1
r!

n∑
j=1

(
n
j

)
(−1) j+1

{ r∑
l=0

(
r
l

)
Q(r−l)(0)Bl(y1, . . . , yl)

}
,

where yl = (l − 1)!H(l)
j .

Proof. By means of Proposition (3.4), we have

n∑
j=1

(
n
j

)
(−1) j+1

jr
Q( j) =

1
r!

r∑
l=0

(
r
l

)
Q(r−l)(0)Bl(y1, . . . , yl).

By the help of the following binomial inversion formula [1, p.64]

bn =

n∑
j=1

(
n
j

)
a j ←→ an =

n∑
j=1

(−1)n− j
(
n
j

)
b j

we get

−Q(n)
nr =

n∑
j=1

(
n
j

)
(−1) j 1

r!

r∑
l=0

(
r
l

)
Q(r−l)(0)Bl(y1, . . . , yl).

This completes the proof of this theorem.

Letting Q(x) = 1 in the last theorem, we obtain an identity that generalizes a list of identities that appeared
in [31] from equation (3.2) to equation (3.6).

Corollary 3.11. Let n be a positive integer and r any nonnegative integer. We have the following algebraic identity

n∑
j=1

(
n
j

)
(−1) j+1Br(H j, 1!H(2)

j , . . . , (r − 1)!H(r)
j ) =

r!
nr .
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In particular, we have

n∑
j=1

(
n
j

)
(−1) j+1H j =

1
n
,

n∑
j=1

(
n
j

)
(−1) j+1

(
H2

j +H(2)
j

)
=

2
n2 ,

n∑
j=1

(
n
j

)
(−1) j+1

(
H3

j + 3H jH
(2)
j + 2H(3)

j

)
=

6
n3 ,

n∑
j=1

(
n
j

)
(−1) j+1

(
H4

j + 6H2
j H

(2)
j + 8H jH

(3)
j + 3(H(2)

j )2 + 24H(4)
j

)
=

24
n4 ,

n∑
j=1

(
n
j

)
(−1) j+1

(
H5

j + 10H3
j H

(2)
j + 15H j(H

(2)
j )2 + 20H2

j H
(3)
j + 20H(2)

j H(3)
j + 30H jH

(4)
j + 24H(5)

j

)
=

120
n5 .

The Stirling numbers of first kind s(n, k) can be defined to be the coefficient of the polynomial < x >n as

< x >n=

n∑
k=0

s(n, k)xk,

where < x >n= x(x − 1) · · · (x − n + 1), < x >0= 1. From the definition, we can simply obtain the following
identities

s(k, k) = 1 for k ≥ 0,
s(k, 0) = 0 for k ≥ 1,
s(k, j) = 0 for j > k ≥ 0.

Also it is easy to verify the Stirling numbers of first kind satisfy the recurrence

s(n, k) = s(n − 1, k − 1) − (n − 1)s(n − 1, k) n, k ≥ 1.

Based on this recurrence relation special important values can be computed. Here are some of them:

s(n, 1) = (−1)n−1(n − 1)!,
s(n, 2) = (−1)n(n − 1)!Hn−1,

s(n, 3) =
(−1)n−1

2!
(n − 1)!

(
H2

n−1 −H(2)
n−1

)
,

s(n, 4) =
(−1)n

3!
(n − 1)!

(
H3

n−1 − 3Hn−1H(2)
n−1 + 2H(3)

n−1

)
.

These identities will be used to provide some particular cases of the following theorem.
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Theorem 3.12. Let n and m be two positive integers such that m < n. For any nonnegative integer r the following
algebraic identity holds

n∑
j=m

(
n
j

)(
j

m

)
(−1) j+1

jr
=

1
m!

r∑
l=0

1
l!

s(m, r − l)Bl(Hn, 1!H(2)
n , . . . , (l − 1)!H(l)

n ).

In particular, we have

n∑
j=m

(
n
j

)(
j

m

)
(−1) j+1 = 0,

n∑
j=m

(
n
j

)(
j

m

)
(−1) j+1

j
=

(−1)m−1

m
,

n∑
j=m

(
n
j

)(
j

m

)
(−1) j+1

j2
=

(−1)m

m
(Hm−1 −Hn),

n∑
j=m

(
n
j

)(
j

m

)
(−1) j+1

j3
=

(−1)m−1

2m

(
H2

m−1 −H(2)
m−1

)
+

(−1)m

m
HnHm−1 +

(−1)m−1

2m

(
H2

n +H(2)
n

)
.

Proof. Let Q(x) =< x >m. Then, it is clear that the lth derivative of Q is

Q(l)(x) = l!
n∑

k=0

(
k
l

)
s(m, k)xk−l.

According to Proposition 3.4, we easily obtain this result.

The unsigned Stirling numbers of first kind s(n,k) can be defined algebraically by

(x)n =

n∑
k=0

s(n,k)xk,

where (x)n = x(x + 1) · · · (x + n − 1), (x)0 = 1. Another generalized harmonic numbers H(n, j) can be defined
by

H(n, 0) = 1 and H(n, j) =
∑

1≤k1<k2<...<k j≤n

1
k1k2 · · · k j

for n, j ≥ 1.

It is clear that H(n, 1) = Hn = 1 + 1
2 + · · · +

1
n . These numbers can be written in terms of s(n,k) by

H(n, j) =
1
n!

s(n + 1, j + 1).

It is known that the numbers H(n, j) satisfy the following recurrence relation [7, Eq.29]

H(n, j) = H(n − 1, j) +
1
n

H(n − 1, j − 1), n, j ≥ 1.
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Also they satisfy another interesting recursion formula, which can be verified easily:

H(n,m) =
1
m

m−1∑
k=0

(−1)kH(k+1)
n H(n,m − k − 1), n,m ≥ 1.

From this we can readily check that

H(n, 1) = Hn,

H(n, 2) =
1
2

(
H2

n −H(2)
n

)
,

H(n, 3) =
1
6

(
H3

n − 3HnH(2)
n + 2H(3)

n

)
,

H(n, 4) =
1
24

(
H4

n + 8HnH(3)
n − 6H2

nH(2)
n + 3(H(2)

n )2
− 6H(4)

n

)
.

These will be used to produce some particular cases of the following result.

Theorem 3.13. Let n and m be two positive integers such that m < n. For any nonnegative integer r the following
algebraic identity holds

n∑
j=1

(
n
j

)(
m + j

m

)
(−1) j+1

jr
=

r∑
l=0

1
l!

H(m, r − l)Bl(Hn, 1!H(2)
n , . . . , (l − 1)!H(l)

n ).

In particular, we have

n∑
j=1

(
n
j

)(
m + j

m

)
(−1) j+1 = 1,

n∑
j=1

(
n
j

)(
m + j

m

)
(−1) j+1

j
= Hm +Hn,

n∑
j=1

(
n
j

)(
m + j

m

)
(−1) j+1

j2
=

1
2

(
H2

m −H(2)
m + 2HmHn +H2

n +H(2)
n

)
,

n∑
j=1

(
n
j

)(
m + j

m

)
(−1) j+1

j3
=

1
6

(
H3

m − 3HmH(2)
m + 2H(3)

m

)
+

1
2

Hn

(
H2

m −H(2)
m

)
+

1
2

Hm

(
H2

n +H(2)
n

)
+

1
6

(
H3

n + 3HnH(2)
n + 2H(3)

n

)
.

Proof. Let Q(x) =
(x+m

m
)
= 1

m! (x +m)(x +m − 1) · · · (x + 1). Then it is not hard to show that the l-derivative of
this polynomial is

Q(l)(x) = l!
m∑

j=0

(
j
l

)
H(m, j)x j−l.

The result follows from Proposition3.4.
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Theorem 3.14. Let n and m be two positive integers such that m < n. For any nonnegative integer r the following
algebraic identity holds

n∑
j=1

(
n
j

)(
m + j − 1

m

)
(−1) j+1

jr
=

1
m!

r∑
l=0

1
l!

s(m, r − l)Bl(Hn, 1!H(2)
n , . . . , (l − 1)!H(l)

n ).

In particular, we have

n∑
j=1

(
n
j

)(
m + j − 1

m

)
(−1) j+1 = 0,

n∑
j=1

(
n
j

)(
m + j − 1

m

)
(−1) j+1

j
=

1
m
,

n∑
j=1

(
n
j

)(
m + j − 1

m

)
(−1) j+1

j2
=

1
m

(
Hm−1 +Hn

)
,

n∑
j=1

(
n
j

)(
m + j − 1

m

)
(−1) j+1

j3
=

1
2m

(
H2

m−1 −H(2)
m−1 + 2Hm−1Hn +H2

n +H(2)
n

)
.

Proof. Similar to the above results this result is a consequence of the following identity

(x)m =

m∑
k=0

s(m,k)xk

and Proposition 3.4.

Deep identities involving harmonic numbers of higher order can be found in [36, Thm. 2.16] and references
therein.

4. Applications to Bernoulli and Euler polynomials

Euler polynomials En(x) and Bernoulli polynomials Bn(x) can be defined algebraically by means of the
following

En(x + y) =
n∑

k=0

(
n
k

)
Ek(x)yn−k and Bn(x + y) =

n∑
k=0

(
n
k

)
Bk(x)yn−k.

The integers En = 2nEn( 1
2 ) and the rational numbers Bn = Bn(0) are called Euler numbers and Bernoulli

numbers, respectively. These polynomials and numbers are among the most important and interesting
sequences in mathematics due to their numerous applications in number theory, combinatorics, numerical
analysis, and several other fields. Here we list some useful properties of the Bernoulli polynomials and the
Euler polynomials:

En(x) =
n∑

k=0

(
n
k

)
Ek

2k

(
x −

1
2

)n−k

, Bn(x) =
n∑

k=0

(
n
k

)
Bkxn−k,
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(−1)n+1En(−x) = En(x) − 2xn , (−1)nBn(−x) = Bn(x) + nxn−1,

E
′

n(x) = nEn−1(x) , B
′

n(x) = nBn−1(x).

In view of the last identities, we can easily provide the lth derivative of Bn(x) and En(x) as follows:

E(l)
n (x) = l!

(
n
l

)
En−l(x) , B(l)

n (x) = l!
(
n
l

)
Bn−l(x).

There are interesting relationships between Euler and Bernoulli polynomials. For example:

En(x) =
2

n + 1

(
Bn+1(x) − 2n+1Bn+1

(x
2

))
,

and

Bn(x) = 2−n
n∑

k=0

(
n
k

)
Bn−kEk(2x),

and

En(x) = 2
(
n + 2

2

)−1 n∑
k=0

(
n + 2

k

)
(2n+2−k

− 1)Bn−kBk(x).

In this section, we use some results of the previous section to derive more identities which relate the
generalized harmonic numbers with the Bernoulli numbers and Bernoulli polynomials.

We begin our results section by proving a useful lemma that will be needed in the sequel.

Lemma 4.1. The lth derivative of the Euler polynomials is given by

E(l)
m (x) =

2
m + 1

{
B(l)

m+1(x) − 2m+1−lB(l)
m+1

(x
2

)}
.

In particular, we have

E(l)
m (0) =

2l!
m + 1

(
m + 1

l

)
(1 − 2m+1−l)Bm+1−l,

and

Em(0) =
2

m + 1
(1 − 2m+1)Bm+1.

Proof. The proof easily follows according to the following identities

Em(x) =
2

m + 1

{
Bm+1(x) − 2m+1Bm+1

(x
2

)}
,

and

B(l)
m (x) = l!

(
m
l

)
Bm−l(x) , Bm = Bm(0).

In the following results, we present new identities involving Bernoulli polynomials, Bernoulli numbers,
and the generalized harmonic numbers, with the aid of some previously stated results.
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Theorem 4.2. Let n and m be two positive integers such that m < n. For any nonnegative integer r the following
algebraic identity holds

m∑
k=0

(
m
k

)
Bknm−k−r =

n∑
j=1

(
n
j

)
(−1) j+1

r∑
l=0

1
l!

(
m

r − l

)
Bm+l−rBl(H j, 1!H(2)

j , . . . , (l − 1)!H(l)
j ),

or equivalently

1
nr

(
Bm +m

n−1∑
k=0

km−1
)
=

n∑
j=1

(
n
j

)
(−1) j+1

r∑
l=0

1
l!

(
m

r − l

)
Bm+l−rBl(H j, 1!H(2)

j , . . . , (l − 1)!H(l)
j ).

Particularly, we have

m∑
k=0

(
m
k

)
Bknm−k = Bm,

m∑
k=0

(
m
k

)
Bknm−k−1 = mBm +

1
n

Bm,

m∑
k=0

(
m
k

)
Bknm−k−2 =

m(m − 1)
2

Bm−2 +
m
n

Bm−1 +
1
n2 Bm.

Proof. This result is a direct consequence of Theorem 3.10 and the fact that:

Bm(n) =
m∑

k=0

(
m
k

)
Bknm−k = Bm +m

n−1∑
k=0

km−1.

Theorem 4.3. Let n and m be two positive integers such that m < n. For any nonnegative integer r the following
algebraic identity holds

n∑
j=1

(
n
j

)
(−1) j+1

jr
Bm( j) =

r∑
l=0

1
l!

(
m

r − l

)
Bm+l−rBl(Hn, 1!H(2)

n , . . . , (l − 1)!H(l)
n ).

In particular, we have

n∑
j=1

(−1) j+1

(
n
j

)
Bm( j) = Bm,

n∑
j=1

(−1) j+1

j

(
n
j

)
Bm( j) = mBm−1 + BmHn,

n∑
j=1

(−1) j+1

j2

(
n
j

)
Bm( j) =

1
2

(
m(m − 1)Bm−2 + 2mBm−1Hn + Bm(H2

n +H(2)
n )

)
,
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Proof. First, we know that

B
′

m(x) = mBm−1(x),

Repeating this formula we easily obtain in the following identity the l-derivative of the Bernoulli polyno-
mials

1
l!

B(l)
m (x) =

(
m
l

)
Bm−l(x), l = 1, 2, . . .

which yields

1
l!

B(l)
m (0) =

(
m
l

)
Bm−l.

Now applying Proposition 3.4 to the Bernoulli polynomial Bm(x), we get the result.

Theorem 4.4. Let n and m be two positive integers such that m < n. For any nonnegative integer r the following
algebraic identity holds

1
m + 1

n∑
j=1

(
n
j

)
(−1) j+1

r∑
l=0

1
l!

(
m + 1
r − l

)
(1 − 2m+1+l−r)Bm+1+l−rBl(H j, 1!H(2)

j , . . . , (l − 1)!H(l)
j ) =

m∑
k=0

(
m
k

)
1

k + 1
(1 − 2k+1)Bk+1nm−r−k.

Proof. It is well known that [5, p. 263]

Em(x) =
m∑

k=0

(
m
k

)
Ek(0)xm−k,

and using Lemma 4.1, we have

Em(0) =
2

m + 1
(1 − 2m+1)Bm+1.

Therefore, we get

Em(n) =
m∑

k=0

(
m
k

)
2

k + 1
(1 − 2k+1)Bk+1nm−k.

Once again by applying Lemma 4.1, we have

E(r−l)
m (0) =

2(r − l)!
m + 1

(
m + 1
r − l

)
(1 − 2m+1+l−r)Bm+1+l−r.

The result follows directly from Theorem 3.10.

By setting r = 1 in the last theorem, its identity is simplified to the following

(1 − 2m)Bm +
1

n(m + 1)
(1 − 2m+1)Bm+1 =

m∑
k=0

(
m
k

)
1

k + 1
(1 − 2k+1)Bk+1nm−1−k.
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[15] K. Driver, H. Prodinger, C. Schneider, J. A .C. Weideman, Padé approximations to the logarithm. III. Alternative methods and additional

results, Ramanujan J. 12 (2006), 299–314.
[16] H. W. Gould, Higher order extensions of Melzak’s formula, Util. Math. 72 (2007), 23–32.
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