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Abstract. Let G be a graph and N2
G[D] be the 2-closed neighborhood of a vertex subset D in G. For a

property P of a graph G, a vertex subset D is said to be a P-2-admissible set of G if G − N2
G[D] admits

the property P. The P-2-admission number of G, denoted by η(G, P, 2), is the cardinality of a minimum
P-2-admissible set in G. For a positive integer k, we say a graph G has the property Rk if each component
of G has radius at most k. Then the R1-2-admission number of a graph G, denoted by η(G, R1, 2), is the
cardinality of a minimum vertex subset D such that V(G) = N2

G[D] or each component of G − N2
G[D] is a

graph having radius at most one. In this paper, we prove that if G is a connected graph of order n such that
G < {P4, C4, C9}, then η(G, R1, 2) ≤ n

5 , and that the bound is sharp.

1. Introduction

In this paper, we only discuss simple and undirected graphs. Let G = (V(G),E(G)) be a graph with
vertex set V(G) and edge set E(G). For any two vertices u and v in a connected graph G, let dG(u, v) denote
the distance between u and v in G. Let εG(v) = max{dG(u, v)|u ∈ V(G)} be the eccentricity of v ∈ V(G). Let
r(G) = min{εG(v)|v ∈ V(G)} be the radius of a connected graph G.

For a vertex v ∈ V(G), let NG(v) = {u|uv ∈ E(G)} and NG, 2(v) = {u|dG(u, v) = 2} denote the open
neighbourhood and 2-open neighbourhood respectively, with their closure forms NG[v] = NG(v) ∪ {v} (closed
neighbourhood) and N2

G[v] = NG, 2(v) ∪NG(v) ∪ {v} (2-closed neighbourhood). For a subset S ⊆ V(G), the closed
neighborhood NG[S] = NG(S) ∪ S and 2-closed neighborhood N2

G[S] = NG, 2(S) ∪ NG(S) ∪ S are defined
through union operations, where NG(S) =

⋃
v∈S

NG(v) and NG, 2(S) =
⋃
v∈S

NG, 2(v) respectively. For a vertex

v ∈ V(G), denote dG(v) = |NG(v)| as the degree of v in G. Given a subset S ⊆ V(G), let G[S] be the subgraph
of G induced by all vertices in S. For any S ⊆ V(G), define G − S as G[V(G) \ S]. A subset S ⊆ V(G) is a
dominating set if NG[S] = V(G), and is a 2-distance dominating set if N2

G[S] = V(G). The dominating number
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γ(G) and 2-distance dominating number γ2(G) are defined as the minimum cardinalities of a dominating set
and a 2-distance dominating set in G respectively. For any two disjoint subsets S and T of the vertex set
V(G) of a graph G, let EG(S,T) be the set of edges in G such that each edge connects a vertex in S with a
vertex in T. For a positive integer k, we adopt the notation [k] = {1, . . . , k}. As usual, we use Pn, Cn, and
K1,n−1 to denote the path, cycle, and star of order n, respectively.

Let F be a set of graphs. We call F an F -graph if F is one copy of a graph in F . If S is a vertex subset
in G such that G − NG[S] contains no F -graphs, then S is said to be an F -isolating set of G. The concept
of isolating sets was put forward by Caro and Hansberg [5]. The F -isolation number, denoted by ι(G,F ), is
the minimum cardinality of an F -isolating set in G. Specifically, for a positive integer k, a subset S ⊆ V(G)
is called: (1) a k-clique isolating set [1] if G − NG[S] contains no k-clique; (2) a k-isolating set [5] if G − NG[S]
contains no K1, k+1. The minimum size of k-clique isolating sets, denoted ι(G, k) = ι(G, {Kk}), is the k-clique
isolation number. The K1, k+1-isolation number ιk(G) = ι(G, {K1, k+1}) represents the minimum size of k-isolating
sets in G. The concept of isolating sets naturally generalizes classical domination problems [7, 9–11], as
the 1-clique isolation number coincides with the domination number. Caro and Hansberg [5] established
bounds for F = {K2} and F = {Kk+1} in trees, maximal outerplanar graphs, claw-free graphs, and grid
graphs. Their key result demonstrates ιk(G) ≤ n

k+2 for connected n-vertex graphs. Subsequently, Zhang
and Wu [13] improved the k = 1 case to ι1(G) ≤ 2n

7 (excluding G ∈ {C3, P3, C6}). Recent work by Borg
and Kaemawichanurat [4] proves ι1(G) ≤ n

5 for maximal outerplanar graphs with n ≥ 5. Borg et al. [1, 2]
further investigated ι(G, k) concerning graph order and size, while Borg [3] studied cycle isolation numbers,
showing ι(G, C) ≤ n

4 (for G � C3) where C = {Ck|k ≥ 3}. For the recent results about isolation number, one
can refer to [6, 8, 14].

Motivated by the definition of isolating set, Yu and Wu [12] introduced the admissible property of graphs
in terms of a given property of graphs. Let G be a graph and P a graph property. A subset D ⊆ V(G) is
defined as a P-admissible set if G−NG[D] satisfies P. The P-admission number η(G, P) denotes the minimum
size ofP-admissible sets in G. A graph G possesses property Rk if every component of G has radius at most
k. In [12], Yu and Wu analyzed R1-admission numbers for connected graphs and proved the following
result.

Theorem 1.1. [12, Theorem 1.1] For any connected n-vertex graph G � C7, the R1-admission number satisfies
η(G, R1) ≤ n

4 . This bound is attained by the graph in Figure 1.

Figure 1: The graph attaining the upper bound in Theorem 1.1.

The definitions of isolation number and admission number reveal an intrinsic connection between these
graph invariants. Specifically, given a positive integer t, define property Ct as requiring every component
of the graph has clique number at most t. Then the k-clique isolation number ι(G, k) coincides precisely
with the Ck−1-admission number η(G, Ck−1).

Motivated by Yu and Wu’s definition for admissible property of graphs, we define P-2-admissible
properties. For a graph property P, a subset D ⊆ V(G) is a P-2-admissible set if G − N2

G[D] satisfies P. The
P-2-admission number η(G, P, 2) denotes the minimum size of such sets. As before, let Rk be the property
that each component of G has radius at most k. Then the R1-2-admission number of a graph G, denoted by
η(G, R1, 2), is the cardinality of a minimum vertex subset D in G such that V(G) = N2

G[D] or each component
of G −N2

G[D] is a graph having radius at most one.
This paper establishes a tight upper bound for the R1-2-admission number in connected graphs. Our

main result is formally stated as follows.
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Theorem 1.2. Let G be a connected graph of order n. If G < {P4, C4, C9}, then η(G, R1, 2) ≤ n
5 , and this bound is

sharp.

For the sharpness of Theorem 1.2, we consider the path P5, cycles C5 and C10. It can be seen that
η(P5, R1, 2) = η(C5, R1, 2) = 1 = n

5 and η(C10, R1, 2) = 2 = n
5 . This shows that our upper bound in Theorem

1.2 is sharp.
We postpone the proof of Theorem 1.2 to Section 3.

2. Preliminary results

In this section, we give some preliminary results which will be used to prove Theorem 1.2.
The first two results are obvious and their proofs are omitted.

Lemma 2.1. For each positive integer n ≥ 4, we have η(Pn, R1, 2) = ⌈ n−3
8 ⌉ and η(P2, R1, 2) = η(P3, R1, 2) = 0.

Lemma 2.2. For each positive integer n ≥ 4, we have η(Cn, R1, 2) = ⌈ n
8 ⌉ and η(C3, R1, 2) = 0.

Lemma 2.3. Let G be a graph. For any S ⊆ V(G), if G[S] has anR1-2-admissible set D such that EG(S\N2
G[D], V(G)\

S) = ∅, then η(G, R1, 2) ≤ |D| + η(G − S, R1, 2).

Proof. If S = ∅, the statement of lemma is obvious. So, we assume that S , ∅. Let D0 be an R1-2-admissible
set of G − S such that |D0| = η(G − S, R1, 2). Next, we prove that D0 ∪ D is a R1-2-admissible set of G.
Suppose to the contrary that D0 ∪D is not an R1-2-admissible set of G. Then there exists a component F of
G −N2

G[D0 ∪D] such that r(F) ≥ 2. Then V(F) ∩ ((V(G) \ S) \N2
G[D0])) , ∅ and V(F) ∩ (S \N2

G[D]) , ∅. Thus
EG(S \N2

G[D], V(G) \ S) , ∅, a contradiction to our assumption. This completes the proof.

In particular, for a graph G with S ⊆ V(G), if D is a minimum 2-distance dominating set of G[S], then
S \N2

G[D] = ∅. Thus, EG(S \N2
G[D], V(G) \ S) = ∅ and γ2(G[S]) = |D|. According to Lemma 2.3, we have the

following result.

Corollary 2.4. Let G be a graph. Then η(G, R1, 2) ≤ γ2(G[S]) + η(G − S, R1, 2) holds for any S ⊆ V(G).

Lemma 2.5. Let k be a positive integer. If G1, . . . , Gk are different connected components of a graph G, then

η(G, R1, 2) =
k∑

i=1
η(Gi, R1, 2).

Proof. For each i ∈ [k], let Di be an R1-2-admissible set of Gi such that |Di| = η(Gi, R1, 2). Then D =
k⋃

i=1
Di is

an R1-2-admissible set of G, yielding that η(G, R1, 2)

≤ |D| =
k∑

i=1
|Di| =

k∑
i=1
η(Gi, R1, 2). Conversely, let D be an R1-2-admissible set of G such that |D| = η(G, R1, 2).

For each i ∈ [k], set Di = D ∩ V(Gi). Then Di is an R1-2-admissible set of Gi for each i ∈ [k]. So,
k∑

i=1
η(Gi, R1, 2) ≤

k∑
i=1
|Di| = |D| = η(G, R1, 2). This completes the proof.

3. The proof of Theorem 1.2

In this section, we present the proof of Theorem 1.2.

Suppose to the contrary that the statement of theorem is false. We choose G to be a minimum coun-
terexample graph among all counterexample graphs, of order n, apart from P4, C4 and C9.

When n ≤ 4, since G < {P4, C4}, it is easy to check that r(G) ≤ 1. So, η(G, R1, 2) = 0 < n
5 , a contradiction

to our choice of G. Now, we assume that n ≥ 5. Let △ be the maximum degree of G. If △ = 2, then G � Pn
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or Cn. Since G < {P4, C4, C9}, by Lemmas 2.1 and 2.2, one can verify that η(G, R1, 2) ≤ n
5 , a contradiction to

our choice of G. Hence, we may assume that △ ≥ 3.
Let v be a vertex in G such that dG(v) = △. Since △ ≥ 3 and n ≥ 5, we have |N2

G[v]| ≥ 5. If V(G) = N2
G[v],

then {v} is an R1-2-admissible set of G. Since n ≥ 5, η(G, R1, 2) ≤ |{v}| = 1 ≤ n
5 , a contradiction to our choice

of G. So, we may assume that V(G) \N2
G[v] , ∅.

Let G′

= G −N2
G[v] and n′ = |V(G′

)|. For G′

, we useH to denote the set of connected components of G′

.
It follows from the definitions of P-2-admissible set andH that the following fact holds.

Fact 3.1. For each H ∈ H , we have NG(V(H)) ∩NG(v) = ∅ and NG(V(H)) ∩NG, 2(v) , ∅.

LetH1 = {H ∈ H|H < {P4, C4, C9}} andHb = {H ∈ H|H ∈ {P4, C4, C9}}. Further, we letH1
b = {H ∈ Hb|H �

P4 or H � C4} andH2
b = {H ∈ Hb|H � C9}. For any given x ∈ NG, 2(v), letHx = {H ∈ H|NG(V(H))∩NG, 2(v) =

{x}}. Also, we letH1, x = {H ∈ H|H ∈ H1 ∩Hx},Hb, x = {H ∈ H|H ∈ Hb ∩Hx}. Thus,H1, x ∪Hb, x = Hx. Let
H

1
b, x = {H ∈ H|H ∈ Hb, x ∩H

1
b } andH2

b, x = {H ∈ H|H ∈ Hb, x ∩H
2
b }.

According to our choice of G, for any connected proper subgraph G0 of G, if G0 < {P4, C4, C9}, then

η(G0, R1, 2) ≤
|V(G0)|

5
. (1)

In the following, we will always assume that |H1
b | = s and |H2

b | = t. Then n = 4s+ 9t+ |NG, 2(v)|+△+ 1+∑
H∈H1

|V(H)|.

We first prove the following claims.

Claim 3.2. s + t ≥ 1.

Proof. Assume to the contrary that s+t = 0. ThenHb = ∅. Let S = N2
G[v]. Then {v} is a 2-distance dominating

set of G[S]. As G − S =
⋃

H∈H1
H and |N2

G[v]| ≥ 5, by (1), Corollary 2.4 and Lemma 2.5, we have

η(G, R1, 2) ≤ 1 +
∑

H∈H1

η(H, R1, 2) ≤ 1 +
∑

H∈H1

|V(H)|
5
≤ 1 +

n − 5
5
=

n
5
,

a contradiction to our choice of G.
Hence s + t ≥ 1, as desired.

Let X = (
⋃

H∈Hb

V(H)) ∪ N2
G[v]. Then G − X =

⋃
H∈H1

H. For each H � P4 or C4 in H1
b , if w is one vertex in

NG(V(H)) ∩NG, 2(v), then we take wH to be a vertex in H such that wwH ∈ E(G). For each H � C9 inH2
b , if u

is one vertex in NG(V(H)) ∩NG, 2(v), then we take uH to be a vertex in H such that uuH ∈ E(G), and let u′H be
a vertex in H such that dG(uH, u′H) = 4.

Claim 3.3. For each H ∈ Hb, we have |NG(V(H)) ∩NG, 2(v)| ≥ 2.

Proof. Suppose to the contrary that there exists a vertex x ∈ NG, 2(v) such that |Hb, x| ≥ 1. Assume that
|H

1
b, x| = p and |H2

b, x| = q (0 ≤ p ≤ s, 0 ≤ q ≤ t and 1 ≤ p + q ≤ s + t). Let Y = (
⋃

H∈Hb, x

V(H)) ∪ {x} and let G⋆v be

the component, of G − Y, containing v. Obviously, N2
G[v] \ {x} ⊆ V(G⋆v ). Thus, all components of G − Y are

G⋆v and all members ofH1, x. For each H ∈ H1
b, x, let yH be one neighbor of x in H. For each H ∈ H2

b, x, let yH

be one neighbor of x in H and y′H be one vertex in H such that dH(y′H, yH) = 4.
Since x ∈ NG, 2(v) by Fact 3.1 and dG(v) = △ ≥ 3 by our previous assumption, we have dG⋆v (v) ≥ 3. Thus,

G⋆v < {P4, C4, C9}. By (1), we have η(G⋆v , R1, 2) ≤ |V(G⋆v )|
5 .
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Let D = (
⋃

H∈H2
b, x

{y′H}) ∪ {x}. Then G[Y] −N2
G[D] � ℓ1K1 ∪ ℓ2K2, where 0 ≤ ℓ2 ≤ p and 0 ≤ ℓ1 ≤ q + (p − ℓ2).

Thus, D is an R1-2-admissible set of G[Y]. Obviously, we have EG(Y \N2
G[D], V(G) \ Y) = ∅. By Lemma 2.3,

we have η(G, R1, 2) ≤ |D| + η(G − Y, R1, 2). Since p + q ≥ 1, by Lemma 2.5 and (1), we have

η(G, R1, 2) ≤ q + 1 +
|V(G⋆v )|

5
+
∑

H∈H1, x

|V(H)|
5

=
5(q + 1) + [n − (4p + 9q + 1)]

5

=
n − 4p − 4q + 4

5

≤
n
5
,

a contradiction to our choice of G. This proves the claim.

Claim 3.4. s = 0.

Proof. Assume that s ≥ 1. Let H′

∈ H
1
b and x be a vertex in NG, 2(v) ∩ NG(V(H′

)). Thus, by Claim 3.3, we
haveHx ⊆ H1.

For above H′

, let X = V(H′

)∪ {x} and G∗ = G −X. Let G∗v be the component, containing v, of G∗. Clearly,
N2

G[v] \ {x} ⊆ V(G∗v). By Claim 3.3, |NG(V(H)) ∩NG, 2(v)| ≥ 2 for each H ∈ Hb. Thus, G∗ = G∗v
⋃

(
⋃

H∈Hx

H).

Since x ∈ NG, 2(v) by Fact 3.1 and dG(v) = △ ≥ 3 by our previous assumption, we have dG⋆v (v) ≥ 3. Thus,
G∗v < {P4, C4, C9}. By (1), we have η(G∗v, R1, 2) ≤ |V(G∗v)|

5 .
Let y be a vertex in H′ such that xy ∈ E(G). If H′ � C4 or H′ � P4 and dH′(y) = 2, then define D = {y};

otherwise, if H′ � P4 and dH′(y) = 1, then let y′ be the unique neighbor of y in H′ and define D = {y′}. Since
X = N2

G[D], D is a minimum 2-distance dominating set of G[X]. By (1), Corollary 2.4, and Lemma 2.5, one
can derive that

η(G, R1, 2) ≤ |D| + η(G∗v, R1, 2) +
∑

H∈Hx

η(H, R1, 2)

≤ 1 +
|V(G∗v)|

5
+
∑

H∈Hx

|V(H)|
5

= 1 +
n − 5

5

=
n
5
,

a contradiction to our choice of G.
This proves the claim.

Claim 3.5. t = 0.

Proof. Suppose to the contrary that t ≥ 1. Let H′

∈ H
2
b and x be a vertex in NG, 2(v) ∩ NG(V(H′

)). Thus, by
Claim 3.3, we haveHx ⊆ H1.

For above H′

, let X = V(H′

)∪ {x} and G∗ = G −X. Let G∗v be the component, containing v, of G∗. Clearly,
N2

G[v] \ {x} ⊆ V(G∗v). By Claim 3.3, |NG(V(H))∩NG, 2(v)| ≥ 2 for each H ∈ Hb. Thus, G∗ = G∗v
⋃

(
⋃

H∈Hx

H). Let y

be one vertex in H′

such that xy ∈ E(G).
Since x ∈ NG, 2(v) by Fact 3.1 and dG(v) = △ ≥ 3 by our previous assumption, we have dG⋆v (v) ≥ 3.

Thus, G∗v < {P4, C4, C9}. By (1), we have η(G∗v, R1, 2) ≤ |V(G∗v)|
5 . Let yH′ be a vertex in H′

(� C9) such that
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dH′ (y, yH′ ) = 4 and D = {y, yH′ }. Since X = N2
G[D], D is a minimum 2-distance dominating set of G[X]. By

(1), Corollary 2.4 and Lemma 2.5,

η(G, R1, 2) ≤ |D| + η(G∗v, R1, 2) +
∑

H∈Hx

η(H, R1, 2)

≤ 2 +
|V(G∗v)|

5
+
∑

H∈Hx

|V(H)|
5

= 2 +
n − 10

5

=
n
5
,

a contradiction to our choice of G.
This proves the claim.

Now, by Claims 3.4 and 3.5, we have s + t = 0, a contradiction to Claim 3.2. Therefore, there exists
no counterexample graphs other than P4, C4 and C9. So, if G < {P4, C4, C9}, then η(G, R1, 2) ≤ n

5 . This
completes the proof.

4. Concluding remarks

In this paper, we have defined a new admissible set with respect to a given graph property P. More
specifically, we defined and studiedP-2-admissible set andP-2-admission number in terms of graph radius.
For the given property Rk introduced before, we have established a sharp upper bound on R1-2-admission
number for a general connected graph and shown that this upper bound is sharp. It seems to be interesting
to study P-2-admission number for a connected graph for other graph property P.
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