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Abstract. Let G be a graph and Né[D] be the 2-closed neighborhood of a vertex subset D in G. For a
property ? of a graph G, a vertex subset D is said to be a P-2-admissible set of G if G — NZ[D] admits
the property P. The P-2-admission number of G, denoted by n(G, P, 2), is the cardinality of a minimum
P-2-admissible set in G. For a positive integer k, we say a graph G has the property Ry if each component
of G has radius at most k. Then the R;-2-admission number of a graph G, denoted by n(G, Ry, 2), is the
cardinality of a minimum vertex subset D such that V(G) = Né[D] or each component of G — N(z;[D] is a
graph having radius at most one. In this paper, we prove that if G is a connected graph of order n such that

G ¢ {P4, Cy, Go}, then (G, Ry, 2) < £, and that the bound is sharp.

1. Introduction

In this paper, we only discuss simple and undirected graphs. Let G = (V(G), E(G)) be a graph with
vertex set V(G) and edge set E(G). For any two vertices 1 and v in a connected graph G, let dg(u, v) denote
the distance between 1 and v in G. Let e¢(v) = max{dc(u, v)lu € V(G)} be the eccentricity of v € V(G). Let
r(G) = min{ec(v)lv € V(G)} be the radius of a connected graph G.

For a vertex v € V(G), let Ng(v) = {uluv € E(G)} and Ng,2(v) = {uldc(u, v) = 2} denote the open
neighbourhood and 2-open neighbourhood respectively, with their closure forms Ng[v] = Ng(v) U {v} (closed
neighbourhood) and Né [v] = Ng,2(v) U Ng(v) U {v} (2-closed neighbourhood). For a subset S C V(G), the closed
neighborhood Ng[S] = Ng(S) U S and 2-closed neighborhood Né[S] = Ng,2(S) U N¢(S) U S are defined
through union operations, where N¢(S) = | Ng(v) and Ng,2(S) = U Ng,2(v) respectively. For a vertex

ves

veS
v € V(G), denote d¢(v) = [Ng(v)| as the degree of v in G. Given a subset S C V(G), let G[S] be the subgraph
of G induced by all vertices in S. For any S € V(G), define G — S as G[V(G) \ S]. A subset S € V(G) is a
dominating set if Ng[S] = V(G), and is a 2-distance dominating set if Né[S] = V(G). The dominating number

2020 Mathematics Subject Classification. Primary 05C35; Secondary 05C38, 05C69

Keywords. P-2-admissible set; P-2-admission number; R;-2-admission number; 2-closed neighborhood; radius

Received: 24 March 2025; Revised: 25 May 2025; Accepted: 03 June 2025

Communicated by Paola Bonacini

Research supported by the National Natural Science Foundation of China (Grant No. 11971011), the Hubei Provincial Natural
Science Foundation of China (Grant No. 2025AFD006) and the Foundation of Hubei Provincial Department of Education (Grant No.
Q20232505)

* Corresponding author: Hongbo Hua

Email addresses: hongbo_hua@163. com (Hongbo Hua), hechaoliu@yeah.net (Hechao Liu)

ORCID iDs: https://orcid.org/0000-0001-7152-466X (Hongbo Hua), https://orcid.org/0000-0001-7606-4842 (Hechao
Liu)



H. Hua, H. Liu / Filomat 39:23 (2025), 8097-8102 8098

¥(G) and 2-distance dominating number y,(G) are defined as the minimum cardinalities of a dominating set
and a 2-distance dominating set in G respectively. For any two disjoint subsets S and T of the vertex set
V(G) of a graph G, let Eg(S, T) be the set of edges in G such that each edge connects a vertex in S with a
vertex in T. For a positive integer k, we adopt the notation [k] = {1,...,k}. As usual, we use P,, C,, and
K1 ,-1 to denote the path, cycle, and star of order n, respectively.

Let F be a set of graphs. We call F an ¥ -graph if F is one copy of a graph in . If S is a vertex subset
in G such that G — Ng[S] contains no ¥ -graphs, then S is said to be an ¥ -isolating set of G. The concept
of isolating sets was put forward by Caro and Hansberg [5]. The ¥ -isolation number, denoted by (G, ¥), is
the minimum cardinality of an ¥ -isolating set in G. Specifically, for a positive integer k, a subset S C V(G)
is called: (1) a k-clique isolating set [1] if G — N¢[S] contains no k-clique; (2) a k-isolating set [5] if G — Ng[S]
contains no Kj x+1. The minimum size of k-clique isolating sets, denoted «(G, k) = «(G, {K}), is the k-clique
isolation number. The Kj ry1-isolation number 4(G) = (G, {K3,k+1}) represents the minimum size of k-isolating
sets in G. The concept of isolating sets naturally generalizes classical domination problems [7, 9-11], as
the 1-clique isolation number coincides with the domination number. Caro and Hansberg [5] established
bounds for ¥ = {K;} and ¥ = {Ki4+1} in trees, maximal outerplanar graphs, claw-free graphs, and grid
graphs. Their key result demonstrates (G) < 5 for connected n-vertex graphs. Subsequently, Zhang
and Wu [13] improved the k = 1 case to (1(G) < 27” (excluding G € {Cs, P53, Cg}). Recent work by Borg
and Kaemawichanurat [4] proves 11(G) < £ for maximal outerplanar graphs with n > 5. Borg et al. [1, 2]
further investigated (G, k) concerning graph order and size, while Borg [3] studied cycle isolation numbers,
showing (G, C) < % (for G # C3) where C = {C|k > 3}. For the recent results about isolation number, one
can refer to [6, 8, 14].

Motivated by the definition of isolating set, Yu and Wu [12] introduced the admissible property of graphs
in terms of a given property of graphs. Let G be a graph and % a graph property. A subset D C V(G) is
defined as a P-admissible set if G — N¢[D] satisfies P. The P-admission number n(G, ) denotes the minimum
size of P-admissible sets in G. A graph G possesses property Ry if every component of G has radius at most
k. In [12], Yu and Wu analyzed R;-admission numbers for connected graphs and proved the following
result.

Theorem 1.1. [12, Theorem 1.1] For any connected n-vertex graph G % Cy, the Ry-admission number satisfies
(G, R1) < . This bound is attained by the graph in Figure 1.

alalata

Figure 1: The graph attaining the upper bound in Theorem 1.1.

The definitions of isolation number and admission number reveal an intrinsic connection between these
graph invariants. Specifically, given a positive integer t, define property C; as requiring every component
of the graph has clique number at most t. Then the k-clique isolation number (G, k) coincides precisely
with the C_;-admission number 1(G, Ci_1).

Motivated by Yu and Wu’s definition for admissible property of graphs, we define $-2-admissible
properties. For a graph property P, a subset D C V(G) is a P-2-admissible set if G — NZ[D] satisfies P. The
P-2-admission number n(G, P, 2) denotes the minimum size of such sets. As before, let Ry be the property
that each component of G has radius at most k. Then the R;-2-admission number of a graph G, denoted by
n(G, R, 2), is the cardinality of a minimum vertex subset D in G such that V(G) = N, é [D] or each component
of G — NZ[D] is a graph having radius at most one.

This paper establishes a tight upper bound for the R;-2-admission number in connected graphs. Our
main result is formally stated as follows.
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Theorem 1.2. Let G be a connected graph of order n. If G ¢ {Py, Cy, Co}, then (G, Ry, 2) < %, and this bound is
sharp.

For the sharpness of Theorem 1.2, we consider the path Ps, cycles Cs and Cjg. It can be seen that
n(Ps, R1, 2) = n(Cs, Ry, 2) =1 = z and n(Cyo, R1, 2) = 2 = . This shows that our upper bound in Theorem
1.2 is sharp.

We postpone the proof of Theorem 1.2 to Section 3.

2. Preliminary results

In this section, we give some preliminary results which will be used to prove Theorem 1.2.
The first two results are obvious and their proofs are omitted.

Lemma 2.1. For each positive integer n > 4, we have n(P,, Ry, 2) = [”T‘:"] and (P2, Ry, 2) = n(P3, Ry, 2) = 0.
Lemma 2.2. For each positive integer n > 4, we have 1(C,, Ry, 2) = [g1and n(Cs, Ry, 2) =0

Lemma 2.3. Let G beagraph. Forany S C V(G), if G[S] has an R;-2-admissible set D such that EG(S\Né[D], V(G)\
S) =0, then n(G, Ry, 2) < ID|+ n(G =S, Ry, 2).

Proof. 1If S = 0, the statement of lemma is obvious. So, we assume that S # 0. Let Dy be an R;-2-admissible
set of G — S such that [Dg| = (G — S, Ry, 2). Next, we prove that Dy U D is a R;-2-admissible set of G.
Suppose to the contrary that Dy U D is not an R;-2-admissible set of G. Then there exists a component F of
G — NZ[Do U D] such that r(F) > 2. Then V(F) N (V(G) \ S) \ N4[Dq])) # @ and V(F) N (S \ NZ[D]) # 0. Thus
Ec(S\ Né[D], V(G)\ S) # 0, a contradiction to our assumption. This completes the proof. [J

In particular, for a graph G with S C V(G), if D is a minimum 2-distance dominating set of G[S], then
S\ Né[D] = (. Thus, Eg(S \ Né[D], V(G)\ S) = 0 and y»(G[S]) = ID|. According to Lemma 2.3, we have the
following result.

Corollary 2.4. Let G be a graph. Then n(G, Ry, 2) < y2(GI[S]) + n(G = S, Ry, 2) holds for any S C V(G).

Lemma 2.5. Let k be a positive integer. If Gy, ..., Gy are different connected components of a graph G, then
k
n(G, Ry, 2) = 21 n(Gi, Ri, 2).

Proof. For each i € [k], let D; be an R;-2-admissible set of G; such that |D;| = (G;, Ry, 2). Then D = ij D; is
an R;-2- admissible set of G, yielding that (G, Ry, 2) -
<|D| = ): |Dj| = ): n(Gi, R, 2). Conversely, let D be an R;-2-admissible set of G such that |D| = (G, Ry, 2).
For each i€ [k] set D; = DN V(G;). Then D; is an R;-2-admissible set of G; for each i € [k]. So,
Zl (G, Ry, 2) < Zl IDi| = ID| = n(G, Ry, 2). This completes the proof. [

3. The proof of Theorem 1.2
In this section, we present the proof of Theorem 1.2.

Suppose to the contrary that the statement of theorem is false. We choose G to be a minimum coun-
terexample graph among all counterexample graphs, of order n, apart from P4, C4 and Co.

When n < 4, since G ¢ {P,, C4}, it is easy to check that #(G) < 1. So, (G, Ry, 2) = 0 < £, a contradiction
to our choice of G. Now, we assume that n > 5. Let A be the maximum degree of G. If A = 2, then G = P,
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or C,. Since G ¢ {P4, C4, Co}, by Lemmas 2.1 and 2.2, one can verify that n(G, Ry, 2) < £, a contradiction to
our choice of G. Hence, we may assume that A > 3.

Let v be a vertex in G such that dg(v) = A. Since A > 3 and n > 5, we have |Né[v]| >5 If V(G) = Né[v],
then {v} is an R;-2-admissible set of G. Since n > 5, (G, Ry, 2) < |{v}| = 1 < %, a contradiction to our choice
of G. So, we may assume that V(G) \ Né[v] 0.

LetG' = G- NZ[v]and n" = [V(G)|. For G, we use H to denote the set of connected components of G.

It follows from the definitions of $-2-admissible set and H that the following fact holds.

Fact 3.1. For each H € H, we have Ng(V(H)) N Ng(v) = 0 and Ng(V(H)) N Ng,2(v) # 0.

LetH, = {H € H|H ¢ {P4, C4, Co}}and H, = {H € H|H € {Py, C4, Co}}. Further, we let‘H; ={H e H,H =
P, or H = Cy}and 7‘(5 = {H € H,|H = Co}. For any given x € Ng 2(v), let H, = {H € H|Ng(V(H)) N Ng,2(v) =
{x}}. Also, welet H, . = {H € H|H € H, N H.}, Hy,» = {H € H|H € H, N H,}. Thus, H, U H,, = H,. Let
ﬂz},x = {H € H|H € H,, N H}} and Wix = {H € H|H € H,,» N HZ).

According to our choice of G, for any connected proper subgraph Gy of G, if Gg ¢ {P4, C4, Co}, then

V(G
nGo, Ry, ) < 2 0
In the following, we will always assume that |7{}| = s and |H7| = t. Then n = 45 + 9t + NG, 2(0)| + A + 1 +
Y IV(H)
HeH,

We first prove the following claims.
Claim 3.2. s+t > 1.

Proof. Assume to the contrary thats+¢ = 0. Then H, = 0. Let S = Né[v]. Then {v} is a 2-distance dominating

setof G[S]. AsG—-S= |J Hand |Né[v]| > 5, by (1), Corollary 2.4 and Lemma 2.5, we have
HeH,

H _
T](G,Rl,Z)S1+Zn(Hlﬂl’z)Sl_'_Z|V(5 )|S1+I’l 522

5 5’
HeH, HeH,

a contradiction to our choice of G.
Hences +t > 1, as desired. [

Let X = (U V(H)UNZ[v]. Then G- X = |J H. For each H = P, or Cy in H}, if w is one vertex in
HeH, HeH,

Ng(V(H)) N Ng,2(v), then we take wy to be a vertex in H such that wwy € E(G). For each H = Cg in 7—(5, if u
is one vertex in Ng(V(H)) N Ng,2(v), then we take uy to be a vertex in H such that uuy € E(G), and let u'H be
a vertex in H such that dg(uy, ”ﬁ) =4.

Claim 3.3. For each H € H,, we have [INg(V(H)) N Ng,2(v)| = 2.

Proof. Suppose to the contrary that there exists a vertex x € Ng 2(v) such that |H, .| > 1. Assume that

IH, |=pand |H} |=q(0<p<s0<g<tandl<p+q<s+t).LetY=( U V(H))U{x}andletG} be
! ! HE(}‘lb,x

the component, of G - Y, containing v. Obviously, NZ[¢] \ {x} € V(G}). Thus, all components of G — Y are
G} and all members of Wg,x. Foreach H € ﬂl},x’ let yy be one neighbor of x in H. For each H € ‘Hz ” let y
be one neighbor of x in H and y,, be one vertex in H such that dy (v}, yu) = 4.

Since x € Ng,2(v) by Fact 3.1 and dg(v) = A > 3 by our previous assumption, we have d¢»(v) > 3. Thus,

G ¢ (P4, Cy, Co}. By (1), we have (G2, Ry, 2) < &,
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LetD=( U {y,}) U {x}. Then G[Y] - N2[D] = 1Ky U £,Kp, where 0 < £, <pand 0 < {1 < g+ (p — &)
He‘Hb%x
Thus, D is an R;-2-admissible set of G[Y]. Obviously, we have Eg(Y \ Né[D], V(G)\Y) = 0. By Lemma 2.3,
we have 17(G, Ry, 2) < Dl + (G =Y, Ry, 2). Sincep + g > 1, by Lemma 2.5 and (1), we have

L VG, Z [V(H)|

IA

(G, Ry, 2) +1

> HeH,,« 5
_ 5@+ 1) +[n—-(dp+99+1)]
- 5
_ on—4p-4q+4
= — 5
n
< =7
5

a contradiction to our choice of G. This proves the claim. O
Claim 3.4. s = 0.

Proof. Assume thats > 1. Let H € H] and x be a vertex in Ng,»(v) N Ng(V(H')). Thus, by Claim 3.3, we
have H, C H,.

For above H', let X = V(H') U {x} and G* = G — X. Let G;, be the component, containing v, of G*. Clearly,
NZ[]\ {x} € V(G;). By Claim 3.3, [INg(V(H)) N Ng,2(v)| > 2 for each H € H,. Thus, G* = G, U(HUH H).

eH,

Since x € Ng,2(v) by Fact 3.1 and dg(v) = A > 3 by our previous assumption, we have d¢:(v) > 3. Thus,
G5 ¢ (P4, Cy, Co}. By (1), we have (G5, Ry, 2) < V&,

Let y be a vertex in H’ such that xy € E(G). If H" = C4 or H = P4 and dy/(y) = 2, then define D = {y};
otherwise, if H" = P4 and dy/(,) = 1, then let y” be the unique neighbor of y in H” and define D = {y’}. Since
X = Né[D], D is a minimum 2-distance dominating set of G[X]. By (1), Corollary 2.4, and Lemma 2.5, one
can derive that

G, R, 2) < DI+, Re, 2)+ Y. n(H, Ry, 2)
HeH,
V(G V(D)
< 1+ T + Z T
HeH,
n—>5
= 1+ 5
_
-2

a contradiction to our choice of G.
This proves the claim. [

Claim 3.5. £ = 0.

Proof. Suppose to the contrary that f > 1. Let H e 7’{b2 and x be a vertex in Ng »(v) N Ng(V(H')). Thus, by
Claim 3.3, we have H, C H,.
For above H', let X = V(H') U {x} and G* = G — X. Let G;, be the component, containing v, of G*. Clearly,

Né[v] \ {x} € V(G;). By Claim 3.3, INg(V(H)) N Ng,2(v)| > 2 for each H € Hj. Thus, G* = G;, | J( U H). Lety
HeH,

be one vertex in H such that xy € E(G).
Since x € Ng,»2(v) by Fact 3.1 and dg(v) = A > 3 by our previous assumption, we have dg:(v) > 3.

Thus, G, ¢ {Ps, C4, Co}. By (1), we have n(G;, Ry, 2) < @ Let yy be a vertex in H'(= Cy) such that
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dy (y, ypr) =4 and D = {y, yyy}. Since X = NZ[D], D is a minimum 2-distance dominating set of G[X]. By
(1), Corollary 2.4 and Lemma 2.5,

NG, R, 2) < DI+, Re, 2+ Y. n(H, Ry, 2)
HeH,
V(G V(HD)]
< _ _—
< 2+ B +Z 5
HeH,
_ 2+n—10
_
-2

a contradiction to our choice of G.
This proves the claim. O

Now, by Claims 3.4 and 3.5, we have s + t = 0, a contradiction to Claim 3.2. Therefore, there exists
no counterexample graphs other than P, C4 and Co. So, if G ¢ {P4, C4, Co}, then 1(G, Ry, 2) < 5. This
completes the proof.

4. Concluding remarks

In this paper, we have defined a new admissible set with respect to a given graph property $. More
specifically, we defined and studied $-2-admissible set and P-2-admission number in terms of graph radius.
For the given property Ry introduced before, we have established a sharp upper bound on R;-2-admission
number for a general connected graph and shown that this upper bound is sharp. It seems to be interesting
to study P-2-admission number for a connected graph for other graph property #.
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