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Almost A-statistical convergence and approximation theorems

Kamil Demircia,∗, Fadime Dirika, Sevda Yıldıza

aSinop University, Department of Mathematics, Sinop, Türkiye

Abstract. In this paper, we define almost A-statistical convergence via almost regular matrices, which
extend the notion of regular matrices, and find its relationship with almost A-summability. Then we study
its use in a Korovkin-type approximation theorem. We also construct an example such that our new result
works but its classical and statistical versions do not work and a figure will be presented to support our
result. Finally, we compute the corresponding rate of almost A-statistical convergence of positive linear
operators in two different ways, we have newly defined.

1. Introduction and Preliminary Notations

Korovkin’s theorem, studied by many researchers, provides the necessary conditions for a sequence
of positive linear operators (pLOs) to converge to the objective function. Korovkin [18] proved that these
conditions are not analysed and that it is sufficient for the test functions 1, v and v2 to converge uniformly.
Subsequent research pioneered by this work has extended these investigations to various classes of operators
and function spaces. The incorporation of statistical convergence ([11, 23]) into approximation theory has
yielded many important benefits. As exemplified in the work of [12], they used the notion of statistical
convergence to develop new Korovkin-type theorems. These generalized theorems extend classical results
and provide a more comprehensive framework for approximation theory [5–8, 25, 29]. In addition to
statistical convergence, various other types of convergence have been investigated within the framework
of approximation theory. These alternative approaches enable the exploration of a more extensive class of
operators and provide novel perspectives on the study of Korovkin-type theorems [1–4, 9, 14, 20–22, 27, 28].
Since statistical convergence and almost convergence overlap, neither contains the other, many researchers
have started to work on almost convergence [17, 24, 26].

In the present work, we introduce the concept of almost A-statistical convergence via almost regular
matrices, which extend the notion of regular matrices. We establish and prove a Korovkin-type approxima-
tion theorem for sequences of positive linear operators defined on the space of all real-valued continuous
functions by means of our new convergence. We also construct an example such that our new result works
but its classical and statistical versions do not work. Additionally, we provide a graphical representation to
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illustrate the effectiveness of our approach. Finally, we state and calculate the corresponding rate of almost
A-summability of positive linear operators in two different ways, we have newly defined. We begin by
recalling some fundamental definitions and notations that will be used throughout this paper. Let A = (a jm)
be a summability matrix and x = (xm) be a real valued sequence. If the sequence

(Ax) j =

∞∑
m=0

a jmxm

exists, i.e., the series
∞∑

m=0
a jmxm is convergent for each j ∈N0 whereN0 is the set of all nonnegative integers,

then the sequence Ax is called the A-transformation of x. If the sequence Ax convergent to a number s then
the sequence x = (xm) is said to be A-summable to s and we write A − lim xm = s. A summability matrix A
is said to be regular A − lim (Ax) j = s whenever lim xm = s. The well-known Silvermen-Toeplitz theorem
chacterizes regular matrices [13].

The matrix A = (a jm) is regular if and only if it satisfies the following conditions:

i) sup
∞∑

m=0

∣∣∣a jm

∣∣∣ < ∞, j = 0, 1, 2, ...,

ii) lim
j

∞∑
m=0

a jm = 1,

iii) lim
m

a jm = 0 for all j ∈N0.

One of the most familiar examples of regular summability matrix is the C1 = (c jm) Cesaro matrix where

c jm =

{ 1
j+1 , m ≤ j,
0, m > j.

Let A be a nonnegative regular summability matrix. Then A-density of E ⊆N0, denoted δA(E), is given
by

δA(E) = lim
j

∑
m∈E

a jm = lim
j

∞∑
m=0

a jmχE(m) = lim
j

(AχE) j

whenever this limit exists. Here, χE denotes the characteristic sequence of the set E. If A = C1, then the C1-
density is called the natural density of E and is denoted δC1 (E).A sequence x = (xm) is said to be A-statistical
convergent to L if, for every ε > 0, δA ({m ∈N0 : |xm − L| ≥ ε}) = 0. In this case, we write stA − lim x = L.

Let l∞ denote the linear space of all bounded sequences. Almost convergence was introduced by [19].
A bounded sequence x = (x j) is said to be almost convergent to the number L if and only if

lim
p→∞

1
p

k+p−1∑
j=n

x j = L, uniformly in k.

Note that a convergent sequence is almost convergent, and its limit is identical, but an almost convergent
sequence need to be convergent.

Example 1.1. The sequence x = (x j) defined as

x j =

{
1, if j is odd,
0, if j is even,

is almost convergent to 1
2 , but it is not convergent.
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King [16] introduced the concept of almost A-summability and classes of matrices more general than
regular matrices. A sequence x is said to be almost A-summable to L if the A-transform of x is almost
convergent to L, i.e.,

lim
p→∞

1
p

k+p−1∑
j=n

(Ax) j = lim
p→∞

1
p

k+p−1∑
j=n

∞∑
m=0

a jmxm = L, uniformly in k.

The matrix A is said to be almost regular if the A-transform of x is almost convergent to the limit of x, for
each x ∈ c, where c is the linear space of convergent sequences. The matrix A = (a jm) is almost regular if
and only if it satisfies the following conditions:

(i) sup
∞∑

m=0

∣∣∣a jm

∣∣∣ < ∞, j = 0, 1, 2, ...,

(ii) lim
p→∞

1
p

k+p−1∑
j=k

a jm = 0, uniformly in k, m = 0, 1, 2, ...,

(iii) lim
p→∞

1
p

k+p−1∑
j=k

∞∑
m=0

a jm = 1, uniformly in k.

A regular matrix is almost regular; however, an almost regular matrix is not necessarily regular. To
illustrate this distinction, we now provide examples of matrices that are almost regular but not regular.

Example 1.2. (i) Let us take matrix A =
(
a jm

)
whose general term is given by

a jm =

{
2, if j is even and m = j2,
0, otherwise.

This matrix is an non-negative almost regular but non-regular.
(ii) Let us take matrix A =

(
a jm

)
whose general term is defined by

a jm =

{
1

j+1

[
1 + (−1) j

]
, 0 ≤ m ≤ j,

0, j < m.

This matrix is an non-negative almost regular but non-regular.
(iii) Let us take Nörlund matrix A =

(
a jm

)
whose general term is given by

a jm =

{ p j−m

P j
, 0 ≤ m ≤ j,

0, j < m,
and pm =


1, m = 0,

−
2
3

(
4
3

) m
2 −1
, if m is even,(

4
3

) m−1
2 , if m is odd.

This matrix is an almost regular but non-regular.
(iv) Let us take Nörlund matrix A =

(
a jm

)
whose general term is defined by

a jm =

{ p j−m

P j
, 0 ≤ m ≤ j,

0, j < m,
and pm =


1, m = 0,
0, m = 1,

2t−1, m = 2t, t ∈ Z+,
0, m , 2t, t ∈ Z+.

This matrix is a non-negative almost regular but non-regular.

We will now introduce the notion of almost A-density and almost A-statistical convergence.
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Definition 1.3. Let A =
(
a jm

)
be a non-negative almost regular matrix. Then almost A-density of E ⊆N0, denoted

δa
A(E), is given by

δa
A(E) = lim

p→∞

1
p

k+p−1∑
j=k

∑
m∈E

a jm = lim
p→∞

1
p

k+p−1∑
j=k

∞∑
m=0

a jmχE(m)

= lim
p→∞

1
p

k+p−1∑
j=k

(AχE)k, uniformly in k,

whenever this limit exists.

For a non-negative almost regular matrix A, almost A-density has many properties as follows:

Lemma 1.4. i) δa
A(N0) = 1 and if E has a δa

A−density, δa
A(N0/E) = 1 − δa

A(E),
ii) For any subset E ofN0, 0 ≤ δa

A(E) ≤ 1,
iii) If E is subset ofN0, and δa

A(E) exists, then δa
A(Ec) exists and δa

A(E)+ δa
A(Ec) = 1,

Assume that E and F are subsets ofN0 and δa
A(E), δa

A(F) exist.
iv) If E ⊆ F, δa

A(E) ≤ δa
A(F),

v) δa
A(E ∪ F) ≤ δa

A(E)+ δa
A(F),

vi) If E is a finite element subset ofN0, then δa
A(E) = 0.

Example 1.5. For almost regular but non-regular matrix A =
(
a jm

)
given in Example 1.2 (i), we show that

δa
A({2m + 1 : m ∈N0}) = 0, but δC1 ({2m + 1 : m ∈N0}) = 1

2 .

Definition 1.6. A sequence x = (xm) is said to be almost A-statistical convergent to L if, for every ε > 0,

δa
A {m ∈N0 : |xm − L| ≥ ε} = 0.

In this case we write sta
A − lim x = L.

Example 1.7. For almost regular but non-regular matrix A =
(
a jm

)
given in Example 1.2 (i) and x = (xm) given by

xm =

{
0, if m is even,
m, otherwise.

It can be shown that sta
A − lim x = 0, although the sequence is neither statistically convergent nor convergent in the

usual (classical) sense to 0.

As is well known, while almost convergence is typically defined for bounded sequences, the example
provided above clearly illustrates that almost A-statistical convergent sequences need not be bounded.

Here, c denotes the set of all convergent sequences, st represents the set of statistically convergent
sequences and sta

A corresponds to the set of almost A-statistical convergent sequences.

Remark 1.8. (i) Statistical convergence and almost A−statistical convergence are distinct concepts that do not
necessarily coincide; i.e. sta

A ⊈ st and st ⊈ sta
A.

(ii) While classical convergence guarantees statistical and almost A-statistical convergence to the same limit, the
converse is not necessarily true; i.e. sta

A ⊈ c and st ⊈ c.

We now present the following theorem to establish a connection between almost A-summability and
almost A-statistical convergence.

Theorem 1.9. Let x ∈ l∞, and sta
A − lim x = L. Then, x is almost A-summable to L but not conversely.
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Proof. Assume now that x ∈ l∞ and sta
A − lim x = L. Let

Kε = {m ∈N0 : |xm − L| ≥ ε} .

Then, we obtain∣∣∣∣∣∣∣∣1p
k+p−1∑

j=k

∞∑
m=0

a jmxm − L

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣1p
k+p−1∑

j=k

∞∑
m=0

a jm (xm − L) + L

1
p

k+p−1∑
j=k

∞∑
m=0

a jm − 1


∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣1p
k+p−1∑

j=k

∑
m∈Kε

a jm (xm − L) +
1
p

k+p−1∑
j=k

∑
m<Kε

a jm (xm − L) + L

1
p

k+p−1∑
j=k

∞∑
m=0

a jm − 1


∣∣∣∣∣∣∣∣

≤ sup |xm − L|
1
p

k+p−1∑
j=k

∑
m∈Kε

a jm + ε
1
p

k+p−1∑
j=k

∞∑
m=0

a jm + |L|

∣∣∣∣∣∣∣∣1p
k+p−1∑

j=k

∞∑
m=0

a jm − 1

∣∣∣∣∣∣∣∣ .
As p→∞, taking the limit on both sides of the above inequality yields for every k:

lim
p→∞

∣∣∣∣∣∣∣∣1p
k+p−1∑

j=k

∞∑
m=0

a jmxm − L

∣∣∣∣∣∣∣∣ ≤ ε.
Since ε is arbitrary, we get desired result. To see that the converse does not hold, we consider the following
example: Let A =

(
a jm

)
given in Example 1.2 (ii) and x = (xm) given by

xm =


1/2, if m = 0,
3/4, if m is odd,
1/4, if m is even and m , 0.

Then we calculate

∞∑
m=0

a jmxm =
1 + (−1) j

2
.

In this case, observe that

lim
p→∞

1
p

k+p−1∑
j=k

∞∑
m=0

a jmxm =
1
2
, uniformly in k.

However,

lim
p→∞

1
p

k+p−1∑
j=k

∞∑
m=0

a jmχ{m∈N0:|xm−
1
2 |≥ε}

(m) , 0

which means sta
A − lim x , 1

2 .
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2. Main Results

2.1. A Korovkin-type approximation theorem
In this part, we express and prove Korovkin-type approximation theorems for sequences of positive

linear operators with the help of almost A-statistical convergence.
We denote by C (B) the space of all real valued continuous functions on a compact subset B of real

numbers. This space is equipped with the supremum norm

∥h∥C(B) = sup
y∈B

∣∣∣h (
y
)∣∣∣ , (h ∈ C (B)) .

LetT be a linear operator acting on C (B) . It is known thatT is called a positive linear operator, provided
that h ≥ 0 impliesT (h) ≥ 0.We also denote the value ofT (h) at a point y ∈ J byT (h(v); y) or simplyT (h; y).
In this article, we will use the test functions h0(y) = 1, h1(y) = y, h2(y) = y2.

The following result gives necessary and sufficient conditions for a sequence of positive linear operators
(Tm) to ensure that (Tm (h)) converges for every h ∈ C [a, b]. The proof largely follows the standard approach
used in Korovkin’s theorem [18] for the convergence of such operators, with only minor differences in the
final steps. It is included here for clarity and completeness.

Using the idea of almost A-statistical convergence, we give the following main result.

Theorem 2.1. Let (Tm) be a sequence of pLOs acting from C (B) into C (B) satisfying the following statements:

sta
A − lim ∥Tm(hi) − hi∥C(B) = 0, i = 0, 1, 2. (1)

Then, for all h ∈ C (B)

sta
A − lim ∥Tm(h) − h∥C(B) = 0. (2)

Proof. Assume now that (1) holds. Let h ∈ C (B) and y ∈ B. Since h ∈ C (B) ,we have∣∣∣h (v) − h
(
y
)∣∣∣ ≤ 2τ

where τ := ∥h∥C(B) . Since the function h belong to C (B) , we know that for ∀ε > 0, there exists a number
ζ > 0 such that

∣∣∣h (v) − h
(
y
)∣∣∣ < ε for ∀v ∈ B satisfying

∣∣∣v − y
∣∣∣ < ζ. If φ(v) =

(
v − y

)2 is received, we have∣∣∣h (v) − h
(
y
)∣∣∣ < ε + 2τ

ζ2 φ(v).

By positivity and linearity of Tm,we write∣∣∣Tm(h; y) − h
(
y
)∣∣∣ = ∣∣∣Tm(h (v) − h

(
y
)

; y) + h(y)
(
Tm(h0; y) − h0(y)

)∣∣∣
≤ Tm

(∣∣∣h (v) − h
(
y
)∣∣∣ ; y

)
+ τ

∣∣∣Tm(h0; y) − h0(y)
∣∣∣ (3)

Firstly, we calculate the expression ”Tm

(∣∣∣h (v) − h
(
y
)∣∣∣ ; y

)
” in (3);

Tm

(∣∣∣h (v) − h
(
y
)∣∣∣ ; y

)
≤ Tm

(
ε +

2τ
ζ2 φ (v) ; y

)
≤ ε + ε

∣∣∣Tm(h0; y) − h0(y)
∣∣∣ + 2τ
ζ2 Tm(φ (v) ; y). (4)

Now, we compute the term of ”Tm(φ (v) ; y)” in (4),

Tm(φ (v) ; y) = Tm(
(
v − y

)2 ; y)
= Tm(v2

− 2vy + y2; y)

≤

∣∣∣Tm(h2; y) − h2(y)
∣∣∣ + 2 ∥h1∥C(B)

∣∣∣Tm(h1; y) − h1(y)
∣∣∣

+ ∥h2∥C(B)

∣∣∣Tm(h0; y) − h0(y)
∣∣∣ . (5)
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Combining (5) and (3), we get∣∣∣Tm(h; y) − h
(
y
)∣∣∣ ≤ ε +

(
ε + τ +

2τ ∥h2∥C(B)

ζ2

) ∣∣∣Tm(h0; y) − h0(y)
∣∣∣

+
4τ ∥h1∥C(B)

ζ2

∣∣∣Tm(h1; y) − h1(y)
∣∣∣

+
2τ
ζ2

∣∣∣Tm(h2; y) − h2(y)
∣∣∣

≤ β
{∣∣∣Tm(h0; y) − h0(y)

∣∣∣ + ∣∣∣Tm(h1; y) − h1(y)
∣∣∣

+
∣∣∣Tm(h2; y) − h2(y)

∣∣∣} + ε, (6)

where β = max
{
ε + τ +

2τ∥h2∥C(B)

ζ2 ,
4τ∥h1∥C(B)

ζ2 , 2τ
ζ2

}
. Taking supremum over y ∈ B,we obtain

∥Tm(h) − h∥C(B) ≤ ε + β
2∑

i=0

∥Tm(hi) − hi∥C(B)

Then, setting, for ε > 0 such that ϵ ≥ ε,

Rm =
{
m ∈N0 : ∥Tm(h) − h∥C(B) ≥ ϵ

}
Ri

m =

{
m ∈N0 : ∥Tm(hi) − hi∥C(B) ≥

ϵ − ε
3β

}
, i = 0, 1, 2.

It is not difficult to see from (6) that

Rm ⊂

2⋃
i=0

Ri
m,

i.e. 1
p

k+p−1∑
j=k

∑
m∈Rm

a jm ≤
1
p

k+p−1∑
j=k

∑
m∈

2⋃
i=0

Ri
m

a jm ≤
2∑

i=0

 1
p

k+p−1∑
j=k

∑
m∈Ri

m

a jm

 . Taking supremum k and later taking limit

p→∞, the following equation is obtained:

lim
p→∞

1
p

k+p−1∑
j=k

∑
m∈Rm

a jm = 0, uniformly in k.

Hence, this completes the proof of the theorem.

Remark 2.2. If we choose the identiy matrix I instead of the non-negative almost regular matrix A =
(
a jm

)
then, we

get the result given by King and Swetits in [17].

Theorem 2.3. Let (Tm) be a sequence of pLOs on C (B) satisfies conditions

sta
A − lim ∥Tm(hi) − hi∥C(B) = 0, i = 1, 2 (7)

and the condition

lim
m→∞

∥Tm(h0) − h0∥C(B) = 0. (8)

Then for any function h ∈ C (B) , we have

lim
p→∞

1
p

k+p−1∑
j=n

∞∑
m=0

a jm ∥Tm(h) − h∥C(B) = 0, uniformly in k.
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Proof. From condition (8), it follows that there exists a constant τ1 such that, for all m, the inequality holds:

∥Tm(h0)∥C(B) ≤ τ1

holds. Consequently, for every h ∈ C (B) and for all m = 1, 2, 3, ..., we get

∥Tm(h) − h∥C(B) ≤ ∥h∥C(B) ∥Tm(h0)∥C(B) + ∥h∥C(B) ≤ τ (τ1 + 1) . (9)

Moreover, since (8) implies(1) for i = 0, we can immediately conclude from Theorem 2.1 that

sta
A − lim ∥Tm(h) − h∥C(B) = 0. (10)

It is established in Theorem 1.9 that every bounded almost A-statistical convergent sequence is almost A-summable.
Consequently, the results in (9) and (10) lead to the desired conclusion.

The proof of the following theorem can be derived similarly to the approach mentioned above, by
referring to the proof of the trigonometric version of Korovkin’s theorem [18].

Theorem 2.4. Let C∗ be the space of all continuous 2π-periodic functions on the real line. Let (Tm) be a sequence of
positive linear operators maps on C∗. For all f ∈ C∗,

sta
A − lim

∥∥∥Tm( f ) − f
∥∥∥

C∗ = 0,

if and only if

sta
A − lim

∥∥∥Tm( fi) − fi
∥∥∥

C∗ = 0, i = 0, 1, 2,

where f0
(
y
)
= 1, f1

(
y
)
= cos y, f2

(
y
)
= sin y and the norm

∥∥∥ f
∥∥∥

C∗ = sup
y∈R

∣∣∣ f (
y
)∣∣∣ .

2.2. An Application
To demonstrate the strength of our result, we consider an example of a sequence of positive linear

operators, where the classical version (see [18]) and the statistical version (see [12]) fail to achieve the
desired approximation, whereas our proposed theorem remains valid and effective.

Example 2.5. We observe that the sequence of Bernstein–Kantorovich operators [15] on C ([0, 1]) is given by

Km
(
h; y

)
= (m + 1)

m∑
t=0

(
m
t

)
yt (1 − y

)m−t

t+1
m+1∫

t
m+1

h (u) du. (11)

It can be seen that

Km
(
h0; y

)
= 1,

Km
(
h1; y

)
=

my
m + 1

+
1

2 (m + 1)
,

Km
(
h2; y

)
=

m2

(m + 1)2

(
y2 +

1
m

y
(
1 − y

))
+

my

(m + 1)2 +
1

3 (m + 1)2 . (12)

Now take A =
(
a jm

)
given by

a jm =

{
2, if j is even and m = j2,
0, otherwise,
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and define a sequence x := (xm) by

xm =

{
0, if m is even,
m, otherwise. (13)

In this case, we know that

lim
p→∞

1
p

k+p−1∑
j=k

∑
m∈Kε

a jm = 0, uniformly in k, (14)

where Kε = {m ∈N0 : |xm − 0| ≥ ε}. However, the sequence x is neither convergent nor statistically convergent.
Now using (11) and (13), we define the following positive linear operators on C ([0, 1]) as follows:

Tm
(
h; y

)
= (1 + xm) Km

(
h; y

)
. (15)

Then, observe that the sequence of positive linear operators (Tm) defined by (15) satisfy all hypothesis of Theorem 2.1.
Hence, by (12) and (14), we have, for all h ∈ C ([0, 1]) ,

lim
p→∞
∥Tm (h) − h∥C([0,1]) = 0.

Since x is neither convergent nor statistically convergent, we obtain that its classical and statistical versions do not
work for the operators Tm (h) in (15) while Theorem 2.1 still works.

Figure 1: Aproximation of (Tm) for m = 10, m = 40, m = 90 and the function f (v) = v4
− v3 + v2

− v + 1.

2.3. Rate of Almost A-Statistical Convergence
Various ways of defining rates of convergence in the A-statistical sense for regular summability matrices

were introduced in [10]. In this section, we will compute the corresponding rate of almost A-statistical
convergence in Theorem 2.1 in two different ways, which we newly define.

Definition 2.6. Let A =
(
a jm

)
be a non-negative almost regular matrix and let (αm) be a positive non-increasing

sequence. A sequence x = (xm) is almost A-statistically convergent to a number L with the rate of o(αm) if for every
ε > 0,

lim
p→∞

1
p

k+p−1∑
j=k

∑
m∈Kε

a jm = 0, uniformly in k,
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where Kε := {m ∈N0 : |xm − L| ≥ εαm} . In this case, we write xm − L = sta
A − o(αm).

Definition 2.7. Let A =
(
a jm

)
and (αm) the same as in Definition 2.6. Then, a sequence x = (xm) is almost

A-statistically bounded with the rate of O(αm) if there is an N > 0 with

lim
p→∞

1
p

k+p−1∑
j=k

∑
m∈MN

a jm = 0, uniformly in k,

where MN := {m ∈N0 : |xm| ≥ Nαm} . In this case, we write xm = sta
A −O(αm).

We will need the following lemma.

Lemma 2.8. Let x = (xm) and y =
(
ym

)
be two sequences. Assume that A =

(
a jm

)
is be a non-negative almost

regular matrix. Let (αm) and
(
βm

)
be a positive non-increasing sequences. If for some real numbers L1, L2, we have

xm − L1 = sta
A − o(αm) and ym − L2 = sta

A − o(βm), then the following hold:
(a) (xm − L1) ±

(
ym − L2

)
= sta

A − o(γm) where γm = max
{
αm, βm

}
,

(b) (xm − L1)
(
ym − L2

)
= sta

A − o(αm, βm).
Similar conclusions hold with little “o ” replaced by big “O”.

As a tool, we use the modulus of continuity ω(h;λ) defined as follows:

ω (h;λ) := sup
{∣∣∣h (v) − h

(
y
)∣∣∣ : v, y ∈ B,

∣∣∣v − y
∣∣∣ ≤ λ}

where h ∈ C (B) and λ > 0. In order to obtain our result, we will make use of the elementary inequality, for
all h ∈ C (B) and for λ, α > 0,

ω (h;αλ) ≤ (1 + [α])ω (h;λ) (16)

where [α] is defined to be the greatest integer less than or equal to α.
Then we have the following result.

Theorem 2.9. Let (Tm) be a sequence of pLOs acting from C (B) into itself. Then, for all h ∈ C (B) ,

∥Tm(h) − h∥C(B) = sta
A − o(γm),

where γm = max
{
αm, βm, αmβm

}
, provided that the following conditions hold:

(i) ∥Tm(h0) − h0∥C(B) = sta
A − o(αm),

(ii) ω (h;λm) = sta
A − o(βm) where λm :=

√∥∥∥Tm(φ)
∥∥∥

C(B)
with φ(v) =

(
v − y

)2 for each y, v ∈ B. Furthermore,
similar results holds when the symbol “o” is replaced by “O”.

Proof. To demonstrate this, we first assume that y ∈ B and h ∈ C (B) are fixed, and that conditions (i) and (ii)
hold. Let λ be a positive number. Then, we have the following inequality:∣∣∣h (v) − h

(
y
)∣∣∣ ≤ 1 +

(
v − y

)2

λ2

ω (h;λ) .

Using the definition of modulus of continuity and the linearity and the positivity of the operators Tm, for
all m ∈N,we have∣∣∣Tm(h; y) − h(y)

∣∣∣ ≤ Tm

(∣∣∣h(v) − h(y)
∣∣∣ ; y

)
+

∣∣∣h(y)
∣∣∣ ∣∣∣Tm(h0; y) − h0(y)

∣∣∣
≤ Tm

((
1 +
φ (v)
λ2

)
ω(h, λ); y

)
+ η

∣∣∣Tm(h0; y) − h0(y)
∣∣∣

= ω (h;λ)Tm(h0; y) +
ω (h;λ)
λ2 Tm

(
φ (v) ; y

)
+η

∣∣∣Tm(h0; y) − h0(y)
∣∣∣
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where η := ∥h∥C(B) . Taking supremum over y ∈ B and if we choose λ := λm :=
√∥∥∥Tm(φ)

∥∥∥
C(B)
, this gives that

∥Tm(h) − h∥C(B) ≤ η ∥Tm(h0) − h0∥C(B) + 2ω(h;λm)
+ω(h, λm) ∥Tm(h0) − h0∥C(B) .

Since γm = max
{
αm, βm, αmβm

}
and setting, every ϵ > 0,

Rm =
{
m ∈N0 : ∥Tm(h) − h∥C(B) ≥ ϵγm

}
,

R1
m =

{
m ∈N0 : ω(h;λm) ∥Tm(h0) − h0∥C(B) ≥

ϵ
3
αmβm

}
,

R2
m =

{
m ∈N0 : ω(h;λm) ≥

ϵ
6
βm

}
,

R3
m =

{
m ∈N0 : ∥Tm(h0) − h0∥C(B) ≥

ϵ
3η
αm

}
,

we have

Rm ⊂

3⋃
i=1

Ri
m.

Hence we obtain

1
p

k+p−1∑
j=k

∑
m∈Rm

a jm ≤
1
p

k+p−1∑
j=k

∑
m∈

3⋃
i=1

Ri
m

a jm ≤

3∑
i=1

1
p

k+p−1∑
j=k

∑
m∈Ri

m

a jm

 .
Taking supremum over k and taking limit p→∞,we obtain

lim
p→∞

1
p

k+p−1∑
j=k

∑
m∈Rm

a jm = 0, uniformly in k.

Thus, we complete the proof of the theorem.

Remark 2.10. Now, by specializing Theorem 2.9, we can give the convergence rates of the sequence of positive linear
operators defined on the space C (B). First, note that Theorem 2.1 follows from Theorem 2.9 if we choose αm = βm = 1
for all m ∈ N0. Hence our theorem gives us almost A-statistical convergence rate of Theorem 2.1. Furthermore, if
the almost regular matrix A =

(
a jm

)
is replaced by the identity matrix, Theorem 2.9 immediately gives the almost

convergence rate of the sequence of positive linear operators defined on C (B).

3. Conclusion

This paper introduces a new convergence method, called almost A-statistical convergence, based on
almost regular matrices. Using this concept, we also present a novel perspective on Korovkin-type approx-
imation in the space C (B) where B is a compact subset of the real numbers, by employing the test functions
h0(y) = 1, h1(y) = y and h2(y) = y2. Moreover, a trigonometric version of Korovkin’s second theorem is
also provided. The theoretical advancements are further demonstrated through a concrete example, high-
lighting the practical relevance of the proposed framework. The validity of the example is supported by
a graphical illustration. Additionally, we investigate the rate of almost A-statistical convergence in two
different ways, which are newly introduced. Our results indicate that this method opens new directions
in approximation theory, potentially expanding the scope of Korovkin-type theorems and enhancing their
applicability to more complex operators. Future research may build upon these findings by exploring
the method’s applicability to broader function spaces and examining its implications in other areas of
mathematical analysis.
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(1930), 595-600.
[16] J.P. King, Almost Summable Sequences, Proc. Amer. Math. Soc., 17(6) (1966), 1219-1225.
[17] J.P. King and J.J. Swetits, Positive linear operators and summability. J. Aust. Math. Soc., 11(3) (1970), 281-290.
[18] P.P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publ. Co., Delhi, 1960.
[19] G.G. Lorentz, A contribution to the theory of divergent sequences, Acta. Math. 80 (1948), 167-190.
[20] S.A. Mohiuddine, Statistical weighted A-summability with application to Korovkin’s type approximation theorem. J. Inequal.

Appl., 2016(1) (2016), 101.
[21] S.A. Mohiuddine, B.A. Alamri, Generalization of equi-statistical convergence via weighted lacunary sequence with associated

Korovkin and Voronovskaya type approximation theorems. Rev. R. Acad. Cienc. Exactas Fı̀s. Nat. Ser. A Mat. RACSAM,, 113(3)
(2019), 1955-1973.

[22] A. Mohiuddine, B. Hazarika, M.A. Alghamdi, Ideal relatively uniform convergence with Korovkin and Voronovskaya types
approximation theorems. Filomat, 33(14) (2019), 4549-4560.

[23] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique. In Colloq. Math., 2(1) (1951), 73-74.
[24] T. Tunc and A. Erdem, Korovkin-type theorems via some modes of convergence. Filomat, 38(2) (2024), 523-530.
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