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Hyers-Ulam stability of closed linear relations in Hilbert spaces
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Abstract. This paper introduces the concept of Hyers-Ulam stability for linear relations in normed linear
spaces and presents several intriguing results that characterize the Hyers-Ulam stability of closed linear
relations in Hilbert spaces. Additionally, sufficient conditions are established under which the sum and
product of two Hyers-Ulam stable linear relations remain Hyers-Ulam stable.

1. Introduction

The concept of Hyers-Ulam stability constitutes a significant pillar across diverse mathematical domains
such as functional equations, optimization theory, differential equations, and statistical analysis. This
stability paradigm was initially articulated by Ulam during a 1940 lecture at the University of Wisconsin,
wherein he posed a fundamental question: “Given a metric group G, under what conditions does every
e-automorphism necessarily approximate an exact automorphism of G?” This inquiry laid the groundwork
for D.H. Hyers’ contribution in 1941, which addressed the question in the context of real Banach spaces:
Let X and Y be two real Banach spaces and f : X — Y be a mapping such that for each fixed x € X, f(tx) is
continuous in t € R (the set of all real numbers), and if there exists ¢ > 0 satisfying the inequality

If(x+y)— f(x) = fll<e forallx,yeX,

then there exists a unique linear mapping L : X — Y such that |[f(x) — L(x)|| < € for every x € X. This result
establishes the Hyers-Ulam stability of the classical additive Cauchy functional equation,

g(x+y) = g(x) + g(y).

Subsequent developments, particularly the influential 1978 work of Rassias, extended Hyers’ framework by
permitting the deviation bound to be a function of the variables involved rather than a fixed constant. This
relaxation led to the formulation of the so-called modified Hyers-Ulam stability for the additive functional
equation, which accommodates unbounded perturbations and marked a significant departure from the
classical theory [13]. Since then, the field has seen a proliferation of research exploring analogous stability

phenomena for a wide array of functional equations, which enriches the theoretical landscape of functional
stability theory.
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Obloza [8] was the first to establish results on the Hyers-Ulam stability of differential equations. Alsina
and Ger [4] explored the Hyers-Ulam stability for first-order linear differential equations. Miura et al.
further generalized the results for n'" order linear differential operator p(D) and proved that the differential
operator equation

pD)f =0

is Hyers-Ulam stable if and only if the algebraic equation p(z) = 0 has no pure imaginary solution, where
p is a complex-valued polynomial of degree n, and D is a differential operator [11]. In the same paper,
Miura et al. first introduced the concept of the Hyers-Ulam stability of a mapping (not necessarily linear)
between two complex linear spaces X and Y with gauge functions px and py, respectively. A mapping
S has the Hyers-Ulam stability (HUS) if there exists a constant M > 0 with the following property: For
every ¢ > 0, y € S(X) and x € X satisfying py(S(x) — y) < € we can find an xp € X such that S(xp) = y and
px(x — xp) < Me, where M is called as a HUS constant, and the infimum of all the HUS constants for S by
Ms. Essentially, if S has the HUS, then for each y € 5(X) and “e-approximate solution” x of the equation
S(u) = y there corresponds an exact solution xq of the equation that is contained in a Me- neighbourhood
of x. Subsequently, Hirasawa and Miura expanded the concept of Hyers-Ulam stability of closed operators
in Hilbert spaces in 2006 [5]. Moreover, in the same paper [5], they established the Hyers-Ulam stability
of a linear operator T from the domain D(T) C X into Y, where X and Y both are normed linear spaces.
Specifically, there exists a constant M > 0 with the following property:

For any y € R(T), ¢ > 0 and x € D(T) with [|[Tx — y|| < ¢, there exists xp € D(T) such that Txy = y and
[|x — x0l| < Me.

In 2024, Majumdar et al. investigated the Hyers-Ulam stability of closable operators in Hilbert spaces and
provided several characterizations of Hyers-Ulam stable closable operators [1]. This paper delves into the
exploration of the Hyer-Ulam stability of closed linear relations in Hilbert spaces. Section 2 is dedicated to
the basic definitions and notations related to linear relations. In Section 3, we discuss several properties of
the Hyers-Ulam stable linear relations in Hilbert spaces.

2. Preliminaries

Throughout the paper, the symbols H, K, H;, K; (i = 1,2) represent real or complex Hilbert spaces. A
linear relation T from H into K is a linear subspace of the Cartesian product in H X K, and the collection of
all linear relations from H into K is denoted by LR(H, K). We call T a closed linear relation from H into K if it
is a closed subspace of H X K, and the set of all closed linear relations from H into K is denoted by CR(H, K).
The following notations of domain, range, kernel and multi-valued part of a linear relation T from H into
K will be used respectively in the paper:

D(T)={heH:{hkl €T}, RT) = ke K: bk} € T}
N(T)={he H: {h,0} € T}, M(T) = (k€ K: {0,k} € T}.

It is obvious that N(T) and M(T) both are closed subspaces in H and K, respectively, whenever T is a closed
linear relation from H into K. In general, the inverse of an operator is always a linear relation. The inverse
of a linear relation T from H into K is defined as T~ = {{k,h} € K x H : {h,k} € T}. Thus, it is immediate that
D(T') = R(T) and N(T™!) = M(T). We define Tx = {y € K : {x,y} € T}, where T € L(H, K). Consequently,
T|w denotes the restriction of T € LR(H, K) with domain D(T) N W, where W is a subset of H (in other words,
Tlw is equal to T in domain D(T) N W). The adjoint of a linear relation T from H into K is the closed linear
relation T* from K into H defined by:

T ={{k b} e KxH: (I, hy =k k), forall {h,k} € T}.

Observe that (T~!)* = (T*)7}, so that (D(T))* = M(T*) and N(T*) = (R(T))*. A linear relation T in H is said
to be symmetric if T C T*. Again, a linear relation T in H is non-negative if ¢k,i) > 0, for all {h,k} € T.
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Moreover, a linear relation T in H is said to be self-adjoint when T = T*. If S and T both are linear relations,
then their product TS is defined by:

TS ={{x,y} : {x,z} € Sand {z, y} € T, for some z}.

The sum of two linear relations T and S from H into Kis T+ S = {{x,y +z} : {x, y} € T and {x, z} € S} whereas
the Minkowski sum is denoted by T+S := {{x + v,y+w}:{x,y} € T, {v,w} € S}. Consider T € CR(H, H), a
point A € C is said to belong to the resolvent set p(T) of T if (T — A)~! is a bounded operator in the domain
H and the spectrum o(T) of T is the complement of T in C.

Here, Qr denotes the natural quotient map from K into K/ W, where T is a linear relation from H into K.

It is easy to show that QrT is a linear operator from H into K/M(T). We call the linear relation T from H into
K a continuous linear relation if QrT is a bounded operator, and the set of all continuous linear relations
from H into K is denoted by BR(H, K). When T € BR(H, K) and D(T) = H, then T is called a bounded linear
relation. Some characterizations of continuous and bounded linear relations are explored in [9].

The regular part of a closed linear relation T from H into K is PWT, denoted by T,, which is an operator

with Ty, € T, where PW is the orthogonal projection in K onto D(T*) = (M(T))*. It can be shown that
T= Top’-l; ({0} x M(T)), when T is a closed linear relation from H into K [7]. When T is a closed relation from
H into K, then T, is also a closed operator [7]. Finally, the linear operator (T™!),, = Py T™" is called the

Moore-Penrose inverse of the linear relation T from H into K, denoted by Tt

3. Characterizations of the Hyers-Ulam stable closed linear relations in Hilbert spaces

Definition 3.1. Let T be a linear relation from a normed linear space X into a normed linear space Y. Then T is said
to be Hyers-Ulam stable if there exists a constant M > 0 with the following property: for any y € R(T), € > 0, and
Yo € R(T) with ||y — yoll < ¢, there exist {x,y} € T and {xo, yo} € T such that ||x — xol| < Me.

We call M a Hyers-Ulam stable (HUS) constant for the linear relation T, and the infimum of all HUS
constants of T is denoted by Mr.

Remark 3.2. Let T be a linear relation from a normed linear space X into a normed linear space Y. If T is Hyers-Ulam
stable, then there exists a constant M > 0 with the following property: for any y € R(T) and yo € R(T), there exist
{x,y} € T and {xo, yo} € T such that ||x — xol| < Mlly = yoll.

From now on, we consider T to be a closed linear relation from H into K.
Theorem 3.3. Let T € CR(H, K). Then T is Hyers-Ulam stable if and only if R(T) is closed.

Proof. Since Tisclosed, T~!isalso closed. We claim that T~ is continuous in order to show that D(T~!) = R(T)
is closed (by Theorem III1.4.2 [9]). Let us consider y € R(T) and yo € R(T), there exist {x,y} € T and
{x0, yo} € T such that [lx — xol| < Mlly — yoll, where M is a HUS constant of T. Then, {x — xo,y — yo} € T.
Thus, [|IQr1 T~y — yo)ll = ll(x — x0) + N(T)|| < |lx — xoll < Mlly — yoll. So, Q71T is bounded implies T~ is
continuous. Hence, R(T) = D(T™!) is closed.

Conversely, suppose R(T) is closed. Then Qr-1T~! is bounded because T~! is continuous. Then for z € R(T)
and zy € R(T), we have {u,z} € T and {1, zo} € T, for some u, uy € D(T). Now,

I = o) + N(T)I| = 1Qr- T (z = zo)ll < ITllllz - 2oll-
We get v € N(T) such that |[u — ug + v|| < (IT7| + 1)|lz — zoll. Moreover, {u,z} € T and {uy — v,z} € T.
Therefore, T is Hyers-Ulam stable. It is obvious to show that Mt = ||T~!|| by considering (||T~}|| + 6) instead

of (IT7Y|| + 1), where 6 is an arbitrary positive real number. [J

Theorem 3.4. Let T € CR(H, K) be Hyers-Ulam stable. Then Mr is a Hyers-Ulam stable constant.
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Proof. Suppose that M7 is not a Hyers-Ulam stable constant. Then there exist y € R(T) and yo € R(T) such
that for all x € T-'y and x € Ty, we have ||x — xol| > Mrlly — yoll.

It is easy to show that T~'y, and T~!y, both are non-empty closed convex subsets in H. By Corollary 16.6(a)
[3] (which states that every nonempty convex subset of Hilbert spaces contains an element of minimal
norm), we get

dist(T'y, T"'yo) = inf inf ||zo — z||
zo€T 1 yo zeT- 1y

= inf |jzo—Z|, forsomez € T‘ly
ZoET’lyo

= ||z£) —Z||, for some zz) € T‘lyo.

Thus, dist(Tty, T yo) = Iz’ —zé)ll > Mr|ly—yoll. There exists a positive 6 > 0 such that Mr+0 is a Hyers-Ulam
stable constant and dist(T~'y, T"y) > (Mt + 6)lly — yoll. Hence, for all x € T'y and xy € T~'yp, we have
llx = xoll > (M1 + O)lly — yoll, which is a contradiction. Therefore, M is a Hyers-Ulam stable constant. [

Theorem 3.5. Let T € CR(H, K). Then T is Hyers-Ulam stable if and only if Ty, is Hyers-Ulam stable.

Proof. Suppose T € CR(H, K) is Hyers-Ulam stable. By Theorem 3.3, R(T) is closed. We claim that R(T,) is

closed in order to show the Hyers-Ulam stability of T,. Let y € R(Ty), then there exists {y,} in R(T,p) such
that y, — y, asn — co. We know that T,, = PWT, so there exist {x,,z,} € T and {z,, y,} = {zn,Pﬁzn} €
G(PW) (for all n € IN), where G(Pﬁ) is the graph of operator PW‘ We can write z, = y, + y;, where
y, € M(T) for all n € N. It confirms that {x,, y,} = {xs,z, — y,,} € T. Thus, y € D(T*) N R(T). There exists
x € D(T) such that {x, y} € Tand {y, y} € G(PW) which implies that {x, y} € T,,. Hence, R(T,) is closed and
Top is Hyers-Ulam stable.

Conversely, T,, is Hyers-Ulam stable. We will show that R(T) is closed to prove the Hyers-Ulam stability

of T. Consider w € R(T) then there exists a sequence {wn}Ain R(T) such that w,, — w, as n — oo. So, there
exists a sequence {v,} in D(T) such that {v,, w,} € T = Ty, +({0} X M(T)), for all n € N. Thus, for all n € N,
{on, wa} = {vy, w,} +{0,w,}, where {v,, w,} € Ty, and {0, w,} € ({0} x M(T)). Again, the convergent sequence
{wy} says that {w,} and {w,} both are convergent to w’ and w" respectively, for some w" € R(T,,) € (M(T))*
and w’ € M(T). This guarantees w = w + w’. There exists u € D(T,,) such that {u,w'} € T, and
{0,w"} € ({0} X M(T)) which implies {u,w} € T and w € R(T). Therefore, T is Hyers-Ulam stable. [J

Proposition 3.6. Let T € CR(H, K). Then T is Hyers-Ulam stable if and only if T* is Hyers-Ulam stable.

Proof. Since T is in CR(H, K), by Proposition 2.5 [12] and Theorem 3.3, we get T is Hyers-Ulam stable if and
only if R(T) is closed if and only if R(T”) is closed if and only if T* is Hyers-Ulam stable. [

Proposition 3.7. Let T € CR(H, K). Then T is Hyers-Ulam stable if and only if T*T is Hyers-Ulam stable (TT" is
Hyers-Ulam stable).

Proof. By Lemma 5.1 [10], we get T*T and TT* both are non-negative self-adjoint. So, T*T and TT* both
are closed. By Proposition 2.5 [12] and Theorem 3.3, we have T is Hyers-Ulam stable if and only if R(T)
is closed if and only if R(T”) is closed if and only if R(T*T) is closed (R(TT") is closed) if and only if T*T is
Hyers-Ulam stable (TT" is Hyers-Ulam stable). O

Theorem 3.8. Let T € CR(H, K). Then T" is Hyers-Ulam stable if and only if T is continuous.

Proof. Theorem 111.4.2 [9] says that T is continuous if and only if D(T) is closed. Since T is closed, so T™! is
closed implies Tt = (T’l)op is closed. By Theorem 3.5 and Theorem 3.3, we get that D(T) = R(T!) is closed.
Hence, T is continuous.

Conversely, suppose that T is continuous. So, D(T) = R(T™}) is closed. Then T~ is Hyers-Ulam stable. By
Theorem 3.5, we have the Hyers-Ulam stability of T* = (T™%),,. O
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Let T € CR(H, K) be a non-negative self-adjoint linear relation. Then T, is also a non-negative self-adjoint
linear operator [7]. Moreover, T: = (Top)%:i-\({O} X M(T)) and (Top)% = (T]E)op [7].

Lemma 3.9. Let T € CR(H, K) be a non-negative self-adjoint linear relation. Then T is Hyers-Ulam stable if and
only if T? is Hyers-Ulam stable.

Proof. The self-adjointness of T, says that T, is densely defined in D(T) = D(T*) (by Theorem 1.3.16 [7]).
By Theorem 3.5, we get that T is Hyers-Ulam stable if and only if T, is Hyers-Ulam stable if and only if

(T%)OFJ = (Top)% is Hyers-Ulam stable (by Proposition 2.23 [1]) if and only if T? is Hyers-Ulam stable (by
Theorem 3.5). O

Theorem 3.10. Let T € CR(H, K). Then T is Hyers-Ulam stable if and only i |T| = (T*T)? is Hyers-Ulam stable.

Proof. By Proposition 3.7 and Lemma 3.9, we get that T is Hyers-Ulam stable if and only if T*T is Hyers-Ulam
stable if and only if |T| is Hyers-Ulam stable. [

Theorem 3.11. Let T € CR(H, K). Then Cr = (I + T*T)™" is Hyers-Ulam stable if and only if T is continuous.

Proof. Theorem 5.2 [14] says that Cr = PrP;, where Pr{x,y} = x, for all {x,y} € T. So, Cr is a bounded
operator in the domain H, which implies Cr is closed. Let us first consider that Cr is Hyers-Ulam stable, then
R(Cr) = R((I + T*T)™Y) = D(T*T) is closed. By Lemma 5.1 (a) [14], we get that D(T*T) = D(T) c D(T) ¢ D(T)
which implies D(T) is closed. Hence, T is continuous (by Theorem II1.4.2 [9]).

Conversely, suppose T is continuous. Then, T, is bounded because T is continuous and

I Topxll = IITx + M(T)|| = ITxl|, for all x € D(T,).

By Corollary III.1.13 [9], (T,p)" is a continuous linear relation. Then [|(Top)* Topxll < [[(Top) [l Topllllx[l. Thus,
(Top) Top is continuous. By Lemma 5.1(b) [14], we get that T*T is continuous which implies D(T"T) is closed.
Thus, R(Cr) is closed. Therefore, Ct is Hyers-Ulam stable. [

Theorem 3.12. Let T € BR(H,K)NCR(H, K). If T is Hyers-Ulam stable, then Zt = T(I+ T*T)‘% is also Hyers-Ulam
stable.

1 1
Proof. Since Cris anon-negative self-adjoint bounded operator in the domain H. So, C7 existsand Zr = TC?.
Now, we claim that Zr is closed. Consider {x, y} € Zr, then there exists a sequence {{x,, y,}} in Zr such that

(%0, yu} = {x, y} as n — oo, where {xn,C%xn} € G(C%) and {C%xn, yn} € T, for all n € IN. Since T is closed and
Ci is bounded in domain H. Thus, {x, y} € Zr and Zr is closed. Moreover,

C2=(+TT) % =(+(Ty)Top) 2 =C

5
Ty
Again, M(TC%) = M(T) says that D((TC?)*) = D(T*). Thus,

(ZT)op = Pil(TC%) =(P %

D((TC2))

C

1
b DCr = TorCr,, = Z1,,- (1)

By Theorem 1.3.15 [7], we see that Zr,, is closed. From Theorem 3.5, it suffices to show that Zr,, is Hyers-

Ulam stable or that R(Zr,,) is closed. Let 0 # w € R(Zr,,). Then there exists a sequence {u,} in H such that

Top(PTP*T)%un — w, as n — oo. Again, R(Ty) is closed because Ty, is Hyers-Ulam stable (by Theorem 3.5).
So, there exists an element z € D(T) N N(T,,)* such that T,,z = w and

ITop((PrPy) 210, — 2)l| = 0, as n — oo )
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Let v € N(T). Then {v,0} = {v1,v2} + {0, 03}, where {v1, 02} € Ty, and {0,v3} € ({0} X M(T)). This confirms
v1 =vand v = v3 = 0. Thus, N(T) € N(T,;) C N(T) which implies N(T) = N(T,,). Moreover, y(To,) > 0
(y(Top) is the reduced minimum modulus of T,) because R(T,) is closed. By the relation (2), we get

VTP (PP} 21a,) = 2l < I Top((PrPy) 21ty — 2)|l — 0, as 1 — oo,

Thus, Py (PrP;)? u,) — zasn — co. Again, R(PrP})?) = R(PrP;) = R(Pr) = D(T) because R(Pr) = D(T)
is closed, since T € BR(H, K) N CR(H, K). Furthermore, R((PTP"T)%) + N(Pnmyr) = D(T) + N(T) = D(T) is
closed. By Corollary 6 [6], we have R(Pr): (PTP*T)%) is closed. Hence, there exists 4 € H such that
z = Pvy: (PrPy)7)q and w = TopPonery: (PrP)2)q = Top((PrPy)?)g (because N(T,,) = N(T)). Now, we
can say that R(Zr,,) is closed which implies that (Z7),, is Hyers-Ulam stable. Therefore, Zr is Hyers-Ulam
stable. [

Remark 3.13. Let T € CR(H,K). Then T~ is Hyers-Ulam stable if and only if T is continuous. Because T~ is
closed and T~ is Hyers-Ulam stable if and only if D(T) = R(T™!) is closed (by Theorem 3.3) if and only if T is
continuous (by Theorem I11.4.2 [9]).

Lemma 3.14. Let T € CR(H,K). Then T'T = T*T|wry-+ T*Tlner. Moreover, T*Tlpry): and T*Tinr) both are
closed.

Proof. 1t is obvious to show that T*T D T*Tl(N(T));F T*T|n¢ry. Now consider {x,y} € T'T, thenx = x; + x» €
D(T) = N(T) + (N(T))* N D(T), where x; € N(T) and x, € (N(T))* N D(T). Then {x1,0} € T*T|n(r). There
exists z € K such that {x,z} € T and {z,y} € T". So, {x2,z} = {x,z} — {x1,0} € T. Thus, {x2, y} € T"T|(r):. This
guarantees that the reverse inclusion T*T € T*Tlry-+ T*TInr). Hence, T*T = T*Tlery-+ T*Tiner)-

Now, we claim that T*T|n¢r) and T*T|nr))+ both are closed. Let {1, v} € T*T|nr). Then there exists a sequence
{{un, vu}} in T*Tnery with u, € N(T) (for all n € N) such that {u,, v,} = {u,v} as n — co. Again, {u,,0} € T
and {0,v,} € T*, for all n € IN. The closedness of T, T* and N(T) confirm that {1, v} € T*T|y). Thus, T*T|n()
is closed.

Let {s,t} € T*T|r):. Then there exists a sequence {{s,, t,}} in T*T|nry): with s, € (N(T))* (for all n € IN)
such that {s,,t,} — {s,t} asn — oo. So, s € (N(T))*. Again, {s,t} € T*T because T*T is closed. Thus,
s € D(T) N (N(T))* and {s, t} € T*T|(r))-. Therefore, T*T|n(r)- is closed. O

Theorem 3.15. Let T € CR(H,K). Then o(T*T|nry:) \ {0} = o(T*T) \ {0}, where T* T\t is a linear relation
from the Hilbert space (N(T))* into the Hilbert space (N(T))*

Proof. First, we claim that A € o(T*T) \ {0} implies A € o(T"T|n(my):) \ {0}. Assume that A € p(T*TInr)-),
where T*T|((r))- is a linear relation from Hilbert space (N(T))* into (N(T))*. Then (T* Ty —A) " = (T*T—
M) is a bounded operator in domain (N(T))*. Consider {0, p} € (T*T - A)~! implies {p, 0} € (T*T - A).
Then {p, Ap} € T*T and Ap € R(T*T) c (N(T))* N D(T"T). It confirms that {p, 0} € (T*T|nr): — A) (since A # 0)
and {0,p} € (T*T|my)- — A)~L. The property of the operator (T*T|nr): — A) ™ says p = 0. So, (T'T — )7L is
an operator that is closed because (T*T — 1) is closed. Again, the relation (T*T|nr): — A)™F € (T°T — A)™!
guarantees that (N(T))* ¢ D(T*T — A)™!). Let xo € N(T). Then {x;,0} € T*T. So, {~Axg, xo} € (T*T — A)~..
Since, A # 0 which implies N(T) ¢ D((T*T — A)~!). Thus, D(T*T — A)~!) = H. By the closed graph theorem
(Theorem II1.4.2 [9]), we have that (T*T — A)~! is a bounded operator in domain H. Hence, A € p(T*T) is a
contradiction. Our assumption is wrong. Thus,

a(T"T) \ {0} € o(T"Tlvery+) \ {0} 3)

Now, the reverse inclusion will be shown. Consider y € o(T*T|nry-) \ {0} but 4 € p(T*T). Then, (T*T — )™
is a bounded operator in the domain H. So, (T*T|nm): — y)‘l is a bounded operator. Again, take an
element g € (N(T))* ¢ H = R(T'T — p). Then there exists w € D(T*T) such that {w,q} € (T"T — p).
Again, q + pw € R(T'T) ¢ (N(T))*. Thus, w € (N(T))* which implies {w,q} € (T*T|n(r): — 1) and g €
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D((T* Tl — 1)™1). Hence, (N(T))* ¢ D((T* Tl — #)™). Again, consider s € R(T*Tlpm)- — ), then
there exists t € (N(T))* such that {t,s} € (T*T|n(r): — ). So, s + ut € (N(T))* which implies that s € (N(T))*.
Furthermore, (N(T))* = D((T*Tlnery: — #)7}). Now, it is ready to confirm that u € p(T*T|n(r)-) which is
again a contradiction. Therefore,

o(T*Thry) \ 10} € o(T*T) \ {0}. 4)
By the relations (3) and (4), we get
o(T"T|ery+) \ {0} = o(T"T) \ {O}. 5)
0

Theorem 3.16. Let T € CR(H,K). Then y(T*T) = y(T*Tlwry+), where T*T|nry: is a linear relation from the
Hilbert space (N(T))* into the Hilbert space (N(T))*.

Proof. By Lemma 5.1 [10], we get T"T is self-adjoint. Now, we claim that T*T|w7) is self-adjoint. From
Lemma 3.14, we have T"T|n(r) is closed. Moreover, T*T|n(r): is symmetric because T*T|ny: € T'T C
(T"Tvery)r)*- Theorem 1.5.5 [7] says that A € p(T*T), when A € C \ R. By Theorem 3.15, we get A €
p(T* Ty ), for all A € C\ R. Again, Theorem 1.5.5 [7] confirms that T*T|ur). is self-adjoint. From
Theorem 4.3 [12] and Theorem 3.15, we can say that

)/(T*T) = 11’1f{|A| A€ O'(T*T) \ {0}} = 11’1f{|A| A€ O-(T*Tl(N(T))l) \ {0}} = )/(T*T|(N(T))L)
[

Corollary 3.17. Let T € CR(H,K). Then T is Hyers-Ulam stable if and only if T*T|n(r)+ is Hyers-Ulam stable
(Here, T*T|(N(ry)- is a linear relation from Hilbert space (N(T))* into (N(T))™*).

Proof. T is Hyers-Ulam stable if and only if R(T) is closed if and only if R(T*) is closed if and only if R(T*T)
is closed if and only if y(T*T) = y(T"T|n(ry+) > 0 if and only if R(T*T|n(r))+) is closed if and only if T*T |-
is Hyers-Ulam stable. [

We now discuss the sufficient conditions under which the sum and product of two Hyers-Ulam stable linear
relations remain Hyers-Ulam stable.

Theorem 3.18. Let T € CR(H,K) and S € LR(H, K) such that M(S) € M(T) and D(T) c D(S) with the condition
ISx|| < bl|Tx]|, for all x € D(T) and 0 < b < 1. If T is Hyers-Ulam stable, then S + T is also Hyers-Ulam stable.

Proof. By Theorem 3.1.1 [2], we get S + T is closed. It is enough to show that R(S + T) is closed to get the
Hyers-Ulam stability of S+T. Itis obvious that M(S+T) = M(T) because of the given condition M(S) c M(T).
Now, for all x € D(T), we have

[1Sx + Tx|| = [I(Sx + Tx) + M(T)|| < [I1Sx + M(T)Il + I'Tx + M(D)|| < [ISx]l + ITxl| < (1 + b)IIT]l.
By Proposition 2.5.7 [2] and Proposition II.1.5 [9], we get,
(1 =DITxll < ITx[l = [|Sx|l < [I(S + T)x|l, for all x € D(T).
Combining the above two relations we get,
(1 =b)Tx| < I(S + x|l < (1 + b)||Tx]|, for all x € D(T). (6)

Now, we claim that N(S + T) = N(T). Let z € N(S + T). Then {z,0} € S + T such that {z,0} = {z,z1} + {z, 22},
where {z,z1} € S and {z, z,} € T. So, by the relation (6), we get that

1
llz2 + M(DIl = ITzll < 7= II(S + T)zll = 0.
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Thus, z, € M(T) and {0, z2} € T implies {z,0} € T. So, N(S + T) € N(T). Again, consider {w,0} € T, then by
the relation (6), we get [|(S + T)w + M(S + T)|| = [I(S + T)wl| < (1 + b)|ITw|| = 0. Thus, (S + T)w € M(S + T).
Moreover, {w,0} = {w,v1} + {w, v} € (T +S) = S (by Proposition 2.3.4 [2]), where {w,v1} € T + S and
{w, v} € =S. So, {0,v1} € S + T which implies {w,0} € S + T. Hence, N(T) € N(S + T). Now, it is ready to
say that N(S + T) = N(T). Since T is Hyers-Ulam stable. So, T™! is continuous because T! is closed with
D(T™') = R(T) is closed. Again, (S + T)7! is closed because S + T is closed. We will show that (S + T)™! is
continuous. Now, let us consider {g,p} € (S+ T)™'. Then {p,q} = {p,q'} + {p,q"} € S+ T, where {p,q'} € S and
{p,q"} € T. Moreover,

IS+ T) gl = 1IS + T) g + M((S+ D)™l = IS + T) "' + N(T)|I. (7)
The continuity of T~! and the relation (6) say that
1 =-bllg" + MDDl = A =BITpll < IS+ Dpll =g+ MS + DI < llg +4"Il- (8)

Then there exists s” € M(T) such that |lf” +s”|| < 155llg’ + 4"|l. This confirms that {p,q" +s"} € T. From the
relation (7) and (8), we have

T

IS+ D) gl = llp + N(DI = IIT (" +s") + MTHI< T llg" +571l < T—p Ml

Hence, (S+T)! is continuous. Furthermore, R(S+T) = D((S+T)™!) is closed. Therefore, S+T is Hyers-Ulam
stable. [

Let us consider two linear relations T € LR(H1, K;) and S € LR(H>, K;), where H; and K; (i = 1,2) are Hilbert
spaces. We define the product of T and S by

T x S = {{(h1,h2), (k1, k2)} : {h1, K1} € T and {h, ko} € S}.
It is easy to show that T X S is a linear relation from the Hilbert space H; X H; into the Hilbert space K; X Kj.

Theorem 3.19. Let T € CR(H1, K1) and S € CR(Ha, Ky) both be Hyers-Ulam stable. Then T X S is also Hyers-Ulam
stable.

Proof. Let{x,y} € TXS, where X € H1 xHj and y € K; Xk;. Then there exists a sequence {{(h1,, h21), (k11, kon)}}
such that {{(h1,, h2n), (k1n, kon)}} = {x, y}, as n — oo, where {h1,, k1,} € T and {hy,,, ko,} € S for all n € IN. Thus,
(M1, hop) — x and (kyy, ko) — y, as n — oo. So, {hi}, {han}, {k1s} and {kp,} are Cauchy sequences. We get
some hy € Hy, by € Hy, ki € Ky and k» € K such that {h1,} — i, {hou) = hy, {kin) = ki and (ko) = ke
as n — oo. Moreover, x = (h1,h) and y = (k1, k2) with {h1,k1} € T and {hy, kp} € S because T and S both
are closed. Thus, {x,y} € T x S. Hence, T X S is closed. Again, consider (y1, y2) € R(T X S), there exists a
sequence {{(},, Iy,), (k,, Ky, )}} in T x S such that (k) ,k,,) = (y1,12), as n — oo. R(T) and R(S) are closed
because T and S both are Hyers-Ulam stable. Then y; € R(T) and y» € R(S). There exist x; € D(T) and
X2 € D(S) such that {x1, 1} € T and {x, y»} € S which implies (y1,y2) € R(T X S). Furthermore, R(T X S) is
closed. Therefore, T x S is Hyers-Ulam stable. [

Theorem 3.20 depicts the Hyers-Ulam stability of a block matrix linear relation. We define the block matrix

relation A = ] from domain (D(A) N D(C)) x (D(B) N D(F)) € H x K to H X K by

A
C F
A=, y), (6 + Yo, xc + Yot {x, xa} € A, {x, xc} € Cly, v} € Band {y, yy} € F}
,where A € LR(H, H), B € LR(K,H), C € LR(H, K) and F € LR(K, K) respectively. It is easy to show that Aisa
linear relation. The block matrix linear relation A is called diagonally dominated if C is A-bounded and B

is F-bounded. (If T; € LR(H,K7) and T, € LR(H, K5), then Tj is called T;-bounded when D(T;) C D(T,) and
there exist non-negative constants a and b such that || Tox|| < allx|| + bl|T1x||, for all x € D(Ty)).
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Theorem 3.20. Let A = Ié IE_E] be a block matrix linear relation, where A € CR(H, H), B € LR(K, H), C € LR(H, K)
and F € CR(K, K) respectively. Assume M(B) C M(A) and M(C) C M(F) with ||Cx|| < al|Ax||, for all x € D(A) C
D(C) and ||Bz|| < fl|Fz||, for all z € D(F) € D(B), where 0 < a, f < 1. Then A is a closed linear relation. Moreover,
A is Hyers-Ulam stable when A and F both are Hyers-Ulam stable.

Proof. Let us define T = 13 12 and S = [g ]g], where {(x,y), (xa, yf)} € T and {(x,y), (Y, xc)} € S for
{x,x.} € A, {y, yrt € F, {y, yp} € Band {x,x.} € C with x € D(A) and y € D(F). By Theorem 3.19, we get T is a
closed linear relation from H X K into H X K. Again, S is a linear relation from H X K into H X K. Moreover,

D(T) c D(S). It is easy to show that
M(S) = M(B) x M(C) c M(A) x M(F) = M(T).
For all (x, y) € D(T), we get

IS(x, YIF = 11(ye, xe) + (M(B) x M(O))I
= llys + MB)II” + [lx + M(O)II?
= [IBylI* +|ICx|?
< @||Ax|* + fIIFyI®
< d*||T(x, y)II>, where ,0 < d = max{a, f} < 1.

Thus, [IS(x, )| < dl|IT(x, y)l|, for all (x, y) € D(T). By Theorem 3.1.1 [2], we can say that A = T+ S is closed. By
Theorem 3.19, we have that T is Hyers-Ulam stable because A and F both are Hyers-Ulam stable. Therefore,
Theorem 3.18 confirms that A = T + S is also Hyers-Ulam stable. [

4. Conclusions

In this paper, the Hyers-Ulam stability of linear relations in normed linear spaces is introduced, and
several interesting results concerning the Hyers-Ulam stability of closed linear relations in Hilbert spaces
are explored. By establishing the result o(T"T|n(ry+) \ {0} = o(T*T) \ {0} (When T is a closed relation from the
Hilbert space H into the Hilbert space K), it is proved that T is Hyers-Ulam stable if and only if T*T|r))- is
Hyers-Ulam stable. Additionally, sufficient conditions are provided under which the sum and product of
two Hyers-Ulam stable linear relations remain Hyers-Ulam stable.
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