

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Hyers-Ulam stability of closed linear relations in Hilbert spaces

Arup Majumdara

^aDepartment of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Surathkal, Mangaluru 575025, India

Abstract. This paper introduces the concept of Hyers-Ulam stability for linear relations in normed linear spaces and presents several intriguing results that characterize the Hyers-Ulam stability of closed linear relations in Hilbert spaces. Additionally, sufficient conditions are established under which the sum and product of two Hyers-Ulam stable linear relations remain Hyers-Ulam stable.

1. Introduction

The concept of Hyers-Ulam stability constitutes a significant pillar across diverse mathematical domains such as functional equations, optimization theory, differential equations, and statistical analysis. This stability paradigm was initially articulated by Ulam during a 1940 lecture at the University of Wisconsin, wherein he posed a fundamental question: "Given a metric group G, under what conditions does every ε -automorphism necessarily approximate an exact automorphism of G?" This inquiry laid the groundwork for D.H. Hyers' contribution in 1941, which addressed the question in the context of real Banach spaces: Let X and Y be two real Banach spaces and $f: X \to Y$ be a mapping such that for each fixed $x \in X$, f(tx) is continuous in $t \in \mathbb{R}$ (the set of all real numbers), and if there exists $\varepsilon \geq 0$ satisfying the inequality

$$||f(x+y) - f(x) - f(y)|| \le \varepsilon$$
 for all $x, y \in X$,

then there exists a unique linear mapping $L: X \to Y$ such that $||f(x) - L(x)|| \le \varepsilon$ for every $x \in X$. This result establishes the Hyers-Ulam stability of the classical additive Cauchy functional equation,

$$q(x + y) = q(x) + q(y).$$

Subsequent developments, particularly the influential 1978 work of Rassias, extended Hyers' framework by permitting the deviation bound to be a function of the variables involved rather than a fixed constant. This relaxation led to the formulation of the so-called modified Hyers-Ulam stability for the additive functional equation, which accommodates unbounded perturbations and marked a significant departure from the classical theory [13]. Since then, the field has seen a proliferation of research exploring analogous stability phenomena for a wide array of functional equations, which enriches the theoretical landscape of functional stability theory.

2020 Mathematics Subject Classification. Primary 47A06; Secondary 47A10, 47B25. Keywords. Linear relation, reduced minimum modulus, Hyers-Ulam stability. Received: 02 April 2025; Revised: 21 April 2025; Accepted: 24 April 2025 Communicated by Dragan S. Djordjević Email address: arupmajumdar93@gmail.com (Arup Majumdar) ORCID iD: https://orcid.org/0009-0004-4812-0535 (Arup Majumdar)

Obloza [8] was the first to establish results on the Hyers-Ulam stability of differential equations. Alsina and Ger [4] explored the Hyers-Ulam stability for first-order linear differential equations. Miura et al. further generalized the results for n^{th} order linear differential operator p(D) and proved that the differential operator equation

$$p(D)f = 0$$

is Hyers-Ulam stable if and only if the algebraic equation p(z)=0 has no pure imaginary solution, where p is a complex-valued polynomial of degree n, and D is a differential operator [11]. In the same paper, Miura et al. first introduced the concept of the Hyers-Ulam stability of a mapping (not necessarily linear) between two complex linear spaces X and Y with gauge functions ρ_X and ρ_Y , respectively. A mapping S has the Hyers-Ulam stability (HUS) if there exists a constant $M \ge 0$ with the following property: For every $\varepsilon \ge 0$, $y \in S(X)$ and $x \in X$ satisfying $\rho_Y(S(x) - y) \le \varepsilon$ we can find an $x_0 \in X$ such that $S(x_0) = y$ and $\rho_X(x - x_0) \le M\varepsilon$, where M is called as a HUS constant, and the infimum of all the HUS constants for S by M_S . Essentially, if S has the HUS, then for each $y \in S(X)$ and " ε -approximate solution" x of the equation S(u) = y there corresponds an exact solution x_0 of the equation that is contained in a $M\varepsilon$ - neighbourhood of x. Subsequently, Hirasawa and Miura expanded the concept of Hyers-Ulam stability of closed operators in Hilbert spaces in 2006 [5]. Moreover, in the same paper [5], they established the Hyers-Ulam stability of a linear operator T from the domain $D(T) \subset X$ into Y, where X and Y both are normed linear spaces. Specifically, there exists a constant $M \ge 0$ with the following property:

For any $y \in R(T)$, $\varepsilon \ge 0$ and $x \in D(T)$ with $||Tx - y|| \le \varepsilon$, there exists $x_0 \in D(T)$ such that $Tx_0 = y$ and $||x - x_0|| \le M\varepsilon$.

In 2024, Majumdar et al. investigated the Hyers-Ulam stability of closable operators in Hilbert spaces and provided several characterizations of Hyers-Ulam stable closable operators [1]. This paper delves into the exploration of the Hyer-Ulam stability of closed linear relations in Hilbert spaces. Section 2 is dedicated to the basic definitions and notations related to linear relations. In Section 3, we discuss several properties of the Hyers-Ulam stable linear relations in Hilbert spaces.

2. Preliminaries

Throughout the paper, the symbols H, K, H_i , K_i (i = 1, 2) represent real or complex Hilbert spaces. A linear relation T from H into K is a linear subspace of the Cartesian product in $H \times K$, and the collection of all linear relations from H into K is denoted by LR(H,K). We call T a closed linear relation from H into K if it is a closed subspace of $H \times K$, and the set of all closed linear relations from H into K is denoted by CR(H,K). The following notations of domain, range, kernel and multi-valued part of a linear relation T from H into K will be used respectively in the paper:

$$D(T) = \{h \in H : \{h, k\} \in T\}, \ R(T) = \{k \in K : \{h, k\} \in T\}$$
$$N(T) = \{h \in H : \{h, 0\} \in T\}, \ M(T) = \{k \in K : \{0, k\} \in T\}.$$

It is obvious that N(T) and M(T) both are closed subspaces in H and K, respectively, whenever T is a closed linear relation from H into K. In general, the inverse of an operator is always a linear relation. The inverse of a linear relation T from H into K is defined as $T^{-1} = \{\{k, h\} \in K \times H : \{h, k\} \in T\}$. Thus, it is immediate that $D(T^{-1}) = R(T)$ and $N(T^{-1}) = M(T)$. We define $Tx = \{y \in K : \{x, y\} \in T\}$, where $T \in L(H, K)$. Consequently, $T|_W$ denotes the restriction of $T \in LR(H, K)$ with domain $D(T) \cap W$, where M is a subset of M (in other words, M) is equal to M in domain M. The adjoint of a linear relation M from M into M is the closed linear relation M from M into M defined by:

$$T^* = \{\{k', h'\} \in K \times H : \langle h', h \rangle = \langle k', k \rangle, \text{ for all } \{h, k\} \in T\}.$$

Observe that $(T^{-1})^* = (T^*)^{-1}$, so that $(D(T))^{\perp} = M(T^*)$ and $N(T^*) = (R(T))^{\perp}$. A linear relation T in H is said to be symmetric if $T \subset T^*$. Again, a linear relation T in H is non-negative if $\langle k, h \rangle \geq 0$, for all $\{h, k\} \in T$.

Moreover, a linear relation T in H is said to be self-adjoint when $T = T^*$. If S and T both are linear relations, then their product TS is defined by:

$$TS = \{\{x, y\} : \{x, z\} \in S \text{ and } \{z, y\} \in T, \text{ for some } z\}.$$

The sum of two linear relations T and S from H into K is $T+S=\{\{x,y+z\}:\{x,y\}\in T \text{ and } \{x,z\}\in S\}$ whereas the Minkowski sum is denoted by $\widehat{T+S}:=\{\{x+v,y+w\}:\{x,y\}\in T,\{v,w\}\in S\}$. Consider $T\in CR(H,H)$, a point $\lambda\in\mathbb{C}$ is said to belong to the resolvent set $\rho(T)$ of T if $(T-\lambda)^{-1}$ is a bounded operator in the domain H and the spectrum $\sigma(T)$ of T is the complement of T in \mathbb{C} .

Here, Q_T denotes the natural quotient map from K into $K/\overline{M(T)}$, where T is a linear relation from H into K. It is easy to show that Q_TT is a linear operator from H into $K/\overline{M(T)}$. We call the linear relation T from H into K a continuous linear relation if Q_TT is a bounded operator, and the set of all continuous linear relations from H into K is denoted by BR(H, K). When $T \in BR(H, K)$ and D(T) = H, then T is called a bounded linear relation. Some characterizations of continuous and bounded linear relations are explored in [9].

The regular part of a closed linear relation T from H into K is $P_{\overline{D(T^*)}}T$, denoted by T_{op} which is an operator with $T_{op} \subset T$, where $P_{\overline{D(T^*)}}$ is the orthogonal projection in K onto $\overline{D(T^*)} = (M(T))^{\perp}$. It can be shown that $T = T_{op} + (\{0\} \times M(T))$, when T is a closed linear relation from H into K [7]. When T is a closed relation from H into H int

3. Characterizations of the Hyers-Ulam stable closed linear relations in Hilbert spaces

Definition 3.1. Let T be a linear relation from a normed linear space X into a normed linear space Y. Then T is said to be Hyers-Ulam stable if there exists a constant $M \ge 0$ with the following property: for any $y \in R(T)$, $\varepsilon \ge 0$, and $y_0 \in R(T)$ with $||y - y_0|| \le \varepsilon$, there exist $\{x, y\} \in T$ and $\{x_0, y_0\} \in T$ such that $||x - x_0|| \le M\varepsilon$.

We call M a Hyers-Ulam stable (HUS) constant for the linear relation T, and the infimum of all HUS constants of T is denoted by M_T .

Remark 3.2. Let T be a linear relation from a normed linear space X into a normed linear space Y. If T is Hyers-Ulam stable, then there exists a constant $M \ge 0$ with the following property: for any $y \in R(T)$ and $y_0 \in R(T)$, there exist $\{x,y\} \in T$ and $\{x_0,y_0\} \in T$ such that $||x-x_0|| \le M||y-y_0||$.

From now on, we consider T to be a closed linear relation from H into K.

Theorem 3.3. Let $T \in CR(H, K)$. Then T is Hyers-Ulam stable if and only if R(T) is closed.

Proof. Since T is closed, T^{-1} is also closed. We claim that T^{-1} is continuous in order to show that $D(T^{-1}) = R(T)$ is closed (by Theorem III.4.2 [9]). Let us consider $y \in R(T)$ and $y_0 \in R(T)$, there exist $\{x,y\} \in T$ and $\{x_0,y_0\} \in T$ such that $\|x-x_0\| \le M\|y-y_0\|$, where M is a HUS constant of T. Then, $\{x-x_0,y-y_0\} \in T$. Thus, $\|Q_{T^{-1}}T^{-1}(y-y_0)\| = \|(x-x_0) + N(T)\| \le \|x-x_0\| \le M\|y-y_0\|$. So, $Q_{T^{-1}}T^{-1}$ is bounded implies T^{-1} is continuous. Hence, $R(T) = D(T^{-1})$ is closed.

Conversely, suppose R(T) is closed. Then $Q_{T^{-1}}T^{-1}$ is bounded because T^{-1} is continuous. Then for $z \in R(T)$ and $z_0 \in R(T)$, we have $\{u, z\} \in T$ and $\{u_0, z_0\} \in T$, for some $u, u_0 \in D(T)$. Now,

$$||(u - u_0) + N(T)|| = ||Q_{T^{-1}}T^{-1}(z - z_0)|| \le ||T^{-1}||||z - z_0||.$$

We get $v \in N(T)$ such that $||u - u_0 + v|| \le (||T^{-1}|| + 1)||z - z_0||$. Moreover, $\{u, z\} \in T$ and $\{u_0 - v, z_0\} \in T$. Therefore, T is Hyers-Ulam stable. It is obvious to show that $M_T = ||T^{-1}||$ by considering $(||T^{-1}|| + \delta)$ instead of $(||T^{-1}|| + 1)$, where δ is an arbitrary positive real number. \square

Theorem 3.4. Let $T \in CR(H, K)$ be Hyers-Ulam stable. Then M_T is a Hyers-Ulam stable constant.

Proof. Suppose that M_T is not a Hyers-Ulam stable constant. Then there exist $y \in R(T)$ and $y_0 \in R(T)$ such that for all $x \in T^{-1}y$ and $x_0 \in T^{-1}y_0$, we have $||x - x_0|| > M_T ||y - y_0||$.

It is easy to show that $T^{-1}y$, and $T^{-1}y_0$ both are non-empty closed convex subsets in H. By Corollary 16.6(a) [3] (which states that every nonempty convex subset of Hilbert spaces contains an element of minimal norm), we get

$$\begin{aligned} dist(T^{-1}y, T^{-1}y_0) &= \inf_{z_0 \in T^{-1}y_0} \inf_{z \in T^{-1}y} \|z_0 - z\| \\ &= \inf_{z_0 \in T^{-1}y_0} \|z_0 - z'\|, \text{ for some } z' \in T^{-1}y \\ &= \|z'_0 - z'\|, \text{ for some } z'_0 \in T^{-1}y_0. \end{aligned}$$

Thus, $dist(T^{-1}y, T^{-1}y_0) = ||z'-z_0'|| > M_T||y-y_0||$. There exists a positive $\delta > 0$ such that $M_T + \delta$ is a Hyers-Ulam stable constant and $dist(T^{-1}y, T^{-1}y_0) > (M_T + \delta)||y-y_0||$. Hence, for all $x \in T^{-1}y$ and $x_0 \in T^{-1}y_0$, we have $||x-x_0|| > (M_T + \delta)||y-y_0||$, which is a contradiction. Therefore, M_T is a Hyers-Ulam stable constant. \square

Theorem 3.5. Let $T \in CR(H, K)$. Then T is Hyers-Ulam stable if and only if T_{op} is Hyers-Ulam stable.

Proof. Suppose $T \in CR(H, K)$ is Hyers-Ulam stable. By Theorem 3.3, R(T) is closed. We claim that $R(T_{op})$ is closed in order to show the Hyers-Ulam stability of T_{op} . Let $y \in \overline{R(T_{op})}$, then there exists $\{y_n\}$ in $R(T_{op})$ such that $y_n \to y$, as $n \to \infty$. We know that $T_{op} = P_{\overline{D(T^*)}}T$, so there exist $\{x_n, z_n\} \in T$ and $\{z_n, y_n\} = \{z_n, P_{\overline{D(T^*)}}z_n\} \in G(P_{\overline{D(T^*)}})$ (for all $n \in \mathbb{N}$), where $G(P_{\overline{D(T^*)}})$ is the graph of operator $P_{\overline{D(T^*)}}$. We can write $z_n = y_n + y_n'$, where $y_n' \in M(T)$ for all $n \in \mathbb{N}$. It confirms that $\{x_n, y_n\} = \{x_n, z_n - y_n'\} \in T$. Thus, $y \in \overline{D(T^*)} \cap R(T)$. There exists $x \in D(T)$ such that $\{x, y\} \in T$ and $\{y, y\} \in G(P_{\overline{D(T^*)}})$ which implies that $\{x, y\} \in T_{op}$. Hence, $R(T_{op})$ is closed and T_{op} is Hyers-Ulam stable.

Conversely, T_{op} is Hyers-Ulam stable. We will show that R(T) is closed to prove the Hyers-Ulam stability of T. Consider $w \in \overline{R(T)}$ then there exists a sequence $\{w_n\}$ in R(T) such that $w_n \to w$, as $n \to \infty$. So, there exists a sequence $\{v_n\}$ in D(T) such that $\{v_n, w_n\} \in T = T_{op} + (\{0\} \times M(T))$, for all $n \in \mathbb{N}$. Thus, for all $n \in \mathbb{N}$, $\{v_n, w_n\} = \{v_n, w_n'\} + \{0, w_n''\}$, where $\{v_n, w_n'\} \in T_{op}$ and $\{0, w_n''\} \in (\{0\} \times M(T))$. Again, the convergent sequence $\{w_n\}$ says that $\{w_n'\}$ and $\{w_n''\}$ both are convergent to w' and w'' respectively, for some $w' \in R(T_{op}) \subset (M(T))^{\perp}$ and $\{0, w''\} \in M(T)$. This guarantees w = w' + w''. There exists $u \in D(T_{op})$ such that $\{u, w'\} \in T_{op}$ and $\{0, w''\} \in (\{0\} \times M(T))$ which implies $\{u, w\} \in T$ and $w \in R(T)$. Therefore, T is Hyers-Ulam stable. \square

Proposition 3.6. *Let* $T \in CR(H, K)$ *. Then* T *is Hyers-Ulam stable if and only if* T^* *is Hyers-Ulam stable.*

Proof. Since T is in CR(H, K), by Proposition 2.5 [12] and Theorem 3.3, we get T is Hyers-Ulam stable if and only if R(T) is closed if

Proposition 3.7. Let $T \in CR(H, K)$. Then T is Hyers-Ulam stable if and only if T^*T is Hyers-Ulam stable (TT^* is Hyers-Ulam stable).

Proof. By Lemma 5.1 [10], we get T^*T and TT^* both are non-negative self-adjoint. So, T^*T and TT^* both are closed. By Proposition 2.5 [12] and Theorem 3.3, we have T is Hyers-Ulam stable if and only if R(T) is closed if and only if $R(T^*)$ is closed. $R(T^*)$ is closed if and only if $R(T^*)$ is Hyers-Ulam stable. \square

Theorem 3.8. Let $T \in CR(H, K)$. Then T^{\dagger} is Hyers-Ulam stable if and only if T is continuous.

Proof. Theorem III.4.2 [9] says that T is continuous if and only if D(T) is closed. Since T is closed, so T^{-1} is closed implies $T^{\dagger} = (T^{-1})_{op}$ is closed. By Theorem 3.5 and Theorem 3.3, we get that $D(T) = R(T^{-1})$ is closed. Hence, T is continuous.

Conversely, suppose that T is continuous. So, $D(T) = R(T^{-1})$ is closed. Then T^{-1} is Hyers-Ulam stable. By Theorem 3.5, we have the Hyers-Ulam stability of $T^{\dagger} = (T^{-1})_{op}$.

Let $T \in CR(H, K)$ be a non-negative self-adjoint linear relation. Then T_{op} is also a non-negative self-adjoint linear operator [7]. Moreover, $T^{\frac{1}{2}} = (T_{op})^{\frac{1}{2}} \widehat{+} (\{0\} \times M(T))$ and $(T_{op})^{\frac{1}{2}} = (T^{\frac{1}{2}})_{op}$ [7].

Lemma 3.9. Let $T \in CR(H, K)$ be a non-negative self-adjoint linear relation. Then T is Hyers-Ulam stable if and only if $T^{\frac{1}{2}}$ is Hyers-Ulam stable.

Proof. The self-adjointness of T_{op} says that T_{op} is densely defined in $\overline{D(T)} = \overline{D(T^*)}$ (by Theorem 1.3.16 [7]). By Theorem 3.5, we get that T is Hyers-Ulam stable if and only if T_{op} is Hyers-Ulam stable if and only if $(T^{\frac{1}{2}})_{op} = (T_{op})^{\frac{1}{2}}$ is Hyers-Ulam stable (by Proposition 2.23 [1]) if and only if $T^{\frac{1}{2}}$ is Hyers-Ulam stable (by Theorem 3.5). \square

Theorem 3.10. Let $T \in CR(H, K)$. Then T is Hyers-Ulam stable if and only if $|T| = (T^*T)^{\frac{1}{2}}$ is Hyers-Ulam stable.

Proof. By Proposition 3.7 and Lemma 3.9, we get that T is Hyers-Ulam stable if and only if T^*T is Hyers-Ulam stable. \Box

Theorem 3.11. Let $T \in CR(H, K)$. Then $C_T = (I + T^*T)^{-1}$ is Hyers-Ulam stable if and only if T is continuous.

Proof. Theorem 5.2 [14] says that $C_T = P_T P_T^*$, where $P_T \{x, y\} = x$, for all $\{x, y\} \in T$. So, C_T is a bounded operator in the domain H, which implies C_T is closed. Let us first consider that C_T is Hyers-Ulam stable, then $R(C_T) = R((I + T^*T)^{-1}) = D(T^*T)$ is closed. By Lemma 5.1 (a) [14], we get that $D(T^*T) = \overline{D(T)} \subset D(T) \subset \overline{D(T)}$ which implies D(T) is closed. Hence, T is continuous (by Theorem III.4.2 [9]). Conversely, suppose T is continuous. Then, T_{op} is bounded because T is continuous and

$$||T_{op}x|| = ||Tx + M(T)|| = ||Tx||$$
, for all $x \in D(T_{op})$.

By Corollary III.1.13 [9], $(T_{op})^*$ is a continuous linear relation. Then $||(T_{op})^*T_{op}x|| \le ||(T_{op})^*|||T_{op}||||x||$. Thus, $(T_{op})^*T_{op}$ is continuous. By Lemma 5.1(b) [14], we get that T^*T is continuous which implies $D(T^*T)$ is closed. Thus, $R(C_T)$ is closed. Therefore, C_T is Hyers-Ulam stable. \square

Theorem 3.12. Let $T \in BR(H, K) \cap CR(H, K)$. If T is Hyers-Ulam stable, then $Z_T = T(I + T^*T)^{-\frac{1}{2}}$ is also Hyers-Ulam stable.

Proof. Since C_T is a non-negative self-adjoint bounded operator in the domain H. So, $C_T^{\frac{1}{2}}$ exists and $Z_T = TC_T^{\frac{1}{2}}$. Now, we claim that Z_T is closed. Consider $\{x, y\} \in \overline{Z_T}$, then there exists a sequence $\{\{x_n, y_n\}\}$ in Z_T such that $\{x_n, y_n\} \to \{x, y\}$ as $n \to \infty$, where $\{x_n, C_T^{\frac{1}{2}}x_n\} \in G(C_T^{\frac{1}{2}})$ and $\{C_T^{\frac{1}{2}}x_n, y_n\} \in T$, for all $n \in \mathbb{N}$. Since T is closed and $C_T^{\frac{1}{2}}$ is bounded in domain H. Thus, $\{x, y\} \in Z_T$ and Z_T is closed. Moreover,

$$C_T^{\frac{1}{2}} = (I + T^*T)^{-\frac{1}{2}} = (I + (T_{op})^*T_{op})^{-\frac{1}{2}} = C_{T_{op}}^{\frac{1}{2}}.$$

Again, $M(TC_T^{\frac{1}{2}}) = M(T)$ says that $\overline{D((TC_T^{\frac{1}{2}})^*)} = \overline{D(T^*)}$. Thus,

$$(Z_T)_{op} = P_{\overline{D((TC_T^{\frac{1}{2}})^*)}}(TC_T^{\frac{1}{2}}) = (P_{\overline{D(T^*)}}T)C_T^{\frac{1}{2}} = T_{op}C_{T_{op}}^{\frac{1}{2}} = Z_{T_{op}}.$$
(1)

By Theorem 1.3.15 [7], we see that $Z_{T_{op}}$ is closed. From Theorem 3.5, it suffices to show that $Z_{T_{op}}$ is Hyers-Ulam stable or that $R(Z_{T_{op}})$ is closed. Let $0 \neq w \in \overline{R(Z_{T_{op}})}$. Then there exists a sequence $\{u_n\}$ in H such that $T_{op}(P_TP_T^*)^{\frac{1}{2}}u_n \to w$, as $n \to \infty$. Again, $R(T_{op})$ is closed because T_{op} is Hyers-Ulam stable (by Theorem 3.5). So, there exists an element $z \in D(T) \cap N(T_{op})^{\perp}$ such that $T_{op}z = w$ and

$$||T_{op}((P_T P_T^*)^{\frac{1}{2}} u_n - z)|| \to 0, \text{ as } n \to \infty.$$
 (2)

Let $v \in N(T)$. Then $\{v,0\} = \{v_1,v_2\} + \{0,v_3\}$, where $\{v_1,v_2\} \in T_{op}$ and $\{0,v_3\} \in (\{0\} \times M(T))$. This confirms $v_1 = v$ and $v_2 = v_3 = 0$. Thus, $N(T) \subset N(T_{op}) \subset N(T)$ which implies $N(T) = N(T_{op})$. Moreover, $\gamma(T_{op}) > 0$ ($\gamma(T_{op})$ is the reduced minimum modulus of T_{op}) because $R(T_{op})$ is closed. By the relation (2), we get

$$\gamma(T_{op})\|P_{(N(T))^{\perp}}((P_TP_T^*)^{\frac{1}{2}}u_n) - z\| \le \|T_{op}((P_TP_T^*)^{\frac{1}{2}}u_n - z)\| \to 0$$
, as $n \to \infty$.

Thus, $P_{(N(T))^{\perp}}((P_TP_T^*)^{\frac{1}{2}}u_n) \to z$ as $n \to \infty$. Again, $R((P_TP_T^*)^{\frac{1}{2}}) = R(P_TP_T^*) = R(P_T) = D(T)$ because $R(P_T) = D(T)$ is closed, since $T \in BR(H,K) \cap CR(H,K)$. Furthermore, $R((P_TP_T^*)^{\frac{1}{2}}) + N(P_{(N(T))^{\perp}}) = D(T) + N(T) = D(T)$ is closed. By Corollary 6 [6], we have $R(P_{(N(T))^{\perp}}(P_TP_T^*)^{\frac{1}{2}})$ is closed. Hence, there exists $q \in H$ such that $z = P_{(N(T))^{\perp}}((P_TP_T^*)^{\frac{1}{2}})q$ and $w = T_{op}P_{(N(T))^{\perp}}((P_TP_T^*)^{\frac{1}{2}})q = T_{op}((P_TP_T^*)^{\frac{1}{2}})q$ (because $N(T_{op}) = N(T)$). Now, we can say that $R(Z_{T_{op}})$ is closed which implies that $(Z_T)_{op}$ is Hyers-Ulam stable. \square

Remark 3.13. Let $T \in CR(H, K)$. Then T^{-1} is Hyers-Ulam stable if and only if T is continuous. Because T^{-1} is closed and T^{-1} is Hyers-Ulam stable if and only if $D(T) = R(T^{-1})$ is closed (by Theorem 3.3) if and only if T is continuous (by Theorem III.4.2 [9]).

Lemma 3.14. Let $T \in CR(H,K)$. Then $T^*T = T^*T|_{(N(T))^{\perp}} + T^*T|_{N(T)}$. Moreover, $T^*T|_{(N(T))^{\perp}}$ and $T^*T|_{N(T)}$ both are closed.

Proof. It is obvious to show that $T^*T \supset T^*T|_{(N(T))^{\perp}} + T^*T|_{N(T)}$. Now consider $\{x,y\} \in T^*T$, then $x = x_1 + x_2 \in D(T) = N(T) + (N(T))^{\perp} \cap D(T)$, where $x_1 \in N(T)$ and $x_2 \in (N(T))^{\perp} \cap D(T)$. Then $\{x_1,0\} \in T^*T|_{N(T)}$. There exists $z \in K$ such that $\{x,z\} \in T$ and $\{z,y\} \in T^*$. So, $\{x_2,z\} = \{x,z\} - \{x_1,0\} \in T$. Thus, $\{x_2,y\} \in T^*T|_{(N(T))^{\perp}}$. This guarantees that the reverse inclusion $T^*T \subset T^*T|_{(N(T))^{\perp}} + T^*T|_{N(T)}$. Hence, $T^*T = T^*T|_{(N(T))^{\perp}} + T^*T|_{N(T)}$.

Now, we claim that $T^*T|_{N(T)}$ and $T^*T|_{(N(T))^{\perp}}$ both are closed. Let $\{u,v\} \in \overline{T^*T|_{N(T)}}$. Then there exists a sequence $\{\{u_n,v_n\}\}$ in $T^*T|_{N(T)}$ with $u_n \in N(T)$ (for all $n \in \mathbb{N}$) such that $\{u_n,v_n\} \to \{u,v\}$ as $n \to \infty$. Again, $\{u_n,0\} \in T$ and $\{0,v_n\} \in T^*$, for all $n \in \mathbb{N}$. The closedness of T, T^* and N(T) confirm that $\{u,v\} \in T^*T|_{N(T)}$. Thus, $T^*T|_{N(T)}$ is closed.

Let $\{s,t\} \in \overline{T^*T|_{(N(T))^{\perp}}}$. Then there exists a sequence $\{\{s_n,t_n\}\}$ in $T^*T|_{(N(T))^{\perp}}$ with $s_n \in (N(T))^{\perp}$ (for all $n \in \mathbb{N}$) such that $\{s_n,t_n\} \to \{s,t\}$ as $n \to \infty$. So, $s \in (N(T))^{\perp}$. Again, $\{s,t\} \in T^*T$ because T^*T is closed. Thus, $s \in D(T) \cap (N(T))^{\perp}$ and $\{s,t\} \in T^*T|_{(N(T))^{\perp}}$. Therefore, $T^*T|_{(N(T))^{\perp}}$ is closed. \square

Theorem 3.15. Let $T \in CR(H,K)$. Then $\sigma(T^*T|_{(N(T))^{\perp}}) \setminus \{0\} = \sigma(T^*T) \setminus \{0\}$, where $T^*T|_{(N(T))^{\perp}}$ is a linear relation from the Hilbert space $(N(T))^{\perp}$ into the Hilbert space $(N(T))^{\perp}$

Proof. First, we claim that $\lambda \in \sigma(T^*T) \setminus \{0\}$ implies $\lambda \in \sigma(T^*T|_{(N(T))^{\perp}}) \setminus \{0\}$. Assume that $\lambda \in \rho(T^*T|_{(N(T))^{\perp}})$, where $T^*T|_{(N(T))^{\perp}}$ is a linear relation from Hilbert space $(N(T))^{\perp}$ into $(N(T))^{\perp}$. Then $(T^*T|_{(N(T))^{\perp}} - \lambda)^{-1} = ((T^*T - \lambda)|_{(N(T))^{\perp}})^{-1}$ is a bounded operator in domain $(N(T))^{\perp}$. Consider $\{0, p\} \in (T^*T - \lambda)^{-1}$ implies $\{p, 0\} \in (T^*T - \lambda)$. Then $\{p, \lambda p\} \in T^*T$ and $\lambda p \in R(T^*T) \subset (N(T))^{\perp} \cap D(T^*T)$. It confirms that $\{p, 0\} \in (T^*T|_{(N(T))^{\perp}} - \lambda)$ (since $\lambda \neq 0$) and $\{0, p\} \in (T^*T|_{(N(T))^{\perp}} - \lambda)^{-1}$. The property of the operator $(T^*T|_{(N(T))^{\perp}} - \lambda)^{-1}$ says p = 0. So, $(T^*T - \lambda)^{-1}$ is an operator that is closed because $(T^*T - \lambda)$ is closed. Again, the relation $(T^*T|_{(N(T))^{\perp}} - \lambda)^{-1} \subset (T^*T - \lambda)^{-1}$ guarantees that $(N(T))^{\perp} \subset D((T^*T - \lambda)^{-1})$. Let $x_0 \in N(T)$. Then $\{x_0, 0\} \in T^*T$. So, $\{-\lambda x_0, x_0\} \in (T^*T - \lambda)^{-1}$. Since, $\lambda \neq 0$ which implies $N(T) \subset D((T^*T - \lambda)^{-1})$. Thus, $D((T^*T - \lambda)^{-1}) = H$. By the closed graph theorem (Theorem III.4.2 [9]), we have that $(T^*T - \lambda)^{-1}$ is a bounded operator in domain H. Hence, $\lambda \in \rho(T^*T)$ is a contradiction. Our assumption is wrong. Thus,

$$\sigma(T^*T) \setminus \{0\} \subset \sigma(T^*T|_{(N(T))^{\perp}}) \setminus \{0\}. \tag{3}$$

Now, the reverse inclusion will be shown. Consider $\mu \in \sigma(T^*T|_{(N(T))^{\perp}}) \setminus \{0\}$ but $\mu \in \rho(T^*T)$. Then, $(T^*T - \mu)^{-1}$ is a bounded operator in the domain H. So, $(T^*T|_{(N(T))^{\perp}} - \mu)^{-1}$ is a bounded operator. Again, take an element $q \in (N(T))^{\perp} \subset H = R(T^*T - \mu)$. Then there exists $w \in D(T^*T)$ such that $\{w, q\} \in (T^*T - \mu)$. Again, $q + \mu w \in R(T^*T) \subset (N(T))^{\perp}$. Thus, $w \in (N(T))^{\perp}$ which implies $\{w, q\} \in (T^*T|_{(N(T))^{\perp}} - \mu)$ and $q \in (T^*T)$

 $D((T^*T|_{(N(T))^{\perp}}-\mu)^{-1})$. Hence, $(N(T))^{\perp}\subset D((T^*T|_{(N(T))^{\perp}}-\mu)^{-1})$. Again, consider $s\in R(T^*T|_{(N(T))^{\perp}}-\mu)$, then there exists $t\in (N(T))^{\perp}$ such that $\{t,s\}\in (T^*T|_{(N(T))^{\perp}}-\mu)$. So, $s+\mu t\in (N(T))^{\perp}$ which implies that $s\in (N(T))^{\perp}$. Furthermore, $(N(T))^{\perp}=D((T^*T|_{(N(T))^{\perp}}-\mu)^{-1})$. Now, it is ready to confirm that $\mu\in \rho(T^*T|_{(N(T))^{\perp}})$ which is again a contradiction. Therefore,

$$\sigma(T^*T|_{(N(T))^{\perp}}) \setminus \{0\} \subset \sigma(T^*T) \setminus \{0\}. \tag{4}$$

By the relations (3) and (4), we get

$$\sigma(T^*T|_{(N(T))^{\perp}}) \setminus \{0\} = \sigma(T^*T) \setminus \{0\}. \tag{5}$$

Theorem 3.16. Let $T \in CR(H, K)$. Then $\gamma(T^*T) = \gamma(T^*T|_{(N(T))^{\perp}})$, where $T^*T|_{(N(T))^{\perp}}$ is a linear relation from the Hilbert space $(N(T))^{\perp}$ into the Hilbert space $(N(T))^{\perp}$.

Proof. By Lemma 5.1 [10], we get T^*T is self-adjoint. Now, we claim that $T^*T|_{(N(T))^{\perp}}$ is self-adjoint. From Lemma 3.14, we have $T^*T|_{(N(T))^{\perp}}$ is closed. Moreover, $T^*T|_{(N(T))^{\perp}}$ is symmetric because $T^*T|_{(N(T))^{\perp}} \subset T^*T \subset (T^*T|_{(N(T))^{\perp}})^*$. Theorem 1.5.5 [7] says that $\lambda \in \rho(T^*T)$, when $\lambda \in \mathbb{C} \setminus \mathbb{R}$. By Theorem 3.15, we get $\lambda \in \rho(T^*T|_{(N(T))^{\perp}})$, for all $\lambda \in \mathbb{C} \setminus \mathbb{R}$. Again, Theorem 1.5.5 [7] confirms that $T^*T|_{(N(T))^{\perp}}$ is self-adjoint. From Theorem 4.3 [12] and Theorem 3.15, we can say that

$$\gamma(T^*T) = \inf\{|\lambda| : \lambda \in \sigma(T^*T) \setminus \{0\}\} = \inf\{|\lambda| : \lambda \in \sigma(T^*T|_{(N(T))^{\perp}}) \setminus \{0\}\} = \gamma(T^*T|_{(N(T))^{\perp}}).$$

Corollary 3.17. Let $T \in CR(H,K)$. Then T is Hyers-Ulam stable if and only if $T^*T|_{(N(T))^{\perp}}$ is Hyers-Ulam stable (Here, $T^*T|_{(N(T))^{\perp}}$ is a linear relation from Hilbert space $(N(T))^{\perp}$ into $(N(T))^{\perp}$).

Proof. T is Hyers-Ulam stable if and only if R(T) is closed if and only if $R(T^*)$ is closed if and only if $R(T^*T)$ is closed if and only if $Q(T^*T) = Q(T^*T|_{(N(T))^{\perp}}) > 0$ if and only if $Q(T^*T|_{(N(T))^{\perp}})$ is closed if and only if $Q(T^*T|_{(N(T))^{\perp}}) = Q(T^*T|_{(N(T))^{\perp}}) = Q(T^*T|_{(N(T))^$

We now discuss the sufficient conditions under which the sum and product of two Hyers-Ulam stable linear relations remain Hyers-Ulam stable.

Theorem 3.18. Let $T \in CR(H, K)$ and $S \in LR(H, K)$ such that $M(S) \subset M(T)$ and $D(T) \subset D(S)$ with the condition $||Sx|| \le b||Tx||$, for all $x \in D(T)$ and 0 < b < 1. If T is Hyers-Ulam stable, then S + T is also Hyers-Ulam stable.

Proof. By Theorem 3.1.1 [2], we get S + T is closed. It is enough to show that R(S + T) is closed to get the Hyers-Ulam stability of S + T. It is obvious that M(S + T) = M(T) because of the given condition $M(S) \subset M(T)$. Now, for all $x \in D(T)$, we have

$$||Sx + Tx|| = ||(Sx + Tx) + M(T)|| \le ||Sx + M(T)|| + ||Tx + M(T)|| \le ||Sx|| + ||Tx|| \le (1 + b)||Tx||.$$

By Proposition 2.5.7 [2] and Proposition II.1.5 [9], we get,

$$(1-b)||Tx|| \le ||Tx|| - ||Sx|| \le ||(S+T)x||$$
, for all $x \in D(T)$.

Combining the above two relations we get,

$$(1-b)||Tx|| \le ||(S+T)x|| \le (1+b)||Tx||, \text{ for all } x \in D(T).$$
(6)

Now, we claim that N(S + T) = N(T). Let $z \in N(S + T)$. Then $\{z, 0\} \in S + T$ such that $\{z, 0\} = \{z, z_1\} + \{z, z_2\}$, where $\{z, z_1\} \in S$ and $\{z, z_2\} \in T$. So, by the relation (6), we get that

$$||z_2 + M(T)|| = ||Tz|| \le \frac{1}{1 - h}||(S + T)z|| = 0.$$

Thus, $z_2 \in M(T)$ and $\{0, z_2\} \in T$ implies $\{z, 0\} \in T$. So, $N(S+T) \subset N(T)$. Again, consider $\{w, 0\} \in T$, then by the relation (6), we get $||(S+T)w+M(S+T)|| = ||(S+T)w|| \le (1+b)||Tw|| = 0$. Thus, $(S+T)w \subset M(S+T)$. Moreover, $\{w, 0\} = \{w, v_1\} + \{w, v_2\} \in (T+S) - S$ (by Proposition 2.3.4 [2]), where $\{w, v_1\} \in T+S$ and $\{w, v_2\} \in -S$. So, $\{0, v_1\} \in S+T$ which implies $\{w, 0\} \in S+T$. Hence, $N(T) \subset N(S+T)$. Now, it is ready to say that N(S+T) = N(T). Since T is Hyers-Ulam stable. So, T^{-1} is continuous because T^{-1} is closed with $D(T^{-1}) = R(T)$ is closed. Again, $(S+T)^{-1}$ is closed because S+T is closed. We will show that $(S+T)^{-1}$ is continuous. Now, let us consider $\{q, p\} \in (S+T)^{-1}$. Then $\{p, q\} = \{p, q'\} + \{p, q''\} \in S+T$, where $\{p, q'\} \in S$ and $\{p, q''\} \in T$. Moreover,

$$||(S+T)^{-1}q|| = ||(S+T)^{-1}q + M((S+T)^{-1})|| = ||(S+T)^{-1}q + N(T)||.$$
(7)

The continuity of T^{-1} and the relation (6) say that

$$(1-b)||q'' + M(T)|| = (1-b)||Tp|| \le ||(S+T)p|| = ||q + M(S+T)|| \le ||q' + q''||.$$
(8)

Then there exists $s^{''} \in M(T)$ such that $||q^{''} + s^{''}|| \le \frac{1}{1-b}||q^{'} + q^{''}||$. This confirms that $\{p, q^{''} + s^{''}\} \in T$. From the relation (7) and (8), we have

$$||(S+T)^{-1}q|| = ||p+N(T)|| = ||T^{-1}(q''+s'') + M(T^{-1})|| \le ||T^{-1}||||q''+s''|| \le \frac{||T^{-1}||}{1-h}||q||.$$

Hence, $(S+T)^{-1}$ is continuous. Furthermore, $R(S+T) = D((S+T)^{-1})$ is closed. Therefore, S+T is Hyers-Ulam stable. \square

Let us consider two linear relations $T \in LR(H_1, K_1)$ and $S \in LR(H_2, K_2)$, where H_i and K_i (i = 1, 2) are Hilbert spaces. We define the product of T and S by

$$T \times S = \{\{(h_1, h_2), (k_1, k_2)\} : \{h_1, k_1\} \in T \text{ and } \{h_2, k_2\} \in S\}.$$

It is easy to show that $T \times S$ is a linear relation from the Hilbert space $H_1 \times H_2$ into the Hilbert space $K_1 \times K_2$.

Theorem 3.19. Let $T \in CR(H_1, K_1)$ and $S \in CR(H_2, K_2)$ both be Hyers-Ulam stable. Then $T \times S$ is also Hyers-Ulam stable.

Proof. Let $\{x,y\} \in \overline{T \times S}$, where $x \in H_1 \times H_2$ and $y \in K_1 \times k_2$. Then there exists a sequence $\{\{(h_{1n},h_{2n}),(k_{1n},k_{2n})\}\}$ such that $\{\{(h_{1n},h_{2n}),(k_{1n},k_{2n})\}\}$ → $\{x,y\}$, as $n \to \infty$, where $\{h_{1n},k_{1n}\} \in T$ and $\{h_{2n},k_{2n}\} \in S$ for all $n \in \mathbb{N}$. Thus, $(h_{1n},h_{2n})\to x$ and $(k_{1n},k_{2n})\to y$, as $n\to\infty$. So, $\{h_{1n}\}$, $\{h_{2n}\}$, $\{k_{1n}\}$ and $\{k_{2n}\}$ are Cauchy sequences. We get some $h_1 \in H_1$, $h_2 \in H_2$, $k_1 \in K_1$ and $k_2 \in K_2$ such that $\{h_{1n}\} \to h_1$, $\{h_{2n}\} \to h_2$, $\{k_{1n}\} \to k_1$ and $\{k_{2n}\} \to k_2$ as $n\to\infty$. Moreover, $x=(h_1,h_2)$ and $y=(k_1,k_2)$ with $\{h_1,k_1\} \in T$ and $\{h_2,k_2\} \in S$ because T and S both are closed. Thus, $\{x,y\} \in T \times S$. Hence, $T \times S$ is closed. Again, consider $(y_1,y_2) \in \overline{R(T \times S)}$, there exists a sequence $\{\{(h'_{1n},h'_{2n}),(k'_{1n},k'_{2n})\}\}$ in $T \times S$ such that $\{k'_{1n},k'_{2n}\} \to (y_1,y_2)$, as $n\to\infty$. R(T) and R(S) are closed because T and S both are Hyers-Ulam stable. Then $y_1 \in R(T)$ and $y_2 \in R(S)$. There exist $x_1 \in D(T)$ and $x_2 \in D(S)$ such that $\{x_1,y_1\} \in T$ and $\{x_2,y_2\} \in S$ which implies $(y_1,y_2) \in R(T \times S)$. Furthermore, $R(T \times S)$ is closed. Therefore, $T \times S$ is Hyers-Ulam stable. □

Theorem 3.20 depicts the Hyers-Ulam stability of a block matrix linear relation. We define the block matrix relation $\mathcal{A} = \begin{bmatrix} A & B \\ C & F \end{bmatrix}$ from domain $(D(A) \cap D(C)) \times (D(B) \cap D(F)) \subset H \times K$ to $H \times K$ by

$$\mathcal{A} = \{\{(x, y), (x_a + y_b, x_c + y_f)\} : \{x, x_a\} \in A, \{x, x_c\} \in C, \{y, y_b\} \in B \text{ and } \{y, y_f\} \in F\}$$

, where $A \in LR(H,H)$, $B \in LR(K,H)$, $C \in LR(H,K)$ and $F \in LR(K,K)$ respectively. It is easy to show that \mathcal{A} is a linear relation. The block matrix linear relation \mathcal{A} is called diagonally dominated if C is A-bounded and B is F-bounded. (If $T_1 \in LR(H,K_1)$ and $T_2 \in LR(H,K_2)$, then T_2 is called T_1 -bounded when $D(T_1) \subset D(T_2)$ and there exist non-negative constants A and A such that $A \in LR(H,K_2)$, for all $A \in LR(H,K_2)$.

Theorem 3.20. Let $\mathcal{A} = \begin{bmatrix} A & B \\ C & F \end{bmatrix}$ be a block matrix linear relation, where $A \in CR(H,H)$, $B \in LR(K,H)$, $C \in LR(H,K)$ and $F \in CR(K,K)$ respectively. Assume $M(B) \subset M(A)$ and $M(C) \subset M(F)$ with $||Cx|| \le a||Ax||$, for all $x \in D(A) \subset D(C)$ and $||Bz|| \le f||Fz||$, for all $z \in D(F) \subset D(B)$, where 0 < a, f < 1. Then \mathcal{A} is a closed linear relation. Moreover, \mathcal{A} is Hyers-Ulam stable when A and F both are Hyers-Ulam stable.

Proof. Let us define $T = \begin{bmatrix} A & 0 \\ 0 & F \end{bmatrix}$ and $S = \begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}$, where $\{(x,y),(x_a,y_f)\} \in T$ and $\{(x,y),(y_b,x_c)\} \in S$ for $\{x,x_a\} \in A$, $\{y,y_f\} \in F$, $\{y,y_b\} \in B$ and $\{x,x_c\} \in C$ with $x \in D(A)$ and $y \in D(F)$. By Theorem 3.19, we get T is a closed linear relation from $H \times K$ into $H \times K$. Again, S is a linear relation from $H \times K$ into $H \times K$. Moreover, $D(T) \subset D(S)$. It is easy to show that

$$M(S) = M(B) \times M(C) \subset M(A) \times M(F) = M(T).$$

For all $(x, y) \in D(T)$, we get

$$||S(x,y)||^{2} = ||(y_{b},x_{c}) + (M(B) \times M(C))||^{2}$$

$$= ||y_{b} + M(B)||^{2} + ||x_{c} + M(C)||^{2}$$

$$= ||By||^{2} + ||Cx||^{2}$$

$$\leq a^{2}||Ax||^{2} + f^{2}||Fy||^{2}$$

$$\leq d^{2}||T(x,y)||^{2}, \text{ where } , 0 < d = \max\{a,f\} < 1.$$

Thus, $||S(x,y)|| \le d||T(x,y)||$, for all $(x,y) \in D(T)$. By Theorem 3.1.1 [2], we can say that $\mathcal{A} = T + S$ is closed. By Theorem 3.19, we have that T is Hyers-Ulam stable because A and F both are Hyers-Ulam stable. Theorem 3.18 confirms that $\mathcal{A} = T + S$ is also Hyers-Ulam stable. \square

4. Conclusions

In this paper, the Hyers-Ulam stability of linear relations in normed linear spaces is introduced, and several interesting results concerning the Hyers-Ulam stability of closed linear relations in Hilbert spaces are explored. By establishing the result $\sigma(T^*T|_{(N(T))^{\perp}})\setminus\{0\}=\sigma(T^*T)\setminus\{0\}$ (when T is a closed relation from the Hilbert space H into the Hilbert space H, it is proved that H is Hyers-Ulam stable if and only if H0 Hyers-Ulam stable. Additionally, sufficient conditions are provided under which the sum and product of two Hyers-Ulam stable linear relations remain Hyers-Ulam stable.

Acknowledgements

I would like to thank the anonymous referees for their thorough and critical reading of the paper and their numerous useful comments and suggestions, which helped to improve it substantially.

Declarations

The author declares that there are no conflicts of interest.

References

- [1] Arup Majumdar, P Sam Johnson, and Ram N Mohapatra. *Hyers-Ulam Stability of Unbounded Closable Operators in Hilbert Spaces*. Mathematische Nachrichten, **297**(10):3887-3903, 2024.
- [2] Aymen Ammar and Aref Jeribi. Spectral theory of multivalued linear operators, Apple Academic Press, Oakville, ON; CRC Press, Boca Raton, FL, 2022.
- [3] Balmohan V. Limaye. Functional analysis, New Age International Publishers Limited, New Delhi, 612, 1996.
- [4] Claudi Alsina and Roman Ger. On some inequalities and stability results related to the exponential function. J. Inequal. Appl., 2(4):373–380, 1998.

- [5] Go Hirasawa and Takeshi Miura. *Hyers-Ulam stability of a closed operator in a Hilbert space*. Bull. Korean Math. Soc., **43**(1):107–117, 2006.
- [6] Gyokai Nikaido. Product of linear operators with closed range, Proc. Japan Acad. Ser. A Math. Sci., 62(9):338-340, 1986.
- [7] Jussi Behrndt, Seppo Hassi, and Henk de Snoo. Boundary value problems, Weyl functions, and differential operators. Birkhäuser/Springer, Cham, 108:772, 2020.
- [8] Marta Obłoza. Hyers stability of the linear differential equation. Rocznik Nauk.-Dydakt. Prace Mat., 13:259–270, 1993.
- [9] Ronald Cross. Multivalued linear operators. Marcel Dekker, Inc., New York, 213:335, 1998.
- [10] S. Hassi, A. Sandovici, H. S. V. De Snoo, and H. Winkler. Form sums of nonnegative selfadjoint operators, Acta Math. Hungar., 111(1-2):81–105, 2006.
- [11] Takeshi Miura, Shizuo Miyajima, and Sin-Ei Takahasi. Hyers-Ulam stability of linear differential operator with constant coefficients. Math. Nachr., 258:90–96, 2003.
- [12] Teresa Alvarez and Adrian Sandovici. On the reduced minimum modulus of a linear relation in Hilbert spaces, Complex Anal. Oper. Theory, 7(4):801–812, 2013.
- [13] Themistocles M. Rassias. On the stability of functional equations and a problem of Ulam. Acta Appl. Math., 62(1):23-130, 2000.
- [14] Zsigmond Tarcsay and Zoltán Sebestyén. Canonical graph contractions of linear relations on Hilbert spaces, Complex Anal. Oper. Theory, 15(1):16, 2021.