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Updating approach to midpoint inequality by using multiplicative
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Abstract. In this article, we implemented the concept of multiplicative absolute value by demonstrating
certain properties that were used in an exclusively multiplicative calculus framework to establish midpoint
inequalities involving Riemann-Liouville multiplicative fractional integrals and positive differentiable func-
tions whose multiplicative absolute value is h-convex. These findings are also shown for P-functions and
s-convex functions.

1. Introduction

Many areas of the pure and applied sciences rely on convex functions and mathematical inequalities.
The following is a definition of convexity:

Definition 1.1. The function f : I — R is said to be convex if for all x,y € I and t € [0, 1], we have
fx+@A=hy) <tfO)+ 1= fY)

The Hermite-Hadamard inequality is well-known for estimating the integral mean of a convex function.
We can state this double inequality as follows:

Let f : I - R be a convex function on I and a,b € [ with a < b. Then, we have

b b
{152t [ e P00

If f is concave, then inequalities in (1) are reversed.

Interesting inequalities related to (1) is the midpoint inequality established in [12], estimating the
difference between the left term and the integral mean of f.
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Theorem 1.2 ([12], Theorem 2.2). Let f be a differentiable function such that
midpoint inequality holds:

it o) S

The reader may also refer to [3].

£®))). )

Grosman and Katz [10] introduced a variation of classical (Newtonian) calculus termed multiplicative
(or non-Newtonian) calculus. It utilizes multiplication and division as primary operations, rather than
addition and subtraction. This is especially useful in situations where growth or decay happens in a pro-
portional way. For example, compound interest in finance and population growth in biomedical fields are
both examples of this.

A strictly structured multiplicative calculus was introduced in the comprehensive work by Bashirov et
al. [4]. They presented the subsequent multiplicative derivative (*derivative) and multiplicative integral
(xintegral) operators.

Definition 1.3. Given a function f : I° € R — IR*, the multiplicative derivative (or +derivative) of f, denoted by f*,
is given by

fix) = (f( f(x)h) )Il] .

Remark 1.4. For a positive differentiable function f, a corresponding multiplicative derivative f* exists, and the
relationship between f* and f can be expressed using the following formula:

f(®) =exp{(nof)(®)}, or (Inof)(t)=(Inof) (). 3)

We cite in the following theorem some properties of multiplicative derivatives.

Theorem 1. 5 Let f and g be positive *differentiable functions. If c is an arbitrary constant, then the functions
cf, fg, f + g, , f7and f o g are «differentiable, and the following results hold true:

1 (cf) () = f(t).
12 (fgy() = £(B) (D).

ft) g(t)
13 (f+9y() = F( SO +9O g fO) +90)

PR AYNIAC
! (9) 0= 5w

5 () = £ O fi7
16 (fog)(t) = fg®)”".

Definition 1.6. For a function f : Iy € R — R*, the multiplicative integral of f, represented by fu b( Fx)*, is
defined as:

b b
[ ey =ew { | ln(f(x))dx}- @
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Example 1.7. For C € R:

b
f (C)dx — Cb_”.
a
b a-1\dx b (b-a)®
f (c=) :exp{lnC f (x —a)*! dx} cC . (5)

The next theorem relates different properties of multiplicative integrals.

Theorem 1.8. If f and g are positive and Riemann integrable on the interval [a, b] C I°, then f and g are +-integrable
on [a,b], and

o f F@y)" ( f (f(x))d"); peR,

e f (460000 = f oy f )™
L3 fb (&)dx ) M

/) '
7 f(g(x))d*

c b b
14 f (Y™ f (Y™ = f (F); a<c<b.
b -1
_ dx — d dx =( dx) '
15 f (F)™ = Lan f () j: ()

Theorem 1.9. [4, Theorem 6] (Multiplicative integration by parts): Let f be a positive, multiplicatively differentiable
function on I° and g : I° — R differentiable and [a, b] C I°, then the function (f*)? is integrable, and we have

b 9(b)
[ ey Ef Eb);@ — ®)
” O [ ()

The next process involves the definition of multiplicative h-convexity [13, Definition 2.2].

Definition 1.10. Let h : | © (0,1) — R be a non-negative function and h # 0. We say that the function f : I° — R},
is multiplicatively h-convex (+h-convex) if for all x,y € [a,b] C I° and t € [0, 1], we have

flex+ (1 =1y < I - o). 7)
If inequality (7) is reversed, then f is said to be multiplicatively h-concave (+h-concave).
Remark 1.11. Based on the previously mentioned definition, we get the following relations:

o If f and g are two multiplicatively h-convex functions, then the product f - g is also a multiplicatively h-convex
function.
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o If f is a multiplicatively h-convex function, then % is a multiplicatively h-concave function.
o If g is a multiplicatively h-concave function, then é is a multiplicatively h-convex function.

o If f is a multiplicatively h-convex function and g is a multiplicatively h-concave function, then the quotient §
is a multiplicatively h-convex function.

o If f and g are two multiplicatively h-convex functions, the quotient § is not necessarily a multiplicatively

h-convex function. For example, let g = f -1, where 1 is a multiplicatively h-convex function. This results in

§ = %b, which is a multiplicatively h-concave function.

We examine now various forms of multiplicative h-convexity.

1. The multiplicatively s-convex (*s-convex) functions are obtained by setting h(t) = #°, s € (0,1] in (7)
[13, Definition 2.3].

flex+ A=) < [FEI - F"
2. By setting h(t) = 1 in (7), we derive multiplicatively P-functions (+P-functions) [13, Definition 2.5].
fx+ 1 =Hy) < f(x)- fy).
3. By replacing h(t) = t in (7), we derive the concept of multiplicatively convex (+-convex) functions [14].
fex+ -ty < [f@I - oI
For additional details, consult [13, 14].
Remark 1.12. Since the function In(.) is concave, for f(x), f(y) > 0 and t € [0, 1], we obtain
tln f(x) + (1 - 1) In f(y) < In(t f(x) + (1 = 1) f(y),
therefore
[FOOT - W1 <t £+ =1 f(y). ®)
This signifies that a multiplicatively convex function has convexity, although the converse is not necessarily valid.
In [6, 7], the concept of a B-function was introduced as follows:

Definition 1.13. Let g : [0, 00) — R be a nonnegative function. The function g is called a B-function if

a+b
gt —a)+g(b - 1) szg(T), ©
wherea <t <bwitha,b € [0,00).
In particular, taking a = 0 and b = 1 in (9), we obtain the inequality:
1
9@+ 98 <29 (3). (10)

where o + 8 =1, a € [0, 1]. Examples of such a function g satisfying the inequality (10) can be provided by
q1(t) =1, go(t) = t and g3(¢) = * with s € (0, 1].

The multiplicative Hermite-Hadamard inequality for *-convex functions was established by Ali et al. in
[2, Theorem 1]:
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Theorem 1.14. Let f be a positive and multiplicative convex function on the interval I° and [a,b] C I°, then the
following inequalities hold:

1
(552 <| [ o] < T

The reader may also refer to [8, 9].

The multiplicative midpoint inequality for multiplicatively convex function is presented next [11, The-
orem 3.3].

Theorem 1.15. Let f be a positive and multiplicatively convex function on interval [a; b]. If f is increasing, then the
following trapezoid inequality holds:

I b (f(x))d"]hl'“

b—a
0 |=(f@-fO) . (11)
f a+b
2
Multiplicative Riemann-Liouville fractional integrals of order @ > 0, defined for an integrable function
f :[a,b] = R, were presented in [1] :

#RLF(x) = exp (RLY Inof(x)} and  +RLY f(x) = exp {RL) Inof(v)}, (12)

where RL;. and RL_ represent the left-sided and right-sided Riemann-Liouville fractional integrals of
order a > 0, defined regarding of the Euler’s Gamma function I' as follows:

1 1 ("
RL. xz—f x—t*f(dt and RL) xz—f t—x)" f(b)dt. 13
0= 5 | @0 0 = g | 60O (13)
Remark 1.16. Combining (12) and (13), it results
X (e-pa-1 dt b (-1 dt
= [ e[ o= [ o] 19
a X
Definition 1.17. [5] The multiplicative absolute value is represented by |.|" and is defined as follows:
x, ifx>1;
"=q1 .
;, lfO <x<l1.

Property 1.18. Forall k > 0 and x > 0, we have
() = | (15)
Proof.

e The equality (15) becomes obvious when k = 0.

e The exponential function with a positive base x yields: for every k > 0

¥>lex>1
d<le=ux<l.
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Hence
. Xk, ifak > 1 Xk, ifx>1 )
Xl =41 =<1 = (]x)".
| — ifo<xk<1 — if0<x<1 ()
x x

The proof is completed. [

Remark 1.19. Based on the preceding Definition 1.17, we can derive the following observations:

in the

1. The absolute value |A — B| for real numbers A and B is analogous to the multiplicative absolute value ’—y‘
context of positive real numbers x and y.

indicates that § > 1or ’—y‘ < 1, which corresponds to the conditions x > y or x < y,

2. Using the notation i
respectively.

3. For all positive real numbers x and y, we have 2 1.

4. In multiplicative calculus, the notation i

This paper aims to establish midpoint inequalities within the context of multiplicative calculus for
positive multiplicatively h-convex functions using the multiplicative absolute value.
2. Preliminaries

The following lemmas are required for the establishment of our principal results.
Lemma 2.1. For the real A, we have

lexp {A}| = exp Al (16)

Proof.

e The equality (16) becomes obvious when A > 0.

o If A <0, weget

ex =exp {—-A} = exp|A]|.
leoxp (Al = Sz = P Al = exp Al

The proof is completed. O

Lemma 2.2. For a positive and integrable function f : I° CR — IR* and [a, b] C I°, it holds that

dt

[ass- ] =rs s, [ [ars-0 ] = oreso. 17)

“*l’ (a+b _po-1

dt b (t-13b o1 dt +b
(fla+b—1t) 1@ ] =*R£Zf(a7) f[(f(a+b—t)) fo ] =a+R£“f(a2 ) (18)

atb

f |(Fa+b-) 7 ] = RLY @) f 2 [(f(a+b—t))“r"531]dt: () RLEFD). (19)
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Proof. Using the definition of the multiplicative integrals and the change of variable f = a + b — u, one can
prove these results. [J

Lemma 2.3. Let f : I° C R — R* and [a, b] C I° be an integrable function, and F (t) = f(t)- f (a+ b —t), then
FRLF(b) - +RLLF (@) = [ # RLLF®) - +RLY f@] (20)

Proof. By identities (14), property (II-2) in Theorem 1.8 and identities (17), we have

—a a—1 dt

RETORETO = fab :(f (0 fla+b-1) T ]dt : fab [(f(t) fla+b—p) T
B fab :(f(t))%]dt ' fub [(f(a +b— t))‘br?;]]dt
" fb :(f(t))%]dt ' fb [(f(a +b- t))“&)if)]]dt

= WRLIf(D) - *RLY fla) X *RLL f(a) - »RLEF(D),

which gives the desired result (20). O

3. Midpoint inequalities via multiplicative h-convex functions

3.1. Multiplicative midpoint inequality 1

Theorem 3.1. Let h be a B-function. If f is a positive differentiable function on an interval containing (a, b) such
that ) f*r is #h-convex, then the following multiplicative midpoint inequality holds:

T(a+1) %

[4RL f(b) - o RLE F@)] T
)

H(3)0- g5+ ()] (21)

F@f-|fof]

‘|

Proof. Consider a function f that satisfies the hypothesis of Theorem 3.1 and putting ¥ (s) = f(s)-f (@ + b —s),
we define

K:= f : [(7—'*((1—t)a+tb))(b’“)t“]dt>< f 1 [("f*((l—t)a+tb))@*”)““*“]dt. (22)
0 3

Integrating by parts all integrals in (22) using formula (6) and Theorem 1.8 [properties (II-1) and (II-2)],
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and the identity (%) = f? (‘%h) together with Remark 1.16, it results

(Fe)” .
1 3
fo [(F((1-ta+ tb))‘”“’l]dt
1 1
atb bl ot
(ﬂ 2 )) ﬁ [(? (1 - t)a +tb)) ]

2

X

_ (Fes9)
- ! _1qdt
f [(F (- ta+ep)™]
0

- (rest)
fo [ = a+ ey ] x f [(Fea+ - o)™

dt

(fezdy)’

( fub [(f (t))a(t—u)«l]dt)W . ( f [(f(t))a(b—t)ﬂl]dt)(hlﬂ)“'

Thus

K=

T(a+l) °

(F() |

[RL @) wRLFB)] ™

Merging (22) and (23), and subsequently applying (3) and (4), we obtain

(F())
T(a+1)
[RLLFO)- wRL F@)]

2

Applying the multiplicative absolute value and equality (16), yields

l - o )] x , [0 (@ - o+ eyt
0 ;

exp {foz(b —a)t*{(Inof) (1 - Ba + tb) — (Inof) (ta + (1 — £)b)} dt

1
+f (b—a) (t* = 1) {(Inof) (1 — Ba + tb) — (Inof) (ta+ (1 — b)) dt

8164

(23)

(24)

}.
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(7 (222))

[*R‘E?*f(b) . ’Z*R-L:ff(ll)] -

< exp {fz(b —a)t* {[(inofy (1 = la + tb)| + |(nofY (ta + (1 - )b)|} dt
0

1
* f (b—a) 11" = 11 {|(n o £ (1 = Da -+ t5)| + [in oy ta + (1 - D)) dt}

:eXp{f In [exp | ofy (1= Ha+ t8)]- exp|Anopyea+ @ - o) | ar }

X exp {ﬁ ln[exp |(1n of)(1 -t + tb)| 'eXp|(ln of Y (ta + (1 - t)b)”(b—a Jte—1] dt}

:exp{jo‘ ln[|f((1—ta+tb)| |f(ta+(1_t)b)| ]( —a) 1 }
xexp{f ln[}f((l—t)a+tb)| (f(taﬂl_t)b)”bg)“ it }

Since h satisfies the inequality (10) and ‘ f *r is +h-convex, it follows

()

(R 1) o RLF(0)]

Sexp{jo‘ ln[|f(a)| )f(b)| ]Zh 1) (b-a) = dt}
1
b—a) |t¢ 25
xexp{f n[|F@| - |rof T W) e-a 1|dt} )

»]Zh(%)(b—g) [J{‘)% t”dt-#fll (1—t“)dtj|
2

- “f*(ﬂ)r o)
= [|f*(a)|* ) 'f*(b)| ] n(1)o-a) L[5+ (%)ﬂ,].

Elevating to the power 1, it follows:

[ zl"'(%)a] .

)

[*RLY f(b) - 0 RLA( )]m) <[If@- |f(b)|]()(b o L
* b - .

The proof is completed. [
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3.2. Multiplicative midpoint inequality 2

Theorem 3.2. Let h be a B-function. If f is a positive differentiable function on an interval containing (a, b) such
that |f* " is +h-convex, then the following multiplicative midpoint inequality is obtain:

21T (@ + 1) |
(RLa f(5) AR LY fsghy) (=) I
) )

b-ah(i) 4
2 a+1. (26)

Proof. Let F(s) = f(s) - f (a + b —s), where f is a function satisfying the hypothesis of Theorem 3.1. Define

atb

Kzzbfz[ﬁﬂm%5>< i @)

a

Using formula (6), integrating by parts (27) and by Theorem 1.8, and the identity F(42) = f? (%b), it
follows:

re) |
1 jﬂ\m [(7:(1}))0(( sy ]dt

L
a+b 2
2
1+b

(1
fu [(f(t)) ) ] f;[(f(a+b t))a(T_t)]

Thus by Remark 1.16, it results

K, =

2(452)"

(Fegyf )
Ky = Ta+1) (28)

[ RLEF(55E) - +R LY F(251)]
On another hand, putting ¢ = %t — &587 = 115 + 1) for 7 € [0,1] in (27), we get
a+l dt
! a+b b-a \\(F) 0

= * - 29

Merging (29) and (28) and applying (3) and (4), we obtain

b )® g \O+1 197
(pesty) ™) (e fart pma
T(a+1) _](; ) T

[ RLIF(351) R Ly F(550)]

- exp{fol(b;”)m [1—T“][(1nof)’(1;Ta+ 1;Tb)—(1nof)'(12ia+ 1;”19)] dT}.

(30)
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Applying the multiplicative absolute value and equality (16), yields

(Fegy ) *

[ RLF(s2h) - sR Ly (222
1 b_a)a+1
<ex —_— 1 - 7%
p{fo ( 2 [
1
=exp { f In [exp
0
! 1+7 1-7
=e In||f'{—%—a+ b
P {fo [f ( 2 2 )

By Remark (1.19) item (3), / satisfying inequality (10) and since

a+1)

1+7

(lnof)’( > a+1;—Tb)|+‘(lnof)’(1;Ta+1;Tb)'] dT}

(Inofy (1 ~ta+ ! ; Tb) ](hgn)wll_ﬂ d’[}

_ (5)
.f*(lzTa+1;Tb)H dry.

f*

1+71 1—Tb) ox
> p

(lnof)’( A

*

.
is *h-convex, it follows:

]r(cm) *

[ RLIF(451) - +RLY F (%5D)
(e

(31)

@) -

) *]Zh(%)(%")“* 1z dT}

Sexp{folln[

*]Zh(%)(’%”)wl Jn-ede

=[lF@f |Fo
Elevating to the power 2(1”17)0 and using (15), we get
201 r(a+1) n(i b-a) M
[ RLIF (5 +RLEF (5D T . . % f 11— 1% dr
<[|F@| - |rol] 0 :

£ (%)

Then the following result leads to desired inequality (26):

1
fll—f“ld’r: a .
0 a+1

The proof is completed. [

3.3. Multiplicative midpoint inequality 3
Theorem 3.3. Let h be a B-function. If f is a positive differentiable function on an interval containing (a, b) such

that |f* " is sh-convex, then the following multiplicative midpoint inequality is holds true:

207 T+ 1) |
f®)RE, f@) O

V() - f(a) S[

a(b—a)h(%)
RLE —t
{ &) f*(a)” 2@+1) (32)

HOIE
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Proof. Define

&:jﬂ[@wwaﬂ (33)

a

where F(s) = f(s) - f (a+ b —s), f being a function that satisfies the hypothesis of Theorem 3.3.

Integrating by parts (33) using formula (6) and applying Theorem 1.8, and the identity T(%) = f? (%),
it follows:
b= \@
_&ﬂ%fﬂ' 1
3T 1 ub it
[ o]
2(552)”
) (Fest)
- % 14t % o174t .
[ [wore T [T [gaso-orer]
Thus by Remark 1.16, it results
2(52)°
(rep) ™
K = (34)

. " T(a+1) "
(R Ly F@ RL ) 10

On another hand, putting t = ath _ b%"’r = %a + %b with 7 € [0,1] in (27), we obtain

a+l dt
"W(_.[a+b b-a ()7 (-
m=£k¢(2- zﬁ) ]. 35)

Merging (34) and (35), and applying (3) and (4), it follows:

(f(%))Z(%ﬂ) _ fl HT (a +b b- aT)}(”z”)““ (H)TT
T(a+1) — B
[*szgm)f(a) - *RLE’M)J—'(b)] vod 22

= f: {exp(b;a)wrl (1-1) {(lnof)'(lzTa+ 1;Tb)—(ln0f)l(1;Ta+ 1;Tb)}]dT (36

- exp{fol(b;”)m (1—T)“{(1nof)’(1;Ta+ 1;Tb)—(lnof)’(1;Ta+ 1;’%)} d’l’}.
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Applying the multiplicative absolute value and equality (16), yields

(e

F(a)- *RL‘(*M)J:(IJ)

T(a+1)
[ ]

()

ol (50

= exp {f: In [exp
=exp{j:1n[

Since h satisfies the inequality (10) and

(1nof)'(1J2rTa+ ! _Tb)

+

(Inof) (l ; Ta+ ! ; Tb)'] d’[}
(Inofy (1 ta+ ! er Tb) ](T)M”_Tla dT}

. (b%)aﬂﬂ—ﬂa
] dry.

(lnof)'(157a+ 1%17)

- exp

%

(14T 1-7
f( 2 "t b)

1-71 1+1
'f( 2 T b)

.
is #h-convey, it follows:

12

T(a+1) |*
25 |

(12t) F(a) - *RLY T (b)

(5)
)2(%“)“

(f(zh)

Sexp{folln[
|

Elevating to the power —+—= and using (15), we get

(37)

f*(b)r]zh(%)(%”)“”|1—r|ﬂ' dT}

*]Zh(%)(%“)‘m - de

@) -

f@|-|f o

()
2071 1(a+1) * 1 _
[RL oy P RLy T O] S w300 f - de
@) <[lr@ frof] 2 -
v

Then the following result leads to desired inequality (32):
1
f 1 -7/ dT:L.
0 a+1

By setting a = 1 in the inequalities (21), (26), and (32), we obtain the next result.

The proof is completed. O

Corollary 3.4. Let h be a B-function. If f is a positive differentiable function on an interval containing (a, b) such
that |f* " is sh-convex, then the following multiplicative midpoint inequality holds true:
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1 *

[ | b (f(t))‘”]b o S G-anfy)
) <[roljral] + .

4. Midpoint inequalities via multiplicative s-convex functions

8170

(38)

By replacing h(t) = t°, where s € (0, 1], into the inequalities (21), (26), (32) and (38), we obtain the next

results.

Corollary 4.1. Let s € (0, 1] and f be a positive differentiable mapping on an interval containing (a, b) such that

is *s-convex, then the following multiplicative midpoint inequalities hold true:

T+l ben Ta—1
RIS (a2 (b —a) ;[;
{R‘La*f(b) RLfbf(a)} < [f*(a)r, f*(b) *]25 (a+1) 2
£(52)
21T+ 1) [
WRLGF(EL) R faty) (b —a) b-a_a
[sRL f(25D) Mb;i( ) <[IF®f | @f |27 T
f(T)
271+ 1) [
{srLs, r0)RLE, f@f @ S L
(%%) (%) < f*(b) . f*(a) 25+1 a+1 ]
f(hzb) [ | | ]
L v
b b—a
[ (f(t))‘”] N )
) <|lrof-raf]>*.
2

*

f*

(39)

(40)

(41)

(42)

Remark 4.2. We get new multiplicative midpoint inequalities for +-convex functions when we set s = 1 in the

inequalities (39), (40), (41) and (42).
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5. Midpoint inequalities via multiplicative P-functions
Taking h(t) = 1in (21), (26), (32) and (38), gives the following multiplicative midpoint inequalities for

+P-functions:

* .
is P-function,

f*

Corollary 5.1. If f be a positive differentiable function on an interval containing (a, b) such that
then the following multiplicative midpoint inequalities hold true:

{*RL"J(b)-*RL“f(a)}erZjﬂl))“ | b-a [0“1 +(1)“]
a [H: < [fy((a)r . f*(b)r:la +1 2 2 . (43)
£(%2)
21T+ 1) [
RLOF(5E) RLY f(25h)) (0= a) R L
{ af(z) baJrfb(z)} S[f*(b)|'f*(11)|J 2 a+1. (44)
£(%52)
22 1T +1) |
(Re, f0)-RL, f@) @0 N
1
b alb—a
[ o] b
- <@ -|f @ . (46)
f(ﬂzﬂ) [ | 4 H

6. Multiplicatively midpoint inequalities through monotonic functions

Lemma 6.1. Let f be a positive and differentiable function on I° C R with [a, b] C I°, then we have
1. f is an increasing function on [a, b] if and only if f*(x) > 1 for every x € [a, b].
2. fis adecreasing function on [a, b] if and only if 0 < f*(x) < 1 for every x € [a, b].

Proof. Consider f to be a positive and differentiable function defined on I° € R such that [2,b] C I°.

Applying Remark 1.4, for every x € [a,b], we obtain the condition f*(x) > 1 if and only if /;((;)) > 0. This
implies that f (x) > 0, indicating that f is an increasing function. The same holds true for the second
property. [



N. Azzouz et al. / Filomat 39:23 (2025), 8157-8174 8172

From the Remark 1.4 and the Definition 1.17, we deduce

: Yﬂ iff>1;

%, if0< f" <1 (47)

Iz

The combination of the statements from (47) and Lemma 6.1 in Theorems 3.1-3.3 and Corollary 3.4 produces
the next corollaries for the cases f > 1 and f < 1, respectively.

Corollary 6.2. Let h be a B-function and f be a positive and differentiable function on an interval containing [a, b].
If f is increasing function on [a,b] and f* is a multiplicatively h-convex function (+h-convex) on [a,b], then the
following midpoint type inequalities hold true:

T+ ¢ n(}) -0 @
RPN AR L F(2 (B —a) 2 [“‘1 1]
{ RLquf(b) R‘ifbf(a)} < [f*(ll) . f*(b)] a+ ]. 2 * (2) .
(%)
21T+ 1) [
0 aa (b—a)h(l) a
SRLO (LY. wRa fraxb (b—a) 2
{ R£u+f( 2 ) R‘Ebﬂ:z( 2 )} < [f*(ﬂ)f*(b)] 2 a+1.
f(T)
za—;r(a +D [ b-a(3)
{mea, fo)- Lo, f@) ©-9 oo T
2 2 <[f@)- f a+1,
£(4)
1 *
. N
[ o] o-an(})
a <[f@-fo 4
f(5)

Corollary 6.3. Let h be a B-function and f be a positive and differentiable function on an interval containing [a, b].
If f is decreasing function on [a,b] and f* is a multiplicatively h-concave function (+h-concave) on [a, b], then the
following midpoint type inequalities hold true:

la+1) r h@ﬂhwwa—l 1\
(3]
2

(RLEF(b) +RLE f@)}2 (=)' <[ 1 ] ar1 | 2
F() “[F@-ro)
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I =l ¢-04(3) o
[sRLE (222 +RLE f(221)) a 3 [ 1 ] 2 a+l
£ “|[F@-Fo |

w* (b—a)h(%) N

(Reo, f0-RLE, f@) ©=0 <[ | } 2 a+l
() *|F@-7® |
o
b-a (b-a)h(})

= [f*(aﬁf*(b)] 4

Remark 6.4.
o Replacing h(t) = t°, where s € (0,1] in Corollary 6.2 and Corollary 6.3, gives results through multiplicative
s-convex functions.
o Using h(t) = 1 in Corollary 6.2 and Corollary 6.3 yields results via multiplicative P-functions.
o By taking h(t) = t and a = 1 in Corollary 6.2, one obtains the analogous result presented in Theorem 1.15 with
a multiplicative absolute value.
Replacing h(t) = t and @ = 1 into Corollary 6.3 produces the next new result.

Corollary 6.5. Let f be a positive and multiplicatively differentiable function on I° and [a, b] C I°. If f is a decreasing
function on [a,b] and f* is multiplicatively concave function on [a, b], then the following midpoint inequality holds
true:

1 *

’ a|b—a b—a
[fumt))} 1 ]8'

{
7() ZONZ0
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