

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Updating approach to midpoint inequality by using multiplicative absolute value

Noureddine Azzouza, Bouharket Benaissab, Artion Kashuric,

^aFaculty of Sciences, University Center Nour Bachir El Bayadh, Algeria
^bFaculty of Material Sciences, University of Tiaret, Algeria
^cDepartment of Mathematical Engineering, Polytechnic University of Tirana, 1001 Tirana, Albania

Abstract. In this article, we implemented the concept of multiplicative absolute value by demonstrating certain properties that were used in an exclusively multiplicative calculus framework to establish midpoint inequalities involving Riemann-Liouville multiplicative fractional integrals and positive differentiable functions whose multiplicative absolute value is *h*-convex. These findings are also shown for *P*-functions and *s*-convex functions.

1. Introduction

Many areas of the pure and applied sciences rely on convex functions and mathematical inequalities. The following is a definition of convexity:

Definition 1.1. The function $f: I \to \mathbb{R}$ is said to be convex if for all $x, y \in I$ and $t \in [0, 1]$, we have

$$f(t x + (1 - t) y) \le t f(x) + (1 - t) f(y).$$

The Hermite–Hadamard inequality is well-known for estimating the integral mean of a convex function. We can state this double inequality as follows:

Let $f: I \to \mathbb{R}$ be a convex function on I and $a, b \in I$ with a < b. Then, we have

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x) \, dx \le \frac{f(a)+f(b)}{2}.\tag{1}$$

If f is concave, then inequalities in (1) are reversed.

Interesting inequalities related to (1) is the midpoint inequality established in [12], estimating the difference between the left term and the integral mean of f.

 $^{2020\ \}textit{Mathematics Subject Classification}.\ Primary\ 26D07; Secondary\ 26A33,\ 26A51,\ 26D10,\ 26D15.$

Keywords. Midpoint inequalities, Multiplicative fractional integrals, Multiplicative absolute value, Multiplicative convex functions. Received: 26 March 2025; Revised: 20 April 2025; Accepted: 28 April 2025

Communicated by Miodrag Spalević

^{*} Corresponding author: Artion Kashuri

Email addresses: n.azzouz@cu-elbayadh.dz (Noureddine Azzouz), bouharket.benaissa@univ-tiaret.dz (Bouharket Benaissa), a.kashuri@fimif.edu.al (Artion Kashuri)

ORCID iDs: https://orcid.org/0000-0003-0658-2438 (Noureddine Azzouz), https://orcid.org/0000-0002-1195-6169 (Bouharket Benaissa), https://orcid.org/0000-0003-0115-3079 (Artion Kashuri)

Theorem 1.2 ([12], Theorem 2.2). Let f be a differentiable function such that |f'| is convex, then the following midpoint inequality holds:

$$\left| \frac{1}{b-a} \int_a^b f(x) \, dx - f\left(\frac{a+b}{2}\right) \right| \le \frac{(b-a)}{8} \left(\left| f'(a) \right| + \left| f'(b) \right| \right). \tag{2}$$

The reader may also refer to [3].

Grosman and Katz [10] introduced a variation of classical (Newtonian) calculus termed multiplicative (or non-Newtonian) calculus. It utilizes multiplication and division as primary operations, rather than addition and subtraction. This is especially useful in situations where growth or decay happens in a proportional way. For example, compound interest in finance and population growth in biomedical fields are both examples of this.

A strictly structured multiplicative calculus was introduced in the comprehensive work by Bashirov *et al.* [4]. They presented the subsequent multiplicative derivative (*derivative) and multiplicative integral (*integral) operators.

Definition 1.3. Given a function $f: I^{\circ} \subseteq \mathbb{R} \to \mathbb{R}^+$, the multiplicative derivative (or *derivative) of f, denoted by f^* , is given by

$$f^*(x) = \lim_{h \to 0} \left(\frac{f(x+h)}{f(x)} \right)^{\frac{1}{h}}.$$

Remark 1.4. For a positive differentiable function f, a corresponding multiplicative derivative f^* exists, and the relationship between f^* and f' can be expressed using the following formula:

$$f^*(t) = \exp\{(\ln \circ f)'(t)\}, \quad or \quad (\ln \circ f^*)(t) = (\ln \circ f)'(t).$$
 (3)

We cite in the following theorem some properties of multiplicative derivatives.

Theorem 1.5. Let f and g be positive *differentiable functions. If c is an arbitrary constant, then the functions cf, fg, f+g, $\frac{f}{g}$, f^g and $f \circ g$ are *differentiable, and the following results hold true:

I-1
$$(cf)^*(t) = f^*(t)$$
.

I-2
$$(f g)^*(t) = f^*(t) g^*(t)$$
.

I-3
$$(f+g)^*(t) = f^*(t) \frac{f(t)}{f(t)+g(t)} \cdot g^*(t) \frac{g(t)}{f(t)+g(t)}$$
.

$$\mathbf{I-4} \ \left(\frac{f}{g}\right)^*(t) = \frac{f^*(t)}{g^*(t)}.$$

I-5
$$(f^g)^*(t) = f^*(t)^{g(t)} \cdot f(t)^{g'(t)}$$
.

I-6
$$(f \circ g)^*(t) = f^*(g(t))^{g'(t)}$$
.

Definition 1.6. For a function $f: I_0 \subseteq \mathbb{R} \to \mathbb{R}^+$, the multiplicative integral of f, represented by $\int_a^b (f(x))^{dx}$, is defined as:

$$\int_{a}^{b} (f(x))^{dx} = \exp\left\{\int_{a}^{b} \ln(f(x))dx\right\}. \tag{4}$$

Example 1.7. *For* $C \in \mathbb{R}$ *:*

$$\int_{a}^{b} (C)^{dx} = C^{b-a}.$$

$$\int_{a}^{b} \left(C^{(x-a)^{\alpha-1}} \right)^{dx} = \exp\left\{ \ln C \int_{a}^{b} (x-a)^{\alpha-1} dx \right\} = C^{\frac{(b-a)^{\alpha}}{a}}.$$
(5)

The next theorem relates different properties of multiplicative integrals.

Theorem 1.8. *If* f *and* g *are positive and Riemann integrable on the interval* $[a,b] \subset I^{\circ}$, *then* f *and* g *are* *-integrable *on* [a,b], *and*

II-1
$$\int_a^b \left((f(x))^p \right)^{dx} = \left(\int_a^b (f(x))^{dx} \right)^p$$
; $p \in \mathbb{R}$.

II-2
$$\int_{a}^{b} (f(x) \cdot g(x))^{dx} = \int_{a}^{b} (f(x))^{dx} \cdot \int_{a}^{b} (g(x))^{dx}$$
.

II-3
$$\int_{a}^{b} \left(\frac{f(x)}{g(x)} \right)^{dx} = \frac{\int_{a}^{b} (f(x))^{dx}}{\int_{a}^{b} (g(x))^{dx}}.$$

II-4
$$\int_{a}^{c} (f(x))^{dx} \cdot \int_{c}^{b} (f(x))^{dx} = \int_{a}^{b} (f(x)); \quad a \le c \le b.$$

II-5
$$\int_a^a (f(x))^{dx} = 1$$
 and $\int_a^b (f(x))^{dx} = \left(\int_b^a (f(x))^{dx}\right)^{-1}$.

Theorem 1.9. [4, Theorem 6] (Multiplicative integration by parts): Let f be a positive, multiplicatively differentiable function on I° and $g: I^{\circ} \to \mathbb{R}$ differentiable and $[a,b] \subset I^{\circ}$, then the function $(f^{*})^{g}$ is integrable, and we have

$$\int_{a}^{b} \left((f^*(x))^{g(x)} \right)^{dx} = \frac{(f(b))^{g(b)}}{(f(a))^{g(a)}} \cdot \frac{1}{\int_{a}^{b} \left((f(x))^{g'(x)} \right)^{dx}}.$$
 (6)

The next process involves the definition of multiplicative h-convexity [13, Definition 2.2].

Definition 1.10. Let $h: J \supset (0,1) \to \mathbb{R}$ be a non-negative function and $h \neq 0$. We say that the function $f: I^{\circ} \to \mathbb{R}_{+}^{*}$ is multiplicatively h-convex (*h-convex) if for all $x, y \in [a, b] \subset I^{\circ}$ and $t \in [0, 1]$, we have

$$f(t x + (1 - t) y) \le [f(x)]^{h(t)} \cdot [f(y)]^{h(1 - t)}.$$
(7)

*If inequality (7) is reversed, then f is said to be multiplicatively h-concave (*h-concave).*

Remark 1.11. Based on the previously mentioned definition, we get the following relations:

• If f and g are two multiplicatively h-convex functions, then the product $f \cdot g$ is also a multiplicatively h-convex function.

- If f is a multiplicatively h-convex function, then $\frac{1}{f}$ is a multiplicatively h-concave function.
- If g is a multiplicatively h-concave function, then $\frac{1}{q}$ is a multiplicatively h-convex function.
- If f is a multiplicatively h-convex function and g is a multiplicatively h-concave function, then the quotient $\frac{f}{g}$ is a multiplicatively h-convex function.
- If f and g are two multiplicatively h-convex functions, the quotient $\frac{f}{g}$ is not necessarily a multiplicatively h-convex function. For example, let $g = f \cdot \psi$, where ψ is a multiplicatively h-convex function. This results in $\frac{f}{g} = \frac{1}{\psi}$, which is a multiplicatively h-concave function.

We examine now various forms of multiplicative *h*-convexity.

1. The multiplicatively *s*-convex (**s*-convex) functions are obtained by setting $h(t) = t^s$, $s \in (0,1]$ in (7) [13, Definition 2.3].

$$f(t x + (1 - t) y) \le [f(x)]^{t^s} \cdot [f(y)]^{(1-t)^s}$$
.

2. By setting h(t) = 1 in (7), we derive multiplicatively P-functions (*P-functions) [13, Definition 2.5].

$$f(t x + (1 - t) y) \le f(x) \cdot f(y).$$

3. By replacing h(t) = t in (7), we derive the concept of multiplicatively convex (*-convex) functions [14].

$$f(t x + (1 - t) y) \le [f(x)]^t \cdot [f(y)]^{1-t}$$
.

For additional details, consult [13, 14].

Remark 1.12. Since the function $\ln(.)$ is concave, for f(x), f(y) > 0 and $t \in [0, 1]$, we obtain

$$t \ln f(x) + (1-t) \ln f(y) \le \ln(t f(x) + (1-t) f(y)),$$

therefore

$$[f(x)]^t \cdot [f(y)]^{1-t} \le t \ f(x) + (1-t) \ f(y). \tag{8}$$

This signifies that a multiplicatively convex function has convexity, although the converse is not necessarily valid.

In [6, 7], the concept of a *B*-function was introduced as follows:

Definition 1.13. Let $g:[0,\infty)\to\mathbb{R}$ be a nonnegative function. The function g is called a B-function if

$$g(t-a) + g(b-t) \le 2g\left(\frac{a+b}{2}\right),\tag{9}$$

where a < t < b with $a, b \in [0, \infty)$.

In particular, taking a = 0 and b = 1 in (9), we obtain the inequality:

$$g(\alpha) + g(\beta) \le 2g\left(\frac{1}{2}\right),\tag{10}$$

where $\alpha + \beta = 1$, $\alpha \in [0,1]$. Examples of such a function g satisfying the inequality (10) can be provided by $g_1(t) = 1$, $g_2(t) = t$ and $g_3(t) = t^s$ with $s \in (0,1]$.

The multiplicative Hermite–Hadamard inequality for *-convex functions was established by Ali *et al.* in [2, Theorem 1]:

Theorem 1.14. Let f be a positive and multiplicative convex function on the interval I° and $[a,b] \subset I^{\circ}$, then the following inequalities hold:

$$f\left(\frac{a+b}{2}\right) \le \left[\int_a^b \left(f(x)\right)^{dx}\right]^{\frac{1}{b-a}} \le \sqrt{f(a)\cdot f(b)}.$$

The reader may also refer to [8, 9].

The multiplicative midpoint inequality for multiplicatively convex function is presented next [11, Theorem 3.3].

Theorem 1.15. Let f be a positive and multiplicatively convex function on interval [a;b]. If f is increasing, then the following trapezoid inequality holds:

$$\left| \frac{\left| \int_{a}^{b} (f(x))^{dx} \right|^{\frac{1}{b-a}}}{f\left(\frac{a+b}{2}\right)} \right| \le \left(f^{*}(a) \cdot f^{*}(b) \right)^{\frac{b-a}{8}}. \tag{11}$$

Multiplicative Riemann-Liouville fractional integrals of order $\alpha > 0$, defined for an integrable function $f : [a, b] \to \mathbb{R}_+^*$, were presented in [1]:

$$_{a^{+}}\mathcal{R}\mathcal{L}_{*}^{\alpha}f(x) = \exp\left\{\mathcal{R}\mathcal{L}_{a^{+}}^{\alpha}\ln\circ f(x)\right\} \quad \text{and} \quad *\mathcal{R}\mathcal{L}_{b^{-}}^{\alpha}f(x) = \exp\left\{\mathcal{R}\mathcal{L}_{b^{-}}^{\alpha}\ln\circ f(x)\right\},$$
 (12)

where $\mathcal{RL}_{a^+}^{\alpha}$ and $\mathcal{RL}_{b^-}^{\alpha}$ represent the left-sided and right-sided Riemann-Liouville fractional integrals of order $\alpha > 0$, defined regarding of the Euler's Gamma function Γ as follows:

$$\mathcal{R}\mathcal{L}_{a^{+}}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} (x-t)^{\alpha-1} f(t)dt \quad \text{and} \quad \mathcal{R}\mathcal{L}_{b^{-}}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{b} (t-x)^{\alpha-1} f(t)dt. \tag{13}$$

Remark 1.16. Combining (12) and (13), it results

$$_{a^{+}}\mathcal{R}\mathcal{L}_{*}^{\alpha}f(x) = \int_{a^{-}}^{x} \left[(f(t))^{\frac{(x-t)^{\alpha-1}}{\Gamma(\alpha)}} \right]^{dt} , \quad *\mathcal{R}\mathcal{L}_{b^{-}}^{\alpha}f(x) = \int_{a^{-}}^{b} \left[(f(t))^{\frac{(t-x)^{\alpha-1}}{\Gamma(\alpha)}} \right]^{dt} . \tag{14}$$

Definition 1.17. [5] The multiplicative absolute value is represented by |.|* and is defined as follows:

$$|x|^* = \begin{cases} x, & \text{if } x \ge 1; \\ \frac{1}{x}, & \text{if } 0 < x < 1. \end{cases}$$

Property 1.18. For all $k \ge 0$ and x > 0, we have

$$\left(\left|x\right|^{*}\right)^{k} = \left|x^{k}\right|^{*}.\tag{15}$$

Proof.

- The equality (15) becomes obvious when k = 0.
- The exponential function with a positive base x yields: for every k > 0

$$\left\{ \begin{array}{l} x^k \geq 1 \Longleftrightarrow x \geq 1 \\ x^k < 1 \Longleftrightarrow x < 1. \end{array} \right.$$

Hence

$$\left| x^{k} \right|^{*} = \begin{cases} x^{k}, & \text{if } x^{k} \ge 1\\ \frac{1}{x^{k}}, & \text{if } 0 < x^{k} < 1 \end{cases} = \begin{cases} x^{k}, & \text{if } x \ge 1\\ \frac{1}{x^{k}}, & \text{if } 0 < x < 1 \end{cases} = (|x|^{*})^{k}.$$

The proof is completed. \Box

Remark 1.19. Based on the preceding Definition 1.17, we can derive the following observations:

- 1. The absolute value |A B| for real numbers A and B is analogous to the multiplicative absolute value $\left|\frac{x}{y}\right|^*$ in the context of positive real numbers x and y.
- 2. Using the notation $\left|\frac{x}{y}\right|^*$ indicates that $\frac{x}{y} > 1$ or $\frac{x}{y} < 1$, which corresponds to the conditions x > y or x < y, respectively.
- 3. For all positive real numbers x and y, we have $\left|\frac{x}{y}\right|^* = \left|\frac{y}{x}\right|^*$ and $\left|\frac{x}{y}\right|^* \ge 1$.
- 4. In multiplicative calculus, the notation $\left|\frac{x}{y}\right|$ does not have significance for positive real numbers x and y.

This paper aims to establish midpoint inequalities within the context of multiplicative calculus for positive multiplicatively *h*-convex functions using the multiplicative absolute value.

2. Preliminaries

The following lemmas are required for the establishment of our principal results.

Lemma 2.1. *For the real A, we have*

$$\left|\exp\left\{A\right\}\right|^* = \exp\left|A\right|. \tag{16}$$

Proof.

- The equality (16) becomes obvious when $A \ge 0$.
- If A < 0, we get

$$\left| \exp \{A\} \right|^* = \frac{1}{\exp \{A\}} = \exp \{-A\} = \exp |A|.$$

The proof is completed. \Box

Lemma 2.2. For a positive and integrable function $f: I^{\circ} \subseteq \mathbb{R} \to \mathbb{R}^+$ and $[a, b] \subset I^{\circ}$, it holds that

$$\int_{a}^{b} \left[\left(f(a+b-t) \right)^{\frac{(b-t)^{\alpha-1}}{\Gamma(\alpha)}} \right]^{dt} = *\mathcal{R} \mathcal{L}_{b^{-}}^{\alpha} f(a) , \quad \int_{a}^{b} \left[\left(f(a+b-t) \right)^{\frac{(t-a)^{\alpha-1}}{\Gamma(\alpha)}} \right]^{dt} = {}_{a^{+}} \mathcal{R} \mathcal{L}_{*}^{\alpha} f(b) . \tag{17}$$

$$\int_{a}^{\frac{a+b}{2}} \left[(f(a+b-t))^{\frac{(a+b-t)^{\alpha-1}}{\Gamma(\alpha)}} \right]^{dt} = *\mathcal{R} \mathcal{L}_{b^{-}}^{\alpha} f\left(\frac{a+b}{2}\right) , \quad \int_{\frac{a+b}{2}}^{b} \left[(f(a+b-t))^{\frac{(t-\frac{a+b}{2})^{\alpha-1}}{\Gamma(\alpha)}} \right]^{dt} = {}_{a^{+}} \mathcal{R} \mathcal{L}_{*}^{\alpha} f\left(\frac{a+b}{2}\right) . \quad (18)$$

$$\int_{\frac{a+b}{2}}^{b} \left[\left(f(a+b-t) \right)^{\frac{(b-t)^{\alpha-1}}{\Gamma(\alpha)}} \right]^{dt} = *\mathcal{R} \mathcal{L}_{\left(\frac{a+b}{2}\right)^{-}}^{\alpha} f(a) , \int_{a}^{\frac{a+b}{2}} \left[\left(f(a+b-t) \right)^{\frac{(t-a)^{\alpha-1}}{\Gamma(\alpha)}} \right]^{dt} = {}_{\left(\frac{a+b}{2}\right)^{+}} \mathcal{R} \mathcal{L}_{*}^{\alpha} f(b) . \tag{19}$$

Proof. Using the definition of the multiplicative integrals and the change of variable t = a + b - u, one can prove these results. \Box

Lemma 2.3. Let $f: I^{\circ} \subset \mathbb{R} \to \mathbb{R}^+$ and $[a,b] \subset I^{\circ}$ be an integrable function, and $\mathcal{F}(t) = f(t) \cdot f(a+b-t)$, then

$${}_{a^{+}}\mathcal{R}\mathcal{L}_{*}^{\alpha}\mathcal{F}(b)\cdot *\mathcal{R}\mathcal{L}_{b^{-}}^{\alpha}\mathcal{F}(a) = \left[{}_{a^{+}}\mathcal{R}\mathcal{L}_{*}^{\alpha}f(b)\cdot *\mathcal{R}\mathcal{L}_{b^{-}}^{\alpha}f(a)\right]^{2}. \tag{20}$$

Proof. By identities (14), property (II-2) in Theorem 1.8 and identities (17), we have

$$\begin{array}{ll}
{a^{+}}\mathcal{R}\mathcal{L}{*}^{\alpha}\mathcal{F}(b) \cdot *\mathcal{R}\mathcal{L}_{b^{-}}^{\alpha}\mathcal{F}(a) &= \int_{a}^{b} \left[\left(f(t) \cdot f(a+b-t) \right)^{\frac{(b-t)^{\alpha-1}}{\Gamma(\alpha)}} \right]^{dt} \cdot \int_{a}^{b} \left[\left(f(t) \cdot f(a+b-t) \right)^{\frac{(t-a)^{\alpha-1}}{\Gamma(\alpha)}} \right]^{dt} \\
&= \int_{a}^{b} \left[\left(f(t) \right)^{\frac{(b-t)^{\alpha-1}}{\Gamma(\alpha)}} \right]^{dt} \cdot \int_{a}^{b} \left[\left(f(a+b-t) \right)^{\frac{(b-t)^{\alpha-1}}{\Gamma(\alpha)}} \right]^{dt} \\
&\times \int_{a}^{b} \left[\left(f(t) \right)^{\frac{(t-a)^{\alpha-1}}{\Gamma(\alpha)}} \right]^{dt} \cdot \int_{a}^{b} \left[\left(f(a+b-t) \right)^{\frac{(t-a)^{\alpha-1}}{\Gamma(\alpha)}} \right]^{dt} \\
&= {}_{a^{+}}\mathcal{R}\mathcal{L}_{*}^{\alpha}f(b) \cdot *\mathcal{R}\mathcal{L}_{b^{-}}^{\alpha}f(a) \times *\mathcal{R}\mathcal{L}_{b^{-}}^{\alpha}f(a) \cdot {}_{a^{+}}\mathcal{R}\mathcal{L}_{*}^{\alpha}f(b),
\end{array}$$

which gives the desired result (20) . \Box

3. Midpoint inequalities via multiplicative h-convex functions

3.1. Multiplicative midpoint inequality 1

Theorem 3.1. Let h be a B-function. If f is a positive differentiable function on an interval containing (a, b) such that $|f^*|^*$ is *h-convex, then the following multiplicative midpoint inequality holds:

$$\left| \frac{\left[*\mathcal{R} \mathcal{L}_{b^{-}}^{\alpha} f(b) \cdot {}_{a^{+}} \mathcal{R} \mathcal{L}_{*}^{\alpha} f(a) \right]^{\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}}}}{f\left(\frac{a+b}{2}\right)} \right|^{*} \leq \left[\left| f^{*}(a) \right|^{*} \cdot \left| f^{*}(b) \right|^{*} \right]^{h\left(\frac{1}{2}\right)(b-a)\frac{1}{\alpha+1}\left[\frac{\alpha-1}{2} + \left(\frac{1}{2}\right)^{\alpha}\right]}. \tag{21}$$

Proof. Consider a function f that satisfies the hypothesis of Theorem 3.1 and putting $\mathcal{F}(s) = f(s) \cdot f(a+b-s)$, we define

$$K := \int_0^{\frac{1}{2}} \left[(\mathcal{F}^*((1-t)a+tb))^{(b-a)t^{\alpha}} \right]^{dt} \times \int_{\frac{1}{2}}^1 \left[(\mathcal{F}^*((1-t)a+tb))^{(b-a)(t^{\alpha}-1)} \right]^{dt}. \tag{22}$$

Integrating by parts all integrals in (22) using formula (6) and Theorem 1.8 [properties (II-1) and (II-2)],

and the identity $\mathcal{F}(\frac{a+b}{2})=f^2\left(\frac{a+b}{2}\right)$ together with Remark 1.16, it results

$$K = \frac{\left(\mathcal{F}(\frac{a+b}{2})\right)^{(\frac{1}{2})^{\alpha}}}{1} \cdot \frac{1}{\int_{0}^{\frac{1}{2}} \left[(\mathcal{F}((1-t)a+tb))^{\alpha t^{\alpha-1}} \right]^{dt}}} \times \frac{1}{\left(\mathcal{F}(\frac{a+b}{2})\right)^{(\frac{1}{2})^{\alpha}-1}} \cdot \frac{1}{\int_{\frac{1}{2}}^{1} \left[(\mathcal{F}((1-t)a+tb))^{\alpha t^{\alpha-1}} \right]^{dt}}}$$

$$= \frac{\left(\mathcal{F}(\frac{a+b}{2})\right)}{\int_{0}^{1} \left[(\mathcal{F}((1-t)a+tb))^{\alpha t^{\alpha-1}} \right]^{dt}}$$

$$= \frac{\left(f(\frac{a+b}{2})\right)^{2}}{\int_{0}^{1} \left[(f((1-t)a+tb))^{\alpha t^{\alpha-1}} \right]^{dt}} \times \int_{0}^{1} \left[(f(ta+(1-t)b))^{\alpha t^{\alpha-1}} \right]^{dt}}$$

$$= \frac{\left(f(\frac{a+b}{2})\right)^{2}}{\left(\int_{a}^{b} \left[(f(t))^{\alpha(t-a)^{\alpha-1}} \right]^{dt} \right)^{\frac{1}{(b-a)^{\alpha}}} \cdot \left(\int_{a}^{b} \left[(f(t))^{\alpha(b-t)^{\alpha-1}} \right]^{dt} \right)^{\frac{1}{(b-a)^{\alpha}}}}.$$

Thus

$$K = \frac{\left(f\left(\frac{a+b}{2}\right)\right)^2}{\left[*\mathcal{R}\mathcal{L}_{b^-}^{\alpha}f(a)\cdot_{a^+}\mathcal{R}\mathcal{L}_*^{\alpha}f(b)\right]^{\frac{\Gamma(\alpha+1)}{(b-a)^{\alpha}}}}.$$
(23)

Merging (22) and (23), and subsequently applying (3) and (4), we obtain

$$\frac{\left(f\left(\frac{a+b}{2}\right)\right)^{2}}{\left[*\mathcal{R}\mathcal{L}_{b}^{\alpha}f(b)\cdot_{a^{+}}\mathcal{R}\mathcal{L}_{*}^{\alpha}f(a)\right]^{\frac{\Gamma(\alpha+1)}{(b-a)^{\alpha}}}} \\
= \int_{0}^{\frac{1}{2}} \left[\left(\mathcal{F}^{*}((1-t)a+t\,b)\right)^{(b-a)\,t^{\alpha}}\right]^{dt} \times \int_{\frac{1}{2}}^{1} \left[\left(\mathcal{F}^{*}((1-t)a+t\,b)\right)^{(b-a)\,(t^{\alpha}-1)}\right]^{dt} \\
= \exp\left\{\int_{0}^{\frac{1}{2}}(b-a)\,t^{\alpha}\left\{(\ln\circ f)'((1-t)a+t\,b)-(\ln\circ f)'(t\,a+(1-t)b)\right\}\,dt \\
+ \int_{\frac{1}{2}}^{1}(b-a)\,(t^{\alpha}-1)\left\{(\ln\circ f)'((1-t)a+t\,b)-(\ln\circ f)'(t\,a+(1-t)b)\right\}\,dt\right\}.$$

Applying the multiplicative absolute value and equality (16), yields

$$\frac{\left(f\left(\frac{a+b}{2}\right)\right)^{2}}{\left[*\mathcal{R}\mathcal{L}_{b^{-}}^{\alpha}f(b)\cdot_{a^{+}}\mathcal{R}\mathcal{L}_{*}^{\alpha}f(a)\right]^{\frac{1}{(b-a)^{\alpha}}}}\right|^{*}}$$

$$\leq \exp\left\{\int_{0}^{\frac{1}{2}}(b-a)t^{\alpha}\left\{\left|(\ln\circ f)'((1-t)a+tb)\right|+\left|(\ln\circ f)'(ta+(1-t)b)\right|\right\}dt
+\int_{\frac{1}{2}}^{1}(b-a)\left|t^{\alpha}-1\right|\left\{\left|(\ln\circ f)'((1-t)a+tb)\right|+\left|(\ln\circ f)'(ta+(1-t)b)\right|\right\}dt\right\}$$

$$= \exp\left\{\int_{0}^{\frac{1}{2}}\ln\left[\exp\left|(\ln\circ f)'((1-t)a+tb)\right|\cdot\exp\left|(\ln\circ f)'(ta+(1-t)b)\right|\right]^{(b-a)t^{\alpha}}dt\right\}$$

$$\times \exp\left\{\int_{\frac{1}{2}}^{1}\ln\left[\exp\left|(\ln\circ f)'((1-t)a+tb)\right|\cdot\exp\left|(\ln\circ f)'(ta+(1-t)b)\right|\right]^{(b-a)t^{\alpha}}dt\right\}$$

$$= \exp\left\{\int_{0}^{\frac{1}{2}}\ln\left[\left|f^{*}((1-t)a+tb)\right|^{*}\cdot\left|f^{*}(ta+(1-t)b)\right|^{*}\right]^{(b-a)t^{\alpha}}dt\right\}$$

$$\times \exp\left\{\int_{\frac{1}{2}}^{1}\ln\left[\left|f^{*}((1-t)a+tb)\right|^{*}\cdot\left|f^{*}(ta+(1-t)b)\right|^{*}\right]^{(b-a)t^{\alpha}}dt\right\}$$

Since *h* satisfies the inequality (10) and $|f^*|^*$ is **h*-convex, it follows

$$\frac{\left(f\left(\frac{a+b}{2}\right)\right)^{2}}{\left[*\mathcal{R}\mathcal{L}_{b}^{\alpha}f(b)\cdot_{a^{+}}\mathcal{R}\mathcal{L}_{*}^{\alpha}f(a)\right]^{\frac{\Gamma(a+1)}{(b-a)^{\alpha}}}}^{*}} \\
\leq \exp\left\{\int_{0}^{\frac{1}{2}}\ln\left[\left|f^{*}(a)\right|^{*}\cdot\left|f^{*}(b)\right|^{*}\right]^{2h\left(\frac{1}{2}\right)(b-a)t^{\alpha}}dt\right\} \\
\times \exp\left\{\int_{\frac{1}{2}}^{1}\ln\left[\left|f^{*}(a)\right|^{*}\cdot\left|f^{*}(b)\right|^{*}\right]^{2h\left(\frac{1}{2}\right)(b-a)\left|t^{\alpha}-1\right|}dt\right\} \\
= \left[\left|f^{*}(a)\right|^{*}\cdot\left|f^{*}(b)\right|^{*}\right]^{2h\left(\frac{1}{2}\right)(b-a)\left[\int_{0}^{\frac{1}{2}}t^{\alpha}dt+\int_{\frac{1}{2}}^{1}(1-t^{\alpha})dt\right]} \\
= \left[\left|f^{*}(a)\right|^{*}\cdot\left|f^{*}(b)\right|^{*}\right]^{2h\left(\frac{1}{2}\right)(b-a)\frac{1}{a+1}\left[\frac{a-1}{2}+\left(\frac{1}{2}\right)^{\alpha}\right]}.$$
(25)

Elevating to the power $\frac{1}{2}$, it follows:

$$\left| \frac{f\left(\frac{a+b}{2}\right)}{\left\lceil *\mathcal{RL}_{b^{-}}^{\alpha}f(b) \cdot {}_{a^{+}}\mathcal{RL}_{*}^{\alpha}f(a) \right\rceil^{\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}}}} \right|^{*} \leq \left[\left| f^{*}(a) \right|^{*} \cdot \left| f^{*}(b) \right|^{*} \right]^{h\left(\frac{1}{2}\right)(b-a)\frac{1}{\alpha+1}\left[\frac{\alpha-1}{2} + \left(\frac{1}{2}\right)^{\alpha}\right]}.$$

The proof is completed. \Box

3.2. Multiplicative midpoint inequality 2

Theorem 3.2. Let h be a B-function. If f is a positive differentiable function on an interval containing (a,b) such that $|f^*|^*$ is *h-convex, then the following multiplicative midpoint inequality is obtain:

$$\frac{\left\{ *\mathcal{R}\mathcal{L}_{a^{+}}^{\alpha} f\left(\frac{a+b}{2}\right) \cdot *\mathcal{R}\mathcal{L}_{b^{-}}^{\alpha} f\left(\frac{a+b}{2}\right) \right\}}{f\left(\frac{a+b}{2}\right)} \frac{2^{\alpha-1} \Gamma(\alpha+1)}{(b-a)^{\alpha}} \right|^{*} \leq \left[\left| f^{*}\left(b\right) \right|^{*} \cdot \left| f^{*}\left(a\right) \right|^{*} \right] \frac{(b-a)h\left(\frac{1}{2}\right)}{2} \frac{\alpha}{\alpha+1} . \tag{26}$$

Proof. Let $\mathcal{F}(s) = f(s) \cdot f(a+b-s)$, where f is a function satisfying the hypothesis of Theorem 3.1. Define

$$K_2 := \int_a^{\frac{a+b}{2}} \left[(\mathcal{F}^*(t))^{\left(\frac{b-a}{2}\right)^{\alpha} - \left(\frac{a+b}{2} - t\right)^{\alpha}} \right]^{dt}. \tag{27}$$

Using formula (6), integrating by parts (27) and by Theorem 1.8, and the identity $\mathcal{F}(\frac{a+b}{2}) = f^2(\frac{a+b}{2})$, it follows:

$$K_{2} = \frac{\left(\mathcal{F}\left(\frac{a+b}{2}\right)\right)^{\left(\frac{b-a}{2}\right)^{\alpha}}}{1} \cdot \frac{1}{\int_{a}^{\frac{a+b}{2}} \left[\left(\mathcal{F}(t)\right)^{\alpha\left(\frac{a+b}{2}-t\right)^{\alpha-1}}\right]^{dt}}$$

$$= \frac{\left(f\left(\frac{a+b}{2}\right)\right)^{2\left(\frac{b-a}{2}\right)^{\alpha}}}{\int_{a}^{\frac{a+b}{2}} \left[\left(f(t)\right)^{\alpha\left(\frac{a+b}{2}-t\right)^{\alpha-1}}\right]^{dt} \cdot \int_{a}^{\frac{a+b}{2}} \left[\left(f(a+b-t)\right)^{\alpha\left(\frac{a+b}{2}-t\right)^{\alpha-1}}\right]^{dt}}.$$

Thus by Remark 1.16, it results

$$K_2 = \frac{\left(f\left(\frac{a+b}{2}\right)\right)^{2\left(\frac{b-a}{2}\right)^{\alpha}}}{\left[a^{+}\mathcal{R}\mathcal{L}_{*}^{\alpha}f\left(\frac{a+b}{2}\right)\cdot*\mathcal{R}\mathcal{L}_{b^{-}}^{\alpha}f\left(\frac{a+b}{2}\right)\right]^{\Gamma(\alpha+1)}}.$$
(28)

On another hand, putting $t = \frac{a+b}{2} - \frac{b-a}{2}\tau = \frac{1+\tau}{2}a + \frac{1-\tau}{2}b$ for $\tau \in [0,1]$ in (27), we get

$$K_{2} = \int_{0}^{1} \left[\left(\mathcal{F}^{*} \left(\frac{a+b}{2} - \frac{b-a}{2} \tau \right) \right)^{\left(\frac{b-a}{2} \right)^{\alpha+1} [1-\tau^{\alpha}]} \right]^{a\tau} . \tag{29}$$

Merging (29) and (28) and applying (3) and (4), we obtain

$$\frac{\left(f\left(\frac{a+b}{2}\right)\right)^{2\left(\frac{b-a}{2}\right)^{\alpha}}}{\left[a^{+}\mathcal{R}\mathcal{L}_{*}^{\alpha}\mathcal{F}\left(\frac{a+b}{2}\right)\cdot*\mathcal{R}\mathcal{L}_{b^{-}}^{\alpha}\mathcal{F}\left(\frac{a+b}{2}\right)\right]^{\Gamma(\alpha+1)}} = \int_{0}^{1} \left[\left(\mathcal{F}^{*}\left(\frac{a+b}{2} - \frac{b-a}{2}\tau\right)\right)^{\left(\frac{b-a}{2}\right)^{\alpha+1}\left[1-\tau^{\alpha}\right]}\right]^{d\tau} \\
= \exp\left\{\int_{0}^{1} \left(\frac{b-a}{2}\right)^{\alpha+1} \left[1-\tau^{\alpha}\right] \left[\left(\ln\circ f\right)'\left(\frac{1+\tau}{2}a + \frac{1-\tau}{2}b\right) - \left(\ln\circ f\right)'\left(\frac{1-\tau}{2}a + \frac{1+\tau}{2}b\right)\right] d\tau\right\}. \tag{30}$$

Applying the multiplicative absolute value and equality (16), yields

$$\begin{split} & \left| \frac{\left(f(\frac{a+b}{2}) \right)^{2\left(\frac{b-a}{2}\right)^{\alpha}}}{\left[a^{+}\mathcal{R}\mathcal{L}_{*}^{\alpha}\mathcal{F}(\frac{a+b}{2}) \cdot *\mathcal{R}\mathcal{L}_{b^{-}}^{\alpha}\mathcal{F}(\frac{a+b}{2}) \right]^{\Gamma(\alpha+1)}} \right|^{*}} \\ & \leq \exp\left\{ \int_{0}^{1} \left(\frac{b-a}{2} \right)^{\alpha+1} |1-\tau^{\alpha}| \left[\left| (\ln \circ f)' \left(\frac{1+\tau}{2} a + \frac{1-\tau}{2} b \right) \right| + \left| (\ln \circ f)' \left(\frac{1-\tau}{2} a + \frac{1+\tau}{2} b \right) \right| \right] d\tau \right\} \\ & = \exp\left\{ \int_{0}^{1} \ln \left[\exp\left| (\ln \circ f)' \left(\frac{1+\tau}{2} a + \frac{1-\tau}{2} b \right) \right| \cdot \exp\left| (\ln \circ f)' \left(\frac{1-\tau}{2} a + \frac{1+\tau}{2} b \right) \right| \right]^{\left(\frac{b-a}{2}\right)^{\alpha+1} |1-\tau^{\alpha}|} d\tau \right\} \\ & = \exp\left\{ \int_{0}^{1} \ln \left[\left| f^{*} \left(\frac{1+\tau}{2} a + \frac{1-\tau}{2} b \right) \right|^{*} \cdot \left| f^{*} \left(\frac{1-\tau}{2} a + \frac{1+\tau}{2} b \right) \right|^{*} \right]^{\left(\frac{b-a}{2}\right)^{\alpha+1} |1-\tau^{\alpha}|} d\tau \right\}. \end{split}$$

By Remark (1.19) item (3), h satisfying inequality (10) and since $|f^*|^*$ is *h-convex, it follows:

$$\left| \frac{\left[a^{+} \mathcal{R} \mathcal{L}_{*}^{\alpha} \mathcal{F}\left(\frac{a+b}{2}\right) \cdot * \mathcal{R} \mathcal{L}_{b^{-}}^{\alpha} \mathcal{F}\left(\frac{a+b}{2}\right) \right]^{\Gamma(\alpha+1)}}{\left(f\left(\frac{a+b}{2}\right) \right)^{2\left(\frac{b-a}{2}\right)^{\alpha}}} \right|^{*}} \\
\leq \exp \left\{ \int_{0}^{1} \ln \left[\left| f^{*}(a) \right|^{*} \cdot \left| f^{*}(b) \right|^{*} \right]^{2h\left(\frac{1}{2}\right)\left(\frac{b-a}{2}\right)^{\alpha+1}|1-\tau^{\alpha}|} d\tau \right\} \\
= \left[\left| f^{*}(a) \right|^{*} \cdot \left| f^{*}(b) \right|^{*} \right]^{2h\left(\frac{1}{2}\right)\left(\frac{b-a}{2}\right)^{\alpha+1} \int_{0}^{1}|1-\tau^{\alpha}| d\tau} . \tag{31}$$

Elevating to the power $\frac{1}{2(\frac{b-a}{2})^{\alpha}}$ and using (15), we get

$$\left|\frac{\left[\frac{a^{+}\mathcal{R}\mathcal{L}_{*}^{\alpha}\mathcal{F}\left(\frac{a+b}{2}\right)\cdot *\mathcal{R}\mathcal{L}_{b^{-}}^{\alpha}\mathcal{F}\left(\frac{a+b}{2}\right)\right]^{\frac{2^{\alpha-1}\Gamma(a+1)}{(b-a)^{\alpha}}}}{f\left(\frac{a+b}{2}\right)}\right|^{*} \leq \left[\left|f^{*}(a)\right|^{*}\cdot\left|f^{*}(b)\right|^{*}\right] \frac{h\left(\frac{1}{2}\right)(b-a)}{2}\int_{0}^{1}\left|1-\tau^{\alpha}\right|\,d\tau.$$

Then the following result leads to desired inequality (26):

$$\int_0^1 |1 - \tau^{\alpha}| \ d\tau = \frac{\alpha}{\alpha + 1}$$

The proof is completed. \Box

3.3. Multiplicative midpoint inequality 3

Theorem 3.3. Let h be a B-function. If f is a positive differentiable function on an interval containing (a,b) such that $|f^*|^*$ is *h-convex, then the following multiplicative midpoint inequality is holds true:

$$\left| \frac{\left\{ *\mathcal{R}\mathcal{L}_{\left(\frac{a+b}{2}\right)^{+}}^{\alpha} f(b) \cdot *\mathcal{R}\mathcal{L}_{\left(\frac{a+b}{2}\right)^{-}}^{\alpha} f(a) \right\}^{\frac{2^{\alpha-1} \Gamma(\alpha+1)}{(b-a)^{\alpha}}}}{\sqrt{f(b) \cdot f(a)}} \right|^{*} \leq \left[\left| f^{*}\left(b\right) \right|^{*} \cdot \left| f^{*}\left(a\right) \right|^{*} \right]^{\frac{\alpha}{2} (b-a) h\left(\frac{1}{2}\right)}{2(\alpha+1)} . \tag{32}$$

Proof. Define

$$K_3 := \int_a^{\frac{a+b}{2}} \left[(\mathcal{F}^*(t))^{(t-a)^{\alpha}} \right]^{dt}, \tag{33}$$

where $\mathcal{F}(s) = f(s) \cdot f(a+b-s)$, f being a function that satisfies the hypothesis of Theorem 3.3.

Integrating by parts (33) using formula (6) and applying Theorem 1.8, and the identity $\mathcal{F}(\frac{a+b}{2}) = f^2(\frac{a+b}{2})$, it follows:

$$K_{3} = \frac{\left(\mathcal{F}(\frac{a+b}{2})\right)^{\left(\frac{b-a}{2}\right)^{\alpha}}}{1} \cdot \frac{1}{\int_{a}^{\frac{a+b}{2}} \left[(\mathcal{F}(t))^{\alpha(t-a)^{\alpha-1}} \right]^{dt}}$$

$$= \frac{\left(f(\frac{a+b}{2}) \right)^{2\left(\frac{b-a}{2}\right)^{\alpha}}}{\int_{a}^{\frac{a+b}{2}} \left[(f(t))^{\alpha(t-a)^{\alpha-1}} \right]^{dt} \cdot \int_{a}^{\frac{a+b}{2}} \left[(f(a+b-t))^{\alpha(t-a)^{\alpha-1}} \right]^{dt}}.$$

Thus by Remark 1.16, it results

$$K_3 = \frac{\left(f(\frac{a+b}{2})\right)^{2\left(\frac{b-a}{2}\right)^{\alpha}}}{\left[*\mathcal{R}\mathcal{L}^{\alpha}_{\left(\frac{a+b}{2}\right)^{-}}f(a)\cdot *\mathcal{R}\mathcal{L}^{\alpha}_{\left(\frac{a+b}{2}\right)^{+}}f(b)\right]^{\Gamma(\alpha+1)}}.$$
(34)

On another hand, putting $t = \frac{a+b}{2} - \frac{b-a}{2}\tau = \frac{1+\tau}{2}a + \frac{1-\tau}{2}b$ with $\tau \in [0,1]$ in (27), we obtain

$$K_{3} = \int_{0}^{1} \left[\left(\mathcal{F}^{*} \left(\frac{a+b}{2} - \frac{b-a}{2} \tau \right) \right)^{\left(\frac{b-a}{2} \right)^{\alpha+1} (1-\tau)^{\alpha}} \right]^{d\tau} . \tag{35}$$

Merging (34) and (35), and applying (3) and (4), it follows:

$$\frac{\left(f\left(\frac{a+b}{2}\right)\right)^{2\left(\frac{b-a}{2}\right)^{\alpha}}}{\left[*\mathcal{R}\mathcal{L}_{\left(\frac{a+b}{2}\right)}^{\alpha}-\mathcal{F}(a)\cdot*\mathcal{R}\mathcal{L}_{\left(\frac{a+b}{2}\right)}^{\alpha}+\mathcal{F}(b)\right]^{\Gamma(\alpha+1)}} = \int_{0}^{1} \left[\left\{\mathcal{F}^{*}\left(\frac{a+b}{2}-\frac{b-a}{2}\tau\right)\right\}^{\left(\frac{b-a}{2}\right)^{\alpha+1}(1-\tau)^{\alpha}}\right]^{d\tau} \\
= \int_{0}^{1} \left[\exp\left(\frac{b-a}{2}\right)^{\alpha+1} \left(1-\tau\right)^{\alpha} \left\{\left(\ln\circ f\right)'\left(\frac{1+\tau}{2}a+\frac{1-\tau}{2}b\right)-\left(\ln\circ f\right)'\left(\frac{1-\tau}{2}a+\frac{1+\tau}{2}b\right)\right\}\right]^{d\tau} \\
= \exp\left\{\int_{0}^{1} \left(\frac{b-a}{2}\right)^{\alpha+1} \left(1-\tau\right)^{\alpha} \left\{\left(\ln\circ f\right)'\left(\frac{1+\tau}{2}a+\frac{1-\tau}{2}b\right)-\left(\ln\circ f\right)'\left(\frac{1-\tau}{2}a+\frac{1+\tau}{2}b\right)\right\}\right\} d\tau\right\}.$$
(36)

Applying the multiplicative absolute value and equality (16), yields

$$\frac{\left(f(\frac{a+b}{2})\right)^{2(\frac{b-a}{2})^{\alpha}}}{\left[*\mathcal{R}\mathcal{L}_{(\frac{a+b}{2})}^{\alpha}-\mathcal{F}(a)\cdot*\mathcal{R}\mathcal{L}_{(\frac{a+b}{2})^{+}}^{\alpha}\mathcal{F}(b)\right]^{\Gamma(\alpha+1)}}^{*}}$$

$$\leq \exp\left\{\int_{0}^{1}\left(\frac{b-a}{2}\right)^{\alpha+1}|1-\tau|^{\alpha}\left[\left|(\ln\circ f)'\left(\frac{1+\tau}{2}a+\frac{1-\tau}{2}b\right)\right|+\left|(\ln\circ f)'\left(\frac{1-\tau}{2}a+\frac{1+\tau}{2}b\right)\right|\right]d\tau\right\}$$

$$=\exp\left\{\int_{0}^{1}\ln\left[\exp\left|(\ln\circ f)'\left(\frac{1+\tau}{2}a+\frac{1-\tau}{2}b\right)\right|\cdot\exp\left|(\ln\circ f)'\left(\frac{1-\tau}{2}a+\frac{1+\tau}{2}b\right)\right|\right]^{\left(\frac{b-a}{2}\right)^{\alpha+1}|1-\tau|^{\alpha}}d\tau\right\}$$

$$=\exp\left\{\int_{0}^{1}\ln\left[\left|f^{*}\left(\frac{1+\tau}{2}a+\frac{1-\tau}{2}b\right)\right|^{*}\cdot\left|f^{*}\left(\frac{1-\tau}{2}a+\frac{1+\tau}{2}b\right)\right|^{*}\right]^{\left(\frac{b-a}{2}\right)^{\alpha+1}|1-\tau|^{\alpha}}d\tau\right\}.$$

Since *h* satisfies the inequality (10) and $|f^*|^*$ is **h*-convex, it follows:

$$\frac{\left|\frac{\left[*\mathcal{R}\mathcal{L}^{\alpha}_{\left(\frac{a+b}{2}\right)^{-}}\mathcal{F}(a)\cdot *\mathcal{R}\mathcal{L}^{\alpha}_{\left(\frac{a+b}{2}\right)^{+}}\mathcal{F}(b)\right]^{\Gamma(\alpha+1)}}{\left(f(\frac{a+b}{2})\right)^{2\left(\frac{b-a}{2}\right)^{\alpha}}}\right|^{*}}$$

$$\leq \exp\left\{\int_{0}^{1} \ln\left[\left|f^{*}(a)\right|^{*}\cdot\left|f^{*}(b)\right|^{*}\right]^{2h\left(\frac{1}{2}\right)\left(\frac{b-a}{2}\right)^{\alpha+1}\left|1-\tau\right|^{\alpha}}d\tau\right\}$$

$$=\left[\left|f^{*}(a)\right|^{*}\cdot\left|f^{*}(b)\right|^{*}\right]^{2h\left(\frac{1}{2}\right)\left(\frac{b-a}{2}\right)^{\alpha+1}\int_{0}^{1}\left|1-\tau\right|^{\alpha}d\tau}.$$
(37)

Elevating to the power $\frac{1}{2\left(\frac{b-a}{2}\right)^{\alpha}}$ and using (15), we get

$$\left|\frac{\left[*\mathcal{R}\mathcal{L}_{\left(\frac{a+b}{2}\right)^{-}}^{\alpha}\mathcal{F}(a)\cdot *\mathcal{R}\mathcal{L}_{\left(\frac{a+b}{2}\right)^{+}}^{\alpha}\mathcal{F}(b)\right]^{\frac{2^{\alpha-1}\Gamma(\alpha+1)}{(b-a)^{\alpha}}}}{f\left(\frac{a+b}{2}\right)}\right|^{*}\leq \left[\left|f^{*}(a)\right|^{*}\cdot \left|f^{*}(b)\right|^{*}\right]\frac{h\left(\frac{1}{2}\right)(b-a)}{2}\int_{0}^{1}\left|1-\tau^{\alpha}\right|\,d\tau.$$

Then the following result leads to desired inequality (32):

$$\int_0^1 |1-\tau|^\alpha \ d\tau = \frac{1}{\alpha+1}.$$

The proof is completed. \Box

By setting $\alpha = 1$ in the inequalities (21), (26), and (32), we obtain the next result.

Corollary 3.4. Let h be a B-function. If f is a positive differentiable function on an interval containing (a, b) such that $|f^*|^*$ is *h-convex, then the following multiplicative midpoint inequality holds true:

$$\left| \frac{\left| \int_{a}^{b} \left(f(t) \right)^{dt} \right|^{\frac{1}{b-a}}}{f\left(\frac{a+b}{2} \right)} \right|^{*} \leq \left[\left| f^{*}\left(b \right) \right|^{*} \cdot \left| f^{*}\left(a \right) \right|^{*} \right]^{\frac{(b-a)h\left(\frac{1}{2} \right)}{4}}. \tag{38}$$

4. Midpoint inequalities via multiplicative s-convex functions

By replacing $h(t) = t^s$, where $s \in (0,1]$, into the inequalities (21), (26), (32) and (38), we obtain the next results.

Corollary 4.1. Let $s \in (0,1]$ and f be a positive differentiable mapping on an interval containing (a,b) such that $|f^*|^*$ is *s-convex, then the following multiplicative midpoint inequalities hold true:

$$\frac{\left|\frac{\left\{*\mathcal{R}\mathcal{L}_{a^{+}}^{\alpha}f(b)\cdot*\mathcal{R}\mathcal{L}_{b^{-}}^{\alpha}f(a)\right\}^{\frac{\Gamma(\alpha+1)}{2}(b-a)^{\alpha}}}{f\left(\frac{a+b}{2}\right)}\right|^{*} \leq \left[\left|f^{*}(a)\right|^{*}\cdot\left|f^{*}(b)\right|^{*}\right]^{\frac{b-a}{2^{s}(\alpha+1)}}\left[\frac{\alpha-1}{2}+\left(\frac{1}{2}\right)^{\alpha}\right].$$
(39)

$$\frac{\left|\frac{\left\{*\mathcal{R}\mathcal{L}_{a^{+}}^{\alpha}f\left(\frac{a+b}{2}\right)\cdot*\mathcal{R}\mathcal{L}_{b^{-}}^{\alpha}f\left(\frac{a+b}{2}\right)\right\}^{\frac{2^{\alpha-1}\Gamma(\alpha+1)}{(b-a)^{\alpha}}}}{f\left(\frac{a+b}{2}\right)}\right|^{*}}{\leq \left[\left|f^{*}\left(b\right)\right|^{*}\cdot\left|f^{*}\left(a\right)\right|^{*}\right]^{\frac{b-a}{2^{s+1}}}\frac{\alpha}{\alpha+1}.$$
(40)

$$\frac{\left\{ *\mathcal{R}\mathcal{L}_{\left(\frac{a+b}{2}\right)^{+}}^{\alpha} f(b) \cdot *\mathcal{R}\mathcal{L}_{\left(\frac{a+b}{2}\right)^{-}}^{\alpha} f(a) \right\}^{\frac{2^{\alpha-1} \Gamma(\alpha+1)}{(b-a)^{\alpha}}}}{f\left(\frac{a+b}{2}\right)} \right\}^{*} \leq \left[\left| f^{*}\left(b\right) \right|^{*} \cdot \left| f^{*}\left(a\right) \right|^{*} \right]^{\frac{b-a}{2^{s+1}}} \frac{\alpha}{\alpha+1} . \tag{41}$$

$$\left| \frac{\left| \int_{a}^{b} (f(t))^{dt} \right|^{\frac{1}{b-a}}}{f\left(\frac{a+b}{2}\right)} \right|^{*} \leq \left[\left| f^{*}\left(b\right) \right|^{*} \cdot \left| f^{*}\left(a\right) \right|^{*} \right]^{\frac{b-a}{2^{s+2}}}. \tag{42}$$

Remark 4.2. We get new multiplicative midpoint inequalities for *-convex functions when we set s=1 in the inequalities (39), (40), (41) and (42).

5. Midpoint inequalities via multiplicative *P*-functions

Taking h(t) = 1 in (21), (26), (32) and (38), gives the following multiplicative midpoint inequalities for **P*-functions:

Corollary 5.1. *If* f *be a positive differentiable function on an interval containing* (a, b) *such that* $|f^*|^*$ *is* P-function, then the following multiplicative midpoint inequalities hold true:

$$\frac{\left|\frac{\left\{*\mathcal{R}\mathcal{L}_{a^{+}}^{\alpha}f(b)\cdot*\mathcal{R}\mathcal{L}_{b^{-}}^{\alpha}f(a)\right\}^{\frac{\Gamma(\alpha+1)}{2}(b-a)^{\alpha}}}{f\left(\frac{a+b}{2}\right)}\right|^{*} \leq \left[\left|f^{*}(a)\right|^{*}\cdot\left|f^{*}(b)\right|^{*}\right]^{\frac{b-a}{\alpha+1}}\left[\frac{\alpha-1}{2}+\left(\frac{1}{2}\right)^{\alpha}\right].$$
(43)

$$\frac{\left\{ *\mathcal{R}\mathcal{L}_{a^{+}}^{\alpha} f\left(\frac{a+b}{2}\right) \cdot *\mathcal{R}\mathcal{L}_{b^{-}}^{\alpha} f\left(\frac{a+b}{2}\right) \right\}^{\frac{2^{\alpha-1} \Gamma(\alpha+1)}{(b-a)^{\alpha}}}}{f\left(\frac{a+b}{2}\right)} \right\}^{*} \leq \left[\left| f^{*}\left(b\right) \right|^{*} \cdot \left| f^{*}\left(a\right) \right|^{*} \right] \frac{b-a}{2} \frac{\alpha}{\alpha+1} . \tag{44}$$

$$\frac{\left|\frac{\left\{*\mathcal{R}\mathcal{L}^{\alpha}_{\left(\frac{a+b}{2}\right)^{+}}f(b)\cdot*\mathcal{R}\mathcal{L}^{\alpha}_{\left(\frac{a+b}{2}\right)^{-}}f(a)\right\}^{\frac{2^{\alpha-1}}{(b-a)^{\alpha}}}}{f\left(\frac{a+b}{2}\right)}\right|^{*}}{\leq \left[\left|f^{*}\left(b\right)\right|^{*}\cdot\left|f^{*}\left(a\right)\right|^{*}\right]^{\frac{b-a}{2}}\frac{\alpha}{\alpha+1}}.$$
(45)

$$\left| \frac{\left| \int_{a}^{b} \left(f(t) \right)^{dt} \right|^{\frac{1}{b-a}}}{f\left(\frac{a+b}{2} \right)} \right|^{*} \leq \left[\left| f^{*}\left(b \right) \right|^{*} \cdot \left| f^{*}\left(a \right) \right|^{*} \right]^{\frac{b-a}{4}}. \tag{46}$$

6. Multiplicatively midpoint inequalities through monotonic functions

Lemma 6.1. Let f be a positive and differentiable function on $I^{\circ} \subseteq \mathbb{R}$ with $[a,b] \subset I^{\circ}$, then we have

- 1. f is an increasing function on [a,b] if and only if $f^*(x) > 1$ for every $x \in [a,b]$.
- 2. f is a decreasing function on [a,b] if and only if $0 < f^*(x) < 1$ for every $x \in [a,b]$.

Proof. Consider f to be a positive and differentiable function defined on $I^{\circ} \subseteq \mathbb{R}$ such that $[a,b] \subset I^{\circ}$. Applying Remark 1.4, for every $x \in [a,b]$, we obtain the condition $f^{*}(x) > 1$ if and only if $\frac{f'(x)}{f(x)} > 0$. This implies that f'(x) > 0, indicating that f is an increasing function. The same holds true for the second property. \square

From the Remark 1.4 and the Definition 1.17, we deduce

$$\left| f^* \right|^* = \begin{cases} f^*, & \text{if } f^* \ge 1; \\ \frac{1}{f^*}, & \text{if } 0 < f^* < 1. \end{cases}$$
 (47)

The combination of the statements from (47) and Lemma 6.1 in Theorems 3.1-3.3 and Corollary 3.4 produces the next corollaries for the cases f > 1 and f < 1, respectively.

Corollary 6.2. Let h be a B-function and f be a positive and differentiable function on an interval containing [a,b]. If f is increasing function on [a,b] and f^* is a multiplicatively h-convex function (*h-convex) on [a,b], then the following midpoint type inequalities hold true:

$$\left|\frac{\left\{*\mathcal{RL}_{a^{+}}^{\alpha}f(b)\cdot*\mathcal{RL}_{b^{-}}^{\alpha}f(a)\right\}^{\frac{\Gamma(\alpha+1)}{2}\left|^{*}}}{f\left(\frac{a+b}{2}\right)}\right|^{*}\leq \left[f^{*}(a)\cdot f^{*}(b)\right]\frac{h\left(\frac{1}{2}\right)(b-a)}{\alpha+1}\left[\frac{\alpha-1}{2}+\left(\frac{1}{2}\right)^{\alpha}\right].$$

$$\left|\frac{\left\{*\mathcal{RL}_{a^+}^{\alpha}f(\frac{a+b}{2})\cdot *\mathcal{RL}_{b^-}^{\alpha}f(\frac{a+b}{2})\right\}}{f\left(\frac{a+b}{2}\right)}\right|^{\frac{2^{\alpha-1}}{(b-a)^{\alpha}}}\right|^{*}\leq \left[f^{*}(a)\cdot f^{*}(b)\right]\frac{(b-a)h\left(\frac{1}{2}\right)}{2}\frac{\alpha}{\alpha+1}\,.$$

$$\left|\frac{\left\{*\mathcal{RL}^{\alpha}_{(\frac{a+b}{2})^+}f(b)\cdot *\mathcal{RL}^{\alpha}_{(\frac{a+b}{2})^-}f(a)\right\}^{\frac{2^{\alpha-1}}{(b-a)^{\alpha}}}}{f\left(\frac{a+b}{2}\right)}\right|^* \leq \left[f^*(a)\cdot f^*(b)\right]^{\frac{(b-a)h\left(\frac{1}{2}\right)}{2}}\frac{\alpha}{\alpha+1} \; .$$

$$\left| \frac{\left| \int_a^b \left(f(t) \right)^{dt} \right|^{\frac{1}{b-a}}}{f\left(\frac{a+b}{2} \right)} \right|^* \leq \left[f^*(a) \cdot f^*(b) \right] \frac{(b-a) h\left(\frac{1}{2} \right)}{4}.$$

Corollary 6.3. Let h be a B-function and f be a positive and differentiable function on an interval containing [a,b]. If f is decreasing function on [a,b] and f^* is a multiplicatively h-concave function (*h-concave) on [a,b], then the following midpoint type inequalities hold true:

$$\left| \frac{\left\{ *\mathcal{RL}_{a^+}^{\alpha} f(b) \cdot *\mathcal{RL}_{b^-}^{\alpha} f(a) \right\}^{\frac{\Gamma(\alpha+1)}{2}}}{f\left(\frac{a+b}{2}\right)} \right|^* \leq \left[\frac{1}{f^*(a) \cdot f^*(b)} \right]^{\frac{h\left(\frac{1}{2}\right)(b-a)}{\alpha+1}} \left[\frac{\alpha-1}{2} + \left(\frac{1}{2}\right)^{\alpha} \right].$$

$$\left|\frac{\left\{*\mathcal{RL}^{\alpha}_{a^{+}}f(\frac{a+b}{2})\cdot *\mathcal{RL}^{\alpha}_{b^{-}}f(\frac{a+b}{2})\right\}^{\frac{2^{\alpha-1}}{(b-a)^{\alpha}}}}{f\left(\frac{a+b}{2}\right)}\right|^{*}\leq \left[\frac{1}{f^{*}(a)\cdot f^{*}(b)}\right]^{\frac{(b-a)h\left(\frac{1}{2}\right)}{2}}\frac{\alpha}{\alpha+1}.$$

$$\left|\frac{\left\{*\mathcal{RL}^{\alpha}_{\frac{(a+b}{2})^{+}}f(b)\cdot *\mathcal{RL}^{\alpha}_{\frac{(a+b}{2})^{-}}f(a)\right\}^{\frac{2^{\alpha-1}}{(b-a)^{\alpha}}}}{f\left(\frac{a+b}{2}\right)}\right|^{*}\leq \left[\frac{1}{f^{*}(a)\cdot f^{*}(b)}\right]^{\frac{(b-a)h\left(\frac{1}{2}\right)}{2}}\frac{\alpha}{\alpha+1}.$$

$$\left| \frac{\left| \int_{a}^{b} (f(t))^{dt} \right|^{\frac{1}{b-a}}}{f\left(\frac{a+b}{2}\right)} \right|^{*} \leq \left[\frac{1}{f^{*}(a) \cdot f^{*}(b)} \right]^{\frac{(b-a)h\left(\frac{1}{2}\right)}{4}}.$$

Remark 6.4.

- Replacing $h(t) = t^s$, where $s \in (0,1]$ in Corollary 6.2 and Corollary 6.3, gives results through multiplicative s-convex functions.
- Using h(t) = 1 in Corollary 6.2 and Corollary 6.3 yields results via multiplicative P-functions.
- By taking h(t) = t and $\alpha = 1$ in Corollary 6.2, one obtains the analogous result presented in Theorem 1.15 with a multiplicative absolute value.

Replacing h(t) = t and $\alpha = 1$ into Corollary 6.3 produces the next new result.

Corollary 6.5. Let f be a positive and multiplicatively differentiable function on I° and $[a,b] \subset I^{\circ}$. If f is a decreasing function on [a,b] and f^{*} is multiplicatively concave function on [a,b], then the following midpoint inequality holds true:

$$\left| \frac{\left| \int_a^b (f(t))^{dt} \right|^{\frac{1}{b-a}}}{f\left(\frac{a+b}{2}\right)} \right|^* \le \left[\frac{1}{f^*(a) \cdot f^*(b)} \right]^{\frac{b-a}{8}}.$$

References

- [1] T. Abdeljawad and M. Grossman, On geometric fractional calculus, J. Semigroup Theory Appl., 2016(2) (2016), 1–14.
- [2] M. A. Ali, M. Abbas, Z. Zhang, I. B. Sial and R. Arif, On integral inequalities for product and quotient of two multiplicatively convex functions, Asian Research J. Math., 12(3) (2019), 1–11.

- [3] N. Azzouz and B. Benaissa, *Exploring Hermite–Hadamard-type inequalities via ψ-conformable fractional integral operators*, J. Inequal. Math. Anal., **1**(1) (2025), 15–27.
- [4] A. E. Bashirov, E. M. Kurpınar and A. Özyapıcı, Multiplicative calculus and its applications, J. Math. Anal. Appl., 337(1) (2008), 36–48.
- [5] A. E. Bashirov, E. Misirli and Y. Tandoggdu, On modeling with multiplicative differential equations, Appl. Math. J. Chin. Univ., 26 (2011), 425–438.
- [6] B. Benaissa, N. Azzouz and H. Budak, Hermite–Hadamard type inequalities for new conditions on h-convex functions via ψ-Hilfer integral operators, Anal. Math. Phys., 14(35) (2024), 1–20.
- [7] B. Benaissa, N. Azzouz and H. Budak, Weighted fractional inequalities for new conditions on h-convex functions, Bound. Value Probl., 2024 (2024), Art. 76, 1–18.
- [8] H. Budak and B. B. Ergün, On multiplicative conformable fractional integrals: theory and applications, Bound. Value Probl., 2025 (2025), Art. 30, 1–66.
- [9] H. Budak and K. Özçelik, On Hermite–Hadamard type inequalities for multiplicative fractional integrals, Miskolc Math. Notes., **21**(1) (2020), 91—99.
- [10] M. Grossman and R. Katz, *Non-Newtonian calculus: A Self-contained*, Elementary Exposition of the Authors Investigations (Lee press, Pigeon Cove, MA), 1972.
- [11] S. Khan and H. Budak, On midpoint and midpoint type inequalities for multiplicative integrals, Mathematica, 64(87) (2022), 95–108.
- [12] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147(1) (2004), 137–146.
- [13] M. A. Noor, F. Qi and M. U. Awan, Some Hermite-Hadamard type inequalities for log-h-convex functions, Analysis, 33 (2013), 1-9.
- [14] J. E. Pečarič, F. Proschan and Y. L. Tong, Convex functions, partial orderings and statistical applications, Academic Press, Boston, 1992.