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Existence, uniqueness, and stability analysis for a nonlinear multi-term
tripled system of fractional differential equations with closed

boundary conditions

Wei Zhanga,∗, Xinyu Fua

aSchool of Mathematics and Big Data, Anhui University of Science and Technology, Huainan, 232001, P.R. China

Abstract. This paper investigates a class of nonlinear multi-term tripled systems of fractional differential
equations with closed boundary conditions. Existence and uniqueness results for the proposed boundary
value problem are established using Krasnoselskii’s and Banach’s fixed point theorems. Additionally, the
Ulam-Hyers stability and Ulam-Hyers-Rassias stability of the proposed model are analyzed via Banach’s
fixed point theorem. Finally, two illustrative examples are provided to demonstrate the main results.

1. Introduction

Fractional calculus is a discipline that studies the mathematical properties and applications of integrals
and derivatives of any real or complex order, extending the traditional integer-order calculus. A notable
characteristic of fractional derivatives is their non-locality, which allows the fractional derivative operator to
accurately depict mechanical and physical processes with historical memory and spatial global correlation.
It has become an important tool for mathematical modeling of complex mechanical and physical processes.
Fractional differential equations (FDEs) are equations that contain fractional derivative operators. In the
past, scholars have found that FDEs are very suitable for describing problems in science and engineering,
such as: physics, control theory, biology, materials, economic, etc [10, 12, 15, 21]. Therefore, the qualitative
study of FDEs has practical and theoretical significance. Therefore, the qualitative analysis of FDEs has
evolved into a significant research focus in mathematics and related fields, owing to its profound impact
on theoretical exploration and practical applications, thereby attracting extensive attention from scholars
[13, 16, 20].

It is well-established that an equation containing a single fractional differential term is referred to as
a single-term FDE. In certain cases, differential equations contain derivatives of a function of multiple
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orders. Such differential equations with derivatives of multiple orders are known as multi-term differential
equations. For example, the Bagley-Torvik equation

mζ′′(t) + 2A
√
µρCD3/2

0+ζ(t) + Kζ(t) = 0,

is a quintessential multi-term differential equation, where CD3/2
0+ is the Caputo fractional derivative. This

equation is utilized to describe the motion of a rigid plate in a Newtonian fluid and was first introduced
in reference [17]. In the realm of multi-term differential equations, the existence of solutions to initial
value problems (IVPs) and boundary value problems (BVPs) for multi-term FDEs has garnered significant
attention from the scholars in recent years [1–3, 14, 19]. For instance, Staněk [14], employed the Schauder
fixed-point theorem to investigate the existence of solutions to periodic BVPs for a class of multi-term
fractional differential equations. Webb and Lan [19], utilized Schaefer’s theorem, the fractional Gronwall
inequality, and the fractional Bihari inequality to study the existence of global solutions to IVPs for the
multi-term fractional Bagley-Torvik equation and the fractional Langevin equation. Abbas et al. [1], applied
Krasnoselskii’s and Banach’s fixed point theorems to analyze the existence and uniqueness of solutions to
nonlocal BVPs for ABC-fractional-order differential equations. Furthermore, Ahmad et al. [3], considered
the existence and uniqueness of solutions to generalized anti-periodic BVPs for coupled systems multi-term
FDEs using Krasnoselskii’s fixed-point theorem, the Leray-Schauder alternative, and Banach’s contraction
mapping principle. These studies not only enrich the theory of FDEs but also lay a theoretical foundation
for further applied research.

In a recent paper [9], Chen, Liu and Dong studied the existence of solutions and Ulam-Hyers stability
for the following multi-term nonlinear fractional BVP:CDς

0+ζ(ϖ) − ξCDτ
0+ζ(ϖ) + ℏ(ϖ, ζ(ϖ)) = 0, ϖ ∈ (0, 1),

ζ(0) + ζ(1) = ζ0,
(1)

where 0 < τ < ς ≤ 1, CDς
0+ and CDτ

0+ are the Caputo fractional derivatives, ξ and ζ0 are given constants. The
authors obtained the existence and uniqueness results of BVP (1) used Schauder alternative principle and
the Banach fixed point theorem, respectively.

Very recently, Rafeeq et al. [11] investigated the the existence, uniqueness and Ulam-Hyers stability for
the following Caputo-Hadamard fractional pantograph equation with Dirichlet boundary conditions(BCs):CHDς

1+ζ(ϖ) + ξCHDτ
1+ζ(ϖ) = ℏ(ϖ, ζ(ϖ), ζ(ρϖ)), ϖ ∈ (1,T),

ζ(1) = ζ1, ζ(T) = ζT,
(2)

where ξ, ζ1, ζT ∈ R, ρ ∈ (0, 1), CHDκ
1+ is Caputo-Hadamard fractional derivatives of order κ = ς, τ such that

1 < ς ≤ 2, 0 < τ ≤ 1, ℏ : [1,T]×R2
→ R is continuous. The authors established the existence and uniqueness

results of BVP (2) by means of Schaefer, Krasnoselskii and Banach fixed point theorems.
The study of closed BCs holds significant importance in mathematical and physical problems, par-

ticularly in the fields of fluid dynamics, wave field decomposition, and vibration analysis, as referenced
in literature [4]. In recent years, scholars have dedicated efforts to investigate the existence of solutions
to FDEs with closed BCs. For instance, in [6], the authors discussed the existence of solutions for FDEs
and inclusions supplemented with closed boundary conditions, utilizing the Leray-Schauder nonlinear
alternative and other fixed-point theorems. In [18], the existence and uniqueness of solutions for impul-
sive nonlinear FDEs with closed boundary conditions were studied using Schauder’s fixed point theorem,
Schaefer’s fixed point theorem, and the Banach contraction mapping principle. In [5], a class of fractional
differential integral equations subject to nonlocal closed integral boundary conditions was considered for
the existence and uniqueness of solutions, employing Krasnoselskii’s fixed point theorem, Leray-Schauder
nonlinear alternative, and the Banach contraction mapping principle.

Most recently, Alsaedi et al. [7] explored the existence and uniqueness of solutions for a class of multi
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-term impulsive fractional q-difference equations with closed boundary conditions:
µCDς

qζ(ϖ) + (1 − µ)CDτ
qζ(ϖ) = ℏ(ϖ, ζ(ϖ)), ϖ ∈ [0,T], ϖ , ϖδ, δ = 1, 2, 3, · · · ,n,

∆ζ(ϖδ) = Jδ(ζ(ϖσ)), ∆ζ′(ϖσ) = Ĵδ(ζ(ϖδ)), δ = 1, 2, 3, · · · ,n,
ζ(T) = δζ(0) + ςTζ′(0), Tζ′(T) = τζ(0) + ϑTζ′(0),

(3)

where CDκ
q are the Caputo fractional q-derivative of order κ = ς, τ, 0 < q < 1, 1 < ς < 2 and 0 < τ < 1 with

ς − τ > 1, µ ∈ (0, 1], δ, ς, τ, ϑ ∈ R. Besides the boundary conditions presented in BVP (3), the additional
conditions x′′(t+δ ) = 0, δ = 1, 2, 3, · · · ,n are added. The authors proved the existence and uniqueness result
by applying Schaefer’s fixed point theorem and the Banach contraction mapping principle.

Motivated by the advancements in multi-term fractional BVPs and fractional closed BVPs, this study
introduces and investigate a novel tripled system of nonlinear multi-term fractional differential equations,
supplemented with closed boundary conditions:λCDϱ

0+ζi(t) + (1 − λ)CDι
0+ζi(t) = fi

(
t, ζ1(t), ζ2(t), ζ3(t)

)
, t ∈ (0,T), i = 1, 2, 3,

ζi(T) = aζi(0) + bTζ′i (0), Tζ′i (T) = cζi(0) + dTζ′i (0),
(4)

where 0 < λ ≤ 1, 0 < ι < 1 < ϱ < 2, ϱ − ι ≥ 1, CDϱ
0+ and CDι

0+ are the Caputo fractional derivatives,
fi : [0,T] ×R3

→ R, i = 1, 2, 3 are continuous functions, a, b, c, d ∈ R satisfy Λ = ϵ11ϵ22 − ϵ12ϵ21 , 0,

ϵ11 = a − 1 −
(1 − λ)Tϱ−ι

λΓ(ϱ − ι + 1)
, ϵ21 = c −

(1 − λ)Tϱ−ι

λΓ(ϱ − ι)
, ϵ12 = (b − 1)T, ϵ22 = (d − 1)T.

In the current study, we prove the existence and uniqueness of the solution to problem (4) under
appropriate conditions on the nonlinear terms fi (i = 1, 2, 3), by employing the Krasnoselskii fixed point
theorem and the Banach contraction mapping theorem, respectively. Additionally, we analyze the Ulam-
Hyers stability and Ulam-Hyers-Rassias stability of (4). The novelty of this work are summarized as
follows:

• It is noted that the highest order derivative of the unknown function in equation (4) is of order ϱ,
hence, when applying the operator Iϱ0+ to equation (4), Iϱ0+

CDι
0+ζi(t) , Iϱ−ι0+ ζi(t). To address this issue,

additional constraints were introduced in the literature [7]. This paper clarifies, by proving Lemma
3.1, that the additional restrictions set forth in literature [7] are actually unnecessary.

• The closed BCs are general. For instance, the closed BCs can degenerate into anti-periodic BCs
ζi(0) = −ζi(T), ζ′i (0) = ζ′i (T) with a = d = −1, b = c = 0, as well as quasi-periodic BCs ζi(T) =
aζi(0), ζ′i (T) = dζ′i (0) with b = c = 0. Moreover, the BVP (4) discussed in this paper contains the
parameter λ ∈ (0, 1], and as λ→ 1, (4) will degenerate into a single system BVP. Therefore, the model
discussed in this paper is more general then [20].

• We investigate the BVP associated with multi-term fractional three-dimensional coupled systems,
which extend the work presented in references [9] and [11]. The increased dimensionality presents di-
rect challenges to the qualitative analysis of such boundary value problems. Utilizing the Krasnoselskii
fixed point theorem and the Banach contraction mapping theorem, we have effectively established
the existence and uniqueness of solutions for BVP (4). Furthermore, we have also considered the
Ulam-Hyers stability and the Ulam-Hyers-Rassias stability for BVP (4).

This paper is structured as follows. In Section 2, we recall essential definitions related to Caputo
fractional integrals and derivatives, along with their fundamental properties. In Section 3, We obtain the
exitence and uniqueness results for the considered BVP by means of Krasnoselski and Banach fixed point
theorem, respectively. Section 4 is dedicated to the study of Ulam stability applying contraction principle,
we derive Ulam-Hyers stability and Ulam-Hyers-Rassias stability of BVP (4). In Section 5, We introduce
two explanatory examples to prove the practical applicability of our main findings. Finally, in Section 6,
we offer a concise generalization and prospect for our ongoing research.
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2. Preliminaries

In this section, we recall the definitions of the Caputo fractional calculus, and some of their associated
properties. Additionally, we present two fixed point theorems that will play a crucial role in establishing
the primary outcomes of the paper.

Definition 2.1. [10] Let ζ : (0,+∞)→ R, the Riemann-Liouville fractional integral of order ϱ(ϱ > 0) for ζ is
given by

Iϱ0+ζ(ϖ) =
1
Γ(ϱ)

∫ ϖ

0
(ϖ − ℑ)ϱ−1ζ(ℑ)dℑ.

Definition 2.2. [10] Let ζ : (0,+∞)→ R, the Caputo fractional derivative of order ϱ(ϱ > 0) for ζ is given by

CDϱ
0+ζ(ϖ) =

1
Γ(n − ϱ)

∫ ϖ

0
(ϖ − ℑ)n−ϱ−1ζ(n)(ℑ)dℑ,

where n = [ϱ] + 1.

Lemma 2.1. [10] If CDϱ
0+ζ ∈ Cn[0,T], ϱ > 0, then

Iϱ0+
CDϱ

0+ζ(ϖ) = ζ(ϖ) + c0 + c1ϖ + c2ϖ
2 + · · · + cn−1ϖ

n−1,

where ci = −
ζ(i)(0)

i! , i = 0, 1, 2, · · · ,n − 1, n = [ϱ] + 1.

Lemma 2.2. [8, 10] Let ϱ > 0, ξ > −1, ϖ > 0. then

Iϱ0+ϖ
ξ =

Γ(ξ + 1)
Γ(ξ + 1 + ϱ)

ϖϱ+ξ, Dϱ
0+ϖ

ξ =
Γ(ξ + 1)
Γ(ξ + 1 − ϱ)

ϖξ−ϱ = CDϱ
0+ϖ

ξ,

in particular, Dϱ
0+ϖ

ϱ−m = 0, m = 1, 2, · · · ,n; CDϱ
0+ϖ

k = 0, k = 0, 1, 2, · · · ,n − 1, where n = [ϱ] + 1.

Theorem 2.1. (Krasnoselskii fixed point theorem [22]) Let M be a nonempty, closed convex and bounded
subset of a Banach space X. Let G and H be two operators such that

(a) Gζ +Hς ∈M for all ζ, ς ∈M;

(b) G : M→ X is a completely continuous operator;

(c) H : M→ X is a contraction mapping.

Then there exists δ ∈M such that δ = Hδ + Gδ.

Theorem 2.2. (Banach fixed point theorem [22]) Let X be a Banach space, M ⊂ X is a closed nonempty set.
If J : M→M is a contraction mapping, that is,

||Jζ − Jς|| ≤ µ||ζ − ς||,

where µ ∈ (0, 1), for each ζ, ς ∈M. Then J has a unique fixed point on M.
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3. Existence and Uniqueness Results

In this section, we present the existence and uniqueness results for the solutions of the system (4) by
utilizing the Krasnoselskii fixed point theorem and the Banach contraction mapping theorem. To this end,
we first define the Banach space X = C [0,T], equipped with the norm

||ζ||∞ = max
t∈[0,T]

|ζ(t)|.

Define the space X = X × X × X, equipped with the norm

||(ζ1, ζ2, ζ3)||X = ||ζ1||∞ + ||ζ2||∞ + ||ζ3||∞, (ζ1, ζ2, ζ3) ∈ X.

Clearly, (X, || · ||X) is a Banach space.

Lemma 3.1. If 0 < ι < 1 < ϱ < 2, then

Iϱ0+
CDι

0+ζ(t) = Iϱ−ι0+ ζ(t) −
ζ(0)tϱ−ι

Γ(ϱ − ι + 1)
.

Proof. In view of Definition 2.1 and Lemma 2.1, we obtain

Iϱ0+
CDι

0+ζ(t) =Iϱ−ι0+ Iι0+
CDι

0+ζ(t) = Iϱ−ι0+

(
ζ(t) − ζ(0)

)
=Iϱ−ι0+ ζ(t) −

ζ(0)
Γ(ϱ − ι)

∫ t

0
(t − ℑ)ϱ−ι−1dℑ

=Iϱ−ι0+ ζ(t) −
ζ(0)tϱ−ι

Γ(ϱ − ι + 1)
.

The proof is complete.

Lemma 3.2. Let hi(t) ∈ C
(
[0,T],R

)
, i = 1, 2, 3. Then the tripled system

λCDϱ
0+ζi(t) + (1 − λ)CDι

0+ζi(t) = hi(t), t ∈ [0,T], i = 1, 2, 3, (5)

with boundary conditions

ζi(T) = aζi(0) + bTζ′i (0), Tζ′i (T) = cζi(0) + dTζ′i (0), (6)

has following solution

ζi(t) =
[
1 +

(1 − λ)tϱ−ι

λΓ(ϱ − ι + 1)

] 1
Λ

{
− ϵ22

[ 1 − λ
λΓ(ϱ − ι)

∫ T

0
(T−ℑ)ϱ−ι−1ζi(ℑ)dℑ

−
1

λΓ(ϱ)

∫ T

0
(T − ℑ)ϱ−1hi(ℑ)dℑ

]
+ϵ12

[ (1 − λ)T
λΓ(ϱ − ι − 1)

∫ T

0
(T − ℑ)ϱ−ι−2ζi(ℑ)dℑ

−
T

λΓ(ϱ − 1)

∫ T

0
(T − ℑ)ϱ−2hi(ℑ)dℑ

]}
+

t
Λ

{
− ϵ11

[ (1 − λ)T
λΓ(ϱ − ι − 1)

×

∫ T

0
(T − ℑ)ϱ−ι−2ζi(ℑ)dℑ−

T
λΓ(ϱ − 1)

∫ T

0
(T−ℑ)ϱ−2hi(ℑ)dℑ

]
+ ϵ21

[ 1 − λ
λΓ(ϱ − ι)

∫ T

0
(T−ℑ)ϱ−ι−1ζi(ℑ)dℑ −

1
λΓ(ϱ)

∫ T

0
(T − ℑ)ϱ−1hi(ℑ)dℑ

]}
−

1 − λ
λΓ(ϱ − ι)

∫ t

0
(t − ℑ)ϱ−ι−1ζi(ℑ)dℑ +

1
λΓ(ϱ)

∫ t

0
(t − ℑ)ϱ−1hi(ℑ)dℑ, (i = 1, 2, 3).

(7)
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Proof. Applying the operator Iϱ0+ on both sides of (5) and combining with Lemma 2.1 and Lemma 3.1, we
have

ζi(t) =ζi(0) + ζ′i (0)t −
1 − λ
λ

[
Iϱ−ι0+ ζi(t) −

tϱ−ι

Γ(ϱ − ι + 1)
ζi(0)
]

+
1
λ

Iϱ0+hi(t), (i = 1, 2, 3),
(8)

it follows

ζ′i (t) = ζ
′

i (0) −
1 − λ
λ

[
Iϱ−ι−1
0+ ζi(t) −

tϱ−ι−1

Γ(ϱ − ι)
ζi(0)
]
+

1
λ

Iϱ−1
0+ hi(t), (i = 1, 2, 3).

Using BCs (6), we then have

ϵ11ζi(0) + ϵ12ζ
′

i (0) = −
1 − λ
λ

Iϱ−ι0+ ζi(t)|t=T +
1
λ

Iϱ0+hi(t)|t=T, (9)

ϵ21ζi(0) + ϵ22ζ
′

i (0) = −
(1 − λ)T

λ
Iϱ−ι−1
0+ ζi(t)|t=T +

T
λ

Iϱ−1
0+ hi(t)|t=T. (10)

By (9) and (10), we obtain

ζi(0) =
1
Λ

{
− ϵ22

[1 − λ
λ

Iϱ−ι0+ ζi(t)|t=T −
1
λ

Iϱ0+hi(t)|t=T

]
+ ϵ12

[ (1 − λ)T
λ

Iϱ−ι−1
0+ ζi(t)|t=T −

T
λ

Iϱ−1
0+ hi(t)|t=T

]}
,

(11)

ζ′i (0) =
1
Λ

{
− ϵ11

[ (1 − λ)T
λ

Iϱ−ι−1
0+ ζi(t)|t=T −

T
λ

Iϱ−1
0+ hi(t)|t=T

]
+ ϵ21

[1 − λ
λ

Iϱ−ι0+ ζi(t)|t=T −
1
λ

Iϱ0+hi(t)|t=T

]}
.

(12)

Using the Eqs. (11) and (12) in (8), we can get (7) holds.
On the other hand, if ζi(t), i = 1, 2, 3 are given by (7), it is easily to verify ζi(t), i = 1, 2, 3 satisfy the

functions (5) and BCs (6). The prove of Lemma 3.2 is complete.

Base on Lemma 3.2, define the following operator J : X → X

J(ζ1, ζ2, ζ3)(t) :=
(
J1(ζ1, ζ2, ζ3)(t), J2(ζ1, ζ2, ζ3)(t), J3(ζ1, ζ2, ζ3)(t)

)
,

where

Ji(ζ1, ζ2, ζ3)(t)=
1
Λ

[
1 +

(1 − λ)tϱ−ι

λΓ(ϱ − ι + 1)

]{
−ϵ22

[ 1 − λ
λΓ(ϱ − ι)

∫ T

0
(T − ℑ)ϱ−ι−1ζi(ℑ)dℑ

−
1

λΓ(ϱ)

∫ T

0
(T − ℑ)ϱ−1Fi(ℑ)dℑ

]
+ ϵ12

[ (1 − λ)T
λΓ(ϱ − ι − 1)

∫ T

0
(T − ℑ)ϱ−ι−2ζi(ℑ)dℑ

−
T

λΓ(ϱ − 1)

∫ T

0
(T − ℑ)ϱ−2Fi(ℑ)dℑ

]}
+

t
Λ

{
− ϵ11

[ (1 − λ)T
λΓ(ϱ − ι − 1)

×

∫ T

0
(T − ℑ)ϱ−ι−2ζi(ℑ)dℑ −

T
λΓ(ϱ − 1)

∫ T

0
(T − ℑ)ϱ−2Fi(ℑ)dℑ

]
+ϵ21

[ 1 − λ
λΓ(ϱ − ι)

∫ T

0
(T − ℑ)ϱ−ι−1ζi(ℑ)dℑ −

1
λΓ(ϱ)

∫ T

0
(T − ℑ)ϱ−1Fi(ℑ)dℑ

]}
−

1 − λ
λΓ(ϱ−ι)

∫ t

0
(t−ℑ)ϱ−ι−1ζi(ℑ)dℑ+

1
λΓ(ϱ)

∫ t

0
(t−ℑ)ϱ−1Fi(ℑ)dℑ, (i=1, 2, 3),
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and Fi(ℑ) denote by

Fi(ℑ) = fi
(
ℑ, ζ1(ℑ), ζ2(ℑ), ζ3(ℑ)

)
, (i = 1, 2, 3).

Clearly, the function ζ is the solution of BVP (4), if and only if ζ is a fixed point of operator J.

Next, give the main results of this article. For convenience, we introduce the following notations:

A1 =
(1 − λ)Tϱ−ι

λΓ(ϱ − ι + 1)
, A2 =

(1 − λ)Tϱ−ι

λΓ(ϱ − ι)
, ℵ1 =

Tϱ

λΓ(ϱ + 1)
, ℵ2 =

Tϱ

λΓ(ϱ)
,

ξ =
1 + A1

|Λ|

(
|ϵ22|ℵ1 + |ϵ12|ℵ2

)
+

T
|Λ|

(
|ϵ11|ℵ2 + |ϵ21|ℵ1

)
+ ℵ1,

η =
1 + A1

|Λ|

(
|ϵ22|A1 + |ϵ12|A2

)
+

T
|Λ|

(
|ϵ11|A2 + |ϵ21|A1

)
+ A1.

Theorem 3.1. Assume that

(C1) The functions fi ∈ C([0,T] ×R3,R), i = 1, 2, 3.

(C2) There exist nonnegative functions κi(t), ȷi(t), νi(t), ωi(t) ∈ C[0,T] (i = 1, 2, 3) such that for any
(t,u, v,w) ∈ [0,T] ×R3,

| fi(t,u, v,w)| ≤ κi(t)|u(t)| + ȷi(t)|v(t)| + νi(t)|w(t)| + ωi(t), i = 1, 2, 3,

hold. Then the BVP (4) has at least one solution on [0,T], provided that

ξ
3∑

i=1

li + η < 1, (13)

where

κi = max
t∈[0,T]

|κi(t)|, ȷi = max
t∈[0,T]

| ȷi(t)|, νi = max
t∈[0,T]

|νi(t)|,

ωi = max
t∈[0,T]

|ωi(t)|, li = κi + ȷi + νi, i = 1, 2, 3.

Proof. Define a bounded, closed subset Ωε ⊂ X as follows

Ωε =
{
ζ = (ζ1, ζ2, ζ3) ∈ X : ||ζ||X ≤ ε

}
,

where

ε ≥
ξ
∑3

i=1 ωi

1 − ξ
∑3

i=1 li − η
.

Define operators H,G : Ωε → X by

(Hζ) (t) =
(
H1(ζ1(t), ζ2(t), ζ3(t)),H2(ζ1(t), ζ2(t), ζ3(t)),H3(ζ1(t), ζ2(t), ζ3(t))

)
,

(Gζ) (t) =
(
G1(ζ1(t), ζ2(t), ζ3(t)),G2(ζ1(t), ζ2(t), ζ3(t)),G3(ζ1(t), ζ2(t), ζ3(t))

)
,
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where

Hi(ζ1(t), ζ2(t), ζ3(t)) =
1
Λ

[
1 +

(1 − λ)tϱ−ι

λΓ(ϱ − ι + 1)

][ϵ22(λ − 1)
λΓ(ϱ − ι)

∫ T

0
(T − ℑ)ϱ−ι−1ζi(ℑ)dℑ

+
ϵ12(1 − λ)T
λΓ(ϱ − ι − 1)

∫ T

0
(T − ℑ)ϱ−ι−2ζi(ℑ)dℑ

]
+

t
Λ

[ ϵ11(λ − 1)T
λΓ(ϱ − ι − 1)

∫ T

0
(T − ℑ)ϱ−ι−2ζi(ℑ)dℑ

+
ϵ21(1 − λ)
λΓ(ϱ − ι)

∫ T

0
(T − ℑ)ϱ−ι−1ζi(ℑ)dℑ

]
+

λ − 1
λΓ(ϱ − ι)

∫ t

0
(t − ℑ)ϱ−ι−1ζi(ℑ)dℑ, (i = 1, 2, 3),

and

Gi(ζ1(t), ζ2(t), ζ3(t)) =
1
Λ

[
1 +

(1 − λ)tϱ−ι

λΓ(ϱ − ι + 1)

][
ϵ22

λΓ(ϱ)

∫ T

0
(T − ℑ)ϱ−1Fi(ℑ)dℑ

−
ϵ12T

λΓ(ϱ − 1)

∫ T

0
(T − ℑ)ϱ−2Fi(ℑ)dℑ

]
+

t
Λ

[
ϵ11T

λΓ(ϱ − 1)

∫ T

0
(T − ℑ)ϱ−2Fi(ℑ)dℑ

−
ϵ21

λΓ(ϱ)

∫ T

0
(T − ℑ)ϱ−1Fi(ℑ)dℑ

]
+

1
λΓ(ϱ)

∫ t

0
(t − ℑ)ϱ−1Fi(ℑ)dℑ, (i = 1, 2, 3).

Applying Theorem 2.1, by following three steps, we prove that the existence of solutions for BVP (4).

Step 1. To prove the condition (a) in Theorem 2.1. In fact, for ζ = (ζ1, ζ2, ζ3), ς = (ς1, ς2, ς3) ∈ Ωε, we have
||ζ||X ≤ ε, ||ς||X ≤ ε. Through condition (C2), we obtain

|Giζ| ≤
1
|Λ|

[
1 +

(1 − λ)Tϱ−ι

λΓ(ϱ − ι + 1)

][
|ϵ22|

λΓ(ϱ)

∫ T

0
(T − ℑ)ϱ−1

|Fi(ℑ)|dℑ +
|ϵ12|T

λΓ(ϱ − 1)

∫ T

0
(T − ℑ)ϱ−2

|Fi(ℑ)|dℑ
]

+
t
|Λ|

[
|ϵ11|T

λΓ(ϱ − 1)

∫ T

0
(T − ℑ)ϱ−2

|Fi(ℑ)|dℑ +
|ϵ21|

λΓ(ϱ)

∫ T

0
(T − ℑ)ϱ−1

|Fi(ℑ)|dℑ
]

+
1

λΓ(ϱ)

∫ T

0
(T − ℑ)ϱ−1

|Fi(ℑ)|dℑ

≤

[1 + A1

|Λ|
(|ϵ22|ℵ1 + |ϵ12|ℵ2) +

T
|Λ|

(|ϵ11|ℵ2 + |ϵ21|ℵ1) + ℵ1

]
(ωi + li||ζ||X), (i = 1, 2, 3).
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Besides, for any t ∈ [0,T], we get the following inequalities

|Hiς| ≤
1
|Λ|

[
1 +

(1 − λ)Tϱ−ι

λΓ(ϱ − ι + 1)

][ (1 − λ)|ϵ22|

λΓ(ϱ − ι)

∫ T

0
(T − ℑ)ϱ−ι−1

|ςi(ℑ)|dℑ

+
(1 − λ)T|ϵ12|

λΓ(ϱ − ι − 1)

∫ T

0
(T − ℑ)ϱ−ι−2

|ςi(ℑ)|dℑ
]

+
t
|Λ|

[ (1 − λ)T|a11|

λΓ(ϱ − ι − 1)

∫ T

0
(T − ℑ)ϱ−ι−2

|ςi(ℑ)|dℑ

+
(1 − λ)|ϵ21|

λΓ(ϱ − ι)

∫ T

0
(T − ℑ)ϱ−ι−1

|ςi(ℑ)|dℑ
]

+
1 − λ
λ

1
Γ(ϱ − ι)

∫ T

0
(T − ℑ)ϱ−ι−1

|ςi(ℑ)|dℑ

≤

[1 + A1

|Λ|

(
|ϵ22|A1 + |ϵ12|A2

)
+

T
|Λ|

(
|ϵ11|A2 + |ϵ21|A1

)
+ A1

]
||ςi||∞, (i = 1, 2, 3).

Then

|Giζ +Hiς| ≤
[1 + A1

|Λ|

(
|ϵ22|ℵ1 + |ϵ12|ℵ2

)
+

T
|Λ|

(
|ϵ11|ℵ2 + |ϵ21|ℵ1

)
+ ℵ1

]
(ωi + li||ζ||X)

+
[1 + A1

|Λ|

(
|ϵ22|A1 + |ϵ12|A2

)
+

T
|Λ|

(
|ϵ11|A2 + |ϵ21|A1

)
+ A1

]
||ςi||∞

=ξ(ωi + li||ζ||X) + η||ςi||∞, (i = 1, 2, 3).

Therefore,

||Gζ +Hς||X = ||G1ζ +H1ς||∞ + ||G2ζ +H2ς||∞ + ||G3ζ +H3ς||∞

≤ ξ
∑3

i=1
(ωi + li||ζ||X) + η||ς||X

≤ ξ
∑3

i=1
(ωi + liε) + ηε ≤ ε,

that is, Gζ +Hς ∈ Ωε, for any ζ, ς ∈ Ωε.

Step 2. To show H is a contraction operator onΩε. Actually, for any ζ = (ζ1, ζ2, ζ3), ς = (ς1, ς2, ς3) ∈ Ωε, we
have

|Hiζ −Hiς| ≤
[1 + A1

|Λ|

(
|ϵ22|A1 + |ϵ12|A2

)
+

T
|Λ|

(
|ϵ11|A2 + |ϵ21|A1

)
+ A1

]
||ζi − ςi||∞,

then

||Hζ −Hς||X ≤
[1 + A1

|Λ|

(
|ϵ22|A1 + |ϵ12|A2

)
+

T
|Λ|

(
|ϵ11|A2 + |ϵ21|A1

)
+ A1

]
||ζ − ς||X

= η||ζ − ς||X.

According to (13) that H is a contraction operator, that is, the condition (c) of Theorem 2.1 holds.

Step 3. We prove that G is a completely continuous operator. Indeed, in view of the functions f1, f2, f3
are continuous, then the operator G is continuous on Ωε. Firstly, by Step 1, for any ζ(t) ∈ Ωε, t ∈ [0,T],
we obtain that G is uniformly bounded on Ωε. We only need to prove that G is equicontinuous. For any
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ζ(t) ∈ Ωε, t1, t2 ∈ [0,T], assume that 0 ≤ t1 < t2 ≤ T, we get

|Giζ(t2) − Giζ(t1)| ≤
[ (1 − λ)(|ϵ22|ℵ1 + |ϵ12|ℵ2)

λ|Λ|Γ(ϱ − ι + 1)
(tϱ−ι2 − tϱ−ι1 )

+
|a11|ℵ2 + |ϵ21|ℵ1

|Λ|
(t2 − t1) +

1
λΓ(ϱ + 1)

(tϱ2 − tϱ1)
]
(ωi + liε).

Since t, tϱ and tϱ−ι is uniformly continuous on [0,T], we have

|Giζ(t2) − Giζ(t1)| → 0, as t2 → t1 (i = 1, 2, 3),

that is, the operator G is equicontinuous on Ωε. According to Arzelá-Ascoli theorem that G is compact on
Ωε. Therefore, the condition (b) of the Theorem 2.1 holds. So, the conclusions follow from Theorem 2.1 and
the proof is complete.

Theorem 3.2. Suppose that

(C1) The functions fi ∈ C([0,T] ×R3,R), i = 1, 2, 3.

(C3) There exist constant Li > 0, (i = 1, 2, 3) such that for any t ∈ [0,T], ζi, ςi ∈ R (i = 1, 2, 3),

| fi(t, ζ1, ζ2, ζ3) − fi(t, ς1, ς2, ς3)| ≤ Li

(
|ζ1 − ς1| + |ζ2 − ς2| + |ζ3 − ς3|

)
, i = 1, 2, 3,

hold. Then the BVP (4) has a unique solution on [0,T], provided that

η + ξ
3∑

i=1

Li < 1. (14)

Proof. Let

ρ ≥
ξ
∑3

i=1 wi

1 − η − ξ
∑3

i=1 Li
,

where
w1 = max

t∈[0,T]
| f1(t, 0, 0, 0)|, w2 = max

t∈[0,T]
| f2(t, 0, 0, 0)|, w3 = max

t∈[0,T]
| f3(t, 0, 0, 0)|.

Consider the following set
Ωρ =

{
(ζ1, ζ2, ζ3) ∈ X : ||ζ||X ≤ ρ

}
,

then JΩρ ⊂ Ωρ. Indeed, for any ζ = (ζ1, ζ2, ζ3) ∈ Ωρ, t ∈ [0,T], by (C3), we obtain

| f1(t, ζ1, ζ2, ζ3)| ≤ | f1(t, ζ1, ζ2, ζ3) − f1(t, 0, 0, 0)| + | f1(t, 0, 0, 0)|

≤ L1

(
||ζ1||∞ + ||ζ2||∞ + ||ζ3||∞

)
+ w1

≤ L1ρ + w1.

Similarly,∣∣∣ f2(t, ζ1, ζ2, ζ3)
∣∣∣ ≤ L2ρ + w2,

∣∣∣ f3(t, ζ1, ζ2, ζ3)
∣∣∣ ≤ L3ρ + w3.

then, ∣∣∣J1(ζ1, ζ2, ζ3)(t)
∣∣∣ ≤1 + A1

|Λ|

{
|ϵ22|
[
A1||ζ1||∞ + ℵ1(L1ρ + w1)

]
+ |ϵ12|

[
A2||ζ1||∞ + ℵ2(L1ρ + w1)

]}
+

T
|Λ|

{
|ϵ11|
[
A2||ζ1||∞ + ℵ2(L1ρ + w1)

]
+ |ϵ21|

[
A1||ζ1||∞ + ℵ1(L1ρ + w1)

]}
+ A1||ζ1||∞ + ℵ1(L1ρ + w1)
≤ξ(L1ρ + w1) + η||ζ1||∞.
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Likewise,∣∣∣J2(ζ1, ζ2, ζ3)(t)
∣∣∣ ≤ ξ(L2ρ + w2) + η||ζ2||∞,

∣∣∣J3(ζ1, ζ2, ζ3)(t)
∣∣∣ ≤ ξ(L3ρ + w3) + η||ζ3||∞.

Therefore,

||J(ζ1, ζ2, ζ3)||X ≤ ηρ + ξ(L1ρ + w1 + L2ρ + w2 + L3ρ + w3) ≤ ρ.

This means that JΩρ ⊂ Ωρ. Furthermore, given that fi ∈ C([0,T] × R3,R), i = 1, 2, 3, it follows that Jζ ∈ X
for all ζ ∈ X, which indicates that J also maps X into itself. Now, we prove that J is a contraction mapping.
In fact, for any ζ = (ζ1, ζ2, ζ3), ς = (ς1, ς2, ς3) ∈ X, let

Fiζ(ℑ) = fi
(
ℑ, ζ1(ℑ), ζ2(ℑ), ζ3(ℑ)

)
,

Fiς(ℑ) = fi
(
ℑ, ς1(ℑ), ς2(ℑ), ς3(ℑ)

)
, i = 1, 2, 3,

then, we get

|Jiζ − Jiς| ≤
1
|Λ|

[
1+

(1 − λ)tϱ−ι

λΓ(ϱ − ι + 1)

]{
|ϵ22|

[ 1 − λ
λΓ(ϱ − ι)

∫ T

0
(T − ℑ)ϱ−ι−1

|ζi(ℑ)−ςi(ℑ)|dℑ

+
1

λΓ(ϱ)

∫ T

0
(T − ℑ)ϱ−1

|Fiζ(ℑ) − Fiς(ℑ)|dℑ
]

+ |ϵ12|

[ (1 − λ)T
λΓ(ϱ − ι − 1)

∫ T

0
(T − ℑ)ϱ−ι−2

|ζi(ℑ)−ςi(ℑ)|dℑ

+
T

λΓ(ϱ − 1)

∫ T

0
(T − ℑ)ϱ−2

|Fiζ(ℑ)−Fiς(ℑ)|dℑ
]}

+
t
|Λ|

{
|ϵ11|

[ (1 − λ)T
λΓ(ϱ − ι − 1)

∫ T

0
(T − ℑ)ϱ−ι−2

|ζi(ℑ) − ςi(ℑ)|dℑ

+
T

λΓ(ϱ − 1)

∫ T

0
(T − ℑ)ϱ−2

|Fiζ(ℑ) − Fiς(ℑ)|dℑ
]

+ |ϵ21|

[ 1 − λ
λΓ(ϱ − ι)

∫ T

0
(T − ℑ)ϱ−ι−1

|ζi(ℑ) − ςi(ℑ)|dℑ

+
1

λΓ(ϱ)

∫ T

0
(T − ℑ)ϱ−1

|Fiζ(ℑ) − Fiς(ℑ)|dℑ
]}

+
1 − λ
λ

1
Γ(ϱ − ι)

∫ t

0
(t−ℑ)ϱ−ι−1

|ζi(ℑ)−ςi(ℑ)|dℑ+
1

λΓ(ϱ)

∫ t

0
(t−ℑ)ϱ−1

|Fiζ(ℑ)−Fiς(ℑ)|dℑ

≤
1 + A1

|Λ|

[
|ϵ22|(A1||ζi − ςi||∞ + ℵ1Li||ζ − ς||X) + |ϵ12|(A2||ζi − ςi||∞ + ℵ2Li||ζ − ς||X)

]
+

T
|Λ|

[
|ϵ11|(A2||ζi − ςi||∞ + ℵ2Li||ζ − ς||X) + |ϵ21|[A1||ζi − ςi||∞ + ℵ1Li||ζ − ς||X)

]
+ A1||ζi − ςi||∞ + ℵ1Li||ζ − ς||X
=ξLi||ζ − ς||X + η||ζi − ςi||∞, i = 1, 2, 3.

Thus,

||Jζ − Jς||X ≤
[
ξ(L1 + L2 + L3) + η

]
||ζ − ς||X. (15)

Form (14), we deduce that J is a contraction. Applying Theorem 2.2, we know that the operator J has a
unique fixed point on ζ ∈ Ωρ, that is, the BVP (4) exists a unique solution. The proof is therefore complete.
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4. Ulam stability analysis

In this section, we will certificate that the Ulam-Hyers and Ulam-Hyers-Rassias stabilities of BVP (4).
Firstly, we provide the stability concepts of BVP (4). Let θi > 0, the functions fi ∈ C([0,T]×R3,R) (i = 1, 2, 3)
and φi(t) ∈ C([0,T],R+), (i = 1, 2, 3) are non-decreasing functions. Consider the following inequalities:∣∣∣λCDϱ

0+ζi(t) + (1 − λ)CDι
0+ζi(t) − fi(t, ζ1(t), ζ2(t), ζ3(t))

∣∣∣ ≤ θi, t ∈ [0,T]. (16)∣∣∣λCDϱ
0+ζi(t) + (1 − λ)CDι

0+ζi(t) − fi(t, ζ1(t), ζ2(t), ζ3(t))
∣∣∣ ≤ φi(t)θi, t ∈ [0,T]. (17)

Definition 4.1. BVP (4) is called Ulam-Hyers stable, if there is a constant c f1, f2, f3 > 0 such that for each
θ = θ(θ1, θ2, θ3) > 0 and for any solution ς = (ς1, ς2, ς3) ∈ X of the inequalities (16) and (6), there exists a
solution ζ = (ζ1, ζ2, ζ3) ∈ X of (4) with

||ζ − ς||X ≤ c f1, f2, f3θ.

Definition 4.2. BVP (4) is called Ulam-Hyers-Rassias stable with respect to φ = φ(φ1, φ2, φ3) ∈ C([0,T],R+),
if there exists a constant c f1, f2, f3,φ > 0 such that for any θ = θ(θ1, θ2, θ3) > 0 and for each solution ς =
(ς1, ς2, ς3) ∈ X of the inequalities (17) and (6), there exists a solution ζ = (ζ1, ζ2, ζ3) ∈ X of (4) with

||ζ − ς||X ≤ c f1, f2, f3,φθφ(t), t ∈ [0,T].

Remark 4.1. For ϑ = (ϑ1, ϑ2, ϑ3) ∈ X be a solution of (16) and (6), if there exist the functions ϕi(t) ∈
C([0,T],R) (i = 1, 2, 3) such that

(i) |ϕi(t)| ≤ θi, t ∈ [0,T], (i = 1, 2, 3);

(ii) λCDϱ
0+ϑi(t) + (1 − λ)CDι

0+ϑi(t) = fi
(
t, ϑ1(t), ϑ2(t), ϑ3(t)

)
+ ϕi(t), t ∈ [0,T], i = 1, 2, 3.

Remark 4.2. For ϑ = (ϑ1, ϑ2, ϑ3) ∈ X be a solution of (17) and (6), if there exist the functions ψi ∈

C([0,T],R) (i = 1, 2, 3) such that

(i) |ψi(t)| ≤ φi(t)θi, t ∈ [0,T], (i = 1, 2, 3);

(ii) λCDϱ
0+ϑi(t) + (1 − λ)CDι

0+ϑi(t) = fi(t, ϑ1(t), ϑ2(t), ϑ3(t)) + ψi(t), t ∈ [0,T], i = 1, 2, 3.

We now present a comprehensive set of conditions to demonstrate that the BVP (4) exhibits Ulam-Hyers
stability and Ulam-Hyers-Rassias stability, as established in the following theorems.

Theorem 4.1. Assume that (C1), (C3) and (14) are satisfied. Let u = (u1,u2,u3) ∈ X be the solution of the
BVP (4) and ϑ = (ϑ1, ϑ2, ϑ3) ∈ X is the solution of the inequalities (16) and (6). Then, BVP (4) is Ulam-Hyers
stable if there exists a constant c f1, f2, f3 > 0 such that for any θ = θ(θ1, θ2, θ3) > 0,

||u − ϑ||X ≤ c f1, f2, f3θ.

Proof. In view of ϑ is the solution of (16) and (6), from Remark 4.1, ϑi is the solution of following problemλCDϱ
0+ϑi(t) + (1 − λ)CDι

0+ϑi(t) = fi
(
t, ϑ1(t), ϑ2(t), ϑ3(t)

)
+ ϕi(t), t ∈ [0,T], i = 1, 2, 3,

ϑi(T) = aϑi(0) + bTϑ′i (0), Tϑ′i (T) = cϑi(0) + dTϑ′i (0).
(18)
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By Lemma 3.2, the solution ϑ = (ϑ1, ϑ2, ϑ3) ∈ X of BVP (18) can be written by

ϑi(t) =
1
Λ

[
1 +

(1 − λ)tϱ−ι

λΓ(ϱ − ι + 1)

]{
− ϵ22

[ 1 − λ
λΓ(ϱ − ι)

∫ T

0
(T − ℑ)ϱ−ι−1ϑi(ℑ)dℑ

−
1

λΓ(ϱ)

∫ T

0
(T − ℑ)ϱ−1

(
F̃i(ℑ) + ϕi(ℑ)

)
dℑ
]
+ϵ12

[ (1 − λ)T
λΓ(ϱ − ι − 1)

∫ T

0
(T − ℑ)ϱ−ι−2ϑi(ℑ)dℑ

−
T

λΓ(ϱ − 1)

∫ T

0
(T − ℑ)ϱ−2

(
F̃i(ℑ) + ϕi(ℑ)

)
dℑ
]}
+

t
Λ

{
− ϵ11

[ (1 − λ)T
λΓ(ϱ − ι − 1)

×

∫ T

0
(T − ℑ)ϱ−ι−2ϑi(ℑ)dℑ −

T
λΓ(ϱ − 1)

∫ T

0
(T − ℑ)ϱ−2

(
F̃i(ℑ) + ϕi(ℑ)

)
dℑ
]

+ ϵ21

[ 1 − λ
λΓ(ϱ − ι)

∫ T

0
(T − ℑ)ϱ−ι−1ϑi(ℑ)dℑ −

1
λΓ(ϱ)

∫ T

0
(T − ℑ)ϱ−1

(
F̃i(ℑ) + ϕi(ℑ)

)
dℑ
]}

−
1 − λ

λΓ(ϱ − ι)

∫ t

0
(t − ℑ)ϱ−ι−1ϑi(ℑ)dℑ +

1
λΓ(ϱ)

∫ t

0
(t − ℑ)ϱ−1

(
F̃i(ℑ) + ϕi(ℑ)

)
dℑ, (i = 1, 2, 3),

where

F̃i(ℑ) = fi(ℑ, ϑ1(ℑ), ϑ2(ℑ), ϑ3(ℑ)), (i = 1, 2, 3).

Since (C1), (C3) and (14) hold and u ∈ X is a solution of BVP (4), it follows from Theorem 3.2 that u is a
unique solution of problem (4) and Ju = u. Then by (15), we obtain

||Ju − Jϑ||X = ||u − Jϑ||X ≤
[
ξ(L1 + L2 + L3) + η

]
||u − ϑ||X,

this implies that

||u − ϑ||X ≤
||Jϑ − ϑ||X

1 − ξ(L1 + L2 + L3) − η
. (19)

On the other hand, we have∣∣∣∣J1(ϑ1, ϑ2, ϑ3)(t) − ϑ1(t)
∣∣∣∣

≤
1
|Λ|

[
1 +

(1 − λ)tϱ−ι

λΓ(ϱ − ι + 1)

][
|ϵ22|

λΓ(ϱ)

∫ T

0
(T − ℑ)ϱ−1

|ϕ1(ℑ)|dℑ

+
|ϵ12|T

λΓ(ϱ − 1)

∫ T

0
(T − ℑ)ϱ−2

|ϕ1(ℑ)|dℑ
]
+

t
|Λ|

[
|ϵ11|T

λΓ(α − 1)

∫ T

0
(T − ℑ)ϱ−2

|ϕ1(ℑ)|dℑ

+
|ϵ21|

λΓ(ϱ)

∫ T

0
(T − ℑ)ϱ−1

|ϕ1(ℑ)|dℑ
]
+

1
λΓ(ϱ)

∫ t

0
(t − ℑ)ϱ−1

|ϕ1(ℑ)|dℑ

≤

[1 + A1

|Λ|

(
|ϵ22|ℵ1 + |ϵ12|ℵ2

)
+

T
|Λ|

(
|ϵ11|ℵ2 + |ϵ21|ℵ1

)
+ ℵ1

]
θ1 = ξθ1.

Likewise,∣∣∣∣J2(ϑ1, ϑ2, ϑ3)(t) − ϑ2(t)
∣∣∣∣ ≤ ξθ2,

∣∣∣∣J3(ϑ1, ϑ2, ϑ3)(t) − ϑ3(t)
∣∣∣∣ ≤ ξθ3.

Hence,

||Jϑ − ϑ||X =||J1(ϑ1, ϑ2, ϑ3) − ϑ1||∞ + ||J2(ϑ1, ϑ2, ϑ3) − ϑ2||∞

+ ||J3(ϑ1, ϑ2, ϑ3) − ϑ3||∞ ≤ ξ
∑3

i=1
θi.



W. Zhang, X. Fu / Filomat 39:23 (2025), 8175–8192 8188

Let θ = max{θ1, θ2, θ3}, according to (19) that

||u − ϑ||X ≤
3ξθ

1 − ξ(L1 + L2 + L3) − η
.

Therefore, the BVP (4) is Ulam-Hyers stable. The proof is complete.

Theorem 4.2. Assume that (C1), (C3) and (14) are satisfied. Let u = (u1,u2,u3) ∈ X be the solution of the
BVP (4), ϑ = (ϑ1, ϑ2, ϑ3) ∈ X is the solution of the inequalities (17) and (6), φi ∈ C([0,T],R+), (i = 1, 2, 3) and
there exist ρφi > 0, such that for each t ∈ [0,T],

Iϱ0+φi(t) ≤ ρφiφi(t) and Iϱ−1
0+ φi(t) ≤ ρφiφi(t), i = 1, 2, 3.

Then, BVP (4) is Ulam-Hyers-Rassias stable if there exists a constant c f1, f2, f3,φ > 0 and φ ∈ C([0, 1],R+) such
that for each θ = θ(θ1, θ2, θ3) > 0,

||u − ϑ||X ≤ c f1, f2, f3,φθφ(t), t ∈ [0,T].

Proof. Let ϑ is the solution of (17) and (6), from Remark 4.2, ϑ = (ϑ1, ϑ2, ϑ3) ∈ X can be written by

ϑi(t) =
1
Λ

[
1 +

(1 − λ)tϱ−ι

λΓ(ϱ − ι + 1)

]{
− ϵ22

[ 1 − λ
λΓ(ϱ − ι)

∫ T

0
(T − ℑ)ϱ−ι−1ϑi(ℑ)dℑ

−
1

λΓ(ϱ)

∫ T

0
(T − ℑ)ϱ−1

(
F̃i(ℑ) + ψi(ℑ)

)
dℑ
]
+ ϵ12

[ (1 − λ)T
λΓ(ϱ − ι − 1)

∫ T

0
(T − ℑ)ϱ−ι−2ϑi(ℑ)dℑ

−
T

λΓ(ϱ − 1)

∫ T

0
(T − ℑ)ϱ−2

(
F̃i(ℑ) + ψi(ℑ)

)
dℑ
]}
+

t
Λ

{
− ϵ11

[ (1 − λ)T
λΓ(ϱ − ι − 1)

×

∫ T

0
(T − ℑ)ϱ−ι−2ϑi(ℑ)dℑ −

T
λΓ(ϱ − 1)

∫ T

0
(T − ℑ)ϱ−2

(
F̃i(ℑ) + ψi(ℑ)

)
dℑ
]

+ ϵ21

[ 1 − λ
λΓ(ϱ − β)

∫ T

0
(T − ℑ)ϱ−ι−1ϑi(ℑ)dℑ −

1
λΓ(ϱ)

∫ T

0
(T − ℑ)ϱ−1

(
F̃i(ℑ) + ψi(ℑ)

)
dℑ
]}

−
1 − λ

λΓ(ϱ − ι)

∫ t

0
(t − ℑ)ϱ−ι−1ϑi(ℑ)dℑ +

1
λΓ(ϱ)

∫ t

0
(t − ℑ)ϱ−1

(
F̃i(ℑ) + ψi(ℑ)

)
dℑ, (i = 1, 2, 3),

where F̃i(ℑ) defined as before. Note that u = (u1,u2,u3) ∈ X is a solution of BVP (4), and (C1), (C3) and (14)
are hold, by Theorem 3.2, we derive that u is a unique solution of BVP (4) and Ju = u. This combined with
(15), it follows

||Ju − Jϑ||X = ||u − Jϑ||X ≤
[
ξ(L1 + L2 + L3) + η

]
||u − ϑ||X,

we can deduce that

||u − ϑ||X ≤
||Jϑ − ϑ||X

1 − ξ(L1 + L2 + L3) − η
. (20)
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On the other hand, we have∣∣∣J1(ϑ1, ϑ2, ϑ3)(t) − ϑ1(t)
∣∣∣

≤
1
|Λ|

[
1 +

(1 − λ)tϱ−ι

λΓ(ϱ − ι + 1)

][
|ϵ22|

λΓ(ϱ)

∫ T

0
(T − ℑ)ϱ−1

|ψ1(ℑ)|dℑ

+
|ϵ12|T

λΓ(ϱ − 1)

∫ T

0
(T − ℑ)ϱ−2

|ψ1(ℑ)|dℑ
]
+

t
|Λ|

[
|ϵ11|T

λΓ(ϱ − 1)

∫ T

0
(T − ℑ)ϱ−2

|ψ1(ℑ)|dℑ

+
|ϵ21|

λΓ(ϱ)

∫ T

0
(T − ℑ)ϱ−1

|ψ1(ℑ)|dℑ
]
+

1
λΓ(ϱ)

∫ t

0
(t − ℑ)ϱ−1

|ψ1(ℑ)|dℑ

≤
1 + A1

|Λ|

[
|ϵ22|

λΓ(ϱ)

∫ T

0
(T − ℑ)ϱ−1

|θ1φ1(ℑ)|dℑ +
|ϵ12|T

λΓ(ϱ − 1)

∫ T

0
(T − ℑ)ϱ−2

|θ1φ1(ℑ)|dℑ
]

+
T
|Λ|

[
|ϵ11|T

λΓ(ϱ − 1)

∫ T

0
(T − ℑ)ϱ−2

|θ1φ1(ℑ)|dℑ +
|ϵ21|

λΓ(ϱ)

∫ T

0
(T − s)ϱ−1

|θ1φ1(ℑ)|dℑ
]

+
1

λΓ(ϱ)

∫ t

0
(t − ℑ)ϱ−1

|θ1φ1(ℑ)|dℑ

≤

[1 + A1

|Λ|

|ϵ22| + |ϵ12|T
λ

+

(
|ϵ11|T + |ϵ21|

)
T

|Λ|λ
+

1
λ

]
θ1ρφ1φ1(t).

Similarly,

∣∣∣J2(ϑ1, ϑ2, ϑ3)(t) − ϑ2(t)
∣∣∣ ≤ [1 + A1

|Λ|

|ϵ22| + |ϵ12|T
λ

+

(
|ϵ11|T + |ϵ21|

)
T

|Λ|λ
+

1
λ

]
θ2ρφ2φ2(t),

∣∣∣J3(ϑ1, ϑ2, ϑ3)(t) − ϑ3(t)
∣∣∣ ≤ [1 + A1

|Λ|

|ϵ22| + |ϵ12|T
λ

+

(
|ϵ11|T + |ϵ21|

)
T

|Λ|λ
+

1
λ

]
θ3ρφ3φ3(t).

Thus,

||Jϑ − ϑ||X =||J1(ϑ1, ϑ2, ϑ3) − ϑ1||∞ + ||J2(ϑ1, ϑ2, ϑ3) − ϑ2||∞ + ||J3(ϑ1, ϑ2, ϑ3) − ϑ3||∞

≤

[1 + A1

|Λ|

|ϵ22| + |ϵ12|T
λ

+

(
|ϵ11|T + |ϵ21|

)
T

|Λ|λ
+

1
λ

][
θ1ρφ1φ1(t)+θ2ρφ2φ2(t)+θ3ρφ3φ3(t)

]
.

Let θ = max{θ1, θ2, θ3}, φ(t) = max
{
φ1(t), φ2(t), φ3(t)

}
, from (20), we get

||u − ϑ||X ≤

[
(1 + A1)(|ϵ22| + |ϵ12|T) + (|ϵ11|T + |ϵ21|)T + |Λ|

]
(ρφ1 + ρφ2 + ρφ3 )θφ(t)

|Λ|λ
[
1 − ξ(L1 + L2 + L3) − η

] , t ∈ [0,T].

Let

c f1, f2, f3,φ =

[
(1 + A1)(|ϵ22| + |ϵ12|T) + (|ϵ11|T + |ϵ21|)T + |Λ|

]
(ρφ1 + ρφ2 + ρφ3 )

|Λ|λ
[
1 − ξ(L1 + L2 + L3) − η

] .

Then, the BVP (4) is Ulam-Hyers-Rassias stable. The theorem has been proved.
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5. Example

Example 5.1. Let ϱ =
7
4
, ι =

1
4
, λ =

9
10
, a = 2, b = 4, c = 1, d = 3, T = 2. We consider the following

equation:
9

10
CD7/4

0+ζi(t) +
1
10

CD1/4
0+ζi(t) = fi

(
t, ζ1(t), ζ2(t), ζ3(t)

)
, t ∈ [0,T], i = 1, 2, 3,

ζi(2) = 2ζi(0) + 8ζ′i (0), 2ζ′i (2) = ζi(0) + 6ζ′i (0),
(21)

where

f1(t, ζ1(t), ζ2(t), ζ3(t)) =
sin ζ1(t)

80(1 + et)
+

cos ζ2(t)

10(2 + t)4 +
ζ2

3(t)

16
√

100 + t2(1 + |ζ3(t)|)
+ log3(1 + t),

f2(t, ζ1(t), ζ2(t), ζ3(t)) =
cos ζ1(t)

80 + 10(2 + t)3 +
sin ζ2(t)

10(3et + 1)2 + (
1 + t

12
√

10
)2ζ3(t) + et,

f3(t, ζ1(t), ζ2(t), ζ3(t)) =
3ζ1(t)

(10
√

6 + t)
2 +

log3(1 + t)
200

ζ2(t) +
1 + t

4(5 + t)2 ζ3(t) + cos t + 1.

We choose

κ1(t) =
1

80(2 + et)
, ȷ1(t) =

1

10(2 + t)4 , ν1(t) =
1

16
√

100 + t2
, ω1(t) = log3(1 + t),

κ2(t) =
1

80 + 10(2 + t)3 , ȷ2(t) =
1

10(3et + 1)2 , ν2(t) = (
1 + t

12
√

10
)2, ω2(t) = et,

κ3(t) =
3

(10
√

6 + t)
2 , ȷ3(t) =

log3(1 + t)
200

, ν3(t) =
1 + t

4(5 + t)2 , ω3(t) = cos t + 1,

the conditions (C1) and (C2) are satisfied. Besides, through calculate, we obtain

κ1 = κ2 =
1

160
, ȷ1 = ȷ2 =

1
160

, ν1 = ν2 =
1

160
,

κ3 =
1

200
, ȷ3 =

1
200

, ν3 =
1

100
, l1 = l2 =

3
160

, l3 =
1

50
,

ϵ11 ≈ 2.7636, ϵ12 = 2, ϵ21 ≈ 0.6454, ϵ22 = 4,
Λ ≈ 9.7636, ξ ≈ 5.1824, η ≈ 0.6779.

Hence,

ξ
3∑

i=1

li + η ≈ 0.9759 < 1,

that is, the condition (13) established. According to Theorem 3.1 we know that the BVP (21) at least one
solution on [0,T].

Example 5.2. Let ϱ =
7
4
, ι =

1
2
, λ =

25
26
, a = 5, b = 2, c = 1, d = 2, T = 2. Then equation as follows:

25
26

CD7/4
0+ζi(t) +

1
26

CD1/4
0+ζi(t) = fi

(
t, ζ1(t), ζ2(t), ζ3(t)

)
, t ∈ [0, 2], i = 1, 2, 3,

ζi(2) = 5ζi(0) + 4ζ′i (0), 2ζ′i (2) = ζi(0) + 4ζ′i (0),
(22)
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where

f1(t, ζ1(t), ζ2(t), ζ3(t)) =
|ζ1(t)|

48(1 + |ζ1(t)|)
+

sin ζ2(t)
48et +

ζ3(t)

12(1 + et)2 ,

f2(t, ζ1(t), ζ2(t), ζ3(t)) =
ζ1(t)
24et +

ζ2(t)

12
√

4 + t2
+

ζ3(t)
12(1 + et)

,

f3(t, ζ1(t), ζ2(t), ζ3(t)) =
ζ1(t)

(2
√

3 + t)
2 +

ζ2(t)

3(et + 1)2 +
log9(1 + t)

24
ζ3(t).

We take

L1 =
1

48
, L2 =

1
96
, L3 =

1
48
,

then conditions (C1) and (C3) are met. By easily calculate, we get

ϵ11 = 3.9160, ϵ12 = 2, ϵ21 = 0.8950, ϵ22 = 2, Λ = 6.042, ξ = 9.8988, η = 0.4032.

Therefore,

η + ξ
3∑

i=1

Li ≈ 0.9188 < 1,

that is, the condition (14) are satisfied. So, the BVP (22) has a unique solution on [0,T]. Besides, we can
easily obtain that the equation (22) is Ulam-Hyers stable. Next, we will prove that the equation (22) is
Ulam-Hyers-Rassias stable. Let

φ1(t) = t + 1, φ2(t) = t3 + 1, φ3(t) = t4 + 1, t ∈ [0,T],

and choose ρφ1 = 4, ρφ2 = 6.8, ρφ3 = 10.5, we obtain

Iϱ0+φ1(t) =
[ t
Γ(ϱ + 2)

+
1

Γ(ϱ + 1)

]
tϱ ≤ 3.6122 ≤ 4φ1(t),

Iϱ−1
0+ φ1(t) =

[ t
Γ(ϱ + 1)

+
1
Γ(ϱ)

]
tϱ−1
≤ 3.921 ≤ 4φ1(t),

Iϱ0+φ2(t) =
[ Γ(4)t3

Γ(ϱ + 4)
+

1
Γ(ϱ + 1)

]
tϱ ≤ 4.1406 ≤ 6.8φ2(t),

Iϱ−1
0+ φ2(t) =

[ Γ(4)t3

Γ(ϱ + 3)
+

1
Γ(ϱ)

]
tϱ−1
≤ 6.6958 ≤ 6.8φ2(t),

Iϱ0+φ3(t) =
[ Γ(5)t4

Γ(ϱ + 5)
+

1
Γ(ϱ + 1)

]
tϱ ≤ 4.9424 ≤ 10.5φ3(t),

Iϱ−1
0+ φ3(t) =

[ Γ(5)t4

Γ(ϱ + 4)
+

1
Γ(ϱ)

]
tϱ ≤ 10.0262 ≤ 10.5φ3(t).

By Theorem 4.2, we deduce the BVP (22) is Ulam-Hyers-Rassias stable.

6. Conclusion

In the present manuscript, we delve into the exploration of existence and uniqueness solutions to a
class of tripled system of nonlinear FDEs, characterized by closed boundary conditions. Utilizing the
Krasnoselskii and Banach fixed point theorems, we ascertain the existence and uniqueness of solutions
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for the problem at hand, contingent upon certain assumptions related to the nonlinear term functions. In
addition, we conduct an analysis of the Ulam stability with respect to the proposed BVP (4). The principal
findings are illustrated comprehensively with the support of pertinent examples. This study further
expands the scope of research on fractional BVPs for multi-term FDEs and tripled fractional systems.
Moreover, it refines and enhances relevant works in existing literature, providing new perspectives for
future investigations. Building upon the theoretical foundation of this study, our subsequent work will
continue to explore the tripled system of nonlinear FDEs, with a focus on analyzing the cyclic closed BVPs
of the fractional tripled system involving generalized fractional differential operators, investigating the
nonlocal boundary value problem of the hybrid fractional tripled system, and discussing the dual BVPs of
the fractional tripled q-difference system.
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