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Abstract. This study aims to derive new Milne’s rule type inequalities for quantum differentiable («, m)-
convex functions within the quantum calculus framework. It broadens the scope of integral inequalities,
by introducing quantum calculus version of Holder inequality and power mean inequality. Furthermore
the study introduces a more direct and less restrictive proof strategy for establishing these inequalities.
We established quantum inequalities and validate their correctness through numerical examples. Our

finding enhance the understanding of quantum inequalities and their comparative analysis for (a, m)-
convex functions.

1. Introduction and Preliminaries

The theory of convex functions is a crucial foundation in various discipline of pure and applied
mathematics[4, 34]. Convexity theory is widely recognized for its crucial applications in the field of

special functions [7, 13, 33, 35], inequality theory , [8, 22, 31], and references are cited therein.

Definition 1.1. [16] A function f : I — R, where I is a nonempty subset of R, is considered convex on I if the
inequality

fleto+ (1 —&)r1) < ef(t0) + (1 =€) f (1), 1)
holds true for all tg, T4 € I and € € [0,1].
Definition 1.2. [15] Let I C R be an interval that contains the zero or is bounded on one side by zero. Let a,, m € [0, 1]
with a > 0 be given numbers. A function f : I — R is called (o, m)- convex if the inequality

fleto + m(l = &)11) < € f(10) + m(1 — %) f(11), (2)

hold for all T, 1 € I and for all coefficient € € [0, 1]. We denote K&,(t1), the class of all («t, m)- convex function on the
interval 1o, 11] satisfying f(0) < 0.
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Initially the concepts of m-convexity (see[27]) and («, m)-convexity (see[15]) were developed for functions
with a domain restricted to the interval [0, 71] where 7, is the positive number. It is evident that when
(a, m) = (1, m) then inequality (2) reduces to generalized m-convex functions. If (o, m) = (1, 1) then inequality
(2) reduces to generalized convex functions on the interval [0, 71]. For various results related to (a, m)-convex
functions readers may explore works [19, 20, 29, 32] for further detail. Inequalities play a crucial role in
various branches of mathematics offering unique properties and numerous applications. However, the
systematic exploration of inequalities and their properties gained significant prominence during the 17th
and 18th centuries. Among the early contributors, Thomas Harriot was the first to use the inequality symbol
to represent the well-known mean inequalities. He later applied these inequalities in his work to solve
equations. Beyond individual inequalities Hardy made foundational contributions to the field, often being
regarded as the “father of Inequalities”. He established the Journel of the London Mathematical Society, a
significant platform for publishing research on inequalities. Furthermore along with Littlewood and Polya,
he co-edited Inequalities, the first monograph on the subject. Work on the book began in 1929, and it was
published in 1934, solidifying its importance in mathematical literature.

The first known relationship between convex functions and integrals is given by Hermite-Hadamard
inequality. Introduced by Hermite [10] in 1883 and subsequently proved by Hadamard [9] in 1893, this
inequality is stated in the following form.

To +T1 f f f(70)+f(T1)

A= 3)

It holds for convex function, while the reverse is true for concave functions.
In [21], E. Set, et al. established Hadamard type inequalities for (@, m)-convex functions in their work:

Theorem 1.3. [21] Let f : [0,00) — R be an (a, m)-convex function with (o, m) € (0,1]%. If 0 < 79 < 71 < o0 and
f € Li[to, 11] N Ly[ 32, 311, then the subsequent inequality is valid:

f(ToJZrn)SZa( 1 fmﬁ (f(y)+m —Df(ﬁ)) @

T1 = T0)

Theorem 1.4. [21] Let f : [0,00) — R be an (a, m)-convex function with (o, m) € (0,1]%. If 0 < 79 < 71 < o0 and
f € Lilto, T1], then the subsequent inequality is valid:

(5)

a+1

g L fT0) + Flr) + maf() + maf(®)
[ st < 3 )

T1 — To

In [28], Demir, et al. established various integral inequalities concerning the right-hand side of Hermite-
Hadamard- type inequalities within the framework of the proportional Caputo hybrid operator. Quantum
calculus was introduced by FH Jackson [11, 12] in the early twentieth century, though its concepts had
already been explored by Euler and Jacobi. Recently, interest in g-calculus has grown due to increasing
need for mathematical framework in quantum computing. In g-calculus, the emphasis is on g-analogue
that emerge naturally, rather than intentionally devising q analogue of established results. It has various
applications across multiple branches of mathematics including Euler polynomials hyper-geometric func-
tions and gamma function theory. Furthermore, it is extensively used in scientific fields such as quantum
theory, mechanics and the theory of relativity. Numerous mathematicians have explored various aspects of
g-calculus analysis, as evident in the works of [2, 6, 18]. This section provide a brief overview of quantum
calculus fundamentals given for clarity and ease of new readers.

In [30] Xu et al. established new Hermite-Hadamard inequality for (a, m)-convex function in their work:

Theorem 1.5. [30]Ifk : [t2, 73] € R — Risatwice q™-differentiable function on (t2, T3), such that dDﬁk € C[ty, 3]
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and integrable on [Ty, T3] provided that | dD;kl is (o, m)-convex on [T, T3] then, the subsequent inequality is valid

k k mts
‘ (Tz) +q (ng) _ 1 f k(t)m'fgdqg

[2]q mt3 — T2
1 [a +3]; —gla+2],
[2],[3]4 [a+2],[a + 3],

<

2(ms — o) la +3], - 2
q (THT3 T2) [[Oé-f- ]q 9][05+ ]q|T3DI{;(T2)|

1+g [a +2];[a + 3],

(6)

+ m( )| T3D§k(’53)|].

In [1] Akbar, et al. introduced some new extensions of Hermite Hadamard inequality. Tariboon and
Ntouyas [26] introduced and developed the concepts of left g,o-derivative and integral in 2013. They also
explore their fundamental properties. The following definitions, originally presented in their work:

Definition 1.6. [26] Let f : [19,71] — R be a continuous function. Then the q.,-derivative of f at u € (to, 71] is
defined by
fW) = f(70 +q(p — 70)

A-qu-m)

TUqu(.U) =

The g, integral is mathematically defined as

L e8]
f F@)dge = (1= )t = 0) Y_ 4" f(ro + 7" (1t = 70)).
7o n=0

In [14], Budak, et al. established Newton-type inequalities for convex functions using g-derivatives and
g-integrals.

In 2020, Bermudo et al.[3] introduced new definitions of quantum derivatives and integrals, adopting a
distinct approach. Specifically they developed the concept of right or 4™ derivative and integral. They also
explore their fundamental properties of the given operator. The following definitions, originally presented
in their work:

Definition 1.7. [3] Let f : [to, T1] — R be a continuous function. Then the q“'-derivative of f at u € [, T1) is

defined by
St +q(u =) = f()
A-g(r-w

Tquf(‘u) -

The q"-integral is mathematically defined as

f fO e = (L= e - ) Y g (T + " = ).
[ n=0

The authors provides the following formulas for g-integration by parts:

Lemma 1.8. [25] For a continuous functions h, f : [to, T1] = R, the subsequent equality is valid:

fo (e)e Dyf (o + £(t1 — T0)odye
_ ) f(ro + e(m1 - 70)

71— 7o

T2 1
0 T1—T

f 2 f(o +ge(t1 — 10)) 0Dgh(e) odge.  (7)
0 Jo

Lemma 1.9. [23] For a continuous functions h, f : [to, T1] = R, the subsequent equality is valid:

f ’ h(e) " Dy f (11 + ge(T1 — T0))odye
0

-1 fo 2 f(t1 + ge(to — 11))oDgh(e)odye —

T1 — To

h(e)f(t1 + e(to — 1)) |
T1 - To 0
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In [24] Sial et al. established new equality (9) by using quantum differentiable function:

Lemma 1.10. [24] Let f : [1o,T1] — R be a g-differentiable function. If ©'D,f(¢) is g-integrable on [T, T1], then
the subsequent equality is valid:

)Tldqy—g[Zf(3TO+T1) f(TQ;-Tl) 2f(10+3’51)]
= (b—ﬂ)[h +h+13+14],

where
I = f ge "Dy f(t1 + &(t0 — T1))dye
0
Loy
I = f: (qe - 5) "Dy f(t1 + e(t0 — T1))dye
b1y,
I3 = f; (qe - 5) "Dy f(t1 + e(t0 — T1))d4e

I = f (qs - %) D, (T + (o — T))dye.

1

In [24] Sial et al. established new Milne’s type inequality in quantum calculus for differentiable convex
function:

Theorem 1.11. [24] Let us assume that the assumption of Lemma 2.6 hold. If | “D,f |V is convex on [tg, T1] and
L+ 1 =1 withx,v>1, then the subsequent inequality is valid:

ff(#)ﬁdq# S[Zf(370+11) f(70+11) 2f(T0+3T1)”

st ey (2 g

([ e 2 (L2l B/l
+ f % g — % “dqg)i(ﬂ "D, f(wo)| + <1—61[2+] 49| "D, f(ra)'|! )

+(f(1_q€),<dq 1’( | Daf o) +i6[32]+q4q)) D f(m)] | il

In recent developments within finite element theory, Nudo et al. [5, 17] has proposed enriched Crouzeix-
Raviart elements through the integration of quadratic and cubic polynomial functions, accompanied by
additional generalized degrees of freedom. These enhancements supported by carefully constructed ad-
missible families, have demonstrated significant improvement in numerical accuracy. Such enrichment
techniques motivated by the need to refine classical structures reflect a broader trend in mathematical
analysis toward extending foundational framework. Inspired by this direction, the present work explores
analogous enrichment within the realm of quantum calculus, aiming to establish new quantum inequalities
by incorporating refined functional form and integrability conditions.
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2. Main Results

In this section, we establish some Milne’s type inequalities in quantum calculus for differentiable («, m)-
convex functions. For clarity and brevity, we will use the following notation of quantum numbers:

=) q,0<g<l

Theorem 2.1. Let us assume that the assumptions of Lemma 1.10 hold. If | D, flis (a, m)-convex on 1o, T1], then
the subsequent inequality is valid :

‘_f ) gt S[Zf(3’£o+’£1) f(70+11) Zf(70+371)H

(3)(4)**2 + (2 + 3%+ — 29%2)(3g[ar + 1], — 4o + 214))
G)@)*?[a + 1o +2],]

< (11 = )| | "Dy f(xo) (Al(an

T 5 9q 2(1 = 20+1) + 3(3a+1 — 4a+1) an
T1 _1 - — —
m| " Daf ( m ) (AZ( ASTRETS ( 3(@) 1 a + 1], )
B q(z(l _ 2a+1) + (3a+2 _ 4a+2) ))]
4942[qr + 2], !
where
i 1
Ai(g) = ﬁ &%ge - 3 dge, (12)
and
i 1
Ax(g) = ﬁ (1—-¢%|ge - 3 dge (13)
Proof. By Lemma 1.10, we have
1 o - 379+ 11 To + T1 To + 3171
o a3 () s e ar (R
<(t - To)[f q£| Dy f(t1 + (0 — Tl))(dqe
0
T2
+ j]‘ |q€ - 5) | "Dy f(t1 + &(to — Tl))|dq€ (14)
o
+j: |qs - 5) | "Dy f(t1 + &(T0 - 11))|dqe
21
+ f; |q€ - 1| | "Dy f(t1 + &(to — ’c1))'dqs].
Since I “D,f | is (o, m)-convex on [, T1], therefore we have
Tquf(ETo +m(l - e)%) < s“| Tlqu(’[o)| +m(l - &%) Tlqu(%) . (15)
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Substituting (15) in (14), yields the result
), e dw-a[Zf(3T°+“) f(”Z“)ﬂf(”f“)]

Do e
qf( ]d'ag
qu(E ]d €

P

2
ge = 3|d

S(T1—T0)[f qe[e| qu(10|+m(1 et
+ﬁl
+f

1
+j;(qe—1|[e“|T1qu(Tg)|+m(1—e"‘) n

=(Tl—10>[| Tquf(T0)|[ f e +fl
+j:i qé—lde+f1 dé]
+m’ TlD[’f(E)[qfo g(1—ga)dqs+£
+ﬁi ge — %‘(1—8“)d,78+ )qe—l((l—s"‘)dqs”.

Calculating the quantum integrals, we have

o [ s A

q 8a +21,2°" — 1) — 3gla + 11,(22%2 — 1)
<(m- TO)[' ‘Dqf (T°)|[ a+2l, @) @™ [a + 1][a + 2],

(42 - (4)(3)* 1[04 +2]; +q3)* 2 [a + 1],
+A1(g) + 4042 + 1] [a + 2], ]

" ‘ b qf(ﬂ) [( 1Z]q B (4a+2[2+2]q ))
_ na+2 _ pa+2
(2 16?2]1, - (3(4)2"‘+1[2a 11, ) - q(4a1+2[az 1 2], ))
atl _ qa+l at2 _ qat?
A2+ (411 167[Z]q * ([30( T 1];1%1 ) - q(faﬂ[a f 2], ))”
(B)(@)*2 + (2 +3%%2 — 29)3g[a + 1], — 4la + 21,,))

= (11— To)[( "D, f(to)| (Al(Q) + B @ 2 + yla + 2]
L5 %0 (20-27)433 -4t
‘ Dof ( )( 127 162, +( 3@ a + 1], )
2(1 — 2041 4 (3042  4a+2)
X )|

4942[qr + 2],

[ 1| D, f(te)| + m(1 — e[ ©

qe =3

9e = 3 [e“j D, f(zo)| + m(1 - )| ™

ge—1

qge — %'(1 —&%)dye

8214
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Here, we used the equalities
1
f oty o 1 (16)
A T T

3 W2 8la + 21,21 — 1) - 3q[a + 11,242~ 1)
f; e|qe — 3 (3)(@)*+2[a + 1],[a + 2],

dqg = 7 (17)

hn @ =4@) ™ a + 2]y + 9(3) e + 1,
f (1 - ge)dge = P a2, , (18)
i o (Aa+2], - [2],
f 5(1 — & )d &= (m), (19)
N 3 1 B Bq 2 _ pat2 B 1 —2a+2
f (=10l = 31de = 5~ Tepy, (3(4)a+1[a + 1]q) "(4a+2[a +2], ) (20)
and
1 R , o 1 7‘] 3a+1 _ 4a+1 3a+2 _ 4oz+2
, (1m0 = g = gy (4a+1[a n 1]q) B q(4"‘+2[a 2], ) 2D
|

Corollary 2.2. By setting m =1 in Theorem 2.1, we derive the subsequent inequality:

ff(#)ﬁdq[vl 3[2f(3TO+Tl) f(70+11) zf(70+371)H

(3)(4)**2 + (2 + 39+2 — 20°2)(3g[ar + 1]; — 4[a + Z]q))
G) @ +?[ar + 1yl + 2]5]
o 5 9q 2(1 _ 2a+1) + 3(3a+1 _ 4a+1)
+ ‘ qu<T1)|(A2(’7) + E - 16[2]q + ( 3(4)a+1[a + ]_]q )
2(1 _ 2a+1) + (3a+2 _ 4a+2)
- ‘7( 42 1 2], ))]

—To

< (11 - To)“ “D,f(1o)| (A1(q)

Corollary 2.3. By setting a = 1 in Theorem 2.1, we derive the subsequent inequality:

ff(y)“dqy 3[2f(3’[0+11) f(’l'o+’[1) Zf(’(0+3’[1)]'

(11 + 27 + 20%)| "Dy f(1o)| + (24° + 84> + 89 — 3)| 1D, f(2 )|]
24[2],[3],

1 — To

< (- )|

Corollary 2.4. By setting &« = m = 1 in Theorem 2.1, we derive the inequality which was previously established in
Theorem 4.1 of [24].

Corollary 2.5. By setting a = m = 1, and taking the limit as g — 17 in Theorem 2.1, we derive the inequality which
was previously established in [24].

Holder inequality holds a vital place in mathematical analysis. In particular, the fractional quantum Hélder
inequality on the interval [, 71] play a crucial role in our result.
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Theorem 2.6. Let us assume that the conditions of Lemma 1.10 are valid. If| Tquf‘v is (a, m)-convex on [7q, T1]
and L + 1 =1 with x,v > 1, then the subsequent inequality is valid:

1 Tfy)“dqy 3[2f(3T0+T1) f(’[o+71) 2f(70+3’[1)”

T1 — To
q~ ) (I 1Dy f(To)l" + m(4*[a + 1] - 1) ™ qu(%)lv)i
4k+1[1< +1], 4o+ + 1],
o f )i((za“ = 1) Dy f(o)l” + m(d e+ 1y + (1= 2| "Dy I\
4o+ + 1]q (22)
3 , % (3a+1 _ 2a+1)| 1 qu(TO)|V + m(4a[a, + 1]!] + (2a+1 _ 3a+1))| T]qu(%)lv %
" (fz ) ( 40+ + 1],
1 % (4a+1 _3a+1)| up f(T )lv +m(4a[a+ 1] + 3a+1 _4a+1) |71D f(%)rx %
f (1- qg)qug) ( 7] (70 q ( ) q ) ]

4o+ + 1],

<(t1 - TO)[(

qé——

o4
=3

Proof. By implementing g- Holder inequality in (14), we obtain the result

1 f([i)ﬁdq[«l 3[2f(310+n) f(TO+T1) 2f(T0+3T1)”

T1 — 7o

< (11— T0) f Z(qe)“dqs ; fo 1| “D, f(t1 + (1o —Tl))rdqe);

A
. f;
+( f (1‘qf)quf K f |T1qu(’f1+€(To—71))|vdqe)v].

As | m qu| is (at, m)-convex on [1q, 1], we have

ge — = d € fzj "Dy f(t1 + (o — T1))|qu5); (23)

qe—-

de flef(71+e 0—71))|d6)

]dqe

()

f4 | Dy f(t1 + &0 — 7:1))|qu€ Sf4 [e“| Tquf(TO)r +m(l — &%)
0 0

1 4%a+1], - 1\[7 v @9
| e
4a+1[a+1 |D"f T(’)) +m( 4o + 1], )‘ D"f(m) '
Similarly,
ﬁ | "Dy f (1) + e(to — 11)[ dge
12 1 490 + 1], + (1 =277 v %)
- o v q — 1 Y
54—M[a+11q| D, f(10)| +m( Ty T, ) qu(m),
ﬁ | 9D, f(z1 + (10 — T))[ dge
3 (26)

3a+1 _ 2a+1
< - =
T4l + 1],

4%a + 1]y + (221 = 391
4o+la + 1], )

1 Tl v
D —_
"f(m) ’

‘ Tquf(To))V + m(
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and
1 v
ﬁ | Dy f(t1 + (0 — Tl))( dge
4

4a+l _ 3a+1 v 40([“ + 1]q + (3a+1 _ 4a+1) 1
<=~ _|up + ( )
4o+1]q + 1], | qf(T0)| m 4o+1[q + 1],

On the other hand, after executing simple calculations, we have

%1 qK
K R — 28
[ qorae e 8)

Substituting (24)-(28) in (23) yields the desired result. [

(27)

o)

Corollary 2.7. By setting m = 1 in Theorem 2.6, we derive the subsequent inequality :

ff(H)Tlqu—g[zf(aTOJrTl) f(T0+T1) 2f(10+3’51)”

L s |

o f loe - 2 qé,)i((za+1 ~ DI Dyfo)l + iﬂ?;:h; (1 =21 “qu(mv)i

. ( f )1 (<3“+1 = 2% Dy f(zo))” + ﬁjc{v;liq]: (2941 = 34| "Dy f(m)l* )1
fl (1 - ger dqg)i (<4“+1 — 3 ) 9D, f(zo)l + fiﬁ:ﬂ: (3! =4 ) "Dy f(m)l* )]

T1 — To

S(Tl - T

1*
ge =3

Corollary 2.8. By setting a = 1 in Theorem 2.6, we derive the subsequent inequality:

1 Tf([u)ﬁ - S[Zf(370+11) f(T0+T1) zf(TO+3T1)”

T1 — To
< (- TO)[(4K+1[?<K+ 1]q )T(l TlDWC(TO)V + m(3 + 4Q)| TlDﬂf(%)lv)v

16[2],
: 21 \#(31 " Daf (o)l + m(L+4) "Dy f I\
+(f re 5] e | 16121, )
QA (B Do)l + m(=1+ 4) Dy fI
+(f re =) de | 6121, )

" (fﬂ - qsme)l‘(” D, f(zo)l’ + 11;(6;]; 49) ﬁqu(%)v)z,}

Corollary 2.9. By setting o« = m = 1 in Theorem 2.6, we derive the inequality which was previously established in
Theorem 4.2 of [24].

Corollary 2.10. By setting o = m = 1, and taking the limit as g — 1~ in Theorem 2.6, we derive the inequality
which was previously established in [24].

The power mean inequality generalizes the multi-variable arithmetic mean-geometric mean inequalities.
In particular, the sectional quantum Power mean inequality on the interval [y, 71] play a crucial role in our
result.
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Theorem 2.11. Lef us assume that the conditions of Lemma 1.10 are valid. If ' “D,f |V is (o, m)-convex on [7q, T1]
forv > 1, then the subsequent inequality is satisfied:

ff([“)ndq.“ S[Zf(3T0+71) f(T0+T1) 2f(TO+3T1)]

q 1-3 W[Z]ql 1qu(TO)|V + mq(4“[a + Z]q _ [Z]q)l Tquf(%)IV 1
< (Tl - TO)[(16[2]q) ( 4a+2[2]q[a + Z]q )
( 8—¢g )1—3((8[0( + 2]q(2“+1 -1)- 3!][0( + 1]q(2a+2 _

T1 — To

1 v
)0y e

48[2], 3(4)*2[a + 1],[a + 2],
_ ma+ _ na+2 vyi
" m(% B 16331 " (3(4;“[20( j 1]q) - (fa(+12[a2+ 2]) )) "Duf (%) ) ®)

1

+ (A3 (Al(q)| D, f(10)| + m Ay(q)| "D, f ( ) )
(4 3q) ((4‘”2 — 43" o + 25 +9(3)*?[a + 1]ﬂ)| D, f(10)|
q

16[2], 42 + 1],[a + 2],
a+l _ ga+ a+2 _ qa+2 vy 1
- m(i - 167[g]q - (jaﬂl[a f 1]2) - (qﬁﬂ[a f Z]q))) = ( ) ) ]

where A1, Ay are defined as in Theorem 2.1 and

As(ﬂ):ﬁ4 q

Proof. By implementing g-power mean inequality in (14), we obtain

e [ ) ) |

<(t - To)[(fo‘1 Qedqe)l‘,( fo\‘ q5| D, f(t1 + &(To - Tl))r/dqg)i

6—1
3

dge.

% 2 1_% % 2 v v
+ (ﬁ ge — 3 dqe) (ﬁ ge — 3 | Dy f(t1 + (o — Tl))( dqe) (30)
i 1] \v, 1 b\
+ (f 7 -5 dqe) (f ¢ - 5| Dyl + (o = )| dqe)
2 2

1 1-1 1 , 1
(ﬁ (1 —qt)dqe) (ﬁ (1—q8)| "Dy f(z1 + (o — 11))| dqe) ]
Since ’ n qu|v is (o, m)-convex on [y, T1], it follows from the equalities (16) and (19), we have

f4qs Tquf(ETo +m(l - e)%)‘ dge < f4qg[g“( TIqu(To)r +m(1 - &%)
0

q[2]5l " Dy f(o)l” + mq(4*[a + 2], = [2])1 ™ qu( o )lv
442[q + 1] [a + 2],

o)

q€

(31)

Similarly, by («, m)-convexity of| B qu|v and the equalities (17), (20), (12), (13), (18) and (21) obtained in the proof
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of Theorem 3.1, we have

v

”qu(em +m(l - e)%) d

g—g
=3

q€

1

2
1
1

8la + 2],7(2”rl -1) - 3g[a + 1]07(20“r2 -1) o
= ( 3(4)**2[a + 1][a + 2], )l b

_ na+ _ na+2 v
* m(% B 163[Z]q (3(4)2a+1[2a +2 1]q) B (ﬁﬁzmi 2])q )) "Duf (%) ’
j;i ge — % “qu(em +m(l - e)%)‘vdqs < Al(q)| Tquf(TO)r +m Az(q) “qu(%) V,
and 2 ) )
j; (1—-g¢) ”qu(efro +m(l - e)%) dge
e A
a+l _ ga+l a+2 _ pa+2 v
" m(i B 167[Z]q (:aﬂ[a f 1], ) B ‘7(43a+2[a j 21, )) TlD”f(%) ‘

We also have the following equalities

i 1
tde = —
j; 7 1602],

8-q
48[2],"

qe — % dge =

1
fz
1

_4-3
f(l ge)dge = 16[2]

Substituting (31)-(37) in (30) yields the desired result. [

and

Corollary 2.12. By setting m =1 in Theorem 2.11, we derive the subsequent inequality:

‘_f o qy_g[zf(mﬂl) f(To+T1) 2f(To+3T1)”
I q)vawmﬁ%w+mm”ﬂrnmwmﬂmwa

< (11— 7o 1612, TR}
8 —q\'"v(8la +2],2*" - 1) - 3gla + 1],2*2 - 1)\ ,
(48[2]q) (( 3(4)0t+2[0( + 1]:][05 + 2]q )| qu(TO)I

S 22202\ g2\ v
(5 16021, * (3(4)a+1[a 1] q)‘ e o, ) Das(a)l)
+ (A3 (410 Dy fw)] + m Ax@)] Dy f(wr)])

4-3g\173 (1472 = 43)  a + 2], + qB)* P [a + 1]y ., y
+ (16[2]q) (( 4“"’2[0( + 1]:][0( + 2]!] )‘ qu TO)’

(5w, o) (Faam ool ) |

8219

(32)

(33)

(34)

(35)

(36)

(37)
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Corollary 2.13. By setting a = 1 in Theorem 2.11, we derive the subsequent inequality:

[ o A

< (1= 0) (g5 )_V(qzlq)T1D"f(T°)|V+(4q3+3q +3q)IT1qu(n)|v);

16[2], 64121131,
8 — g\t /(37 +3q +24)| "D, f(10)|" + (~44° + 2547 + 259 + 8)| "D, f(r1)| \}
(48[2]q) ( 192[2],[31, )
—4+11q\'+ (374 + 379 = 20)| "Dy f(w0)|" + (444> - 99> = 99 + 4)| "Dy f(w)|
( 48[2], ) ( 192[2], 131, )
(4 —3q)l—l((—9q2 —9q +28)| D, f(10)| + (=124 + 1347 + 139 — 12)| "D, f(m1)| \' ) ]
16[2], 64[2],[31,

Corollary 2.14. By setting o« = m =1 in Theorem 2.11, we derive the inequality which was previously established
in Theorem 4.3 of [24].

Corollary 2.15. By setting o = m = 1 and taking the limit as g — 17in Theorem 2.11, we derive the inequality
which was previously established in [24].

3. Examples

Example 3.1. Assume f : [0,1] = R be a function characterized by f(u) = p? and a = m = 0.5. It follows that f is
g-differentiable. Then

28 4
“ = 1 3 = — —_
|"Daf(l = 1'D3 f()l = 7p0+ 3¢

is (e, m)-convex on [0, 1]. Moreover for q = 3, Theorem 2.1 yields

[2f(3To+T1) f(T0+Tl) 2f(To+3T1)]
=3[23)-A(3)+ 21(3)

1
= - =0.3333
3

1 T 1
T1 - 21
Pa— f S dgu fou dypt
3 n 3 n\2
(ﬁ@‘ﬁ”

and

1 v (3" 3\ 3\
==~V (2)(1+(2) =22
4;(4)(+(4) (4))
17 64 32
z4+§‘7]
= 0.2896.

Thus, the left-hand side of (11) is

0.2896 — 0.3333| = 0.0437.
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Next, we consider
b 1
| 7Dy flo)| = | 1Dy £(0)] = § = 0:2500,
T
T][) _1
of ( m )

3
Al(z) = 0.0431,

=|'D,f(2)| = 3.7500,

3
AZ(Z) — 0.0075.

Therefore, the expression on the right side of (11) is

. (3)(4)**2 + (2 + 39%2 — 20*2)(3g[a + 1], — 4[a + 2],)
= (11 — TO)D ’qu(To)| (Al(q) + O@ Mt a+ Z]q]q 1 )
o T 5 gq 2(1 _ 2a+1) + 3(3a+1 _ 4a+1)

Dof (%) (AZ(”’) 127 1612, ( 3(4)*[a + 1], )
2(1 _ 2a+1) + (3a+2 _ 4a+2)
- q( 22 1 2], ))]
= 0.2500(0.0431 + 0.1294) + 1.875(0.0075 + 0.0462)
= 0.1438.

+m

It is evident that

0.0437 < 0.1438,
which validates the result stated in Theorem 2.1.
Example 3.2. Assume f : [0,1] = R be a function characterized by f(u) = u> and a« = m = 0.5. Now we extend
this analysis by considering different value of g, ranging from q = 0.1 to q = 0.9 in increment of 0.05. By performing
these computations numerically of Theorem 2.1, we observe variations in Left and Right Terms corresponding to each

selected q.

Comparison of Left and Right Terms
ngm.”f.”.”””:.”..”:.”..”.n”””””.gn..”..r..”.”.

02

Left term |
| —Right term |

Term Values
o
@

[=]

Figure 1: Presents the comparison between the left and right terms in quantization of g in Theorem 2.1.
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q Left Term Right Term
0.1 0.2506 0.2557
0.15 0.2196 0.2387
0.2 0.1935 0.2239
0.25 0.1714 0.2109
0.3 0.1523 0.1997
0.35 0.1357 0.1899
0.4 0.1208 0.1806
0.45 0.1075 0.1737
0.5 0.0952 0.1670
0.55 0.0838 0.1611
0.6 0.0731 0.1561
0.65 0.0629 0.1514
0.7 0.0531 0.1474
0.75 0.0437 0.1438
0.8 0.0346 0.1407
0.85 0.0257 0.1377
0.9 0.0170 0.1355

Table 1: Comparison of the left and right terms in the quantization of g as stated in Theorem 2.1.

Example 3.3. Assume f : [0,1] — R be a function characterized by f(x) = y>, a =m =05and x =v =2. It
follows that f is g-differentiable. Then

2
| “Dyf@P =1 'Ds fu)P = (%1 + 14_6)

is (o, m)-convex on [0, 1]. Moreover for q = 3, Theorem 2.6 yields

[zf(?rco + ’(1) f(’(o + Tl) Zf(TO + 371 )]

=5[2(3)-13)+25)

=0.3333

_1_
"3
and

f 21d3y

=%§(z) (1-(2))
(G0 () -3))

Therefore, the expression on the left side of (22) is
|0.2896 —0.3333| = 0.0437.



A. Abbas et al. / Filomat 39:23 (2025), 8209-8227 8223

Next, we consider
| "D, fwo)| = | 'DofO) = 0.0625,
2
T E
| Daf ( m)

" 1 9
q ) i6
= = 0.0616,
(4K+1[1< +1], 64(1+ 3 + %)

3 . 39 ;
j: e = I(Ee —e+ )38—00306
4 4
% K 9
_ Z2_ ¢ _
f; dqe—j}:(lée 2+9)d3€ 0.0107,

1 19 . 3
ﬁ(l—qe) dqe=fz (Ee —§e+1)d%e=0.0156.

4

= |'D,f@) = 14.0625,

2[f
qe =3

7€~ 3

and

The expression on the right side of (22) is

05\ D f(o)l + m(@) e + 1], - 1) "D, f(E)\}
(Tl - TO)[(4K+1 K + 1] ) ( 4a+1[a T 1]07 )

] (0 = 1) "Dy f(To)l + m(A%a + 1]; + (1 = 29°1)| "Dy f(2)]\»
+(f “') ( 2+1[g + 1, )
( ‘0 (<3a+1 201) 5D, flro)l” + m(da + 1], + (241 = 3) “qu(%)lv)l
4o+l + 1],
) (4a+1 3a+1)| Tquf(TO)lv + m@%a + 1]q + (3a+1 _ 4a+1))| Tquf(%)lv 1
(f (A =qe)'d 8) ( 4 [ + 1]q ]

E__

0.0625 + 178.3590
—0.0616( L ) +(0.0306)} (

0.1143 + 6. 8584)
112154
1 1
0.1480 + 3.0665\} (01752 4+ 0\
112154 ) * (0‘0156)2( 112154 )
— 0.2457 + 0.1379 + 0.0554 + 0.0156
— 0.4546.

; (0.0107)%(

It is evident that
0.0437 < 0.4546,

which validates the result stated in Theorem 2.6.

Example 3.4. Assume f : [0,1] — R be a function characterized by f(u) = u?>, a =m =05and x =v = 2. It
follows that f is g-differentiable. Then

4 2
14Dy f = 1'Dy fof = (2o + =)
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is (o, m) convex on [0, 1]. Moreover for q = 3, Theorem 2.11 yields
2f3’co+11 fT0+Tl 2f10+371
S5
= 3[3)-1(3)+ (3]

1
= - =0.3333
3

and

21
e [

=ii(z) (1-(2))

2n

1 3\ 3 3\
-zmjﬁ(“(ﬂ -23))
1 64 32
457
= 0.2896

Therefore, the expression on the left side of (29) is
|0.2896 — 0.3333| = 0.0437.
Next, we consider
T 2
| "D, f(z0)|” =| Dy f(0)] = 0.0625,
2
| "D, f(t1)| =| "Dy f(2)| = 14.0625,

3
Al(z) — 0.0431,

3
A2(Z) — 0.0075,
A (g) = 0.0506
3 4 —_ . .

The expression on the right side of (29) is

g\ a2l "Dy f (o)l + mad*fa +2]; = 211 "Dy fGHI

(z TO)[(16[Z]q) ( 422] o + 2], )
8 —q\'"v 8l +2],(2°1 — 1) - 3g[a + 1],(2**2 -

i (48[2]) (( 3@ + 1o + 2],

+m(é 16?2 +(3(4)2a+1[2:+j1]q) (Za(+12[a2:+22) ))

1 v
) e

Puf)

1

y

1

+ (A3(‘7))]7%(A1(‘J)| Tquf(TO)‘V +m Az(q) Tquf(%) )

4-3q\17 (47 = 403)*  a + 205 +9B) P+ 1]
(16[2]q) (( 402[q + 1], [ar + 2], )' Dyf
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7 a+l _ ga+l 3a+2 _ 4a+2 v %
o3 ey * (e a) - (e o))
4 16[2], \42*1[a +1], 402 + 2], m
= 0.0540 + 0.1379 + 0.0740 + 0.0625
= 0.3284.

It is evident that
0.0437 < 0.3284,
which validates the result stated in Theorem 2.11.

Example 3.5. Assume f : [0,1] — R be a function characterized by f(u) = pu* +2u> —puand a = m = 0.5. It
follows that f is g-differentiable. Then

2 _1 _155 11, 29 1

is (a, m)-convex on [0,1]. Moreover for q = 3, Theorem 2.1 yields
1 3T0+T1)_ (T0+T1) (T0+3T1)]
3 [Zf () - AR 2o

- 3[21(3)-1(3)+21(3)

= 0.3594

and

1
71— 7o

f F()dgp = fol(u4 + 207 — ) My
B (0-()) +-G) -(-(6))
GG G ) )+

1
2
1132 64 64 28 ]
==+ +4
2
0

2

|
NI
=
i g B

Thus, the left-hand side of (11) is

|0.2876 — 0.3594| = 0.0718.

Next, we consider
1

| "D, f(z0)| = | 'Dy£(0)] = 7 = 01250,

"Du(5)

1
Al(i) = 0.0179,

= |'D,f(2)| = 27.8750,

1
Az(ﬁ) = 0.0029.
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Therefore, the expression on the right side of (11) is

(B)(4)**2 + (2 + 372 = 29*2)(3g[ar + 1], — 4[a + 2],1))
B)@)**?[a + 1yl + 2]y

o T 5 B gq 2(1 _ 2a+1) + 3(3a+1 _ 4a+1)

Dqf (%) (AZ(”’) 127 162, +( 3@ a + 11, )

2(1 _ 2a+1) + (3a+2 _ 4a+2)

- q( 22 1 2], ))]
= 0.1250(0.0179 + 0.1985) + 13.9375(0.0029 + 0.00307)
= 0.4954.

= (11— To)[) "Dy f(70)| (Al(’J) +

+m

It is evident that

0.0718 < 0.4954,

which validates the result stated in Theorem 2.1.

4. Conclusion

In this paper, we have formulated multiple inequalities for Milne’s rule within quantum calculus frame-

work. To establish new inequalities, we applied (a, m)-convexity in classical or quantum calculus. The
results obtained under (@, m)-convexity simplify to classical case of convexity when @ = m = 1, demon-
strating the generality and versatility of the established framework. The results of this paper could inspire
additional research by scholars in their future work.
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