
Filomat 39:23 (2025), 8229–8244
https://doi.org/10.2298/FIL2523229M

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. This article focuses on the study of Hermite-Fejér interpolation in a rational space. We con-
structed the rational functions with poles {−1, 1} satisfying the conditions of the Hermite-Fejér interpolation
on the nodes of the orthogonal Jacobi polynomial. The objective is to determine the quantitative esti-
mate of the corresponding interpolatory function. Further, some numerical simulations are performed to
demonstrate the effectiveness of the theory of the research work.

1. Introduction

Rational interpolation is a powerful and versatile method in the realm of function approximation,
standing out for its ability to handle a diverse range of functions with varying complexities. In recent years,
it has gained significant interest among researchers for its ability to overcome the wild oscillations seen in
polynomial interpolation, particularly for high-degree polynomials, such as Runge’s phenomenon, offering
a more stable and accurate approximation.

Several methods exist to approximate continuous functions, including Lagrange, Hermite, and Her-
mite–Fejér interpolation. However, the effectiveness of these methods largely depends on the selection of
the nodes—the set of points used to construct the approximating function. In the context of real-valued
functions defined on a bounded interval, significant advancements have been made from leveraging the
zeros of classical orthogonal polynomials, their projections onto the unit circle, and various generalizations
of these zeros as nodes. These choices have proven particularly effective in enhancing the accuracy and
stability of the approximation[1, 24, 25, 32, 36, 37, 40].

To construct a rational interpolant, various techniques can be employed. One approach uses barycentric
expressions to compute the interpolation polynomials. This formula, introduced by W. Taylor [34] in 1945, is
typically a rational interpolant, as demonstrated by [39] W. Werner in 1984. Significant work on barycentric
rational interpolation has been done by J.P. Berrut, Kai Hormann, L.N. Trefethen and N. Higham, who
made key contributions to the development and application of this technique[2–10, 13, 16, 17].

Another general approach involves using rational functions for interpolation, with the interpolation
nodes chosen as the zeros of the rational function. In 1962, V.N. Rusak [27, 28] applied this method over
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the interval [−1, 1], selecting the zeros of Chebyshev-Markov rational functions as the interpolation nodes.
This approach was further developed by A.P. Starovoitov [30, 31] and E.A. Rovba [26]. G. Min [22, 23] also
contributed to this field by exploring the zeros of Chebyshev polynomials with distinct poles, offering new
insights into how these zeros can be used for interpolation.

In [21], we studied the Lagrange interpolation based on the Jacobi nodes with poles {−1, 1}, estimated the
corresponding Lebesgue constant for different ranges of the Jacobi’s polynomial parameter and established
the uniform convergence theorem. For related studies on rational interpolation, refer to [11, 14, 15, 20, 29,
35, 38, 41, 42].

In this article, we focus on constructing Hermite–Fejér interpolation in the rational space with poles
{−1, 1}, using the zeros of Jacobi polynomials. Specifically, we provide a quantitative estimate of the
corresponding interpolant for approximating a continuous function f (x). We also demonstrate that the
Hermite–Fejér interpolation converges uniformly for any continuous function on the interval [−1+η, 1−η].
The theoretical results are further illustrated with visualizations and error analysis.

This work extends the framework established in [21], applying Hermite-Fejér interpolation within
the rational function space with poles at {−1, 1}, proving Theorem 4.2 and validating the results through
insightful graphical representations.

The structure of the article is as follows: In Section 2, we introduce the necessary preliminaries, including
background information and foundational concepts. Section 3 is dedicated to the formulation of the
problem, followed by the statements of the main results in Section 4. In Section 5, we discuss several lemmas
that are crucial for proving the results. Section 6 provides rigorous proof for the theorem formulated in the
previous section. To further support the theory of the article, Section 7 presents a set of numerical examples.
Finally, in Section 8, we conclude the article, summarizing the main findings and discussing the novelty of
the work.

2. Preliminaries

In this article, the nth Jacobi polynomial is represented by P(α,β)
n (x), where α, β > −1. It has exactly n

distinct zeros on (−1, 1). The notation A ∼ B signifies that the expressions A and B satisfy,∣∣∣AB−1
∣∣∣ ≤ C and

∣∣∣A−1B
∣∣∣ ≤ C.

Let X = {xk}
n
k=1 be the set of zeros of P(α,β)

n (x) and D = [a, b] ⊂ (−1, 1) such that

−1 < a ≤ x1 < x2 < . . . < xn ≤ b < 1.

The fundamental Lagrange polynomial based on the zeros of Jacobi polynomial is,

lk (x) =
P(α,β)

n (x)

(x − xk) P(α,β)′
n (xk)

, k = 1, . . . ,n. (1)

If η = max (|a| , |b|), then

1 − η2
≤ 1 − x2

≤ 1. (2)

Throughout the paper, we will consider the Jacobi parameters α ≥ β > −1. To prove the lemma in
Section 5, we will use the followings (pg. 164-166 in [33]).
For −1 ≤ x ≤ 1 and α ≥ β,∣∣∣∣∣P(α,β)

n (x)
∣∣∣∣∣ = O (nα) . (3)
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For k = 1, . . . ,n,

(
1 − x2

k

)−1
∼

(
k
n

)−2

, (4)∣∣∣∣∣P(α,β)′
n (xk)

∣∣∣∣∣ ∼ k−α−
3
2 nα+2, (5)∣∣∣∣∣P(α,β)′′

n (xk)
∣∣∣∣∣ ∼ k−α−

5
2 nα+4. (6)

3. Formulation of the Problem

Consider X be the set of nodal points. Let f be a function continuous on domain D.
It is a well established fact that for every continuous function f (x) in D, there exists a uniquely determined

interpolating polynomial based on the zeros of the Jacobi polynomial ([32],pg. 329-332 in [33]),

HF
(

f , x
)
=

n∑
k=1

f (xk)vk(x)l2k(x), (7)

where

vk (x) = 1 −
P(α,β)′′

n (xk)

P(α,β)′
n (xk)

(x − xk) , (8)

of degree atmost 2n − 1 satisfying the conditions,

HF
(

f , xk
)
= f (xk)

HF′
(

f , xk
)
= 0

}
for k = 1, 2, . . . ,n. (9)

Our aim is to formulate the rational Hermite Fejér interpolation RHF
(

f , x
)

based on {xk}
n
k=1 with poles

{−1, 1} satifying the conditions,

RHF
(

f , xk
)
= f (xk)

RHF′
(

f , xk
)
= 0

}
for k = 1, 2, . . . ,n. (10)

As RHF
(

f , x
)

is a rational function, we can write it as

RHF
(

f , x
)
=

Hn
(

f , x
)

1 − x2 . (11)

Thus, Hn
(

f , x
)

satisfies these conditions,

Hn
(

f , xk
)
=

[
(1 − x2)RHF

(
f , x

)]
x=xk

H′n
(

f , xk
)
=

[
(1 − x2)RHF

(
f , x

)]′
x=xk

 for k = 1, 2, . . . ,n. (12)

The rational Hermite Fejér interpolation has converted into the hermite polynomial interpolation.

4. Statements of the Main Results

Lemma 4.1 gives the explicit representation of the interpolatory polynomial Hn( f , x).



K. Manral, S. Bahadur / Filomat 39:23 (2025), 8229–8244 8232

Lemma 4.1. Let Hn
(

f , x
)

be a polynomial satisfying (12), given by

Hn
(

f , x
)
=

n∑
k=1

[
(1 − x2)RHF

(
f , x

)]
x=xk

Ak (x) +
n∑

k=1

[
(1 − x2)RHF

(
f , x

)]′
x=xk

Bk (x) , (13)

where

Ak (x) =
(
1 − 2l′k (xk) (x − xk)

)
l2k (x) , (14)

and

Bk (x) = (x − xk) l2k (x) , (15)

are unique polynomials of degree atmost 2n − 1 satisfying the following conditions,

Ak

(
x j

)
= δ jk

A′k
(
x j

)
= 0

 for j, k = 1, 2, . . . ,n, (16)

and

Bk

(
x j

)
= 0

B′k
(
x j

)
= δ jk

 for j, k = 1, 2, . . . ,n. (17)

Proof. Its proof is same as that of the explicit representation of Hermite polynomial.

Theorem 4.2 gives the quantitative error estimate of the rational Hermite-Fejér interpolant RHF( f , x) to
the continuous function f (x) and establishes the convergence theorem.

Theorem 4.2. Let f (x) be a continuous function on D and differentiable on D = (a, b). Then RHF
(

f , x
)

defined by
(11) satisfies the relation,

∣∣∣RHF
(

f , x
)
− f (x)

∣∣∣ = O
(
ω

(
f ,n−1

))
; −1 < α ≤ − 1

2 ,

O
(
ωr

(
f ,n−1

)
n2α+1

)
; α > − 1

2 ,
(18)

where ωr

(
f ,n−1

)
is the rth modulus of continuity of f (x).

Furthermore, if f (r−1)
∈ Lipν, ν > 0 and

ωr

(
f ,n−1

)
= O

(
n−r+1−ν

)
,

where ν > 2α − r + 2 and α ∈
[

r−2
2 ,

r−1
2

)
for r = 1, 2, 3, . . ., then from (18), it follows that the sequence

{
RHF

(
f , x

)}
converges uniformly to f (x) on D.

5. Estimation of Fundamental Polynomials

Lemma 5.1 gives an asymptotic estimate of the Lagrange fundamental polynomial (1).

Lemma 5.1. Let {lk(x)}nk=1 be defined by (1), then

|lk (x)| = O
(

kα+
1
2

n

)
, ∀α > −1. (19)
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Proof. Using (1), we have

|lk (x)| =

∣∣∣∣∣P(α,β)
n (x)

∣∣∣∣∣
|x − xk|

∣∣∣∣∣P(α,β)′
n (xk)

∣∣∣∣∣ .
For |x − xk| ≥

√
1 − x2

k ,we get

|lk (x)| ≤

∣∣∣∣∣P(α,β)
n (x)

∣∣∣∣∣√
1 − x2

k

∣∣∣∣∣P(α,β)′
n (xk)

∣∣∣∣∣ .
Using equations (3), (4) and (5), we have

|lk (x)| = O
(

kα+
1
2

n

)
. (20)

Similarly, for |x − xk| <
√

1 − x2
k ,we get the same estimate as (20).

Thus, the Lemma 5.1 follows.

Lemma 5.2 and Lemma 5.3 give the asymptotic estimates of the Hermite fundamental polynomials (14)
and (15) respectively.

Lemma 5.2. Let Ak(x) be defined by (14), then

n∑
k=1

|Ak (x)| =

O (1) , α ≤ − 1
2 ,

O
(
n2α+1

)
, α > − 1

2 .
(21)

Proof. From equation (14),

|Ak (x)| ≤
∣∣∣l2k (x)

∣∣∣ + 2

∣∣∣l′k (xk)
∣∣∣ |lk (x)|

∣∣∣∣∣P(α,β)
n (x)

∣∣∣∣∣∣∣∣∣∣P(α,β)′
n (xk)

∣∣∣∣∣ .

Taking summation on both the sides, we get

n∑
k=1

|Ak (x)| ≤
n∑

k=1

∣∣∣l2k (x)
∣∣∣ + 2

n∑
k=1

∣∣∣l′k (xk)
∣∣∣ |lk (x)|

∣∣∣∣∣P(α,β)
n (x)

∣∣∣∣∣∣∣∣∣∣P(α,β)′
n (xk)

∣∣∣∣∣ .

Using equations (3), (5), (6) and (19),

n∑
k=1

|Ak (x)| ≤
(C1

n2 +
C2

n

) n∑
k=1

k2α+1, (22)

where C1 and C2 are constants independent of n and x.
The Lemma 5.2 follows on performing some calculations for different ranges of the parameter α.
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Lemma 5.3. Let Bk(x) be defined by (15), then
n∑

k=1

|Bk (x)| = O
(
n2α

)
, ∀α > −1. (23)

Proof. From equation (15),

|Bk (x)| ≤ |lk (x)|

∣∣∣∣∣P(α,β)
n (x)

∣∣∣∣∣∣∣∣∣∣P(α,β)′
n (xk)

∣∣∣∣∣ .
Using (3),(5) and (19), we have

|Bk (x)| ≤ C
k2α+2

n3 , (24)

where C is a constant independent of n and x.
Taking summation on both the sides and performing some computations for different ranges of α, the
Lemma 5.3 follows.

6. Proof of Theorem 4.2

To establish Theorem 4.2, we require the following.
Let f (x) be a function continuous on D and differentiable on D. Then there exists a polynomial Pn (x) of
degree atmost 2n − 3 satisfying Jackson’s inequality [see [18]],

∣∣∣ f (x) − Pn (x)
∣∣∣ =  O

(
ω

(
f ,n−1

))
, −1 < α ≤ − 1

2 ,

O
(
ωr

(
f ,n−1

))
, α > − 1

2 ,
(25)

also there is an inequality of O. Kiš [see [19]],∣∣∣P(m)
n (x)

∣∣∣ ≤ Cnmωr

(
f ,n−1

)
, m ∈ Z+. (26)

Proof. Pn (x) satisfying (25) can be expressed as,(
1 − x2

)
Pn (x) =

n∑
k=1

(
1 − x2

k

)
Pn (xk) Ak (x) +

n∑
k=1

[(
1 − x2

)
Pn (x)

]′
x=xk

Bk (x) . (27)

Then,∣∣∣RHF
(

f , x
)
− f (x)

∣∣∣ = ∣∣∣RHF
(

f , x
)
− Pn (x) + Pn (x) − f (x)

∣∣∣
≤

∣∣∣RHF
(

f , x
)
− Pn (x)

∣∣∣ + ∣∣∣Pn (x) − f (x)
∣∣∣

=
1∣∣∣1 − x2

∣∣∣
∣∣∣∣Hn

(
f , x

)
−

(
1 − x2

)
Pn (x)

∣∣∣∣︸                           ︷︷                           ︸
I1

+
∣∣∣Pn (x) − f (x)

∣∣∣ .
Using (27), we get

I1 =

∣∣∣∣∣∣∣
n∑

k=1

[
(1 − x2)RHF

(
f , x

)]
x=xk

Ak (x) +
n∑

k=1

[
(1 − x2)RHF

(
f , x

)]′
x=xk

Bk (x) −
n∑

k=1

(
1 − x2

k

)
Pn (xk) Ak (x)

−

n∑
k=1

[(
1 − x2

)
Pn (x)

]′
x=xk

Bk (x)

∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣
n∑

k=1

(
1 − x2

k

)
f (xk) Ak (x) −

n∑
k=1

2xk f (xk) Bk (x) −
n∑

k=1

(
1 − x2

k

)
Pn (xk) Ak (x)

−

n∑
k=1

[(
1 − x2

k

)
P′n (xk) − 2xkPn (xk)

]
Bk (x)

∣∣∣∣∣∣∣
≤ 2

 n∑
k=1

∣∣∣ f (xk) − Pn (xk)
∣∣∣ |Ak (x)| + 2

n∑
k=1

∣∣∣ f (xk) − Pn (xk)
∣∣∣ |Bk (x)| +

n∑
k=1

∣∣∣P′n (xk)
∣∣∣ |Bk (x)|

 . (28)

Using (2), (21),(23),(25) and (28), we have Theorem 4.2. ■

7. Numerical Experiments

To highlight the contributions of the research work, we carried out some numerical examples. All
computations and figures were generated using Matlab 2015a, with variable precision set to 32 significant
digits.

For all the examples, we work in the following way.

• The nodes are {x j}
n
j=1 with varying values of n.

• The Jacobi’s polynomial parameters are chosen as α = β = − 3
4 .

• The domain is D = [x1 − ϵ, xn + ϵ], where ϵ > 0.

• The testing function f (x) with black line while the rational Hermite-Fejér interpolatory function
RHF( f , x) with red dashed line and the Hermite-Fejér interpolatory polynomial HF( f , x) with pink
dashed line have been plotted.

• Interpolatory points are represented by purple dots.

7.1. Figures of the Jacobi Polynomials and their zeros in domain D

The graphics of the Jacobi polynomials along with their zeros in domain D for the Jacobi polynomial’s
parameters α = β = − 3

4 and n = 8,n = 16 are shown in Figure 1.
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Figure 1: The graphics of P(− 3
4 ,−

3
4 )

8 (x) (on left) and P(− 3
4 ,−

3
4 )

16 (x) (on right) with their zeros on domain D
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7.2. Interpolation results for the test functions
In Example 1, the focus is solely on the characteristic shape of the interpolator, without imposing any

conditions on the sample function or its derivatives at the interpolation points. Example 2 builds test
functions whose derivatives are zero at the interpolation points, ensuring smoothness at those points.

For each case, we show

• the graphics of the function along with the corresponding rational Hermite-Fejér interpolant RHF( f , x)
and

• the graphics of the error term.

Example 1: Consider a logarithmic function f continuous on D and differentiable on D satisfying the
hypothesis of Theorem 4.2 defined by,

f (x) = ln(1 + x2).

The graphics of the function f (x), its interpolant RHF( f , x) and the error term
∣∣∣RHF( f , x) − f (x)

∣∣∣ for n = 8 are
shown in the following Figure 2.

We observe that the interpolator flatly passes through each interpolation point, meaning the slope of the
interpolator at those points is zero, maintaining the characteristic shape of the Hermite-Fejér interpolation
at the nodes.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 2: The interpolation of RHF( f , x) and f (x) with the interpolatory points (on left) and their absolute
error (on right) on domain D for n = 8

Example 2: We choose the number of nodes as n = 8 and n = 16.
For n = 8, we take two functions, f1(x) and f2(x), defined by

f1(x) = sin
(∫

w1(x)dx
)
, f2(x) = exp

(∫
xw1(x)dx

)
− 1,

and for n = 16, we consider two functions, f3(x) and f4(x), given by

f3(x) = sin
(∫

w2(x)dx
)
, f4(x) = exp

(∫
xw2(x)dx

)
− 1,

where w1(x) and w2(x) are the polynomials whose zeros match those of the Jacobi polynomials P(− 3
4 ,−

3
4 )

8 (x)

and P(− 3
4 ,−

3
4 )

16 (x) respectively. All the functions satisfy the conditions of Theorem 4.2.
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The graphics of the functions f1(x), f2(x), f3(x), and f4(x), along with their corresponding rational
Hermite-Fejér interpolators (RHF) and the associated errors in the domain D, are shown in Figure 3, Figure
4, Figure 5, and Figure 6, respectively.
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Figure 3: f1(x) and RHF( f1, x) with nodes (on left),
(
RHF − f1

)
(x) (on right) for x ∈ D and n = 8
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Figure 4: f2(x) and RHF( f2, x) with nodes (on left),
(
RHF − f2

)
(x) (on right) for x ∈ D and n = 8
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Figure 5: f3(x) and RHF( f3, x) with nodes (on left),
(
RHF − f3

)
(x) (on right) for x ∈ D and n = 16
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Figure 6: f4(x) and RHF( f4, x) with nodes (on left),
(
RHF − f4

)
(x) (on right) for x ∈ D and n = 16

The approximation method performs well across all test functions. For n = 8, the maximum error for
the functions, f1 and f2 is less than 1.5 × 10−10 and 1.4 × 10−7, respectively. At n = 16, the error for the
functions, f3 and f4 further reduces to less than 1 × 10−18 and 6 × 10−13. Notably, the graphs of the sample
functions and their interpolators are virtually indistinguishable, demonstrating the high accuracy of the
interpolation.

7.3. Comparison between the rational Hermite-Fejér Interpolatory function (RHF) and the Hermite-Fejér Interpola-
tory polynomial (HF)

In this subsection, we examine the behaviour of both the interpolatorsHF and RHF for functions with
singularities at {−1, 1}. For that, we consider two examples (Example 3 and Example 4) both involving test
functions with vanishing derivatives at the interpolation points.

In Example 3, the functions do not exist at x ∈ {−1, 1} due to the logarithmic singularity( the functions
contain the term ln

∣∣∣x2
− 1

∣∣∣), while in Example 4, the functions exhibit more severe singularities with real
poles at these points, posing potential challenges in terms of stability and accuracy. Together, these examples
demonstrate how characteristics like smoothness and singularities of a function influence the performance
and accuracy of interpolation methods.
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Example 3: Choose n = 8, let functions 11 and 12 defined by,

11(x) =
∫

x · w1(x)
1 − x2 dx, 12(x) =

∫ (
x3 + 2
1 − x2

)
w1(x)dx.

Here, w1(x) is a polynomial whose zeros are the same as those of the Jacobi polynomial P(− 3
4 ,−

3
4 )

8 (x). We
evaluate both functions using the HF and RHF separately, and present the results along with the error
graphs in Figure 7 and Figure 8.
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Figure 7: Interpolation results of the function 11 for x ∈ D and n = 8
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Figure 8: Interpolation results of the function 12 for x ∈ D and n = 8

For functions 11 and 12 with singularities at {−1, 1} and derivatives vanishing at the nodes, satisfying
the hypothesis of theorem 4.2, both the interpolators accurately approximate the function while preserving
their shapes. However, the rational interpolator which has real poles at {−1, 1}, provides a more precise
approximation than the polynomial interpolator. The maximum absolute errors are observed to be less
than 9 × 10−4 and 1.8 × 10−4 for 11 and 2.5 × 10−3 and 5 × 10−4 for 12 usingHF and RHF respectively.

Example 4: Choose n = 16, let functions 13 and 14 defined by,

13(x) =
∫

x · w2(x)

(1 − x2)2 dx, 14(x) =
∫

x3 + 2

(1 − x2)2 · w2(x)dx.

Here, w2(x) is a polynomial whose zeros are the same as those of the Jacobi polynomial P(− 3
4 ,−

3
4 )

16 (x). The
functions 13 and 14 are interpolated using both RHF and HF interpolators. The results obtained are
displayed along with error graphs in Figure 9 and Figure 10 respectively.
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Figure 9: Interpolation results of the function 13 for x ∈ D and n = 16
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Figure 10: Interpolation results of the function 14 for x ∈ D and n = 16

For functions 13 and 14 with poles at {−1, 1} and derivative values are zero at the nodes, satisfying the
hypothesis of theorem 4.2, the rational interpolator, which has poles at {−1, 1} better preserves the functions’
shapes. While the polynomial interpolator yields smaller errors, it fails to resemble the function between
the nodes.

7.4. Discussion

In Example 2, we observe that for smooth functions with vanishing derivatives at the nodes, the
rational Hermite-Fejér interpolant (RHF) yields results nearly indistinguishable from the sample functions.
However, for functions with singularities at the boundaries of the interval, {−1, 1}, RHF demonstrates a clear
advantage over the Hermite-Fejér polynomial interpolator (HF). As shown in Example 3 and Example 4,
the error between the function and the RHF interpolator significantly decreases in comparison to the error
between the function and the HF interpolator, particularly for values of x ∈ D that are away from the
boundaries. In Example 4, where the functions exhibit stronger singularities compared to Example 3, the
error decreases by 10−2 and 10−1, respectively. This further emphasizes the advantage of using approximants
with singularities similar to those of the function.
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8. Conclusion

Polynomial interpolation has been the subject of extensive research. However, in the domain of ratio-
nal interpolation, prior work has primarily focused on Chebyshev nodes in rational space or barycentric
rational interpolation, while the application of Jacobi nodes in rational space has been largely overlooked.
A novel exploration of Jacobi nodes with fixed poles at {−1, 1} was introduced in [21], an area that remains
relatively unexplored in interpolation theory. This article extends that work by constructing Hermite-Fejér
interpolation using Jacobi polynomial nodes with the same poles, a departure from the previous focus
on Lagrange interpolation. The approximation order of the corresponding interpolator to the continuous
function is derived for different ranges of the Jacobi polynomial parameters. Additionally, the uniform
convergence of the interpolation is established for continuous and differentiable functions on the appro-
priate domain. Notably, several examples are presented to visually demonstrate the effectiveness of the
interpolator in approximating functions, thus validating the theoretical results. These findings deepen our
understanding of rational interpolation, particularly in terms of the interpolant’s behavior near the poles,
and suggest that this method could serve as a viable alternative to polynomial interpolation, especially for
functions with poles at {−1, 1}.
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[15] S. Güttel and G. Klein, Convergence of linear barycentric rational interpolation for analytic functions, SIAM Journal on Numerical

Analysis 50(5) (2012), 2560–2580.
[16] N. J. Higham, The numerical stability of barycentric Lagrange interpolation, IMA J. Numerical Analysis 24 (2004), 547–556.
[17] K. Hormann, G. Klein and S. De Marchi, Barycentric rational interpolation at quasi-equidistant nodes, Dolomites Research Notes on

Approximation 5 (2012), 1-6.
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