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New results on matrix transformations involving the operators B (7, s)
and (B(r,s) — AI)", A, h e C

Bruno de Malafosse?, Ali Fares®, Ali Ayad®"

“LMAH, Université du Havre, Le Havre, France
bDepurtment of Mathematics, Faculty of sciences, Section 1, Lebanese university, Hadath, Lebanon

Abstract. In this paper, we state the characterizations of the classes

(s2(Br9), 20 (B(r,5)),

wherea, b € U*,1,s5,7,s’ € Rand x € {s,s°,s©}. Then we give sufficient conditions to simplify these classes,
and we deal with the class

(s, 8¢ (B(r,5) +s: (B(r,5))),

where x satisfies the sequence spaces equation s 460 = s% or R > 0. Then we determine the classes

(s8 (B r,9) = AD"), 1)

fora,b e U*,A,he C,r,s #0and x € {s,s’,s©}. Finally, using some spectral properties of the operator B (r, s)
we obtain sufficient conditions to simplify these classes. These results extend those stated in [3, 6, 10, 19].

1. Introduction

In the book entitled Summability through Functional Analysis, Wilansky [30] introduced sets of the form
a~!+ E where E is a BK space, and a = (4,),,5 is a sequence satisfying a,, # 0 for all n. Recall that a~! = E is the
set of all sequences i = (V4),5; such thatay € E. In [7], the sets s,, s) and s were introduced by (1/a)" +E
witha, > 0 forallnand E € {{w, co, c}. In[9,10], the sum x, + x; and the product x, * x; were defined, where
X, X' are any of the symbols s, s°, or s©. Then, some characterizations of matrix transformations mapping
in the sets s, + sg (A7) and s, + sl(f) (A7) were stated, where A is the operator of the first difference. In [19], we

stated characterizations of the sets (s, (A7), x;), where x is any of the symbols s, s%, or s©. In [10], using the

spectral properties of the operator of first difference in the sets s, and s(ﬁc), we stated some simplifications of
the set

so((A-AD") + s;;) ((a-u1),
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where h, | are complex numbers, a, 8 given sequences. Then, we gave some characterization of matrix
transformations in this set. In [21], were given applications of the measure of noncompactness to operators
on the spaces s,, s, s and I,. In [28], topological properties of the spaces s0(B), s*”(B) and s,(B), where B
is a double band matrix were stated. Then, characterizations of the classes of matrix transformations from
these spaces into any of the sets {1, £, o and c were given.

In the following, we also use the notion of sequence spaces equations (SSE), see for instance [13, 17, 20].
In particular, in [2, 17], for any given positive sequences 4, and b, we solved the (SSE) of the form x,+x} = Xy

where x and x’ are any of the symbols s, 89, or 5. For instance, the solvability of the (SSE) s, + sff) = séc),

consists in determining the set of all positive sequences x that satisfy the next statement. For every
sequence v, the condition y,,/b, — [ holds if and only if there are two sequences u, v with y = u + v, such
that sup,, (|u,| /a,) < 0o and v,,/x, — I’ (n — oo) for some scalars [, I'.

In this paper, we extend some results stated in [4], Corollary 4.2, 1307-1308], and we deal with matrix
transformations involving the sets of the form x, (B (r,s)), where yx is any of the symbols s, s°, or s©. More
precisely, we give the characterizations of the classes

(2B (9,0 (B(,5),

where a,b € U*, 1,5,7,s € Rand x € {s,s°,5}. Then, from [13], we state some simplifications of these
classes.
Then, for any givena € U*, 1,5, 1, s’ reals and for R > 0, we determine the set A, of all matrices

A€ (s, s:(B(r,s) +5: (B(r,5))),
© _

where x satisfies the (SSE) s, + s}’ = sg).
Finally, we deal with matrix transformations mapping in the set

s2((B(r,5) - AD"), A, heC.

This paper is organized as follows. In Section 2, we recall some useful results on sequence spaces and
matrix transformations. In Section 3, we state the characterization of the classes (52 (B(r,9), x» (B, s’))),

where a,b € U*, r,s,7,s € Rand x € {s,5°59}). Then we give simplifications of these classes for
1,s5,7,s" # 0. Then for any givena € U*, r, s, 1/, s’ reals and for R > 0, we determine the set A, of all
matrices A € (52, sy (B(7,5)) + sx (B (r’,s’))) where x satisfies the equation s, + sgf) = sg). In Section 4, we
determine the previous classes in the cases when some reals among r, s, ' or s’ are equal to zero. Finally, in

Section 5, we give some characterizations involving the operator (B (r,s) — AD", A, hecC.

2. Notations and preliminary results

For a given infinite matrix A = (Au)nr>1 We define the operators A, for any integer n > 1, by A,y =
Y o1 Aukyk where v = (Vi)i=1, and the series are assumed convergent for all n. So we are led to the study of
the operator A defined by Ay = (A,y),.; mapping between sequence spaces.

A Banach space E of complex sequénces with the norm |||z is a BK space if each projection P,:E — C
defined by y — P,y = y, is continuous. A BK space E is said to have AK if every sequence y = (yx)k>1 € E
has a unique representation y = Y17, yxe® where ¢® is the sequence with 1 in the k-th position and 0
otherwise.

We will denote by w, ¢y, ¢, £ the sets of all sequences, the set of sequences that converge to zero, that
are convergent and that are bounded respectively. If u and v are sequences and E and F are two subsets of
w, then we write uv = (4,0,),5; and u/v = (u,/v,),s, (if v, # 0 for all n). We use the set U" of all sequences
u = (Uy),>1 € w such that u, > 0 for all n. Using Wilansky’s notations [30], we define for any sequence
a = (a,),5; € U* and for any set of sequences E, the set (1/a)"' * E = {y € w : y/a € E}.To simplify, we use
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the diagonal matrix D, defined by [D,],,,, = a, for all n and write D, + E = (1/11)_1 * E and define s, = D, * {,
s) = D, *co and s,(f) = D, *c, see for instance [7, 9, 20]. Each of the spaces D, * x, where x € {{, o, c}, is a BK
space normed by ||y||sa =sup,,; ()yn| /an) and s{ has AK.

Now leta = (a,),51, b = (bn),»1 € U*. By S, we denote the set of infinite matrices A = (Auk)ni=1 Such
that [|Alls,, = sup,,5; (b;l Yooy A ak) < oo. The set S, is a Banach space with the norm ||.||s ,. Let E and F
be any subsets of w. When A maps E into F we write A € (E, F), (cf. [5]). So we have Ay € F forall y € E,
(Ay € F means that for each n > 1 the series defined by A,y = Y,;2; Aukyk is convergent and (A,Yy),., € F).
It is well known that A € (s,, sp) if and only if A € S,;. So we can write (s,, sp) = S;p-

When s, = s, we obtain the Banach algebra with identity S, = S, (cf. [7]) normed by [|Alls, = [|Alls,,-
We also have A € (s,, s,) if and only if A € S,.

If a = ("),»1, the sets S,, s,, 0 and s are denoted by S,, s,, 8? and s respectively (cf.[9]). Whenr =1,
we obtain s; = €w, stl) = ¢g and s(lc) = ¢, and putting e = (1,...1,...) we have §; = S,. It is well known that
(s1,81) = (co,51) = (¢, 81) = 51, (cf. [5]). We have A € (s, 51) if and only if

Ae 51. (1)

n>1

In the following, we use the next well-known characterizations, (cf. [5, 20, 26]).

Lemma 2.1. (i) A € (co, co) if and only if (1) holds and lim,, e Ay = 0 for all k > 1.

(i) A € (co, ¢) if and only if (1) holds and lim,,_,co Ayx = I for some scalar Iy for all k.

(iii) A € (c,c) if and only if (1) holds, limy,_e Apx = Ik for some scalar Iy for all k, and limy, e Y poq Ank = 1 for
some scalar I.

We also use the fact that for any given 4, b € U* and for any sets E and F of sequences the con-
dition A € (D,E, DyF) holds if and only if D1;AD, € (E,F). For any subset E of w, we write AE =
{ne€w :n= Ay for some y € E}. Then, for any subset F of w, we will write F(A) = Fy ={y e w : Ay € F}.

2.1. The operators C (&), A (&) and the sets’f, C,T'and C;.

Aninfinite matrix T = (tux),, 41 is said to be a triangle if ¢,; = 0 fork > nand t,,,, # 0 for all n. Now let U be
the set of all sequences (u,),»; € w with u,, # 0 for all n. The next operators are used for many applications,
see for instance, [7, 14, 22-24]. The triangle C (&) for & = (&4),»1 € U, is defined by [C (&)],x = 1/&, for
k < n. The infinite matrix A (§) is the triangle whose the non-zero entries are given by [A ()], = &4, and
[A(E)],,n-1 = —&u-1, for all n, with the convention &y = 0. It can be shown that the triangle A (£) is the inverse
of C(&), thatis, C(&)(A(&)y) = A(E)(C(&)y) = yforall y € w. If & = e we obtain the well-known operator
of the first difference denoted by A (e) = A. We then have A,y = y, — y,—1 for all n > 1, with the convention
yo = 0. It is usually written £ = C (¢). Note that A = £~ and A, T € Sg for any R > 1.

In the following, we use the next sets, (cf. [[20], p. 167]), where we write &), = (£4-1/&x), and &g = 1.

C= {5 eU":[C(&éE], = %Z&c -1 (n— ) forsomescalarl},
" k=1

G ={5e Ut O, =5 ) &=00) <n—>oo>},

k=1
T= {g eU’: imé&; < 1},

I= {5 e U*: limsup (&) < 1}

and
G ={{elU": &, > Cy" forall nand for some C > 0and y > 1}.

By [[7], Proposition 2.1, p. 1786] and [[18], Proposition 2.2 p. 88], we obtain the next lemma.
Lemma 2.2. We have E:fc I'c 51 c Gq.
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2.2. The generalized operator of the first difference

Let 7, s be real numbers. The matrix B (7, s) is the lower triangular matrix

r

B(r,s) = s r

For r and s nonzero reals, the matrix B (r,s) was introduced by Altay and Basar [1] and was called the
generalized operator of the first difference. When r = —s = 1, the matrix B (r,s) reduces to the operator of
the first difference A.

Note that, if  # 0 then the triangle B(r,s) is invertible and its inverse is the triangle defined by

[B’1 (r,s)]nk =rla"*for1 <k <nwitha = —s/r.

3. Characterizations of (sg (B (r,5s)),xs B, s’))) fory € {s, sY, s‘c)}

In this section, we consider the sets (sg (B(r,5)), x» (B (r’,s’))) for xy € {s, s?, s(C)}. We obtain a charac-
terization of these classes using a result due to Malkowsky and Rakocevi¢, see [29]. Then we give some
simplifications of these classes using results stated in [13].

We will use the next well known lemma, (cf. [[25], Theorem 1]).

Lemma 3.1. Let E and F be two subsets of w. Let A be an infinite matrix and T be a triangle. Then A € (E, F (T)) if
and only if TA € (E,F).

By a theorem due to Malkowsky and Rakocevi¢ (cf. [[27] Theorem 3.9], [[20], Theorem 3.5, p. 118]) and
adapted in the paper [3] we obtain the following lemma.

Lemma 3.2. [[3], Lemma 12, pp. 672-673] Let E be BK space with AK and F be any subset of w. Let A be an infinite
matrix and T be a triangle. Then A € (E(T),F) if and only if AT™* € (E, F) and

LD, T € (E,c) foralli=1,2,..
This result is also true for E = {w, or C.

Letr,s, 7 and s’ be real numbers. In this section, r is different from zero, « = —s/r, and the reals v and s’
are not equal to zero together.

3.1. General case

Leta, b € U and consider the following conditions where we use the convention Ay = 0,

1 (o) (o]
sup {b_ Z Z (8" M + 7" M) amk ak} < oo, (2)
n " k=1 |m=k
sup { (8" Aicam + 7" Aim) ok ak} < oo for all i, 3)
T k=1 lm=k

n
lim Z (8" Aicam + 7" Aim) "% = [ for some scalar I and fori k=1, 2,..., 4)
m=k

n—oo
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llm—Z(sA11m+r/\,m)amk Ofori,k=1,2,.., (5)
VI—?OO
and

lim —Z(s Aicim + 1" Aim) @™ k=, for some scalar [, and fori, k=1, 2,.. (6)

We obtain the next theorem.

Theorem 3.3. (i) A € (s,? (B(r,s)),sp (B(~, s’))) if and only if conditions (2), (3) and (4) are satisfied.
(ii)) A e (sg (B(r,5)), sg (B (r',s’))) if and only if conditions (2), (3), (4) and (5) are satisfied.
(iii) A € (SE,J (B(1,3), séc) (B (r’,s’))) if and only if conditions (2), (3), (4) and (6) are satisfied.

Proof. We only deal with Part (i), since the Parts (ii) and (iii) can be sown in a similar way:.
(i) By lemma 3.1, we have A € (sg (B(r,s)),sy (B(7, s’))) if and only if

B(r,s') A€ (s)(B(r,5)),8).
Let A" = B(r,s") A = (A )nk- Then we have

)\;,k =5 Ap1f + 7 Ay for all n, k,
with the convention Agr = 0. By Lemma 3.2, we have A’ € (sg (B(r,9)), sb) if and only if
A'B(r,s) € (sg, sb) )
and

£D(,y B (1, s)€(sd,c) foralli=1,2,... (8)

Condition (7) is equivalent to Dy, A’B~! (r,5) D, € (co, €«) = S1 and to

sup{ S a2 }oo

k=1 |m=k
ZD(A]{”)nB—1 (r,s)D, € (co,c) foralli=1,2,....

which is condition (2). Condition (8) is equivalent to

Now for every i, we obtain
A/
i1

Doy, = A . . x :
il in

and elementary calculations yield,

[ZD(A ) B, s)] Z A (- ) fork<nandi=1,2,..

in

We conclude that the condition in (8) is equivalent to the conditions in (3) and (4). This concludes the
proof. O
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3.2. Simplifications of the classes (sfzJ (B(r,s)), x» (B (r’,s’)))for X €1s,8%,59}

In this subsection, we give sufficient conditions on a4,b € U" and on the scalars 7,+/,s and s’ for which
the characterizations of the classes (s(ﬂ’ (B(r,s)), x» (B(, s’))) for x € {s,s°,5} can be simplified.

Now consider the next conditions

sup {bl Z |s’)\n_1,k + r’/\nk| ak} < 00, 9)
n " k=1

sup {bl Z Z At -k ak} < oo, (10)
n " k=1 |m=k
oo n
sup {Z Aima™* ak} <oo,fori=1,2,..., (11)
" k=1 |m=k
n
}}g& Aima™* = 1 for some scalar Iy and fori, k=1,2,... (12)
m=k

1 o0
sup {E ; Mnkmk} < co, (13)

Then, to simplify the notations, for any non zero real number 8, we let

_ _ Bl &
o :D(|ﬁ|n) +Cr={&el’ :sup |£| Zé—kk < 00
n n k=1 |ﬁ‘
We need the next lemma, (cf. [[13], Corollary 5.3 p. 45] and [ [13], Remark 5.7. p. 40]).

Lemma 3.4. Let a € U*, and let r, s # 0. The next statements are equivalent, where,
(i) s, (B(r,8)) = s,, (i) 82 (B (r,5)) = s, (iii) a € C,.

In the following, we write @’ = —s’/r’. We can state the next result.

Corollary 3.5. Assumet,s, " and s’ are nonzeros reals.
(i) If a € C,, then we have

A€ (s2(B(1,5)),8 (B(,5)) (14)

if and only if (9) holds.
(ii) If b € Cy, then the condition in (14) is equivalent to (10), (11) and (12).
(iii) Ifa € Cy and b € Cy, then the condition in (14) is equivalent to (13).

Proof. (i) Ifa e Ea, then we have s? (B(r,s)) = s2, by Lemma 3.4. Then, the condition in (14) is equivalent to
B(,s')A e (52, sb),

and
D1 ,B(¥',s") AD, € (co,¢) .
By the characterization of (co, c), we conclude that the conditions (14) and (9) are equivalent.
(ii) If b € Cy, then by Lemma 3.4 we have s, (B (+/,5")) = sp. Then, the condition in (14) is equivalent to

Ae(s2(B (1), s0),

and to the conditions in (10), (11) and (12).
(iii) If a € C, and b € C,, then (14) is equivalent to A € (sg, sb) =S,p,and to (13). O
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We can state the next result.

Corollary 3.6. Assumer, s, v’ and s’ are nonzero reals.
(i) If limsup,,_, ay, < 1/|al, then (14) is equivalent to (9).
(ii) If limsup, _,, by, < 1/|’|, then (14) is equivalent to (10), (11) and (12).
(iii) If limsup, _,  a, < 1/|al and limsup, _, _ by, < 1/|a’|, then (14) is equivalent to (13).

Proof. First, note that for any given p € U", we have x € D, + I if and only if x/p € I'. Since I' C C (by
Lemma 2.2), we deduce D, *I' C D, * C;. The proof of the corollary follows from Corollary 3.5 and the fact
thata € Dy, + I if and only if
lim sup (a"—ll ﬁ) = |a|limsupa;, < 1.
n—00 |(X|n_ n n—oo

This concludes the proof.

Remark 3.7. The characterization of the set §° = (sg (B(r,9)), s(b’ (B (r’,s’))) can be obtained in a similar way. For

instance, if limsup, ,_ af, < 1/|a|, then we have §° = (sg, s, (B (r',s'))) and A € $° if and only if (9) and (12) hold
with Iy = 0 forall i, k > 1.
Iflimsup,  b; < 1/|'|, then we have A € $° if and only if (10), (11) and (12) hold with Iy = 0 for all i, k > 1.
If limsup, , a, <1/la| and limsup, by < 1/|o’|, then we have A € S$° if and only if (13) holds and
limy 00 Ak = O for all k.

Remark 3.8. The set ¢ = (SS (B(r, s)),szc) (B (r’,s’))) can also be simplified using a combination of Part (i) of

Corollary 3.6, and the equivalence of (b,/ |a']"),, € Tand s;(;) (B(,s)) = séc). The proof of the last equivalence follows
from [[18], Lemma 2.1, p. 87] and [[18], Proposition 2.2, p. 88].
0

Example 3.9. Let R > 0. By Corollary 3.6, we obtain the following result.
IfR > |al, then A € (s% (B(r,5)), 55 (B(,")) if and only if

su {bl Z |r’A,,k + s’)\n_1,k| Rk} < oo.

n n k=1
In particular, A € (co (B (2,1)),s1(A)) if and only if

sup {Z ')\,,k - An_1,k|} < 0o
k=1

n

which is equivalent to A\ € S1.
Moreover, for R > 0, we have
A€ (co(B(2,1),sr (A)) if and only if

sup {Rn Z ‘Ank - An—l,k|} < o,
" k=1

which is equivalent to D jrey, AA € Sy.
IfR > |&|, then A € (sfzJ (B(r,9)),sr (B (r’,s’))) if and only if (11), (12) hold and

sup {% i i Auma™ ¥ ak} < 0.

n k=1 |m=k
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3.3. Application. Characterization of the set (sg, sy (B(7,5)) + s« (B (r’,s’))) where x satisfies a sequence spaces
equation
In this parta € U*, and we assume 7, s, 7, s" # 0. We define the set A,z = Ay r (1,5,17,5’) of all matrices

A€ (8D, 5 (B(r,5)) + 5, (B(r,5)))
where x satisfies the equation
s, +89 = sg). (15)

We will see that the set (sg, sy (B(r,s)) + s, (B(r, s’))) can be simplified using the condition in (15). We can

. r r
state the next result where we use the determinant 6 = s |7 rs’ —r's.

Proposition 3.10. Let a € U*, and assume R > |a| and 6 # 0. Then we have

0 /o : 0
A = { (55, 5k (B(r, ) ifa e e 6
%) ifadsy

and if a € s we have A € A, g if and only if

sup {R‘” i
k=1

n

7’//\,,/1< + SI/\n_Lk| ak} < 00,

Proof. From [[17], Theorem 4.4, p. 7] the equation s, + sff) = sg) is equivalent to x,, ~ kR" (n — o) for some

k>0andae€ s%. So we have A, r = @ fora ¢ s%. By [[13], Theorem 5.1, pp. 42-43], since 6 # 0 and
lim x; = 1/R < 1/lal,
we have
sx (B(r,8)) Csx (B(r',s"))

and
sx (B(r,5)) +s: (B(r',s")) = s, (B(r',s")) =sr (B(,5")).

We conclude by Part (i) of Corollary 3.6, where b = (R"),,. O

Remark 3.11. Notice that the condition R > |a| is the better to obtain Proposition 3.10, since by [[13], Theorem 5.1,
pp. 42-43], under the condition 6 # 0 we have R > |a| if and only if sg (B (r,s)) C sr (B (+',s")).

Now we consider the set A, g, where a = ¢ and using the operator A. For this, let Ag be the set of all

matrices
A € (cg,s¢ (A) + s, (B(r,5))),

where x satisfies the equation

51 +89 = sg). (17)

We obtain the following result which is a direct consequence of the preceding.

Corollary 3.12. Let r, s be nonzero reals with r # —s and let R > 0. Then we have

Ag = { (C%SR (B(r,9))) 11,;11;;11: (18)

and for R > 1 we have A € Ag if and only if

(o8]

sgp [% Z |r)\,,,k + 5/\n—1,k|J < 0. (19)

k=1
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Proof Again by [[17], Theorem 4.4, p. 7], the equation in (17) is equivalent to s,
+ ~kR"and R > 1. So we have Ar = @if R < 1.

© = (C) and e € s, that is,
Then, for R > 1 and from (16) in Proposition 3.10 we obtain Ar = (s, sr (B (7, s))) By Part (i) of Corollary
3.6, wherea=eand b =

0
(R™),, we conclude A € Ay if and only if condition (19) holds. O
Example 3.13. Assumer +s # 0, and let

Then A =

ﬂZ = {A € (CO, Sx (A) + Sy (B (rl S))) D81+ S( ) S(ZC)} '
Ak € Az if and only if

(o]
sup|27™" 2 |r)t,,,k + S/\n_1,k| < 00
n

k=1

4. Cases when some reals among 7, s, ¥’ or s’ are equal to zero

Here we give characterizations of (sg (B(r,s)),sy (B(", s’))) when some reals among 7, s, 7’ or s” are equal
to zero and B (r,s) and B (+/,s’) # 0. We write x* =
whose the proof is elementary and left to the reader.

(x4+1), for any x € U*. We obtain the next proposition

Proposition 4.1. (i) If r =0, and s, v, s’ distinct from 0, we have A € (sg (B(7,s)),sy (B(r s’))) if and only if
sup L i |s’A,,_1k + r’/\nk| Ay p < 00.
bn k=1 ,

(20)
(ii) Ifs =0and r, v, s’ distinct from 0, then A € (sg (B(r,9),s, (B(”,s") ) if and only if (9) holds

(iii) If ¥ = 0and v, s, s’ distinct from 0, then A € (sg (B(r,s)),sy (B (r’,s’))) if and only if (11), (12) hold and
{ 1 )
sup

= RGN REE

(21)
k=1 |m=k
(iv)Ifs' =0andr, r iO,thenwehaveAE(s (B(r,9)),sp(B(
@ Ifr =7+ =

n

T

§'))) if and only if (10),(11) and (12) hold.
0, s, s # 0, then we have (sa (B(r,s)),sb (B(r s)))
(9B (r,5)), 5 (B(r',5'))) if and only if

a*,b* .

This means that A €

SUP{ b Z |/\nk|ak+1} < oo,

(vi)Ifr=5"=0,and v',s # 0, then we have (sg (B(r,5)),sy (B (r’,s’))) =Szt
(vii) Ifs =s" =0, and r,v" # 0 then we have (sg (B(,9)),sy (B (r’,s’))) =S.p
(viii) If s =v' =0, and r, s’ # 0, then we have (sg (B(r,s)),s, (B(r',s )))

Sap+

5. Characterization of (sg ((B (r,s) — /\I)h) , xb) where x € {s, s s(“)}

In this section, we characterize the classes (SS ((B (r,s) — )\I)h) )(h) fora,be Ut,A,heC,r, s # 0and
where y € {s, s?, s(c)}.

First, we recall some results on the inverse of the operator (B (7, s)
(Xx, Xx), Where y = s, or s

AI)" and on the spectrum of B (r,s) €
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5.1. The inverse of the operator (B (r,s) — )\I)h, heC
To explicitely calculate the inverse of the infinite matrix (B (r,s) — /\I)h, h € C, we recall the notations
Chek-1 ):{ ShCh+ D) Chtk=1) oo,

1 =Uu.

([cf. [6] Lemma 2, pp. 23-24]).
Then, by (cf. [[19], Lemma 4.5 p. 674]) and using similar arguments as those used in [[19], Theorem 4.1
pp. 674-675], the inverse of the triangle (B (r,s) — Al )h for A # r is determined by

o ()"
[(B (r,s) — Al ]nk =[h,n—k] for k < n. (22)
T

( _ /\)h+1’l—k
5.2. The spectrum of B(r,s) in the sets s, and s{.

Let E be any of the sets s,, or s0. Recall that

0 (B(r,s),E) ={A € C: B(r,s) — Al as operator from E to itself is not invertible}

is the spectrum of the continuous operator B (r,s) € (E,E). We write p(B(r,s),E) = C\o (B(r,s),E) for the

resolvent set of B(r,s). For A € C, we can write B(r,s) — AI = B(r — A,s). So we have A € p (B (r,s),E) if and

only if B (r — A, s) as operator from E to itself is invertible. We also refer the reader to the articles [15, 16].
From [[13], Corollary 5.10, p. 47], we obtain next lemma.

Lemma 5.1. Let v, s # 0 and let a € U*. Then we have
o (B(r,5),50) = 0 (B(r,5),s5)

and

(i)Aeo(B(r,s),s,) ifandonly if A =7, or(

! Xn) ¢61

(i) A € 6 (B(r,s),s,) implies |A — 1| < |s|limsup,_, . a

L]
ne

5.3. The classes (sg ((B (r,8) — /\I)h) ,)(b) where x € {s, s?, s(C)}
In this part, we extend the results given in Section 3, to the classes (sg ((B (r,s) — /\I)h ) , )(b) where y €

{s, s?, s(")}, using Lemma 3.2 and Lemma 5.1.
Consider the following conditions:

1 © [ —s m—k
sup = ) |} [hm K S W P (23)
n 927 =k (1’ — A)
o n (_S)m—k )
sup Z [, m — k] m/\im agy <oo,fori=1,2,... (24)
k=1 lm=k (r—2)
n (_S)m—k
lim [h,m — k] ————A,,, p = Ly for some scalar [ and fori, k=1,2,... (25)
n—oo {;{ (1’ _ A)h+m—k } k k
li li[hm—k]ﬂ/\ —0fork=1,2 (26)
n—oo bn s ’ (’, _ /\)h+m—k nm s
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) 1 © (_S)m*k
31_{1;10 {E Z [, m — k] W/\nm = [; for some scalar [y and fork=1,2,.... (27)

m=k
We can state the next theorem.
Theorem 5.2. Let h € Cand A # r. Then
(i) A e (sg ((B (r,s) — /\I)h) , sb) if and only if conditions (23), (24) and (25) are satisfied.
(i) A e (52 ((B (r,s) — )\I)h) , sg) if and only if conditions (23), (24), (25) and (26) are satisfied.
(iti) A € (sg ((B (r,s) - /\I)h) , séc)) if and only if conditions (23), (24), (25) and (27) are satisfied.

Proof. We only show Part (i) since the proofs of Parts (ii) and (iii) are similar.
(i) Using (22), We obtain

—h °° (_S)mfk
[ABEs =AD" =Y Tm =K Ay ——r,
m=k (1’ - A)
and h ) (_S)mik
[ZD(/\m)n (B (T’,S) - AI)_ ]nk = Z [h,m—k] Aj fori,k=1,2,....

— (7" _ /\)h+m—k

By Lemma 3.2, we have A € (sg ((B (r,s) — /\I)h ) , sb) if and only if

A(B(r,5) = A" € (s),51) (28)
and

£Dq,), (B (r,5) = A" € (s, c). (29)
Condition (28) is equivalent to condition (23) and condition (29) is equivalent to conditions (24) and (25). O

Using Lemma 5.1, we obtain the next result.
Corollary 5.3. Let r, s # 0, and assume

A —7| > |s|limsupa,. (30)

n—oo

Then we have
(i) (a) (s (B(r,5) = D), 50) = Sa.

(b) A € (sg (B(r,s) - AD), sg) if and only if A € S, and im0 Ak /by = 0 for all k.

(c)A e (sg (B(r,s) = AI), sl(f)) ifand only if A € S, and limy,_,eo Api /by = I for some scalar Iy, for all k.
(ii) Let u, v > 0. If |A — 1| > |s| /u, then we have

(sg (B(r,s) — /\I),sv) =S, = {A : sup {z% Z [A uk} < oo}.
n k=1

Proof. By the condition in (30) the operator B(r,s) — A € (sg, 52) is bijective, and s (B (r,s) — Al) = s). We
obtain (sg (B(r,s) = AD) ,)(b) = (sg,)(b) where y € {s, s, s(c)}.
(i) (a) follows from the identity (sg, sb) = Sup-
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(i) (b) follows from the identity (sfzJ (B(r,s) — AD), sg) (s s ) and A € (sa, s ) if and only if A € S, and
lim;, o Ak /by, = 0 for all k.

(i) (c) follows from the identity (s2 (B (r,s) = AI),s\”) = (s0,5”), and A € (s,5\”) if and only if A € S,
and lim, e Ak /by = I for some scalar I for all k.

(ii) is a direct consequence of Part (i) (a) and of the identity lim,_,. 45 = 1/u. This completes the proof. [

Remark 5.4. Notice that the results in Corollary 5.3 can be extended to the classes (s, (B (r,s) — Al),F) where

Fe {sh, sb,szc)}

Conclusion.

In this article, we have determined the classes (sg (B(7,9)), x» (B (r’,s’))), wherea, b e U*,r,s,7,s € R

and x € {s,s%,s}, and we have obtained some simplifications of these sets under some conditions on 4,
belU*, andr,s, v, s € R. Then we have stated some characterization and simplifications of each of the

sets (sg ((B (r,s) — /\I)h ) , )(;,), x €ls,s%,s9 and h, A € C, using the spectral properties of the operator B (7, s).
For p > 1, and h, A € C these results should be extended to the characterizations of each of the classes
(& B,5),x0BE,s), (€ (B(r,5) = AD"), xs), x € Is,5%,5©) and

(@ (B -AD"),e).

In this way, some simplifications should be stated using similar arguments as above.
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