
Filomat 39:23 (2025), 7939–7951
https://doi.org/10.2298/FIL2523939M

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, we state the characterizations of the classes(
s0

a (B (r, s)) , χb (B (r′, s′))
)

,

where a, b ∈ U+, r, s, r′, s′ ∈ R and χ ∈ {s, s0, s(c)
}. Then we give sufficient conditions to simplify these classes,

and we deal with the class (
s0

a , sx (B (r, s)) + sx (B (r′, s′))
)

,

where x satisfies the sequence spaces equation s(c)
a + s0

x = s0
R or R > 0. Then we determine the classes(

s0
a

(
(B (r, s) − λI)h

)
, χb

)
for a, b ∈ U+, λ, h ∈ C, r, s , 0 andχ ∈ {s, s0, s(c)

}. Finally, using some spectral properties of the operator B (r, s)
we obtain sufficient conditions to simplify these classes. These results extend those stated in [3, 6, 10, 19].

1. Introduction

In the book entitled Summability through Functional Analysis, Wilansky [30] introduced sets of the form
a−1
∗E where E is a BK space, and a = (an)n≥1 is a sequence satisfying an , 0 for all n. Recall that a−1

∗E is the
set of all sequences y =

(
yn

)
n≥1 such that ay ∈ E. In [7], the sets sa, s0

a and s(c)
a were introduced by (1/a)−1

∗ E
with an > 0 for all n and E ∈ {ℓ∞, c0, c}. In [9, 10], the sum χa+χ′b and the product χa ∗χ′b were defined, where
χ, χ′ are any of the symbols s, s0, or s(c). Then, some characterizations of matrix transformations mapping
in the sets sa + s0

b (∆q) and sa + s(c)
b (∆q) were stated, where ∆ is the operator of the first difference. In [19], we

stated characterizations of the sets (sa (∆q) , χb), where χ is any of the symbols s, s0, or s(c). In [10], using the
spectral properties of the operator of first difference in the sets s0

α and s(c)
β , we stated some simplifications of

the set
s0
α

(
(∆ − λI)h

)
+ s(c)
β

((
∆ − µI

)l
)

,
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where h, l are complex numbers, α, β given sequences. Then, we gave some characterization of matrix
transformations in this set. In [21], were given applications of the measure of noncompactness to operators
on the spaces sα, s0

α, s(c)
α and lpα. In [28], topological properties of the spaces s0

a(B̃), s(c)
a (B̃) and sa(B̃), where B̃

is a double band matrix were stated. Then, characterizations of the classes of matrix transformations from
these spaces into any of the sets ℓ1, ℓ∞, c0 and c were given.

In the following, we also use the notion of sequence spaces equations (SSE), see for instance [13, 17, 20].
In particular, in [2, 17], for any given positive sequences a, and b, we solved the (SSE) of the form χa+χ′x = χ

′

b,
where χ and χ′ are any of the symbols s, s0, or s(c). For instance, the solvability of the (SSE) sa + s(c)

x = s(c)
b ,

consists in determining the set of all positive sequences x that satisfy the next statement. For every
sequence y, the condition yn/bn → l holds if and only if there are two sequences u, v with y = u + v, such
that supn (|un| /an) < ∞ and vn/xn → l′ (n→∞) for some scalars l, l′.

In this paper, we extend some results stated in [4], Corollary 4.2, 1307-1308], and we deal with matrix
transformations involving the sets of the form χa (B (r, s)), where χ is any of the symbols s, s0, or s(c). More
precisely, we give the characterizations of the classes(

s0
a (B (r, s)) , χb (B (r′, s′))

)
,

where a, b ∈ U+, r, s, r′, s′ ∈ R and χ ∈ {s, s0, s(c)
}. Then, from [13], we state some simplifications of these

classes.
Then, for any given a ∈ U+, r, s, r′, s′ reals and for R > 0, we determine the setAa,R of all matrices

Λ ∈
(
s0

a , sx (B (r, s)) + sx (B (r′, s′))
)

,

where x satisfies the (SSE) sa + s(c)
x = s(c)

R .
Finally, we deal with matrix transformations mapping in the set

s0
a

(
(B (r, s) − λI)h

)
, λ, h ∈ C.

This paper is organized as follows. In Section 2, we recall some useful results on sequence spaces and
matrix transformations. In Section 3, we state the characterization of the classes

(
s0

a (B (r, s)) , χb (B (r′, s′))
)
,

where a, b ∈ U+, r, s, r′, s′ ∈ R and χ ∈ {s, s0, s(c)
}. Then we give simplifications of these classes for

r, s, r′, s′ , 0. Then for any given a ∈ U+, r, s, r′, s′ reals and for R > 0, we determine the set Aa,R of all
matrices Λ ∈

(
s0

a , sx (B (r, s)) + sx (B (r′, s′))
)

where x satisfies the equation sa + s(c)
x = s(c)

R . In Section 4, we
determine the previous classes in the cases when some reals among r, s, r′ or s′ are equal to zero. Finally, in
Section 5, we give some characterizations involving the operator (B (r, s) − λI)h, λ, h ∈ C.

2. Notations and preliminary results

For a given infinite matrix Λ = (λnk)n,k≥1 we define the operators Λn for any integer n ≥ 1, by Λny =∑
∞

k=1 λnkyk where y = (yk)k≥1, and the series are assumed convergent for all n. So we are led to the study of
the operator Λ defined by Λy =

(
Λny

)
n≥1 mapping between sequence spaces.

A Banach space E of complex sequences with the norm ∥∥E is a BK space if each projection Pn:E → C
defined by y→ Pny = yn is continuous. A BK space E is said to have AK if every sequence y = (yk)k≥1 ∈ E
has a unique representation y =

∑
∞

k=1 yke(k) where e(k) is the sequence with 1 in the k-th position and 0
otherwise.

We will denote by ω, c0, c, ℓ∞ the sets of all sequences, the set of sequences that converge to zero, that
are convergent and that are bounded respectively. If u and v are sequences and E and F are two subsets of
ω, then we write uv = (unvn)n≥1 and u/v = (un/vn)n≥1 (if vn , 0 for all n). We use the set U+ of all sequences
u = (un)n≥1 ∈ ω such that un > 0 for all n. Using Wilansky’s notations [30], we define for any sequence
a = (an)n≥1 ∈ U+ and for any set of sequences E, the set (1/a)−1

∗ E =
{
y ∈ ω : y/a ∈ E

}
.To simplify, we use
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the diagonal matrix Da defined by [Da]nn = an for all n and write Da ∗ E = (1/a)−1
∗ E and define sa = Da ∗ ℓ∞,

s0
a = Da ∗ c0 and s(c)

a = Da ∗ c, see for instance [7, 9, 20]. Each of the spaces Dα ∗ χ, where χ ∈ {ℓ∞, c0, c}, is a BK
space normed by

∥∥∥y
∥∥∥

sa
= supn≥1

(∣∣∣yn

∣∣∣ /an

)
and s0

a has AK.
Now let a = (an)n≥1, b = (bn)n≥1 ∈ U+. By Sa,b we denote the set of infinite matrices Λ = (λnk)n,k≥1 such

that ∥Λ∥Sa,b
= supn≥1

(
b−1

n
∑
∞

k=1 |λnk| ak

)
< ∞. The set Sa,b is a Banach space with the norm ∥.∥Sa,b

. Let E and F
be any subsets of ω. When Λ maps E into F we write Λ ∈ (E,F), (cf. [5]). So we have Λy ∈ F for all y ∈ E,
(Λy ∈ F means that for each n ≥ 1 the series defined by Λny =

∑
∞

k=1 λnkyk is convergent and
(
Λny

)
n≥1 ∈ F).

It is well known that Λ ∈ (sa, sb) if and only if Λ ∈ Sa,b. So we can write (sa, sb) = Sa,b.
When sa = sb we obtain the Banach algebra with identity Sa,b = Sa, (cf. [7]) normed by ∥Λ∥Sa

= ∥Λ∥Sa,a
.

We also have Λ ∈ (sa, sa) if and only if Λ ∈ Sa.
If a = (rn)n≥1, the sets Sa, sa, s0

a and s(c)
a are denoted by Sr, sr, s0

r and s(c)
r respectively (cf.[9]). When r = 1,

we obtain s1 = ℓ∞, s0
1 = c0 and s(c)

1 = c, and putting e = (1, ...1, ...) we have S1 = Se. It is well known that
(s1, s1) = (c0, s1) = (c, s1) = S1, (cf. [5]). We have Λ ∈ (s1, s1) if and only if

Λ ∈ S1. (1)

In the following, we use the next well-known characterizations, (cf. [5, 20, 26]).

Lemma 2.1. (i) Λ ∈ (c0, c0) if and only if (1) holds and limn→∞ λnk = 0 for all k ≥ 1.
(ii) Λ ∈ (c0, c) if and only if (1) holds and limn→∞ λnk = lk for some scalar lk for all k.
(iii) Λ ∈ (c, c) if and only if (1) holds, limn→∞ λnk = lk for some scalar lk for all k, and limn→∞

∑
∞

k=1 λnk = l for
some scalar l.

We also use the fact that for any given a, b ∈ U+ and for any sets E and F of sequences the con-
dition Λ ∈ (DaE,DbF) holds if and only if D1/bΛDa ∈ (E,F). For any subset E of ω, we write ΛE ={
η ∈ ω : η = Λy for some y ∈ E

}
. Then, for any subset F of ω, we will write F (Λ) = FΛ =

{
y ∈ ω : Λy ∈ F

}
.

2.1. The operators C (ξ), ∆ (ξ) and the sets Γ̂, Ĉ, Γ and Ĉ1.
An infinite matrix T = (tnk)n,k≥1 is said to be a triangle if tnk = 0 for k > n and tnn , 0 for all n. Now let U be

the set of all sequences (un)n≥1 ∈ ωwith un , 0 for all n. The next operators are used for many applications,
see for instance, [7, 14, 22–24]. The triangle C (ξ) for ξ = (ξn)n≥1 ∈ U, is defined by [C (ξ)]nk = 1/ξn for
k ≤ n. The infinite matrix ∆ (ξ) is the triangle whose the non-zero entries are given by [∆ (ξ)]nn = ξn, and
[∆ (ξ)]n,n−1 = −ξn−1, for all n, with the convention ξ0 = 0. It can be shown that the triangle∆ (ξ) is the inverse
of C (ξ), that is, C (ξ)

(
∆ (ξ) y

)
= ∆ (ξ)

(
C (ξ) y

)
= y for all y ∈ ω. If ξ = e we obtain the well-known operator

of the first difference denoted by ∆ (e) = ∆. We then have ∆ny = yn − yn−1 for all n ≥ 1, with the convention
y0 = 0. It is usually written Σ = C (e). Note that ∆ = Σ−1 and ∆, Σ ∈ SR for any R > 1.

In the following, we use the next sets, (cf. [[20], p. 167]), where we write ξ•n = (ξn−1/ξn)n and ξ0 = 1.

Ĉ =

ξ ∈ U+ : [C (ξ) ξ]n =
1
ξn

n∑
k=1

ξk → l (n→∞) for some scalar l

 ,

Ĉ1 =

ξ ∈ U+ : [C (ξ) ξ]n =
1
ξn

n∑
k=1

ξk = O (1) (n→∞)

 ,

Γ̂ =
{
ξ ∈ U+ : lim

n→∞
ξ•n < 1

}
,

Γ =

{
ξ ∈ U+ : lim sup

n→∞

(
ξ•n

)
< 1

}
and

G1 =
{
ξ ∈ U+ : ξn ≥ Cγn for all n and for some C > 0 and γ > 1

}
.

By [[7], Proposition 2.1, p. 1786] and [[18], Proposition 2.2 p. 88], we obtain the next lemma.

Lemma 2.2. We have Ĉ = Γ̂ ⊂ Γ ⊊ Ĉ1 ⊂ G1.
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2.2. The generalized operator of the first difference

Let r, s be real numbers. The matrix B (r, s) is the lower triangular matrix

B (r, s) =


r
s r 0

s r
0 . .

. .

 .
For r and s nonzero reals, the matrix B (r, s) was introduced by Altay and Basar [1] and was called the
generalized operator of the first difference. When r = −s = 1, the matrix B (r, s) reduces to the operator of
the first difference ∆.

Note that, if r , 0 then the triangle B(r, s) is invertible and its inverse is the triangle defined by[
B−1 (r, s)

]
nk
= r−1αn−k for 1 ≤ k ≤ n with α = −s/r.

3. Characterizations of
(
s0

a (B (r, s)) , χb (B (r′, s′))
)

for χ ∈
{
s, s0, s(c)

}
In this section, we consider the sets

(
s0

a (B (r, s)) , χb (B (r′, s′))
)

for χ ∈
{
s, s0, s(c)

}
. We obtain a charac-

terization of these classes using a result due to Malkowsky and Rakočević, see [29]. Then we give some
simplifications of these classes using results stated in [13].

We will use the next well known lemma, (cf. [[25], Theorem 1]).

Lemma 3.1. Let E and F be two subsets of ω. Let A be an infinite matrix and T be a triangle. Then A ∈ (E,F (T)) if
and only if TA ∈ (E,F) .

By a theorem due to Malkowsky and Rakočević (cf. [[27] Theorem 3.9], [[20], Theorem 3.5, p. 118]) and
adapted in the paper [3] we obtain the following lemma.

Lemma 3.2. [[3], Lemma 12, pp. 672-673] Let E be BK space with AK and F be any subset of ω. Let A be an infinite
matrix and T be a triangle. Then A ∈ (E (T) ,F) if and only if AT−1

∈ (E,F) and

ΣD(ain)n
T−1
∈ (E, c) for all i = 1, 2,....

This result is also true for E = ℓ∞, or c.

Let r, s, r′ and s′ be real numbers. In this section, r is different from zero, α = −s/r, and the reals r′ and s′

are not equal to zero together.

3.1. General case

Let a, b ∈ U+ and consider the following conditions where we use the convention λ0k = 0,

sup
n

 1
bn

∞∑
k=1

∣∣∣∣∣∣∣
∞∑

m=k

(
s′λn−1,m + r′λnm

)
αm−k

∣∣∣∣∣∣∣ ak

 < ∞, (2)

sup
n

 n∑
k=1

∣∣∣∣∣∣∣
n∑

m=k

(
s′λi−1,m + r′λim

)
αm−k

∣∣∣∣∣∣∣ ak

 < ∞ for all i, (3)

lim
n→∞

n∑
m=k

(
s′λi−1,m + r′λim

)
αm−k = lik for some scalar lik and for i, k = 1, 2,..., (4)
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lim
n→∞

1
bn

∞∑
m=k

(
s′λi−1,m + r′λi,m

)
αm−k = 0 for i, k = 1, 2,..., (5)

and

lim
n→∞

1
bn

∞∑
m=k

(
s′λi−1,m + r′λim

)
αm−k = lk for some scalar lk and for i, k = 1, 2,... (6)

We obtain the next theorem.

Theorem 3.3. (i) Λ ∈
(
s0

a (B (r, s)) , sb (B (r′, s′))
)

if and only if conditions (2), (3) and (4) are satisfied.

(ii) Λ ∈
(
s0

a (B (r, s)) , s0
b (B (r′, s′))

)
if and only if conditions (2), (3), (4) and (5) are satisfied.

(iii) Λ ∈
(
s0

a (B (r, s)) , s(c)
b (B (r′, s′))

)
if and only if conditions (2), (3), (4) and (6) are satisfied.

Proof. We only deal with Part (i), since the Parts (ii) and (iii) can be sown in a similar way.
(i) By lemma 3.1, we have Λ ∈

(
s0

a (B (r, s)) , sb (B (r′, s′))
)

if and only if

B (r′, s′)Λ ∈
(
s0

a (B (r, s)) , sb

)
.

Let Λ′ = B (r′, s′)Λ = (λ′nk)n,k. Then we have

λ′n,k = s′λn−1,k + r′λnk for all n, k,

with the convention λ0k = 0. By Lemma 3.2, we have Λ′ ∈
(
s0

a (B (r, s)) , sb

)
if and only if

Λ′B−1 (r, s) ∈
(
s0

a , sb

)
(7)

and

ΣD(λ′in)n
B−1 (r, s) ∈

(
s0

a , c
)

for all i = 1, 2, . . . (8)

Condition (7) is equivalent to D1/bΛ
′B−1 (r, s) Da ∈ (c0, ℓ∞) = S1 and to

sup
n

 1
bn

∞∑
k=1

∣∣∣∣∣∣∣
∞∑

m=k

λ′nm

(
−

s
r

)m−k
∣∣∣∣∣∣∣ ak

 < ∞,
which is condition (2). Condition (8) is equivalent to

ΣD(λ′in)n
B−1 (r, s) Da ∈ (c0, c) for all i = 1, 2,....

Now for every i, we obtain

ΣD(λ′in)n
=



λ′i1
. . 0
. . .
λ′i1 . . λ′in
. . . . .
. . . . . .


,

and elementary calculations yield,[
ΣD(λ′in)n

B−1 (r, s)
]

nk
=

1
r

n∑
m=k

λ′im

(
−

s
r

)m−k
for k ≤ n and i = 1, 2,....

We conclude that the condition in (8) is equivalent to the conditions in (3) and (4). This concludes the
proof.
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3.2. Simplifications of the classes
(
s0

a (B (r, s)) , χb (B (r′, s′))
)

for χ ∈ {s, s0, s(c)
}

In this subsection, we give sufficient conditions on a, b ∈ U+ and on the scalars r, r′, s and s′ for which
the characterizations of the classes

(
s0

a (B (r, s)) , χb (B (r′, s′))
)

for χ ∈ {s, s0, s(c)
} can be simplified.

Now consider the next conditions

sup
n

 1
bn

∞∑
k=1

∣∣∣s′λn−1,k + r′λnk

∣∣∣ ak

 < ∞, (9)

sup
n

 1
bn

∞∑
k=1

∣∣∣∣∣∣∣
∞∑

m=k

λnmα
m−k

∣∣∣∣∣∣∣ ak

 < ∞, (10)

sup
n

 ∞∑
k=1

∣∣∣∣∣∣∣
n∑

m=k

λimα
m−k

∣∣∣∣∣∣∣ ak

 < ∞, for i = 1, 2, . . . , (11)

lim
n→∞

n∑
m=k

λimα
m−k = lik for some scalar lik and for i, k = 1, 2, . . . (12)

sup
n

 1
bn

∞∑
k=1

|λnk| ak

 < ∞. (13)

Then, to simplify the notations, for any non zero real number β, we let

Ĉβ = D(|β|n) ∗ Ĉ1 =

ξ ∈ U+ : sup
n


∣∣∣β∣∣∣n
ξn

n∑
k=1

ξk∣∣∣β∣∣∣k
 < ∞

 .

We need the next lemma, (cf. [[13], Corollary 5.3 p. 45] and [ [13], Remark 5.7. p. 40]).

Lemma 3.4. Let a ∈ U+, and let r, s , 0. The next statements are equivalent, where,
(i) sa (B (r, s)) = sa, (ii) s0

a (B (r, s)) = s0
a , (iii) a ∈ Ĉα.

In the following, we write α′ = −s′/r′. We can state the next result.

Corollary 3.5. Assume r, s, r′ and s′ are nonzeros reals.
(i) If a ∈ Ĉα, then we have

Λ ∈
(
s0

a (B (r, s)) , sb (B (r′, s′))
)

(14)

if and only if (9) holds.
(ii) If b ∈ Ĉα′ , then the condition in (14) is equivalent to (10), (11) and (12).
(iii) If a ∈ Ĉα and b ∈ Ĉα′ , then the condition in (14) is equivalent to (13).

Proof. (i) If a ∈ Ĉα, then we have s0
a (B (r, s)) = s0

a , by Lemma 3.4. Then, the condition in (14) is equivalent to

B (r′, s′)Λ ∈
(
s0

a , sb

)
,

and
D1/bB (r′, s′)ΛDa ∈ (c0, c) .

By the characterization of (c0, c), we conclude that the conditions (14) and (9) are equivalent.
(ii) If b ∈ Ĉα′ , then by Lemma 3.4 we have sb (B (r′, s′)) = sb. Then, the condition in (14) is equivalent to

Λ ∈
(
s0

a (B (r, s)) , sb

)
,

and to the conditions in (10), (11) and (12).
(iii) If a ∈ Ĉα and b ∈ Ĉα′ , then (14) is equivalent to Λ ∈

(
s0

a , sb

)
= Sa,b, and to (13).



B. de Malafosse et al. / Filomat 39:23 (2025), 7939–7951 7945

We can state the next result.

Corollary 3.6. Assume r, s, r′ and s′ are nonzero reals.
(i) If lim supn→∞ a•n < 1/|α|, then (14) is equivalent to (9).
(ii) If lim supn→∞ b•n < 1/|α′|, then (14) is equivalent to (10), (11) and (12).
(iii) If lim supn→∞ a•n < 1/|α| and lim supn→∞ b•n < 1/|α′|, then (14) is equivalent to (13).

Proof. First, note that for any given ρ ∈ U+, we have x ∈ Dρ ∗ Γ if and only if x/ρ ∈ Γ. Since Γ ⊂ Ĉ1 (by
Lemma 2.2), we deduce Dρ ∗ Γ ⊂ Dρ ∗ Ĉ1. The proof of the corollary follows from Corollary 3.5 and the fact
that a ∈ D|α|n ∗ Γ if and only if

lim sup
n→∞

(
an−1

|α|n−1

|α|n

an

)
= |α| lim sup

n→∞
a•n < 1.

This concludes the proof.

Remark 3.7. The characterization of the set S0 =
(
s0

a (B (r, s)) , s0
b (B (r′, s′))

)
can be obtained in a similar way. For

instance, if lim supn→∞ a•n < 1/|α|, then we have S0 =
(
s0

a , s0
b (B (r′, s′))

)
and Λ ∈ S0 if and only if (9) and (12) hold

with lik = 0 for all i, k ≥ 1.
If lim supn→∞ b•n < 1/|α′|, then we have Λ ∈ S0 if and only if (10), (11) and (12) hold with lik = 0 for all i, k ≥ 1.
If lim supn→∞ a•n < 1/|α| and lim supn→∞ b•n < 1/|α′|, then we have Λ ∈ S0 if and only if (13) holds and

limn→∞ λnk = 0 for all k.

Remark 3.8. The set Sc =
(
s0

a (B (r, s)) , s(c)
b (B (r′, s′))

)
can also be simplified using a combination of Part (i) of

Corollary 3.6, and the equivalence of (bn/ |α′|
n)n ∈ Γ̂ and s(c)

b (B (r′, s′)) = s(c)
b . The proof of the last equivalence follows

from [[18], Lemma 2.1, p. 87] and [[18], Proposition 2.2, p. 88].

Example 3.9. Let R > 0. By Corollary 3.6, we obtain the following result.
If R > |α|, then Λ ∈

(
s0

R (B (r, s)) , sb (B (r′, s′))
)

if and only if

sup
n

 1
bn

∞∑
k=1

∣∣∣r′λnk + s′λn−1,k

∣∣∣ Rk

 < ∞.

In particular, Λ ∈ (c0 (B (2, 1)) , s1 (∆)) if and only if

sup
n

 ∞∑
k=1

∣∣∣λnk − λn−1,k

∣∣∣ < ∞
which is equivalent to ∆Λ ∈ S1.

Moreover, for R > 0, we have
Λ ∈ (c0 (B (2, 1)) , sR (∆)) if and only if

sup
n

R−n
∞∑

k=1

∣∣∣λnk − λn−1,k

∣∣∣ < ∞,

which is equivalent to D(1/Rn)n∆Λ ∈ S1.
If R > |α′|, then Λ ∈

(
s0

a (B (r, s)) , sR (B (r′, s′))
)

if and only if (11), (12) hold and

sup
n

 1
Rn

∞∑
k=1

∣∣∣∣∣∣∣
∞∑

m=k

λnmα
m−k

∣∣∣∣∣∣∣ ak

 < ∞.



B. de Malafosse et al. / Filomat 39:23 (2025), 7939–7951 7946

3.3. Application. Characterization of the set
(
s0

a , sx (B (r, s)) + sx (B (r′, s′))
)

where x satisfies a sequence spaces
equation

In this part a ∈ U+, and we assume r, s, r′, s′ , 0. We define the setAa,R = Aa,R (r, s, r′, s′) of all matrices

Λ ∈
(
s0

a , sx (B (r, s)) + sx (B (r′, s′))
)

where x satisfies the equation

sa + s(c)
x = s(c)

R . (15)

We will see that the set
(
s0

a , sx (B (r, s)) + sx (B (r′, s′))
)

can be simplified using the condition in (15). We can

state the next result where we use the determinant δ =
∣∣∣∣∣ r r′

s s′

∣∣∣∣∣ = rs′ − r′s.

Proposition 3.10. Let a ∈ U+, and assume R > |α| and δ , 0. Then we have

Aa,R =

{ (
s0

a , sR (B (r′, s′))
)

if a ∈ s0
R,

∅ if a < s0
R;

(16)

and if a ∈ s0
R we have Λ ∈ Aa,R if and only if

sup
n

R−n
∞∑

k=1

∣∣∣r′λn,k + s′λn−1,k

∣∣∣ ak

 < ∞.

Proof. From [[17], Theorem 4.4, p. 7] the equation sa + s(c)
x = s(c)

R is equivalent to xn ∼ kRn (n→∞) for some
k > 0 and a ∈ s0

R. So we haveAa,R = ∅ for a < s0
R. By [[13], Theorem 5.1, pp. 42-43], since δ , 0 and

lim
n→∞

x•n = 1/R < 1/|α|,

we have
sx (B (r, s)) ⊂ sx (B (r′, s′))

and
sx (B (r, s)) + sx (B (r′, s′)) = sx (B (r′, s′)) = sR (B (r′, s′)) .

We conclude by Part (i) of Corollary 3.6, where b = (Rn)n.

Remark 3.11. Notice that the condition R > |α| is the better to obtain Proposition 3.10, since by [[13], Theorem 5.1,
pp. 42-43], under the condition δ , 0 we have R > |α| if and only if sR (B (r, s)) ⊂ sR (B (r′, s′)).

Now we consider the set Aa,R, where a = e and using the operator ∆. For this, let AR be the set of all
matrices

Λ ∈ (c0, sx (∆) + sx (B (r, s))) ,

where x satisfies the equation

s1 + s(c)
x = s(c)

R . (17)

We obtain the following result which is a direct consequence of the preceding.

Corollary 3.12. Let r, s be nonzero reals with r , −s and let R > 0. Then we have

AR =

{
(c0, sR (B (r, s))) if R > 1,
∅ if R ≤ 1; (18)

and for R > 1 we have Λ ∈ AR if and only if

sup
n

 1
Rn

∞∑
k=1

∣∣∣rλn,k + sλn−1,k

∣∣∣ < ∞. (19)
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Proof. Again by [[17], Theorem 4.4, p. 7], the equation in (17) is equivalent to s(c)
x = s(c)

R and e ∈ s0
R, that is,

xn ∼ kRn and R > 1. So we haveAR = ∅ if R ≤ 1.
Then, for R > 1 and from (16) in Proposition 3.10 we obtainAR =

(
s0

a , sR (B (r, s))
)
. By Part (i) of Corollary

3.6, where a = e and b = (Rn)n, we conclude Λ ∈ AR if and only if condition (19) holds.

Example 3.13. Assume r + s , 0, and let

A2 =
{
Λ ∈ (c0, sx (∆) + sx (B (r, s))) : s1 + s(c)

x = s(c)
2

}
.

Then Λ = (λnk)nk ∈ A2 if and only if

sup
n

2−n
∞∑

k=1

∣∣∣rλn,k + sλn−1,k

∣∣∣ < ∞.

4. Cases when some reals among r, s, r′ or s′ are equal to zero

Here we give characterizations of
(
s0

a (B (r, s)) , sb (B (r′, s′))
)

when some reals among r, s, r′ or s′ are equal
to zero and B (r, s) and B (r′, s′) , 0. We write x+ = (xn+1)n for any x ∈ U+. We obtain the next proposition,
whose the proof is elementary and left to the reader.

Proposition 4.1. (i) If r = 0, and s, r′, s′ distinct from 0, we have Λ ∈
(
s0

a (B (r, s)) , sb (B (r′, s′))
)

if and only if

sup
n

 1
bn

∞∑
k=1

∣∣∣s′λn−1,k + r′λnk

∣∣∣ ak+1

 < ∞. (20)

(ii) If s = 0 and r, r′, s′ distinct from 0, then Λ ∈
(
s0

a (B (r, s)) , sb (B (r′, s′))
)

if and only if (9) holds.

(iii) If r′ = 0 and r, s, s′ distinct from 0, then Λ ∈
(
s0

a (B (r, s)) , sb (B (r′, s′))
)

if and only if (11), (12) hold and

sup
n

 1
bn+1

∞∑
k=1

∣∣∣∣∣∣∣
∞∑

m=k

λnm

(
−

s
r

)m−k
∣∣∣∣∣∣∣ ak

 < ∞. (21)

(iv) If s′ = 0 and r, r′ , 0, then we have Λ ∈
(
s0

a (B (r, s)) , sb (B (r′, s′))
)

if and only if (10),(11) and (12) hold.

(v) If r = r′ = 0, s, s′ , 0, then we have
(
s0

a (B (r, s)) , sb (B (r′, s′))
)
= Sa+,b+ . This means that Λ ∈(

s0
a (B (r, s)) , sb (B (r′, s′))

)
if and only if

sup
n

 1
bn+1

∞∑
k=1

|λnk| ak+1

 < ∞.

(vi) If r = s′ = 0, and r′, s , 0, then we have
(
s0

a (B (r, s)) , sb (B (r′, s′))
)
= Sa+,b.

(vii) If s = s′ = 0, and r, r′ , 0 then we have
(
s0

a (B (r, s)) , sb (B (r′, s′))
)
= Sa,b.

(viii) If s = r′ = 0, and r, s′ , 0, then we have
(
s0

a (B (r, s)) , sb (B (r′, s′))
)
= Sa,b+ .

5. Characterization of
(
s0

a

(
(B (r, s) − λI)h

)
, χb

)
where χ ∈

{
s, s0, s(c)

}
In this section, we characterize the classes

(
s0

a

(
(B (r, s) − λI)h

)
, χb

)
for a, b ∈ U+, λ, h ∈ C, r, s , 0 and

where χ ∈
{
s, s0, s(c)

}
.

First, we recall some results on the inverse of the operator (B (r, s) − λI)h and on the spectrum of B (r, s) ∈
(χx, χx), where χ = s, or s0.
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5.1. The inverse of the operator (B (r, s) − λI)h, h ∈ C

To explicitely calculate the inverse of the infinite matrix (B (r, s) − λI)h, h ∈ C, we recall the notations

[−h, k] =
(
−h + k − 1

k

)
=

 −h (−h + 1) · · · (−h + k − 1)
k!

if k > 0,

1 if k = 0.

([cf. [6] Lemma 2, pp. 23-24]).
Then, by (cf. [[19], Lemma 4.5 p. 674]) and using similar arguments as those used in [[19], Theorem 4.1

pp. 674-675], the inverse of the triangle (B (r, s) − λI)h for λ , r is determined by[
(B (r, s) − λI)−h

]
nk
= [h,n − k]

(−s)n−k

(r − λ)h+n−k
for k ≤ n. (22)

5.2. The spectrum of B (r, s) in the sets sa and s0
a .

Let E be any of the sets sa, or s0
a . Recall that

σ (B (r, s) ,E) =
{
λ ∈ C : B (r, s) − λI as operator from E to itself is not invertible

}
is the spectrum of the continuous operator B (r, s) ∈ (E,E). We write ρ (B (r, s) ,E) = C\σ (B (r, s) ,E) for the
resolvent set of B (r, s). For λ ∈ C, we can write B (r, s) − λI = B (r − λ, s). So we have λ ∈ ρ (B (r, s) ,E) if and
only if B (r − λ, s) as operator from E to itself is invertible. We also refer the reader to the articles [15, 16].

From [[13], Corollary 5.10, p. 47], we obtain next lemma.

Lemma 5.1. Let r, s , 0 and let a ∈ U+. Then we have

σ (B (r, s) , sa) = σ
(
B (r, s) , s0

a

)
and

(i) λ ∈ σ (B (r, s) , sa) if and only if λ = r, or
(∣∣∣∣∣λ − r

s

∣∣∣∣∣n xn

)
n
< Ĉ1.

(ii) λ ∈ σ (B (r, s) , sa) implies |λ − r| ≤ |s| lim supn→∞ a•n.

5.3. The classes
(
s0

a

(
(B (r, s) − λI)h

)
, χb

)
where χ ∈

{
s, s0, s(c)

}
In this part, we extend the results given in Section 3, to the classes

(
s0

a

(
(B (r, s) − λI)h

)
, χb

)
where χ ∈{

s, s0, s(c)
}
, using Lemma 3.2 and Lemma 5.1.

Consider the following conditions:

sup
n

 1
bn

∞∑
k=1

∣∣∣∣∣∣∣
∞∑

m=k

[h,m − k]
(−s)m−k

(r − λ)h+m−k
λnm

∣∣∣∣∣∣∣ ak

 < ∞, (23)

sup
n

 ∞∑
k=1

∣∣∣∣∣∣∣
n∑

m=k

[h,m − k]
(−s)m−k

(r − λ)h+m−k
λim

∣∣∣∣∣∣∣ ak

 < ∞, for i = 1, 2, . . . (24)

lim
n→∞

 n∑
m=k

[h,m − k]
(−s)m−k

(r − λ)h+m−k
λim

 = lik for some scalar lik and for i, k = 1, 2, . . . (25)

lim
n→∞

 1
bn

∞∑
m=k

[h,m − k]
(−s)m−k

(r − λ)h+m−k
λnm

 = 0 for k = 1, 2, . . . (26)
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lim
n→∞

 1
bn

∞∑
m=k

[h,m − k]
(−s)m−k

(r − λ)h+m−k
λnm

 = lk for some scalar lk and for k = 1, 2, . . . . (27)

We can state the next theorem.

Theorem 5.2. Let h ∈ C and λ , r. Then
(i) Λ ∈

(
s0

a

(
(B (r, s) − λI)h

)
, sb

)
if and only if conditions (23), (24) and (25) are satisfied.

(ii) Λ ∈
(
s0

a

(
(B (r, s) − λI)h

)
, s0

b

)
if and only if conditions (23), (24), (25) and (26) are satisfied.

(iii) Λ ∈
(
s0

a

(
(B (r, s) − λI)h

)
, s(c)

b

)
if and only if conditions (23), (24), (25) and (27) are satisfied.

Proof. We only show Part (i) since the proofs of Parts (ii) and (iii) are similar.
(i) Using (22), We obtain

[
Λ (B (r, s) − λI)−h

]
nk
=

∞∑
m=k

[h,m − k]λnm
(−s)m−k

(r − λ)h+m−k
,

and [
ΣD(λin)n

(B (r, s) − λI)−h
]

nk
=

n∑
m=k

[h,m − k]λim
(−s)m−k

(r − λ)h+m−k
for i, k = 1, 2, . . . .

By Lemma 3.2, we have Λ ∈
(
s0

a

(
(B (r, s) − λI)h

)
, sb

)
if and only if

Λ (B (r, s) − λI)−h
∈

(
s0

a , sb

)
(28)

and

ΣD(λin)n
(B (r, s) − λI)−h

∈

(
s0

a , c
)
. (29)

Condition (28) is equivalent to condition (23) and condition (29) is equivalent to conditions (24) and (25).

Using Lemma 5.1, we obtain the next result.

Corollary 5.3. Let r, s , 0, and assume

|λ − r| > |s| lim sup
n→∞

a•n. (30)

Then we have
(i) (a)

(
s0

a (B (r, s) − λI) , sb

)
= Sa,b.

(b) Λ ∈
(
s0

a (B (r, s) − λI) , s0
b

)
if and only if Λ ∈ Sa,b and limn→∞ λnk/bn = 0 for all k.

(c) Λ ∈
(
s0

a (B (r, s) − λI) , s(c)
b

)
if and only if Λ ∈ Sa,b and limn→∞ λnk/bn = lk for some scalar lk for all k.

(ii) Let u, v > 0. If |λ − r| > |s| /u, then we have

(
s0

u (B (r, s) − λI) , sv

)
= Su,v =

Λ : sup
n

 1
vn

∞∑
k=1

|λnk|uk

 < ∞
 .

Proof. By the condition in (30) the operator B (r, s) − λI ∈
(
s0

a , s0
a

)
is bijective, and s0

a (B (r, s) − λI) = s0
a . We

obtain
(
s0

a (B (r, s) − λI) , χb

)
=

(
s0

a , χb

)
where χ ∈

{
s, s0, s(c)

}
.

(i) (a) follows from the identity
(
s0

a , sb

)
= Sa,b.
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(i) (b) follows from the identity
(
s0

a (B (r, s) − λI) , s0
b

)
=

(
s0

a , s0
b

)
, and Λ ∈

(
s0

a , s0
b

)
if and only if Λ ∈ Sa,b and

limn→∞ λnk/bn = 0 for all k.
(i) (c) follows from the identity

(
s0

a (B (r, s) − λI) , s(c)
b

)
=

(
s0

a , s
(c)
b

)
, and Λ ∈

(
s0

a , s
(c)
b

)
if and only if Λ ∈ Sa,b

and limn→∞ λnk/bn = lk for some scalar lk for all k.
(ii) is a direct consequence of Part (i) (a) and of the identity limn→∞ a•n = 1/u. This completes the proof.

Remark 5.4. Notice that the results in Corollary 5.3 can be extended to the classes (sa (B (r, s) − λI) ,F) where
F ∈

{
sb, s0

b , s
(c)
b

}
.

Conclusion.

In this article, we have determined the classes
(
s0

a (B (r, s)) , χb (B (r′, s′))
)
, where a, b ∈ U+, r, s, r′, s′ ∈ R

and χ ∈ {s, s0, s(c)
}, and we have obtained some simplifications of these sets under some conditions on a,

b ∈ U+, and r, s, r′, s′ ∈ R. Then we have stated some characterization and simplifications of each of the
sets

(
s0

a

(
(B (r, s) − λI)h

)
, χb

)
, χ ∈ {s, s0, s(c)

} and h, λ ∈ C, using the spectral properties of the operator B (r, s).
For p ≥ 1, and h, λ ∈ C these results should be extended to the characterizations of each of the classes(
ℓpa (B (r, s)) , χb (B (r′, s′))

)
,
(
ℓpa

(
(B (r, s) − λI)h

)
, χb

)
, χ ∈ {s, s0, s(c)

} and(
ℓ1a

(
(B (r, s) − λI)h

)
, ℓp

)
.

In this way, some simplifications should be stated using similar arguments as above.
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