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Some characterizations for compact hyperbolic Ricci solitons admitting
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Abstract. In this paper, we find a set of structural equations for hyperbolic Ricci solitons admitting 2-
conformal vector fields, which extends similar results for Ricci solitons. As a result of these equations, we
obtain an integral formula for the case when the underlying manifold is compact, indicating that a non-
trivial compact hyperbolic Ricci soliton with 2-conformal potential vector field is isometric to Euclidean
sphere. Also, it will be shown that such manifolds either have constant scalar curvature or their associated
vector fields are conformal. Furthermore, we use the Hodge- de Rham decomposition theorem to establish
a link with 2-conformal vector fields associated with a hyperbolic Ricci soliton.

1. Introduction and preliminaries

The notion of hyperbolic Ricci flow first introduced by Kong and Liu in [7]. This flow is a system of
second order non-linear PDEs. Let (N, go) be an n-dimensional Riemannian manifold and g;j(t) be a family

of Riemannian metrics on N, motivated by Ricci flow, the hyperbolic Ricci flow is defined as the following
evolution equation

Pgij

w = _ZRij/ 9(0) = g0/ = h

S =l

where £;; is a symmetric 2-tensor field. The short time existence and uniqueness theorem of hyperbolic
geometric flow has been proved in [7]. It is shown that the hyperbolic Ricci flow carries many interesting
properties of both Ricci flow as well as the Einstein equation.

Then, hyperbolic Ricci soliton has been studied as the self-similar solution to hyperbolic flow equation. In

fact, a hyperbolic Ricci soliton is a (semi)-Riemannian manifold (N", g) equipped with a vector field X and
some real scalars 4, b satisfying

1
ELXLX;] +alxg + Ric = by, (1)
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where Ric stands for the Ricci tensor and Lx is the Lie derivative operator along the vector field X. The
vector filed X is said potential vector field of the hyperbolic Ricci soliton. The hyperbolic Ricci soliton is said
to be expanding, steady, or shrinking if a is positive, zero or negative, respectively. Also, the parameter b has
geometric interpretation and it shows the rate of changing of our solutions. When X = 0 or X is a Killing
vector field, the above equation reduces to Einstein equation. A vector field X in a (semi-)Riemannain
manifold (N, g) is said to be a 2—Killing vector field if LxLxg = 0. If X be a 2-Killing vector field and

1
a= 5 then (1) reduces to the Ricci soliton equation [12]. A hyperbolic Ricci soliton structure (N, g, X, a, b)

is a gradient hyperbolic structure if there exists a smooth function f (called potential function) such that
X = Vf. In this case (1), becomes

Ric + 2aHessf + LysHessf = bg.

This concept is new and recently many researches on this topic have been done [1, 2, 8, 9]. In [4], authors
investigated the hyperbolic Ricci solitons on warped product manifolds. Motivated by this research, in
[3] hyperbolic Ricci solitons on sequential warped products are studied and the necessary conditions for
a hyperbolic Ricci soliton with the structure of a sequential warped product to be an Einstein manifold
considering special cases for potential vector field are obtained. Some characterization results for hyper-
bolic Ricci soliton on a sequential standard static space-time and a sequential generalized Robertson-Walker
space-time is given in [10]. There are many other research works which have done in this topic recently
[5, 6,13].

On the other hand, we can define a new geometric vector field on (semi-)Riemannian manifolds as
follows. A vector field X in a (semi-)Riemannian manifold (N, g) is called to be a 2-conformal vector field
whenever it satisfies

LxLxg =209, )

for a smooth function 0. Obviously, every conformal vector fields are 2-conformal, but there are 2-conformal
vector fields which are not conformal field. If o be identically zero, then the vector field X become 2-Killing.
When o be a constant function, X is said to be a homothetic 2-conformal vector field, otherwise it is said to
be a non-homothetic vector field.

In this paper, we aim to consider two separate concepts of 2-conformal vector fields and hyperbolic
Ricci solitons together providing the potential vector field of hyperbolic Ricci soliton to be a 2-conformal
vector field. If the vector field X in (1) be 2-conformal field with conformal factor ¢, then we have

aLxg+ Ric=(b-o0)g, 3)
furthermore, if X = Vh, then we can write
2aV?h + Ric = (b - 0)g, (4)

where V1 also denotes the Hessian of .
The formula (4) is sometimes expressed in the language of classical tensorial calculus for easier computation
as follows.

ZHV,'V]‘I’Z + Rij = (b - U)gij- (5)

We will shoe that a non-trivial compact hyperbolic Ricci soliton with 2-conformal potential vector field is
isometric to Euclidean sphere. Also, our findings indicate that such manifolds either have constant scalar
curvature or their associated vector fields are conformal. Finally, we use the Hodge- de Rham decomposi-
tion theorem to establish another link between the 2-conformal vector field and a hyperbolic Ricci soliton.
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For our means in the next sections, we need to remind that the Hodge-de Rham decomposition theorem,
allows us to express a vector field X on a compact oriented (semi-)Riemannian manifold as a combination
of the gradient of a function f and a divergence free vector field Z, i.e.

X=Vf+Z (6)
In fact, if we write the dual form of X according to the Hodge-de Rham theorem as
X =dn+560+¢,

then we have Z = (60 + {)¥ and Vf = (dn)*. Note that, here dr) represents the exterior derivative of function
1, 6 is the L? adjoint of the operator d and also 6 and C are 2-form and 1-form, respectively.

2. Main results

In this section, we present our main results.
As mentioned before, conformal vector fields are among the trivial examples of 2-conformal vector fields.
In the following theorem, we show that a compact hyperbolic Ricci soliton with conformal potential vector
field is isometric to the Euclidean sphere.

Theorem 2.1. Let (N", g, X, a, b) is a compact hyperbolic Ricci soliton withn > 3. If X be a non-homothetic conformal
vector field, then N" is isometric to the Euclidean sphere S".

Proof. Let (N",g,X,a,b) be a compact hyperbolic Ricci soliton with 3 < n and X be a non-homothetic
conformal vector field. Then, there is a smooth real function we have,

Lxg =2¢y,

and
1
Ric +aLlxg + ELX(LXg) = bg.

Combining these two formulas yield

Ric = (b - 2a¢ — X(¢) — 2¢?)g.

Hence, N is Einstein. By taking the contraction of above formula, we also find R = n(b — 2a¢ — X(¢) — 2¢?).
It is well known that the scalar curvature R is constant for 3 < n. Thus after taking the Lie derivation of
above formula with respect to the vector field X, we have

LxRic = Lx[(b - 2a¢ — X(0) = 2¢*)g] = 2¢(b — 2a¢ — X(¢) — 2¢%)g.
We may apply Theorem 4.2 (p. 54 of [15]) to conclude that N” is isometric to the Euclidean sphere 5". [

Example 2.2. Consider the Euclidean sphere (5", go) where gy is the canonical metric and suppose that X represents
image of the non-null constant vector field W on R™! over $" and 0 = b + R — 2andivX. Then, X is a conformal
vector field on $" whose one-parameter subgroup \V, is expressed through conformal transformations, not isometries.
With above assumptions, (5", go, X, a, b) is a hyperbolic Ricci soliton and, X is a 2-conformal vector field with potential
function ¢.

We can prove the following structural formulas.
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Proposition 2.3. For an n—dimensional (n > 3) gradient hyperbolic Ricci soliton (N, g, Vh, a,b), with 2-conformal
potential vector field Vh, the following equations hold.

R+ 2aAh = n(b - o), )
ViR = 4aR;jVh — 2(n — 1)V;o, (8)
ViR = ViRjx = 2aR;ysV°h = —=(Vjo)gix + (Vio)gjx, &)
V(R + IVH? +2(n - 1)0) = 4a(b - 0)Vh + (2 - 82)*Vy; Vi (10)

Here, Ah stands for the Laplacian of h.

Proof. Tracing both sides of (4) gives (7).
According to Schur’s lemma div(Ric) = 3dR. Considering (5), we have

1 , . .
5 ViR = VIR;; = divRic; = —2¢%aVi ViV ih — g% (Vo)gij.
As we know,

ViViVih = ViViVjh — g*R Vi,

hence,

%ViR = 2a( - VNV b+ gFRE V) = Vio
= —2a(Vig"ViVjh + g R V,h) - Vio
= —Vi(2aAh) - 2ag’*Ry;;sV°h - Vjo.

By (7), we have
2aAh = n(b - o) — R,

50,
1
EViR = Vi(R = nb + no) — 2aR;;V°h — Vo
= (n—1)Vio + ViR - 2aR;;V'h,
which proves (8).

Taking the covariant derivative from both sides of equation (5) and using the Ricci identity yields (9).
Now, we prove the formula (10). First, we compute the expression V(R + |Vh|?) as follows.
Using equation (8) and the fundamental equation as a (1,1)—tensor field, we have

V(R + |VA|*) = 4aRic(Vh) — 2(n — 1)Vo + V|Vh|?
=4a(b — 6)Vh + (2 — 84*)Vy,Vh — 2(n — 1)Vo.

O

One can easily check that the formula (8) of the recent proposition holds for every vector field Y € X(N). In
fact, we have

g(VR,Y) = 4aRic(Vh,Y) - 2(n — 1)g(Vo, Y).
In particular, for Y = VR, it will be rewritten as

IVR? = 4aRic(Vh, VR) — 2(n — 1)g(Va, VR).
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Also, for Y = Vh, we obtain

g(VR, Vh) = 4aRic(Vh, Vh) — 2(n — 1)g(Vo, Vh). (11)
With the ray of the above proposition, we deduce the following theorem.

Theorem 2.4. Let (N", g,X,a,b) is a compact hyperbolic Ricci soliton, if X be gradient of a differentiable function
h and also a 2—conformal vector field with a potential function o, then up to a constant, h agrees with the Hodge-de
Rham potential f.

Proof. First, notice that for a such hyperbolic Ricci soliton, we have the following equality.
2adiv(X) + R = n(b — o).
Now, using the Hodge-de Rham decomposition, we have divX = Af. Hence, we get
2aAf + R =n(b - 0). (12)

On the other hand, if (N", g, Vh,a, b) also be a compact gradient hyperbolic Ricci soliton, then the formula
(7) yields

2aAh + R = n(b - o). (13)

Comparing the equations (12) and (13), we get Ah = Af. Now, Hopf’s theorem leads us to include the
equality i = f + ¢, for some real constantc. [J

To prove our next result, we need the following lemmas.

Lemma 2.5. [11] For a vector field Y on a Riemannian manifold (N", g), we have
div(Lyg)(Y) = %A|Yl2 — [VY]? + Ric(Y, Y) + DydivY. (14)

If Y = Vh be a gradient vector field and X be an arbitrary vector field, then the above equation becomes
div(Lyng)(X) = 2Ric(X, Vh) + 2DxdivVh.
Also, we can write this formula in its (1, 1)—tensor field form as
divVVh = Ric(Vh) + VAh.

Notice that for a smooth function f on (N, g) and X € X(N), we have div(fg)(X) = g(Vf, X). We shall use
the previous lemma in order to generalize it for a hyperbolic Ricci soliton admitting a 2-conformal vector
field due to [11] obtained for Ricci soliton.

Lemma 2.6. For a hyperbolic Ricci soliton (N", g, X, a, b) admitting a 2-conformal vector field with potential o, we
have the following equalities.

aA|X* = 2a|VX[* - 2aRic(X, X) + (n — 2)g(Vo, X), (15)
a(A — 2aDx)|X|* = 2a|VX[* — 2a(b — 0)|X[* + (n — 2)g(Vo, X). (16)
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Proof. To obtain equation (15), first we put LxLxg = 204 in the fundamental equation (1) which yields

aLxg + Ric = (b - 0)g. (17)
Then, by div(og)(X) = g(Vo, X) we will have

adiv(Lxg) + div(Ric) = —Vo. (18)
Additionally, tracing from both sides of (17) gives

2adivX + R = n(b — 0).
Therefore, for every Y € X(N), we have

2aDydivX + DyR = —nDy(0). (19)
On the other hand, according to the twice contracted second Bianchi identity, we have

2div(Ric)(Y) = DyR. (20)
Now, let Y = X and applying equations (19) and (20) to obtain

2aDxdivX = —ng(Vo, X) — 2div(Ric)(X).
Finally, equation (18) with Lemma 2.5 yields

aA|X* = 2a|VX? - 2aRic(X, X) + (n — 2)g(Vo, X),
which proves (15).

To prove equation (16), reconsider the fundamental equation (17) to compute the expression Ric(X, X).
We can write

Ric(X, X) = (b — 0)|X]* — aLxg(X, X).

Substituting this formula into the equation (15) and using this fact that £Lxg(X, X) = Dx|X[?>, we complete
the proof. [

Theorem 2.7. Assume that (N, g, X, a, b) is a closed (compact without boundary) hyperbolic Ricci soliton withn > 3
and X a 2—conformal vector field with potential o with a # 0. Also, suppose that

21_a f<2aRiC(X, X) - (n—-2)9(Vo, X))dVg <0, o

where dV; stands for the volume element related to g. In this case, X is a Killing vector field and consequently, N" is
a trivial Ricci soliton.

Proof. Taking integral from both sides of equation (15), and taking into account that integral of Laplacian
vanishes according to Stokes’ theorem, we get

f IVXPAV, = % f (2aRic(X, X) + (n — 2)g(Vo, X)) dV,. (21)

Obviously the left side of (21) is non-negative, whereas, according to assumption made for this theorem, its
right side is non-positive. Therefore, VX = 0 and consequently Lxg = 0, which shows that the vector field
X is Killing and the fundamental equation (17) becomes Ric = bg. Hence, N" is an Einstein manifold. [
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By making use of Proposition 2.3 and Bochner’s formula we prove the following results.

Theorem 2.8. Suppose that (N", g, Vh,a # 0,b) is a closed gradient hyperbolic Ricci soliton and, Vh is a 2—conformal
vector field with potential 0. Then, the following equations hold.

Ah n-2
I ey _
lev h " gl*dv, o ng(VR, Vh)dVv,,. (22)
[Veh — —gl7dV, = (2aRic(Vh, Vh) — (n — 1)g(Vo, Vh))dV,. (23)
N n 2an  Jy

Proof. If we take the divergence of equation (10), we obtain
AR + 4a®AIVh* = =2(n — 1)Ac + 4a(b — 0)Ah — 4ag(Vh, Vo).

Making use of Bochner formula, one can get

%AR +20%(2V? h? + 2g(Vh, V(Ah)) + 2Ric(Vh, Vi) =
— (n—=1)Ao + 2a(b — 0)Ah — 2ag(Vh, Vo). (24)

According to the equations (7) and (8), we have

=n(b—a)—R

Ah
2a !

2a*Ric(Vh, Vh) = ag(VR, Vh) + 2a(n — 1)g(Va, Vh),
respectively. Therefore, (24) may be written as follows.
%AR + (n—1)Ac - 2a(b — 0)Ah + 4a*|V? h|* = ag(VR, Vh). (25)

Subtract the expression 4a2¥ from both sides of (25), then

(Ahy?

2
%AR +(n—1)Ac + 4a>(\V? h|* - T) = Ah(2ab — 2a0 — %Ah) +ag(VR, Vh).

2
Since |V2 h|? — % =|V2 h - 2442, so we conclude the relation

Ah

%AR +(n—=1)Ac + 4a|V* h - 7g|2 = Zn—“RAh +ag(VR, Vh). (26)

Integrating both sides of equation (26), we arrive to the following formula

Ah n—2
2 —_— 2 =
lev h ” grrdv, oo Lg(VR, Vh)dV,. (27)

In the above relation, we have used the equality fNRAthg = - fN g(VR,Vh)dV,, which proves the first
item.
Now, invoke the (11) to compute

1

= f g(VR,Vh)dV, = f (2aRic(Vh, Vi) = (n = 1)g(Va, Vh))d V. (28)
2 N N

Comparing the equations (27) and (28) gives the second item. [J
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Corollary 2.9. A non-trivial compact gradient hyperbolic Ricci soliton

(N",g,Vh,a # 0, b) with 2—conformal vector field Vh, is isometric to an Euclidean sphere §"(r) whenever it satisfies
one of the following conditions.

1) n=2

(2) N" has constant scalar curvature.

(3) %2 [ (2aRic(Vh, Vh) - (n - 1)g(Vo, Vi))dV, < 0.

(4) N"is a homogeneous manifold.

Proof. To prove this result, we first invoke Theorem (2.1), due to [14], which states that a complete manifold
N", n > 2, is conformally diffeomorphic to the Euclidean sphere if it admits a non-trivial solution of the
PDE system V2 i = 1 Ahg.

. lcl;lote that from each of the above assumptions, we can conclude the equality fN IV2 h = Atgi2qv, = 0
olds.
Now, we examine the correctness of the stated result for each of the assumptions separately. First, we note
that with assumption (1), the right side of equation (22) becomes zero, so V> h — A?h g = 0. On the other hand,
from equation (7) we have
2aAh + R
hog=22NTR (29)
n

which if we substitute this into equation (4), we will have Ric = 4. Therefore, Lyyg = (-2 + =2)g =
019,01 # 0. From all of these, we conclude that Vi is a non-trivial conformal vector field. Therefore, by
Theorem (2.1), N" is isometric to the Euclidean sphere.

With the assumption (2), if the scalar curvature R be a real constant, then VR = 0 and again the right-
hand side of equation (22) becomes zero, and the argument will continue as in the case (1).

With the assumption (3), the right-hand side of equation (23) is considered to be non-positive, while its
left-hand side is non-negative. Therefore, V2 1 — & 5 = 0 still holds, and the proof continues as in case (1).

Finally, assuming the (4), N" is a homogeneous and complete manifold, its scalar curvature is constant,
and the proof continues as in case (2). [

Let’s consider the diffusion operator as Ax = A — 2aDx and set A, = A — 2aDy,. We can prove the
following result as well.

Corollary 2.10. For a gradient hyperbolic Ricci soliton (N", g, Vh,a, b) in which Vh is 2—conformal with potential
o, we have

aly|\Vh* = 2a|V? h? = 2a(b — 0)|Vh? + (n — 2)g(Vo, Vh).
Proof. To reach this result, it is sufficient to substitute X = Vh into equation (16). O

Corollary 2.11. By the same assumptions as in Corollary 2.10, we have

%AR + |Ric — %gﬁ =1 -n)Ac + z—;RAh +ag(VR, Vh), (30)
f Ric - R gpay, = (1=2)8 f (YR, Vi)V, (31)
N n n N
Proof. To prove (30), we invoke the equations (29) and (4) and obtain
Ah Ric — &g
2y - "7
V°h 7 - (32)

Now, comparing (32) and (26) concludes the first item.
Also, the equations (22) and (32) prove the second item. [
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