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Abstract. It is well known that classical theory of conservation laws system often fails, in the sense that
classical smooth solution usually breaks down in finite time leading to formation of often unbounded
(singular) solutions. In this paper we construct approximate solution to Aw-Rascle traffic model subjected
to distributional initial data and discuss admissibility of obtained solution. The method is based on initial
data approximation which brings the question about uniqueness of distributional limit. In order to single
out proper solution we use the Backward entropy condition which states that admissible solution is the
one that induces minimal dissipation of mathematical entropy to the system. The importance of these kind
of problems lies in the fact that they can be interpreted as singular interaction problems appearing in the
process of formation of approximate solution to general initial value problem.

1. Introduction

We consider Aw-Rascle vehicular traffic model

∂tρ + ∂x(ρu)) = 0

∂t

(
ρ(u + p(ρ))

)
+ ∂x

(
ρu(u + p(ρ))

)
= 0,

(1)

where ρ > 0 and u > 0 denote density and average velocity of cars on the roadway. The pressure function
p = p(ρ) is strictly increasing and in non-limiting cases describes the driver’s behavior due to changes of
the concentration of cars in front of him. The first equation in (1) represents conservation of number of cars,
while the evolution equation of the quantity v = u+p(ρ) is embedded into the second equation (see [9]). The
system belongs to Temple class (see [19]), known as the class where rarefaction and shock curve coincide.
It is a well investigated hyperbolic system (see [1, 8], for example) with the first characteristic family being
genuinely nonlinear if the function ρp(ρ) is strictly convex, while the second one is linearly degenerate.
In that case the solution to the Riemann problem is given in the form of shock or rarefaction wave of the
first family followed by contact discontinuity of the second family and it exists for all positive values of ρ
and u. One can also find various extensions to this system in the literature, see [2, 10, 11, 18]. Also, in the
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recent work [6] authors prove non-uniqueness of weak solution to the multidimensional generalisation of
Aw-Rascle model using convex-integration method. The traffic flow model which describes the formation
and dynamics of traffic jams (also called clusters) can be derived from Aw-Rascle model under some
constrains on density and it was introduced in [2]. Also, the authors in [18] proved that limits of the
Riemann solutions of the perturbed Aw–Rascle model are exactly those of the pressureless gas dynamics
model which describes the behavior of sticky particles under collision ([3]). That is interesting since it is
well known that the solution to the Riemann problem of pressureless gas dynamics system is given in the
form of delta shock when the initial velocity on the right-hand side is greater than the one on the left hand
side.

If the function ρp(ρ) in (1) is constant (in other words p(ρ) = A − B/ρ, B > 0), both characteristic fields
of this system are linearly degenerate and the solution to Riemann problem can be unbounded, i.e. the
density can become a singular measure which means solution in the form of delta shock will appear for
some Riemann initial data. Some authors add extension “Chaplygin pressure” to the name of this system
([16] for example), but we will call it “singular” to closely describe singular behavior of the solution. Our
aim is to investigate the problem (1) with distributional initial data

(ρ,u)(x, 0) =

(ρ0,u0), x < 0
(ρ1,u1), x > 0

+ (ξδ, 0)δ(0,0), ξδ > 0,ui, ρi > 0, i = 0, 1, (2)

using wave front tracking procedure from [15]. Finding universal procedure for admissible solution of any
initial data problem for conservation laws systems, especially in the case when classical smooth solution
breaks down in finite time, is still one of the biggest challenges in the theory of conservation laws. The
appearance of unbounded solutions to Riemann problem is making that task significantly harder. The
main idea is to form approximate solution to the given problem by approximating initial data by piecewise
constant function, solving Riemann problems in the cut-off points and then following the interactions
between waves which are solutions to those Riemann problems. The well known Wave Front tracking
method which can be applied in the case when the initial data have small total variation (this condition
can be relaxed in the case of some special systems) but solution is bounded was developed by Bressan for
n−dimensional systems (see [4], [5]). However, even if the initial data function is bounded and continuous,
the solution will most likely develop singularities and Dirac measure may appear in a solution to the
Riemann problem. That would lead to the new interaction problems with initial data containing unbounded
component(s). At that point classical methods for solving the initial data problems are no longer effective.
Thus, the question of existence of admissible solution to general initial data problem, which can also be
unbounded, stays open. The authors in [17] developed the new universal procedure which resembles Wave
Front tracking method but gives a singular approximate solution to the given problem. Use of shadow
waves, class of singular solutions given as a net of piecewise constant functions with respect to time allows
us to easily insert the singularities and obtain unbounded solution when a classical one does not exists.
Shadow waves are introduced by Nedeljkov in [12] with goal not only to approximate so far familiar classes
of singular solutions (delta and singular shocks for example), but to expand the class by defining them as
robustly as possible. Such a definition makes the search for unbounded solution to some problems more
universal and straightforward and gives us the opportunity to deal with singular interaction problems as
well.

Therefore, to be able to apply this procedure and obtain a global approximate solution to general
initial value problem, it is necessary to solve singular interaction problems. The importance of study
of conservation laws systems with distributional initial data (2) lies in the fact that such problems are
manifestation of the interaction problems where at least one of the interacting waves is singular (we
call them singular interaction problems). For example, gas dynamics systems can admit solution with
unbounded density component which is represented through appearance of Dirac delta function in the
density component (see [15] for examples). The idea is to approach this problem in the similar manner by
approximating distributional initial data (2).

We form approximate solution to (1, 2) depending on an artificial value uδ inserted in the initial data
approximation. Since different approximations of the initial data do not give unique distributional limit,
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a proper admissibility conditions which will rule out non-admissible solutions to a given problem are
used. The analysis have shown that classical conditions for admissibility check of singular solutions
(entropy or overcompressibility condition for example) are not sufficient in these kind of problems. The
backward entropy condition gives advantage to classical smooth solution if it exists and prefers the weak
solutions having minimal dissipation of entropy. It was formulated in [15] and applied to systems of gas
dynamics with nonpositive pressure in the special case when the physical energy density plays the role of
mathematical entropy. In those cases the condition was able to eliminate all non-physical solutions. The
aim of this paper is to apply that condition to the system (1) in the general case, i.e. for any mathematical
entropy of the system. We point out the eventual problems that might occur as a consequence of the fact
that an entropy has no physical meaning.

We consider the classical case when solution to the Riemann problem is given as a combination of
classical elementary waves, and singular case (when ρp′(ρ) = 0) having unbounded solution which is
manifested through appearance of delta shock. To make our analysis simpler, we approximate solution in
the form of delta shock by a shadow wave. In this case the special type of singular solution called delta
contact discontinuity might also appear. Such a wave propagates along the characteristic lines and it was
introduced in [14]. In this paper we mainly focus on the singular form of Aw-Rascle model since it admits
unbounded solutions.

One should have in mind that even though the idea for procedure that gives approximate solution to
the general initial data problem is universal and straighforward, there are many problems that can appear
during its implementation due to variety of possible solutions to Riemann problems and unpredictable
behavior of solution after interactions between waves. Some of the goals in the future work are: get familiar
with and detect all the problems that may appear in the process of obtaining approximate solutions, and
if possible, try to successfully overcome them. One of the tasks would be finding the systems having the
properties for which the universal procedure would not be applicable. Besides that, it is desirable that the
obtained approximate solution is admissible (physical) if possible. That means that the complete analysis
should be followed by appropriate analysis of admissibility of obtained solutions. Such a result would
enable the search for distributional limit of approximate solution.

The paper consists of two main parts. In Section 2 we analyze solutions to the Riemann problem for the
classical case when solution is completely given as a combination of standard elementary waves. Further,
we analyze the singular solution for the case ρp′(ρ) = 0 when a density ρ becomes unbounded for some
choice of initial data. In the second part of the paper (Section 3) we deal with distributional initial data
problem when the delta function is added to Riemann initial data. More precisely, ρ component in the initial
data is unbounded. Since introduction of artificial velocity component in the initial data approximation
leads to the problem of admissibility of obtained solution, we apply the backward entropy condition to
eliminate some non-admissible solutions. We draw attention to non-uniqueness problem which appears
as the consequence of use of a mathematical entropy that has no physical background. Such a problem
does not appear in gas dynamics systems where a physical energy density plays the role of mathematical
entropy (for more details see [15]).

2. Solution to the Riemann problem

As the first step in our analysis we consider the system (1) with Riemann initial data

(ρ,u)(x, 0) =

(ρ0,u0), x < 0
(ρ1,u1), x > 0

, ρi,ui > 0, i = 0, 1. (3)

Characteristic speeds of the system (1) are given by λ1(ρ,u) = u − ρp′(ρ) ≤ λ2(ρ,u) = u, while the
corresponding right eigenvectors are r1(ρ,u) = (1,−p′(ρ))T and r2(ρ,u) = (1, 0)T.

2.1. Classical case
Let us first suppose that ρp′(ρ) , 0 and p(0) = 0. The solution to the Riemann problem (1, 3) is obtained

using the standard procedure from [7]. Rarefaction curve of the first family through the left state (ρ0,u0) is
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given by

R1(ρ0,u0) : u = u0 + p(ρ0) − p(ρ), ρ < ρ0.

If ρ ≥ ρ0 the left state (ρ0,u0) is joined to (ρ,u) by a shock wave of the first family and again we have
u = u0 + p(ρ0) − p(ρ). So, this system belongs to Temple class. Contact discontinuity of the second
characteristic family through (ρ0,u0) is given by

CD2(ρ0,u0) : u = u0.

There are three possible types of solutions to Riemann problem.

1. If u0 ≥ u1 the solution is given as a combinations of shock of the first family that connects U0 = (ρ0,u0)
and (ρm,u1), p(ρm) = u0 − u1 + p(ρ0) and a contact discontinuity of the second family (S1 + CD2 for
short).

2. If u0 < u1 < u0 + p(ρ0) the solution is given as a combination of rarefaction wave of the first family
and contact discontinuity of the second family connected by non-vacuum intermediate state (ρm,u1),
where p(ρm) = u0 − u1 + p(ρ0) (R1 + CD2 for short).

3. If u0 < u0 + p(ρ0) < u1 the solution is R1 + CD2 again, but R1 and CD2 are now connected by two
vacuum states, Uv1 = (0,u0 + p(ρ0)) and Uv2 = (0,u1). The artificial wave connects two vacuum states.

2.2. Singular case
For simplicity, consider the model (1) with p(ρ) = −1/ρ. This type of the model belongs to a class

of strictly hyperbolic (λ1(ρ,u) = u − 1
ρ < λ2(ρ,u) = u), but fully linearly degenerate systems satisfying

ρp′(ρ) = 0. The system (1) reduces to

∂tρ + ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu2
− u) = 0.

(4)

Since both fields are linearly degenerate, the classical solution, if it exists, is given in the form of contact
discontinuities (as we have already seen with Chaplygin gas model [13] for example). However, unlike the
solution in the classical case, this one develops singularities which leads to appearance of delta function.

If λ2(ρ1,u1) = u1 > u0 −
1
ρ0
= λ1(ρ0,u0) the solution to the Riemann problem is given as a combination

of two contact discontinuities. The first one connects U0 and intermediate state Um =
(

1
u1+

1
ρ0
−u0
,u1

)
and it is

supported by the line x = λ1(U0)t, while the second one connects Um and U1 = (ρ1,u1) and it is supported
by x = λ2(U1)t. If λ1(U0) = λ2(U1) the solution is a single contact discontinuity with the slope λ1(U0). Such a
wave is in literature known as delta contact discontinuity (see [14]), since it propagates along characteristic
line.

Otherwise, if λ1(U0) > λ2(U1), the density becomes unbounded and the solution in the form of the
delta shock is formed. Such a solution can be approximated by shadow waves. Roughly speaking, a delta
function is supported by the curve x = c(t) which is shifted by a small parameter ε > 0 from both sides of the
curve and unbounded intermediate state is inserted between two initial states. The solution to the Riemann
problem is the shadow wave propagating with constant speed β and having constant intermediate state
(ρε,uε),where ρε ∼ ε−1, and limε→0 uε = β.

In the following lemma we prove more general result which will also give the solution to the Riemann
problem.

Lemma 2.1. Suppose u0 −
1
ρ0
≥ u1 and let ξδ ≥ 0, u0 −

1
ρ0
≥ uδ ≥ u1. Solution to the problem (4, 2) with

ρu
∣∣∣
t=0
= ξδuδδ(0,0) is given in the form of overcompressive shadow wave,

Uε(x, t) =


U0, x < c(t) − ε2 t − xε
Uε(t) = (ρε(t),uε(t)), c(t) − ε2 t − xε < x < c(t) + ε2 t + xε
U1, x > c(t) + ε2 t + xε

(5)
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where ξ(t) = limε→0(εt + 2xε)ρε(t) denotes its strength, while its speed is c′(t) = us(t) = limε→0 uε(t) and

ξ(t) =
√
ξ2
δ + 2ξδ(uδ[ρ] − [ρu])t + (ρ0ρ1[u]2 + [ρ][u])t2,

us(t) =


[ρu]
[ρ] +

1
[ρ]ξ(t)

(
ξδ(uδ[ρ] − [ρu]) + (ρ0ρ1[u]2 + [ρ][u])t

)
, if [ρ] , 0

ξ2
δ

ξ2(t)

(
(uδ − 1

2

(
u1 + u0 −

1
ρ0

))
+ 1

2

(
u1 + u0 −

1
ρ0

)
, if [ρ] = 0.

(6)

Here [·] := ·1 − ·0. If ξδ = 0 the resulting shadow wave propagates with constant speed. If u1 = uδ = u0 −
1
ρ0
, the

resulting wave is delta contact discontinuity that propagates with characteristic speed uδ and strength ξ(t) = ξδ + t.

Proof. A shadow wave given in the form (5) is a solution to the problem (4, 2) if its speed us(t) and strength
ξ(t) are solution to the ODEs system

us(t)[ρ] − [ρu] = ξ′(t), us(0) = uδ,

us(t)[ρu] − [ρu2
− u] = (ξ(t)us(t))′, ξ(0) = ξδ.

For more details about the procedure see [12] and [17]. The solution to the above systems exists for each
t > 0 since ξ(t) given in (6) is well defined. That follows from uδ ∈ [λ2(U1), λ1(U0)] and

ρ0ρ1[u]2 + [ρ][u] = ρ0ρ1

(
λ2(U0) − λ2(U1)

)(
λ1(U0) − λ1(U1)

)
> 0.

Further, us(t) is monotone and limt→∞ us(t) = β, where

β =
[ρu]
[ρ]
+

√
ρ0ρ1[u]2 + [ρ][u]

[ρ]
, [ρ] , 0.

The value β belongs to [λ2(U1), λ1(U0)] which follows from

ρ0ρ1[u]2 + [ρ][u] =ρ2
0[u]2

− ρ0[ρ][u]
(
λ1(U0) − λ2(U1)

)
ρ0ρ1[u]2 + [ρ][u] =

(
ρ1(λ1(U0) − λ2(U1)) + 1

)2
− [ρ]

(
λ1(U0) − λ2(U1)

)
(ρ1

(
λ2(U0) − λ2(U1)) + 1

)
.

All that together proves the overcompressibility of shadow wave. If ξδ = 0, the speed of the shadow
wave is constant and equal to β while the strength is ξt =

√
ρ0ρ1[u]2 + [ρ][u]t. The proof for [ρ] = 0 is

straighforward.

3. Distributional initial data and approximate solution

The analyses to initial data problems for conservations law systems are often strictly restricted to specific
class of systems or to small class of initial data. Universal procedure that is able to give solution to any
initial data problem is not yet developed. Since Riemann problems are solved in most cases, they are often
a starting point in the analysis of solutions to general initial value problem. As proposed in [17], initial
value problem with bounded and piecewise continuous initial data having finite number of local extremes
can be approximately solved if solutions to Riemann problems and problems of all interactions between
waves are known. That can be a complex task since the list of all possible interactions that can occur can be
quite long, especially if at least one of interacting waves is singular. Besides that, an interaction between
singular and rarefaction waves significantly complicates analysis of solution. However, it is know that the
singular interaction problem can be treated as problem with the initial data (2). Of course, initial data have
to be shifted to the interaction point.
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So, in order to obtain approximate solution to initial value problem using the procedure from [17] it is
necessary to solve distributional initial data problem (1, 2). That can be achieved by approximating the
initial data (2) by

Uµ(x, 0) =


U0, x < −µ2
Uδ =

(
ξδ
µ ,uδ

)
, −

µ
2 < x < µ2

U1, x > µ2 .
(7)

In addition, one has to deal with problem of admissibility of obtained solution, since introduction of artificial
component uδ in the initial data approximation usually leads to more than one possible solutions having
different distributional limits. Thus, one has to choose a proper value for uδ. In this paper we will use the
Backward energy condition formulated in [15].

Suppose that the system (1) is endowed with the convex entropy pair (η,Q).
We say that a solution U to the system (1) is entropy admissible if η(U)t+Q(U)x ≤ 0 holds in distributional

sense. For classical smooth solution the equality η(U)t +Q(U)x = 0 is always satisfied. A shadow wave (5)
is entropy admissible if

D
sdw(t) := −c′(t)[η] + [Q] + lim

ε→0

d
dt

(
εtη(Uε(t)

)
≤ 0

lim
ε→0
εt
(
c′(t)η(Uε(t) −Q(Uε(t)

)
= 0.

(8)

The second relation in (8) is satisfied for each shadow wave having the form (5) since limε→0 uε(t) = c′(t).
The total entropy of a solution U in the interval [−L,L] at time t corresponding to η is

H[−L,L](U(·, t)) :=
∫ L

−L
η(U(x, t))dx,

while its entropy production at time t is defined by d
dt H(−L,L)(U(·, t)). Here we limit the analysis on the

interval space [−L,L], where L > 0 is taken to be large enough, to avoid the problem of total entropy being
infinite in finite time. For right choice of value L > 0 the solution will be constant for x < [−L,L] and it wont
affect further analysis. As proved in [15],

d
dt

H[−L,L](t) =Dsdw(t) +Q(U0) −Q(U1) (9)

for a shadow wave (5). The nonpositive quantityDsdw(t) is called the local entropy production of a shadow
wave at time t. The relation (9) also holds for a shock wave, while the entropy production of a rarefaction
wave equals zero due to a continuity. The same holds for contact discontinuities since they conserve the
entropy. Negativity of local entropy production implies that the wave dissipates entropy.

Lemma 3.1. A convex entropy pair for the system (1) is given by

η(ρ,u) = ρF(u + p(ρ)), Q = ρuF(u + p(ρ)), (10)

where F is arbitrary convex function.

Proof. A convex entropy pair is obtained using standard procedure from [7]. Namely, (1) can be written as

∂tH + ∂xG = 0,

where

H(ρ,u) =
[

ρ
ρ(u + p(ρ))

]
, G(ρ,u) =

[
ρu

ρu(u + p(ρ))

]
.
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Then the entropy pair (η,Q) is obtained as a solution to the system

Dη =
[

S(ρ,u) R(ρ,u)
]

DH, DQ =
[

S(ρ,u) R(ρ,u)
]

DG, (11)

where

DH =
[

1 0
u + p(ρ) + ρp′(ρ) ρ

]
, DG =

[
u ρ

u(u + p(ρ) + ρp′(ρ)) ρ(2u + p(ρ))

]
,

while S and R are smooth functions. Solving the system (11) one obtains

∂ρη = S + R(u + ∂ρ(ρp(ρ))), ∂uη = ρR, (12)

and

∂ρQ = u∂ρη, ∂uQ = ρ(S + R(u + p(ρ))) + u∂uη.

If η = ρ(S + R(u + p(ρ))), then

∂ρη = S + R(u + ∂ρ(ρp(ρ))) + ρ(∂ρR(u + p(ρ)) + ∂ρS)
∂uη = ρR + ρ(∂uS + (u + p(ρ))∂uR)

compared with (12) gives

∂ρR(u + p(ρ)) + ∂ρS = 0, ∂uS + (u + p(ρ))∂uR = 0.

Integrating the first equality with respect to ρ and the second with respect to u, we obtain

∂ρR = p′(ρ)∂uR.

It is easy to prove that possible solution is R(ρ,u) = 1(u + p(ρ)), S(ρ,u) = f (u + p(ρ)), where f and 1 are
arbitrary smooth functions of one variable. So, the pair (η,Q),

η(ρ,u) = ρF(u + p(ρ)), Q = uη

solves the system (11) with arbitrary smooth function F. It is left to prove that η is convex if F is. The
Hessian matrix D2η is singular, so η is convex if ηρρ > 0. That holds if F is convex, since

∂ρρη =
y2

ρ3 F′′
( y
ρ

)
, y = ρ(u + p(ρ)).

An approximate solution to the problem (1, 7) is constructed using the modified version of the front
tracking procedure introduced in [17], and applied in [15] for the systems of gas dynamics with nonpositive
pressure.

We introduce the small parameter µ > 0 and in each point of discontinuity of (7) we solve the Riemann
problem which gives us an approximate solution until the first interaction between waves. At the time
of interaction between waves we solve the new initial problem and follow the propagation of ways until
the next interaction between them. The process repeats with each interaction. As a singular solutions we
obtain the higher order shadow waves defined for a small parameter ε≪ µ (for details see [13]).

Finding admissible solution to the problem (1, 2) reduces to finding a value uδ such that the local entropy
production of a solution is closest to zero. We follow that kind of reasoning since a classical smooth solution
conserves the entropy and it is the most natural one. So, we are searching for a weak solution “closest” to
the classical smooth one if the latter does not exists. Such a solution minimally dissipates a mathematical
entropy of the system.



S. Ružičić / Filomat 39:23 (2025), 7963–7975 7970

Definition 3.2 (Backward entropy condition). ([15]) Denote by Uuδ
µ the admissible solution to (1, 7) and by

d
dt H

uδ
µ its entropy production. The value ũδ is taken such that the corresponding solution Ũµ minimally dissipates the

entropy of the system for t and µ small enough, i.e. if d
dt H̃µ(·, t) denotes entropy production corresponding to Ũµ, then

d
dt

H̃µ(·, 0+) ≥ sup
uδ∈R

d
dt

Huδ
µ (·, 0+) for µ being small enough. (13)

A solution U to (1, 2) that satisfies the backward energy condition is given by U(x, t) = limµ→0 Ũµ(x, t). If there is
more than one solution that satisfies the above condition, we choose uδ such that approximated initial data (7) has a
minimal initial entropy.

3.1. Admissible solution to distributional initial data problem - classical case
In this case, the solution to the problem (1, 7) is given as a combination of contact discontinuities, shock

and/or rarefaction waves. Regardless of the value uδ, the local entropy production of obtained solution
equals zero for each convex entropy pair (η,Q),where η(ρ,u) = ρF(u+p(ρ)). For contact discontinuities and
rarefaction waves that holds by definition, while for a shock wave that follows from the fact that the state
(ρ,u) can be joined to (ρ0,u0) by a shock wave if u + p(ρ) = u0 + p(ρ0), meaning that the system (1) belongs
to Temple class. Let us demonstrate that. Suppose u0 ≥ u1 and consider S1 + CD2 solution to the Riemann
problem (1, 3). Its local entropy production equals

D = −c[η] + [Q] = η(ρm,u1)(u1 − c) + η(ρ0,u0)(c − u0)

= ρ0ρm
u0 − u1

ρm − ρ0

(
(F
(
u1 + p(ρm)

)
− F
(
u0 + p(ρ0)

))
= 0,

where (ρm,u1) is intermediate state between S1 and CD2. So, according to the backward entropy condition, to
get a proper value for uδ we have to use the second criterion from Definition 3.2 and the admissible solution
would be the one having minimal initial total entropy. However, the admissible value uδ depends on the
function F since the initial total entropy is minimal when F(uδ + p(ξδ/µ)) is minimal. That problem appears
since this system does not have natural mathematical entropy as it was the case with the gas dynamics
systems where the physical energy density is also the mathematical entropy for the system (see [15]) and
its use gives a physical meaning to obtained solution. Thus, in this case, one should probably combine the
backward entropy condition with additional condition which would give a physically meaningful solution
to the problem. That is left as an open question.

In order to obtain a distribution limit of an approximate solution we have to solve the singular interaction
problems involving rarefaction waves. This system belongs to Temple class, so it is known that the
interaction between two waves of the same family can only result in the wave of same type which resolves
some interaction problems. Complete knowledge about solutions to all possible interaction problems
would answer on question whether approximate solutions corresponding to different uδ give the same
distributional limit in this case. That is left as an open question.

3.2. Admissible solution to distributional initial data problem - singular case
For a convex entropy pair (10) the local entropy production of a shadow wave solution (5) is given by

D
sdw(t) ≈ − us(t)[η] + [Q] +

d
dt

(
ξ(t)F(us(t))

)
as µ→ 0. (14)

In the case ξδ = 0, the right-hand side of (14) reduces to

D
sdw =F(uδ)(−[ρu] + uδ[ρ]) + [ρuF(u − ρ−1)] − uδ[ρF(u − ρ−1)]

+ F′(uδ)(−u2
δ[ρ] + 2uδ[ρu] − [ρu2] + [u]).

The solution to the problem (4, 7) depends on uδ and its relation with initial states (ρ0,u0) and (ρ1,u1). In
the sequel, we analyze the local entropy production in each of six possible cases.
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Case S1 (uδ ≤ u0 − ρ−1
0 ≤ u1). The approximate solution consists of shadow wave connecting U0 and Uδ

followed by combination of two contact discontinuities (or a single contact discontinuity if u0 − ρ−1
0 = u1).

Hence, the local entropy production of a solution equals

D ≈ ρ0(u0 − uδ)
(
F′(uδ)(u0 − ρ

−1
0 − uδ) + F(uδ) − F(u0 − ρ

−1
0 )
)
≤ 0, µ→ 0 (15)

for t small enough. It achieves its maximum value when uδ = u0 − ρ−1
0 , since then D = 0. In that case the

single contact discontinuity supported on the line x = (u0−ρ−1
0 )t is followed by pair of contact discontinuities

and it interacts at time T0 = ξδ with the first contact discontinuity in the pair which propagates with the
speed uδ − µ/ξδ < u0 − ρ−1

0 . For t < ξδ, the total mass between two interacting contact discontinuities is∫ µ/2+(uδ−µ/ξδ)t

−µ/2+uδt

ξδ
µ

dx =
ξδ
µ

(µ −
µ

ξδ
t) = ξδ − t.

That means that limit of approximate solution has a singularity on the line x = uδt, i.e. Dirac delta function
is located on that line and the singular wave has decreasing strength ξ(t) = ξδ − t, t < ξδ. At time t = ξδ,
that singularity annihilates, Dirac delta vanishes in the solution, so the result of interaction is solution to
the Riemann problem with initial data

(ρ,u)(x,T0) =

U0, x < X0

Umµ , x > X0,

where X0 = −
µ
2 + uδξδ and Umµ =

(
1

u1−u0+ρ−1
0 +µ/ξδ

,u1

)
. Since u0 − ρ−1

0 < u1, the solution is pair of contact dis-

continuities separating U0 and Umµ with the intermediate state Um̃ =
(

1
u1−u0+ρ−1

0
,u1

)
. Since limµ→0 Umµ = Um̃,

the limit of approximate solution for t < ξδ is given by delta contact discontinuity with decreasing strength
ξδ − t and characteristic speed u0 −ρ−1

0 followed by contact discontinuity propagating with the speed u1. At
time t = ξδ singularity disappears, i.e. Dirac delta vanishes in the solution and delta contact discontinuity
becomes contact discontinuity (see Figure 1 where red line represents delta contact discontinuity, while
blue lines represent contact discontinuities). So, the admissible solution is given by

U(x, t) =


(ρ0,u0), x < (u0 − ρ−1

0 )t(
1

u1−u0+ρ−1
0
,u1

)
, (u0 − ρ−1

0 )t < x < u1t

(ρ1,u1), x > u1t,

+ (ξ̃δ, 0)δ
(
x − (u0 − ρ

−1
0 )t
)
, (16)

where

ξ̃δ =

ξδ − t, t < ξδ
0, otherwise

.

Case uδ = u0 − ρ−1
0 = u1 is trivial since the initial data is constant.

Case S2 (u0 − ρ−1
0 < uδ ≤ u1). The approximate solution is given as a combination of four contact discon-

tinuities, so the entropy is conserved and we have D = 0. More precisely, the first combination consist of
two contact discontinuities of which first separates U0 and Um1 = ( 1

uδ−u0+ρ−1
0
,uδ), and it is followed by the

contact discontinuity supported by x = −µ2 + uδt. The second pair of contact discontinuities separates Uδ
and U1 with the intermediate state Um2 = ( 1

u1−uδ+µ/ξδ
,u1). The second contact discontinuity in the first pair

propagates with speed uδ greater than the speed uδ−µ/ξδ of first contact discontinuity in the second pair, so
two waves interact at time t0 = ξδ. For t < t0, the total mass between two interacting contact discontinuities
equals ξδ − t, so the singularity is located on the line x = uδt. However, for t < t0 limit of approximate
solution is not overcompressive.
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0−
µ
2

µ
2

(ρ0,u0)
(ρ1,u1)

(
ξδ
µ ,uδ

)

uδ = u0 − ρ−1
0 ≤ u1

ξδ Umµ

Um̃

x

t

µ→ 0

(ρ0,u0) (ρ1,u1)

x

tx =
(
u0 − ρ−1

0

)
t

t = ξδ

x = u1t

((
u1 − u0 + ρ−1

0

)−1
,u1

)0

Figure 1: Case S1 when uδ = u0 − ρ−1
0

The result of interaction between two contact discontinuities in the approximate solution at time t = t0
is then solution to the problem with Riemann initial data

(ρ,u)(x, t0) =

Um1 , x < X0

Um2 , x > X0,

where X0 = −µ/2 + uδξδ. Since uδ − (uδ − u0 + ρ−1
0 ) = u0 − ρ−1

0 < u1, the solution to the Riemann problem is
combination of two contact discontinuities with the intermediate state Um = ( 1

u1−u0+ρ−1
0
,u1). So, in this case,

the approximate solution to the initial value problem (1, 7) for t ≥ ξδ is

U(x, t) =



U0, x < −µ/2 + (u0 − ρ−1
0 )t

Um1 , −µ/2 + (u0 − ρ−1
0 )t < x < X0 + (u0 − ρ−1

0 )(t − t0)
Um, X0 + (u0 − ρ−1

0 )(t − t0) < x < X0 + u1(t − t0)
Um2 , X0 + u1(t − t0) < x < µ/2 + u1t
U1, x > µ/2 + u1t.

Case S3 (u0 − ρ−1
0 ≤ u1 < uδ). Similar as in the case S1, the approximate solution consists of combination

of contact discontinuities and a shadow wave connecting Uδ and U1. The local entropy production of an
approximation solution is given by

D ≈ ρ1(uδ − u1)
(
F′(uδ)(uδ − u1 + ρ

−1
1 )) + F(uδ) − F(u1 − ρ

−1
1 )
)
≤ 0, µ→ 0 (17)

for t small enough. Again,D = 0 as uδ → u1 which reduces to Case S2. So, this case is not optimal.

Thus, the only value for uδ for which the distributional limit of approximate solution satisfies both
overcompressibility and backward entropy condition in the case u0−ρ−1

0 < u1 is uδ = u0−ρ−1
0 .An admissible

weak solution to the problem (1, 2) that satisfies backward entropy condition is unique and it is given by
(16).

Case S4 (uδ ≤ u1 < u0 − ρ−1
0 ). As in Case S1 the solution is given in the form of shadow wave followed

by combination of two contact discontinuities and the local entropy production is given by (15) for t small
enough. It increases for uδ < u0 − ρ−1

0 since F is a convex function and

∂D
∂uδ
= ρ0(u0 − ρ

−1
0 − uδ)

(
F′(y) − F′(uδ) + F′′(uδ)(u0 − uδ)

)
> 0, y ∈ (uδ,u0 − ρ

−1
0 ).

The maximal value is achieved when uδ = u1. If uδ = u1, two contact discontinuities in the approximate
solution are connected with intermediate state Uδ and the speed of shadow wave is greater than the speed
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of the first contact discontinuity, so they interact at time t = t1 → 0 as µ → 0. The resulting shadow wave
connects U0 and Uδ and interacts with second contact discontinuity at time t = t2 → 0 as µ→ 0. The result of
that interaction is shadow wave that connects U0 and U1. The distributional limit of obtained approximate
solution is overcompressive delta shock wave with initial strength ξδ and initial speed uδ = u1.

Case S5 (u1 < uδ < u0 − ρ−1
0 ). The approximate solution for t small enough is given as a combination of two

approaching overcompressive shadow waves, the left one connects U0 and Uδ, while the right one joins Uδ
to U1. The local entropy production now equals

D =F(uδ)(−[ρu] + uδ[ρ]) + [ρuF(u − ρ−1)] − uδ[ρF(u − ρ−1)]

+ F′(uδ)(−u2
δ[ρ] + 2uδ[ρu] − [ρu2] + [u]) < 0

(18)

for t small enough. Two shadow waves interact in negligible time t = T giving a new overcompressive
shadow wave having the form (5) (see Figure 2). So, a distributional limit of such solution is a weighted
delta shock with the initial speed and strength equal to uδ and ξδ, respectively. That is, the distributional
limit equals

(ρ,u)(x, t) =

(ρ0,u0), x < c(t)
(ρ1,u1), x > c(t)

+ (ξ(t), 0)δ(x − c(t)), (19)

where ξ(t) and us(t) are given by (6), and c(t) =
∫ t

0 us(s)ds.

0−
µ
2

µ
2

(ρ0,u0) (ρ1,u1)
T

(
ξδ
µ ,uδ

)
µ→ 0

0−
µ
2

µ
2

(ρ0,u0) (ρ1,u1)

x = c(t)

xx

t t
u1 < uδ < u0 − ρ−1

0

Figure 2: Case S5

Case S6 (u1 ≤ u0 − ρ−1
0 ≤ uδ and at least once inequality is strict). This case is similar to the case S3. The

approximate solution for t small enough is given as a combination of two contact discontinuities followed
by a shadow wave and the local energy production is given by (17). It decreases for uδ > u1 since

∂D
∂uδ
= ρ1(uδ − u1 + ρ

−1
1 )
(
F′(um) − F′(uδ) − F′′(uδ)(uδ − u1)

)
< 0, um ∈ (u1 − ρ

−1
1 ,uδ).

That implies that it approaches its maximum value as uδ → u0 − ρ−1
0 which is the special case of Case S5

when instead of shadow wave connecting U0 and Uδ we have a single contact discontinuity supported on
the line x = −µ/2+ (u0−ρ−1

0 )t. Contact discontinuity interacts with shadow wave at time t = t0 → 0 as µ→ 0
giving an overcompressive shadow wave that connects U0 and U1. The distributional limit of approximate
solution is again given by overcompressive delta shock (19).

Hence, if u1 < u0 − ρ−1
0 , the solution that meets the backward entropy condition is obtained for uδ ∈

[u1,u0 − ρ−1
0 ] such that the nonpositive total entropy production is maximized. To obtain the maximum

point we have to solve the equation

∂D
∂uδ
=[ρ]F(us(t)) −

[
ρF
(
u −

1
ρ

)]
+ F′(us(t))(−[ρ]us(t) + [ρu])

+ F′′(us(t))(−[ρ]u2
s (t) + 2us(t)[ρu] − [ρu2] + [u]) = 0,
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and discuss its existence in the interval [u1,u0 − ρ−1
0 ]. The form of backward admissible solution does not

depend on F but the admissible choice for uδ does. The following theorem holds.

Theorem 3.3. Let (4, 2) be given, take ρi,ui > 0, i = 0, 1 and ξδ > 0. If u0 − ρ−1
0 ≤ u1, the backward admissible

solution is unique, uδ = u0 − ρ−1
0 and it is given by (16). If u1 < u0 − ρ−1

0 , the backward admissible solution is a
weighted delta shock (19), where uδ ∈ [u1,u0 − ρ−1

0 ] is chosen such that it maximizes the nonpositive local entropy
productionD given by (18).

However, the function F determines a proper value for uδ and dictates the further steps in the analysis. Let
us restrict our attention on the case F(x) = 1

2 x2.
We have ∂D

sdw

∂uδ
= 0 if uδ = x∗ or uδ = y∗,where

x∗ =
[ρu]
[ρ]
+

1
[ρ]

√
ρ0ρ1[u]2 +

4
3

[ρ][u] −
1
3

[ρ][ρ−1],

y∗ =
[ρu]
[ρ]
−

1
[ρ]

√
ρ0ρ1[u]2 +

4
3

[ρ][u] −
1
3

[ρ][ρ−1].

Lemma 3.4. Let u1 < u0 − ρ−1
0 . If u0 ≥ u1 +

2
3ρ
−1
0 + ρ

−
1
2

0

√
1
9ρ
−1
0 +

1
3ρ
−1
1 , we have u1 ≤ x∗ ≤ u0 − ρ−1

0 . If

u0 < u1 +
2
3ρ
−1
0 + ρ

−
1
2

0

√
1
9ρ
−1
0 +

1
3ρ
−1
1 , we have x∗ < u1.

Also, y∗ < [u1,u0 − ρ−1
0 ], since x∗ < u1 if [ρ] > 0 and x∗ > u0 − ρ−1

0 if [ρ] < 0.

The above Lemma gives uδ that maximizes the local entropy production in the case u1 < u0 − ρ−1
0 and for

the mathematical entropy given by η(ρ,u) = 1
2ρ(u + ρ−1)2. Thus, in this case, a proper value for uδ is

uδ =

x∗, if u0 ≥ u1 +
2
3ρ
−1
0 + ρ

−
1
2

0

√
1
9ρ
−1
0 +

1
3ρ
−1
1

u1, if u0 < u1 +
2
3ρ
−1
0 + ρ

−
1
2

0

√
1
9ρ
−1
0 +

1
3ρ
−1
1 .

Note that the process of elimination of non-admissible solutions to distributional initial data problem
conducted in this paper shows some similarities with the one performed in [15] for pressureless gas
dynamics, Chaplygin gas system and its generalizations. In all these cases the admissible solution satisfying
backward entropy condition is obtained for some uδ ∈ [λ2(U1), λ1(U0)] or uδ ∈ [λ1(U0), λ2(U1)], depending
on the relationship between λ1(U0) and λ2(U1).

4. Conclusion

In this paper we solve the Aw-Rascle traffic model with delta initial data. Since the classical cases
when the pressure is bounded is simple, we mainly focus of the limiting case of this model with possibly
unbounded pressure when the density goes to zero. Even thought that model cannot longer be appropriate
for modeling the behavior of cars on the roadway, it is used as an example of the system which does not
possess natural mathematical entropy. We obtained solution to the delta initial problem which satisfies the
backwards entropy condition. However, it is clear that such a solution depends on the choice of entropy
function which leads to the problems of uniqueness of the obtained solution. Such a problem does not
appear in gas dynamics problem where physical energy density is natural mathematical entropy.

As we could see in this paper, non existence of physical mathematical entropy makes the problem of
finding admissible solution to the initial data problem more challenging. There are two possible steps in
dealing with such a difficulty in the general case. The first one would be finding admissibility criterion
which is physically supported and which would point out the proper solution to the given problem for
any mathematical entropy. However, one should have in mind that the efficiency of some admissibility
criterion in the case of one system, does not imply that it would work when applied to some other system.
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This task might be very hard to achieve. The second step can be applying the universal procedure only to
systems which admit physical mathematical entropy under the assumption that admissibility conditions
so far used in the literature are sufficient to single out all non physical solutions. Also, all problems of
appearance of the new or more compound types of waves which are solutions to the singular interaction
problem have to be detected. Some waves (such as rarefaction waves for example) increase the error in
approximate solution, so the systems having such waves in the solution should be analyzed with caution.
That is left for future work.
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