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Abstract. In this paper, we study the relationship between the notions of distributional chaos and specifi-
cation property defined for multidimensional time discrete dynamical systems. Essentially, we prove that
a Zd-action on a compact metric space with weak specification property and with a pair of distal points
admits a dense distributionally scrambled set of type 1.

1. Introduction

Studying the chaotic and unpredictable behavior of a system is one of the central ideas in the theory of
dynamical systems. In 1975, Li and Yorke gave the first mathematical definition of chaos for continuous
self-maps defined on an interval [6]. Since then, various definitions of chaos have been established and
studied. Also, many extensions of Li-Yorke chaos are studied based on the size of the set of Li-Yorke
chaotic pairs, for example, generic chaos, ϵ-Li-Yorke chaos, dense chaos, and others. Positive topological
entropy of a system is also considered to depict the chaotic behavior of a system. It is known that, for
continuous maps on intervals, positive topological entropy implies dense Li-Yorke chaos. However, there
are continuous maps on compact metric space which are Li-Yorke chaotic but have zero topological entropy
[10]. Thus, positive entropy is stronger than Li-Yorke chaos. In 1994, Schweizer and Smit́al introduced the
notion of chaos based on the probabilistic measure of proximity of pairs, popularly termed as distributional
chaos [10]. Distributional chaos is considered an important generalization of Li-Yorke chaos because it is
equivalent to positive topological entropy for continuous maps on compact intervals. In [1], the authors
considered two generalizations of distributional chaos and thus introduced three nonequivalent variants
of distributional chaos, namely DC1, DC2 and DC3.

Another important notion of chaos is specification, which was introduced by Bowen in 1971 for Axiom A
diffeomorphisms [2]. Informally, by specification property, we mean that any finite set of orbital fragments
that are appropriately spaced apart in time can be traced by a single orbit. Many researchers have studied
the relationship between the notion of specification property and distributional chaos. Sklar and Smı́tal
have proved that a continuous map defined on a compact metric space with the specification property
is distributionally chaotic of type 3 [15]. Oprocha and Štefánková proved that a continuous map acting
on compact metric space with a weaker form of specification property and with a pair of distal points is
distributionally chaotic in a very strong sense [8].
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Email address: ynav411@gmail.com (Naveenkumar Yadav)
ORCID iD: https://orcid.org/0000-0002-7657-0769 (Naveenkumar Yadav)



N. Yadav / Filomat 39:23 (2025), 7977–7982 7978

Dynamics has traditionally been the study of the iterates of a single transformation, modelling the
time evolution of a physical system. However, many physical and mathematical systems have other
symmetries, which lead to the study of joint action of several commuting transformations. The study of
joint actions is much more than a routine generalization of a single transformation. Various authors have
studied the dynamics for such systems. Ruelle studied the duality of entropy and pressure for Zd-actions
having expansiveness and specification [9]. Oprocha proved the Spectral Decomposition Theorem for
multidimensional time discrete dynamical system [7]. Kim and Lee have proved the Spectral Decomposition
Theorem for the set of k-type nonwandering points of Z2-actions [5]. In [12, 13], the authors introduced
and studied the notion of k-type Devaney chaos for Zd-actions. The notion of k-type collective sensitivity
forZd-actions is defined and studied in [14]. Shah introduced the concept of generators forZd-actions and
studied the properties of expansiveZd-actions in [11]. The dynamics of the multidimensional time discrete
dynamical system induced by a continuous map is studied in [4].

Hunter introduced the notion of distributional chaos for continuous Zd-action defined on a compact
metric space and proved that a multidimensional subshift with the weak specification property is uniformly
distributionally chaotic of type 1 [3]. In this paper, we relate the notions of distributional chaos and
specification property for a continuousZd-action defined on a compact metric space. The paper is organized
in the following manner: In Section 2, we discuss the preliminaries required for the development of
the paper. In Section 3, we prove that a continuous Zd-action on a compact metric space with weak
specification property and with a pair of distal points is distributionally chaotic of type 1, and admits a
dense distributionally scrambled set of type 1. This extends the result due to Oprocha and Štefánková for
the multidimensional time discrete dynamical system

2. Preliminaries and notations

Throughout, by a dynamical system we mean a pair (X,T), where X is a compact metric space with
metric ρ and T is a continuous Zd-action on X, d ∈ N, i.e., T : Zd

× X → X satisfies the following three
conditions:

1. T(n, ·) is a homeomorphism on X, for any n ∈ Zd,
2. T(0, x) = x for any x ∈ X,
3. T(m,T(n, ·)) = T(m + n, ·), for any m,n ∈ Zd.

We denote T(n, x) by Tn(x), for n ∈ Zd. Note that, the distance between two subsets A and B of Zd is given
by ϱ(A,B) = min

a∈A,b∈B
∥a − b∥∞, where ∥a − b∥∞ = max

0≤i≤d
|ai − bi| denotes the supremum norm in Zd.

A point x ∈ X is said to be periodic if the set {Tn(x) : n ∈ Zd
} is finite. We call a pair x, y in X proximal if

for any ϵ > 0 there exists n ∈ Zd such that ρ(Tn(x),Tn(y)) < ϵ. A pair x, y in X is said to be distal if it is not
proximal.

2.1. Specification property for Zd-actions
Definition 2.1. ([3]) A Zd-action T is said to have the strong specification property (briefly SSP) if for every
ϵ > 0 there exists a positive integer Nϵ such that for every finite collection of sets Q1, Q2, . . . ,Qk in Zd

satisfying ϱ(Qi,Q j) ≥ Nϵ, for i , j, i, j ∈ {1, 2, . . . , k}, any finite collection of points x1, x2, . . . , xk in X, and any
subgroup Λ ⊂ Zd with ϱ(Qi + q,Q j) ≥ Nϵ, for i, j ∈ {1, 2, . . . , k} and q ∈ Λ \ {0}, there exists y ∈ X such that
ρ(Tt(y),Tt(x j)) < ϵ, for all t ∈ Q j, j ∈ {1, 2, . . . , k}, and Tq(y) = y, for every q ∈ Λ.

If the periodicity condition given in terms of subgroup Λ ⊂ Zd in above definition is omitted, T is said
to have specification property (briefly SP). For the special case k = 2, the notion of specification property is
termed as weak specification property and can be reformulated in the following (equivalent) way:

Definition 2.2. A Zd-action T is said to have the weak specification property (briefly WSP) if for every ϵ > 0
and every positive integer k there exists a positive integer N = N(ϵ, k) such that for every finite collection of
sets Q1, Q2, . . . ,Qk inZd satisfying ϱ(Qi,Q j) ≥ N, for i , j, i, j ∈ {1, 2, . . . , k}, any pair of points u, v in X, there
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exists y ∈ X such that ρ(Tt(y),Tt(u)) < ϵ, for all t ∈ Q j, j = 2i + 1 ≤ k, and ρ(Tt(y),Tt(v)) < ϵ, for all t ∈ Q j,
j = 2i ≤ k.

For any ϵ > 0, if ρ(Tt(x),Tt(y)) < ϵ, for all t ∈ Qi ⊂ Zd, we say that x ϵ-traces y in Qi. Note that, the
definition of WSP can be easily reformulated using any finite sequence of points x1, x2, . . . , xl instead of just
a pair of two points u, v.

2.2. Distributional chaos for Zd-actions
Let (X, ρ) be a metric space and let T be a continuous Zd-action on X, d ∈ N, d > 1. For n ∈ N, points

x, y ∈ X, and t ∈ R, define

Φ(n)
xy (t) =

1
#Λ(n)

#{m ∈ Λ(n)|ρ(Tm(x),Tm(y)) < t},

where Λ(n) = {−(n − 1),−(n − 2), . . . , 0, . . . , (n − 2), (n − 1)}d ⊂ Zd, and #A denotes the cardinality of the set
A. Let

Φxy(t) = lim inf
n→∞

Φ(n)
xy (t), and Φ∗xy(t) = lim sup

n→∞
Φ(n)

xy (t).

These non-decreasing functions are called the lower and upper distribution functions for T, respectively.

Definition 2.3. ([3]) A pair of points x, y ∈ X is called

1. distributionally chaotic of type 1 (DC1) if Φxy(t) = 0, for some t > 0, and Φ∗xy(t) = 1, for all t > 0,
2. distributionally chaotic of type 2 (DC2) if Φxy(t) < Φ∗xy(t), for some t > 0, and Φ∗xy(t) = 1, for all t > 0,
3. distributionally chaotic of type 3 (DC3) if Φxy(t) < Φ∗xy(t), for some t > 0.

A set containing at least two points is called a distributionally scrambled set of type k for T if any pair of its
distinct points is distributionally chaotic of type k, where k ∈ {1, 2, 3}.

Definition 2.4. A Zd-action T is said to be distributionally chaotic of type k, where k ∈ {1, 2, 3}, if there exists
an uncountable distributionally scrambled set of type k for T.

In order to avoid confusion, we denote the distribution function for T by Φ(n)
xy (T, t). Recall that, for

dynamical systems (X,T1) and (Y,T2), the Zd-actions T1 : Zd
× X → X and T2 : Zd

× Y → Y are said to be
topologically conjugate if there exists a homeomorphism h : X → Y such that h ◦ Tn

1 = Tn
2 ◦ h for all n ∈ Zd,

and the map h is called the topological conjugacy between T1 and T2.

Proposition 2.5. Let (X,T1) and (Y,T2) be two dynamical systems, where X and Y are compact metric spaces with
metrics ρ1 and ρ2, respectively. If T1 and T2 are topologically conjugate then T1 is DCk implies T2 is DCk, k ∈ {1, 2}.

Proof. Since T1 and T2 are topologically conjugate, there exists a homeomorphism h : X → Y such that
h ◦ Tn

1 = Tn
2 ◦ h for all n ∈ Zd. By uniform continuity of h, for any ϵ > 0 there exists δ > 0 such that

ρ1(x1, x2) < δ implies ρ2(h(x1), h(x2)) < ϵ. For any x1, x2 ∈ X, let y1 = h(x1) and y2 = h(x2). Then

Φ(n)
x1x2

(T1, δ) =
1

#Λ(n)
#{m ∈ Λ(n)|ρ1(Tm

1 (x1),Tm
1 (x2)) < δ}

≤
1

#Λ(n)
#{m ∈ Λ(n)|ρ2(h(Tm

1 (x1)), h(Tm
1 (x2))) < ϵ}

=
1

#Λ(n)
#{m ∈ Λ(n)|ρ2(Tm

2 (h(x1)),Tm
2 (h(x2))) < ϵ}

=
1

#Λ(n)
#{m ∈ Λ(n)|ρ2(Tm

2 (y1),Tm
2 (y2)) < ϵ}

= Φ(n)
y1 y2

(T2, ϵ)
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Similarly by uniform continuity of h−1, for any ϵ > 0 there exists δ > 0 such that Φ(n)
y1 y2

(T2, δ) ≤ Φ
(n)
x1x2

(T1, ϵ).
Since T1 is DC1, X has an uncountable subset D which is distributionally scrambled set of type 1 for

T1. Then h(D) is an uncountable subset of Y. Moreover, if y1, y2 ∈ h(D), then y1 = h(x1) and y2 = h(x2)
where x1, x2 ∈ D. Since D is distributionally scrambled set of type 1, Φ∗x1x2

(T1, t) = 1, for all t > 0, and
Φx1x2 (T1, ϵ) = 0, for some ϵ > 0. This implies that Φ∗y1 y2

(T2, t) = 1, for all t > 0, and Φy1 y2 (T2, δ) = 0, for some
δ > 0. Thus, h(D) is uncountable distributionally scrambled set of type 1 for T2. Hence T2 is DC1. On
similar lines, we can prove that T1 is DC2 implies T2 is DC2.

Remark 2.6. In reference to the example given in [1], we can say that DC3 is not preserved under topological
conjugacy.

3. Main results

In this section, we establish the relation between weak specification property and distributional chaos
for Zd-actions on compact metric spaces.

Theorem 3.1. Let (X, ρ) be a compact metric space without isolated points and T be a continuous Zd-action on X,
d ∈N, d > 1, having a distal pair. If T has weak specification property, then T is distributionally chaotic of type 1.

Proof. Let u, v ∈ X be a distal pair and let G ⊂ X be an open ball with center at 1 and of radius ϵ > 0. Set
ϵi = ϵ

2i , i ≥ 1. Let Mi = M(ϵi, 2i), as in the definition of WSP, for all i ≥ 1. Also, let a1 < a2 < a3 < . . . be
an increasing sequence of positive integers such that ai+1 − ai > Mi+1, for any i ≥ 1, and lim

i→∞

ai+1−Mi+1
ai

= ∞.

Further, we define a subsequence {m(i)}∞i=1 of the sequence of positive integers, with m(1) > 1, such that
m(i + 1) > m(i) + i.

Step 1: Consider

Q1
0 = {t ∈ Z

d
|0 ≤ ∥t∥ ≤ a1},

Q1
1 = {t ∈ Z

d
|am(1) ≤ ∥t∥ ≤ am(1)+1 −M2},

Q1
2 = {t ∈ Z

d
|am(2) ≤ ∥t∥ ≤ am(2)+1 −M2},

Q1
3 = {t ∈ Z

d
|am(2)+1 ≤ ∥t∥ ≤ am(2)+2 −M2}.

Since T has WSP, for ϵ2 and the sequences of points 1,u, v,u and 1,u, v, v, we get points xu, xv ∈ G,
respectively, so that the points xu, xv: ϵ2-trace 1 in Q1

0, ϵ2-trace u in Q1
1, ϵ2-trace v in Q1

2. Moreover, xu ϵ2-trace
u in Q1

3 and xv ϵ2-trace v in Q1
3.

Since Tk, k ∈ Zd, are uniformly continuous, there are disjoint compact balls Bu and Bv in G centered at
xu and xv, respectively, such that each x ∈ Bα ϵ3-traces xα in Q(1) = {t ∈ Zd

|0 ≤ ∥t∥ ≤ am(2)+2 −M2}, where
α ∈ {u, v}. Without loss of generality we can assume that the diameter of either Bu or Bv is ϵ j(1), where
j(1) ≥ 3.

Step 2: Again by WSP, for ϵ j(1) > 0 and for

Q2
1 = {t ∈ Z

d
|am(3) ≤ ∥t∥ ≤ am(3)+1 −M j(1)},

Q2
2 = {t ∈ Z

d
|am(4) ≤ ∥t∥ ≤ am(4)+1 −M j(1)},

Q2
3 = {t ∈ Z

d
|am(4)+1 ≤ ∥t∥ ≤ am(4)+2 −M j(1)},

Q2
4 = {t ∈ Z

d
|am(4)+2 ≤ ∥t∥ ≤ am(4)+3 −M j(1)}.

there are points xuu, xuv ∈ Bu and xvu, xvv ∈ Bv, which ϵ j(1)-trace u in Q2
1 and ϵ j(1)-trace v in Q2

2. Additionally,

xuu, xuv ϵ j(1)-trace u, and xvu, xvv ϵ j(1)-trace v in Q2
3,

xuu, xvu ϵ j(1)-trace u, and xuv, xvv ϵ j(1)-trace v in Q2
4.
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Again by uniform continuity, there are disjoint compact balls Buu, Buv in interior of Bu centered at xuu
and xuv, respectively, and Bvu, Bvv in interior of Bv centered at xvu and xvv, respectively, such that each x ∈ Bα
ϵ j(1)+1-traces xα in Q(2) = {t ∈ Zd

|0 ≤ ∥t∥ ≤ am(4)+3 −M j(1)}. Without loss of generality we can assume that the
diameter of either Bα is ϵ j(2), where j(2) > j(1) + 1.

Continuing like this, for each k ∈ N and any α ∈ {u, v}k, there is a compact ball Bα centered at xα, and
positive integers j(1) < j(2) < . . . < j(k) such that if x, y are distinct points in Bα, then x ϵ j(k)−1-traces y in
Q(k) = {t ∈ Zd

|0 ≤ ∥t∥ ≤ am(2k)+k+1−M j(k−1)}. Also, if α, β ∈ {u, v}k and α , β then Bα∩Bβ = ϕ and Bαu∪Bαv ⊂ Bα.
Moreover, for any x ∈ Bα, where α = α1α2 · · ·αk:

(i) The point x ϵi-traces u in Qi
1, and ϵi-traces v in Qi

2, 1 ≤ i < k.
(ii) For 1 ≤ i ≤ k, x ϵi-traces α1 in Qi

3, and ϵi-traces α2 in Qi
4 for 2 ≤ i ≤ k. In general, for any j, 1 ≤ j ≤ k, xα

ϵi-traces α j in Qi
j+2, for j ≤ i ≤ k.

Take S =
⋂
∞

n=1
⋃
α∈{u,v}n Bα. Since diam(Bα) → 0 as n → ∞, S ⊂ G is a Cantor set. Further, since

each sequence in {u, v}N corresponds to a distinct element in S, and since the set of all binary sequences
is uncountable, it follows that S is uncountable. Note that, any s ∈ S can be uniquely determined as
sα =

⋂
∞

n=1 Bα1α2...αn where α = α1α2 . . . αn . . . ∈ {u, v}N.
Let x and y be distinct points in S. Then for any δ > 0, there will be an m such that ϵi < δ, for all

i > m. Using condition (i), we get that both x, y, ϵi-traces u in Qi
1, and ϵi-traces v in Qi

2, for all i ≥ 1. Thus,
ρ(Tp(x),Tp(y)) < ϵi2 < δ, for all p ∈ Qi

1 ∪Qi
2, and for all i > m. Hence, Φ∗xy(δ) = 1, for any δ > 0.

Further x, y ∈ S implies x = xα, y = yβ for some α = α1α2 . . . αn . . . and β = β1β2 . . . βn . . . in {u, v}N. Since
x and y are distinct, there exist a positive integer j such that α j , β j. Without loss of generality we assume
that α j = u and β j = v. Using condition (ii), we have that x ϵi-traces u in Qi

j+2 and y ϵi-traces v in Qi
j+2, for

j ≤ i. Since u, v is a distal pair, there exist a δ0 > 0 such that ρ(Tn(u),Tn(v)) > δ0, for all n ∈ Zd. Choose a
positive integer m, such that ϵi <

δ0
3 , for all i > m. Then ρ(Tp(x),Tp(y)) > δ0

3 , for any p ∈ Qi
j+2, and for all

j ≤ i and i > m. For if, ρ(Tp(x),Tp(y)) < δ0
3 for any p ∈ Qi

j+2, for j ≤ i and i > m, then ρ(Tp(x),Tp(u)) < ϵi and
ρ(Tp(y),Tp(v)) < ϵi will imply that ρ(Tp(u),Tp(v)) < δ0, a contradiction. Hence Φxy(δ0) = 0.

Thus, S is an uncountable distributional scrambled set of type 1. Hence T is distributionally chaotic of
type 1.

Theorem 3.2. Let (X, ρ) be a compact metric space without isolated points and T be a continuous Zd-action on X,
d ∈N, d > 1, having a distal pair. If T has weak specification property, then X has a dense DC1 scrambled set.

Proof. Since (X, ρ) is a compact metric space, it is second countable. Let {Gi}
∞

i=1 denote a countable base of
topology of X consisting of open balls. For G1 = B(11, ϵ(1)), using the arguments given in Theorem 3.1, we
get a Cantor DC1 scrambled set S1 and a sequence µ1 = {m(1, i)}∞i=1 such that x1 ∈ S1 ϵ

(1)
i -traces u in Q(1,i)

1 = {t ∈
Zd
|am(1,2i−1) ≤ ∥t∥ ≤ am(1,2i−1)+1 −M j(1,i−1)}, and ϵ(1)

i -traces v in Q(1,i)
2 = {t ∈ Zd

|am(1,2i) ≤ ∥t∥ ≤ am(1,2i)+1 −M j(1,i−1)},
for all i ≥ 1, where j(1, 0) = 2.

Again following the steps discussed in Theorem 3.1, for G2 = B(12, ϵ(2)), and for the sequence am(1,1) <
am(1,3) < am(1,5) < . . . of positive integers, we obtain a subsequence µ2 of {m(1, 1),m(1, 3),m(1, 5), . . .} denoted
by {m(2, i)}∞i=1 and a Cantor DC1 scrambled set S2 such that x2 ∈ S2 ϵ

(2)
i -traces u in Q(2,i)

1 = {t ∈ Zd
|am(2,2i−1) ≤

∥t∥ ≤ am(2,2i−1)+1 −M j(2,i−1)}, and ϵ(2)
i -traces v in Q(2,i)

2 = {t ∈ Zd
|am(2,2i) ≤ ∥t∥ ≤ am(2,2i)+1 −M j(2,i−1)}, for all i ≥ 1.

Continuing this way, we can find a sequence S1,S2, . . . of Cantor sets such that S =
⋃
∞

n=1 Sn is dense in X.
We now prove that S is a DC1 scrambled set. Clearly Sn is a DC1 scrambled set for each n ∈N. Consider

y, z ∈ S such that y ∈ Sp and z ∈ Sq, p , q. Assume that p < q. Then it follows that y ϵi-traces z in
Q(q,i)

1 = {t ∈ Zd
|am(q,2i−1) ≤ ∥t∥ ≤ am(q,2i−1)+1 −M j(q,i−1)}, for any i ≥ 1, where ϵi = max{ϵ(p)

i , ϵ
(q)
i }. Moreover y

ϵ(p)
i -traces u and z ϵ(q)

i -traces v in Q(q,i)
2 = {t ∈ Zd

|am(q,2i) ≤ ∥t∥ ≤ am(q,2i)+1 −M j(q,i−1)}, for any i ≥ 1. Thus, we get
that y and z are distributionally chaotic of type 1. Hence S is a DC1 scrambled set.
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