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Abstract. This article explores optimality analysis in a fuzzy environment of non-differentiable interval-
value optimization problems. Further, an approach is proposed for pseudoconvex optimization problems
with general convex constraints. The concept of a (weak) non-dominated solution in the fuzzy sense for
an interval optimization problem is inspired by the (weak) Pareto solution of a bi-objective optimization
problem. Thus, we establish the optimality conditions of Karush-Kuhn-Tucker for a non-differentiable
extremum problem of such a nature under the hypothesis of pseudoconvexity. In support of this, a bi-
objective optimization problem is to be constructed for the corresponding non-differentiable fuzzy-valued
optimization problem to prove these conditions. Numerical illustrations and simulation results from our
learning are also provided in the paper.

1. Introduction

The challenge we face is to minimize or maximize an objective function while keeping certain constraints
in mind when addressing crisp optimization problems. Nonetheless, in numerous circumstances, the
decision-maker might only be able to vaguely describe the objectives and boundaries rather than being able
to articulate them unambiguously. In these situations, creating a fuzzy optimization problem provides the
decision-maker with more flexibility. The majority of real-world decision-making challenges involve vague
optimizing objectives within defined constraints. Furthermore, since many parameters are determined
by estimation or human observation, it is frequently impractical to fix them precisely. These decision-
making issues can be represented as a fuzzy environment with nonlinear optimization issues. This is
supported by the broad application of the methodology for resolving uncertain optimization problems
across numerous scientific domains. To immensely improve the modeling, solutions, and representations
of real-world problems, multiple broad views of convex functions have been introduced. Pseudoconvex
functions generalize convex functions, first proposed by Mangasarian [16], Komlosi[13]. The properties of
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pseudoconvex functions were explored by [12], Soleimani-damaneh [25]. One of the notable characteristics
of pseudoconvex functions is that they have a global minimum at every local minimum Mangasarian [16].
In 1992, Nanda and Kar proposed the concept of convexity for fuzzy mapping and demonstrated that a
fuzzy mapping is convex if and only if its epigraph is a convex set. Moreover, Wu [27] recommended
the non-dominated solution of a nonlinear optimization problem with a fuzzy-valued objective function.
Singh D. et al.[23] introduce a new dimension based on the LU and LS convexity and 1H-differentiability of
interval-valued functions. Subsequently, Hassouni et al. [11] introduced a new concept of pseudoconvex
functions using sub-differential for non-smooth functions. As a result, the optimality conditions constructed
in this article generalize the same results shown earlier for convex and differentiated fuzzy optimization
problems in the literature given by Osuna-Gómez et al. [19], Panigrahi et al. [20], Pathak et al. [21],
Ruziyeva et al. [22], Wu [27, 28], and Linh et al. [15]. Also, Wang et al. [26] offered new ideas of the
differential, directional derivative, and sub-differential of a fuzzy function.

Additionally, they addressed the attributes of a fuzzy function’s directional derivative and differential
using the differential and directional derivative of two determined crisp functions. Subsequently, var-
ious dimensions for non-differentiability for optimization problems are opened up by Ahmad et al.[1],
Lemaréchal [14], and Dar et al.[8]. Beside the above-mentioned papers, many scholars have introduced the
various kinds of concepts of generalized convexity for fuzzy mappings such as (Arana et al.[3], Arana et
al.[4], Gupta et al. [10], Mishra S.k. [17], Osuna-Gómez et al. [19], and Younis et al.[30] verify optimality
and duality results for different classes of fuzzy optimization problems that are not convex. For synthesis
on this topic , we refer to Younis et al. [29]. In the meantime, Atre et al. [5] have opened up a new
dimension of Interval-Valued Optimization Problems for an applicative approach to optimization using
Vector Variational-like Inequalities.

Very recently, Antczak [2] followed the scalarization technique and obtained the solution sets of non-
differentiable optimization problems in terms of the fundamental properties of local Lipschitz invex func-
tions.

Inspired by this latest research in these domains, we examine multiple optimality conditions for the
examined non-differentiable fuzzy optimization problems for fixed α-cut with constraints, where the func-
tions involved are locally Lipschitz along with pseudoconvexity Eronen et al.[9]. Moreover, we discussed
the locally Lipschitz (LLp) fuzzy mapping and directional α-derivative using Clarke generalized.

This paper is organized as follows: After that introduction, basic definitions can be found in Section 2.
Section 3 describes sub-differentiability and pseudoconvexity for non-differentiable fuzzy-valued functions.
Section 4 addresses the optimality of the optimal solution of the fuzzy optimization problem and the
necessary optimality conditions for the solution of the non-differentiable fuzzy optimization problem.
Section 5 offers a brief conclusion, and Examples of non-differentiable pseudoconvex optimization problems
with fuzzy objective functions, where the involved functions are locally Lipschitz (LLp), will be given to
illustrate the results.

2. Preliminaries

Let Rn symbolize the n-dimensional Euclidean space and F(R) denote the set of all fuzzy numbers on
the set of real numbers R.

Definition 2.1. Assume X is the Universal (Crisp) set. If the α-cuts of a fuzzy set Ã in X are (universal)
convex sets for all α ∈ (0, 1), then Ã is considered a convex fuzzy set in X.

Definition 2.2. ([19]) If a convex fuzzy set Ã in X meets these three criteria, it is considered a fuzzy number:

A) Ã is a normal fuzzy set, that is supx∈XµÃ(x) = 1,
B) µ

Ã
(x) is an upper semi-continuous function,

C) The support of Ã is bounded.
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In the words of [19], for all α ∈ (0, 1), the α-level sets Ãα of Ã are compact and convex subsets of R when
this fact is considered into account along with conditions (B) and (C). Thus, we can alternatively write Ãα
as

Ãα = [ãL
α, ã

U
α ]. (1)

The membership function of a fuzzy number with value n can be obtained by

µ
Ã

(x) =
{

1, if x = n,
0, otherwise.

Remark 2.3. A crisp number with value n is denoted by the expression Ĩn.

Definition 2.4. ([21]) A fuzzy number ã = (a, a, a) is called a triangular fuzzy number if its membership
function is defined as:

µã(x) =


(x−a)
(a−a) , if a ≤ x ≤ a,
(a−x)
(a−a) , if a ≤ x ≤ a,

0, otherwise.

(2)

The α-level set (a closed interval) of ã is defined by

ãα = [ãL
α, ã

U
α ] = [(1 − α)a + αa, (1 − α)a]. (3)

Let Ã and B̃ be two fuzzy numbers represented by closed intervals for all α ∈ [0, 1] where Ã = [ãL
α, ãU
α ] and

B̃ = [b̃L
α, b̃U
α ], respectively.

Definition 2.5. ([27]) When Ã ≤ B̃, we state that Ã dominates (is superior to) B̃ for every α ∈ [0, 1]. Simply
put, Ã dominates B̃ if and only if{

aL(α) < bL(α)
aU(α) ≤ bU(α) or

{
aL(α) ≤ bL(α)
aU(α) < bU(α) or

{
aL(α) < bL(α)
aU(α) < bU(α) ; ∀α ∈ [0, 1].

Definition 2.6. ([27]) When Ã < B̃we state that Ã strongly dominates (is superior to) B̃ for every α ∈ [0, 1].
Simply put, Ã dominates B̃ if and only if{

aL(α) < bL(α)
aU(α) ≤ bU(α) ;∀α ∈ [0, 1]

or
{

aL(α) ≤ bL(α)
aU(α) < bU(α) ;∀α ∈ [0, 1]

or
{

aL(α) < bL(α)
aU(α) < bU(α) ;∀α ∈ [0, 1]

3. Sub-differentiability and convexity for fuzzy-valued function

This section starts with a review of the well-defined concepts of Lipschitz continuity [Clarke 1983] and
convexity for real-valued crisp functions that are non-differentiable.

Definition 3.1. ([7]) Let f : Rn
→ R be locally Lipschitz continuous at x ∈ Rn. The Clarke generalized

directional derivative of f at x in the direction of d, denoted by f0(x; d), is defined by

f0(x; d) = lim sup
y→x,ρ↓0

f(y + ρν) − f(y)
ρ

.
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Definition 3.2. ([7]) Let f : Rn
→ R be locally Lipschitz continuous at x ∈ Rn. The Clarke generalized

sub-differential of f at x, denoted by ∂f(x), is defined by

∂f(x) =
{
ζ ∈ Rn : f0(x; d) ≥ ⟨ζ,d⟩ ,∀d ∈ X

}
.

Lemma 3.3. ([7]) Let f : Rn
→ R be locally Lipschitz (LLp) continuous on a nonempty open set D ⊂ Rn , an

arbitrary point x of D and ρ ∈ R. Thereafter

1. ∂(ρf) ⊆ ρ∂f(x),
2. ∂(

∑k
i=1 fi)(x) ⊆

∑k
i=1 ∂fi(x).

Corollary 3.4. [7] In the case of any nonnegative scalars ρi,

∂

 k∑
i=1

ρifi

 (x) ⊆
k∑

i=1

ρi∂fi(x).

(Mishra S. K., 2009) defined the notion of non-differentiable pseudoconvexity for locally Lipschitz (LLp)
functions.

Definition 3.5. ([24]) Let f : Rn
→ R be locally Lipschitz (LLp) continuous and x̃ ∈ Rn. The function f at x̃ is

considered a pseudoconvex function, if,

⟨ζ, (x − x̃)⟩ ≥ 0⇒ f(x) ≥ f(x̃),∀ζ ∈ ∂f(x̃). (4)

Proposition 3.6. [7] Let f : Rn
→ R be locally Lipschitz (LLp) continuous at x̃ ∈ Rn and at x̃ attain its (local)

minimum. Thereafter 0 ∈ ∂f(x̃).

In our attempt to set up fuzzy mapping, by

Definition 3.7. ([20]) A nonempty subset of Rn is denoted by X. Hence, f : D → F(R) is called a fuzzy
mapping. The interval-valued functions are denoted by f̃α(x), α ∈ [0, 1]. The α-cut for each α ∈ [0, 1], which
is a closed and bounded interval, can be expressed as indicated by

f̃α(x) = [fLα(x), fUα (x)].

Consequently, the definition of a locally Lipschitz (LLp) function is simply extended similarly to fuzzy
mapping.

Definition 3.8. If the functions f̃Lα(.) and f̃Uα (.) are locally Lipschitz (LLp) at x for each α ∈ [0, 1] then a fuzzy
mapping f : Rn

→ F(R) is a locally Lipschitz function at a point x ∈ Rn.

Definition 3.9. For any α-cut f̃α in the direction d, the generalized Clarke directional α-derivative of the
locally Lipschitz fuzzy (LLp) function f̃α at x̃ is defined as the following pair of generalized clarke directional
α-derivatives of the functions f̃Lα(.) and f̃Uα (.) at x̃ in the direction d:

f̃0α(x̃; d) =

lim sup
y→x̃,ρ↓0

fLα(y + ρν) − fLα(y)
ρ

, lim sup
y→x̃,ρ↓0

fUα (y + ρν) − fUα (y)
ρ


=
(
(fLα)

0(x̃; d), (fUα )0(x̃; d)
)

Definition 3.10. The fuzzy function f : D → F(R) is said to be directionally differentiable in the sense of
Clarke at x̃, if f0(x̃; d) exists for every direction d and for every α-cut.

Definition 3.11. For any α-cut, let f : D → F(R) the locally Lipschitz (LLp) fuzzy function admit the
generalized Clarke directional α-derivative at x̃ in each direction d ∈ Rn. The definition of the generalized
Clarke gradient of f̃ at x̃ on the α-cut of left- and right-hand side functions at x̃:
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∂f̃α(x̃) =
(
∂f̃Lα(x̃), ∂f̃Uα (x̃)

)
,

where

∂fLα(x̃) =
{
ζL
∈ Rn : (fLα)

0(x̃; d) ≥
〈
ζL,d
〉
,∀d ∈ Rn

}
and

∂fUα (x̃) =
{
ζU
∈ Rn : (fUα )0(x̃; d) ≥

〈
ζU,d

〉
,∀d ∈ Rn

}
.

Now, we demonstrate the example for the Clarke generalized gradient of the fuzzy function.

Example 3.12. Let f̃ : D → F(R) the fuzzy function defined by f̃ = 4̃|x| − 1̃, where continuous triangular
fuzzy numbers are 1̃ = (0, 1, 2), 4̃ = (1, 4, 5) defined as triples. Now, by [3] 1̃ = [α, 2 − α], 4̃ = [1 + 3α, 5 − α]
are the triangular fuzzy numbers at α-level sets of fuzzy numbers 2̃ and 3̃ respectively.

Thus, at x̃ the α-level of fuzzy function f̃ are as:

f̃α(x̃) = [1 + 3α, 5 − α] |x̃| − [α, 2 − α] ,

Now,

fLα(x̃) =
{
−(1 + 3α)x̃ − α; x̃ < 0,
(1 + 3α)x̃ − α; x̃ ≥ 0.

and

fUα (x̃) =
{

(α − 5)x̃ − (2 − α); x̃ < 0,
(5 − α)x̃ − (2 − α); x̃ ≥ 0.

Given that, fLα and fUα are locally Lipschitz functions, it is apparent that the function f̃ is a locally Lipschitz
function on R. As a result, at x, the Clarke generalized gradient of the function f̃ is given by:

∂fLα(x̃) =


[−(1 + 3α), (α − 5)] ; x̃ < 0,
[−(1 + 3α), (1 + 3α)] , [(α − 5), (5 − α)] ; x̃ = 0,
[(1 + 3α), (5 − α)] ; x̃ > 0.

Definition 3.13. If the functions fLα(.) and fUα (.) at x are locally Lipschitz (LLp) for each α ∈ [0, 1], followed by
a fuzzy mapping f̃ : Rn

→ F(R) is a locally Lipschitz function at a point x̃ ∈ Rn, then f̃ is called pseudoconvex
function at x̃ if〈

ζL, (x − x̃)
〉
≥ 0⇒ fLα(x) ≥ fLα̃(x̃),∀ζL

∈ ∂fLα̃(x̃), (5)〈
ζU, (x − x̃)

〉
≥ 0⇒ fUα (x) ≥ fUα̃ (x̃),∀ζU

∈ ∂fUα̃ (x̃) (6)

holds for all x̃ ∈ Rn.

4. A fuzzy valued optimization problem and optimality

Consider the non-differentiable fuzzy version of the interval-valued crisp non-linear optimization prob-
lem

Minimize f̃α(x) = [f̃Lα(x), f̃Uα (x)] (FVOP)

Subject to g j(x) ≥ 0, j ∈ J = 1, . . . ,m,

where the non-differentiable objective function f̃ : Rn
→ F(R) is fuzzy-valued, and g j : Rn

→ R, j ∈ J, is
real-valued function. Let X = x ∈ Rn : g j(x) ≥ 0, j ∈ J, be the set of all feasible solutions of the problem
(FVOP). As in [27], the objective function is described in the current paper using the α-cuts, and It is
presumable that the non-differentiable functions fLα(.) and fUα (.) supply the values on its left and right sides,
respectively.
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Definition 4.1. ([28]) If there are no other x ∈ X such that the considered constrained optimization problem
(FVOP) with fuzzy-valued objective function includes a feasible solution x, it is said to have a non-dominated
solution.

f̃(x) ≤ f̃(x̃)

To clarify, according to Definition 2.5, if x ∈ X is a non-dominated solution (FVOP), then there are no
other x in X that can be used in this way.{

fLα(x) < fLα(x̃)
fUα (x) ≤ fUα (x̃) or

{
fLα(x) ≤ fLα(x̃)
fUα (x) < fUα (x̃) or

{
fLα(x) < fLα(x̃)
fUα (x) < fUα (x̃) ;∀α ∈ [0, 1].

Definition 4.2. ([28]) When the considered constrained optimization problem (FVOP) with fuzzy-valued
objective function has no other x ∈ X such that it includes a feasible solution x, it is said to have a weakly
non-dominated solution.

f̃(x) < f̃(x̃)

To clarify, according to Definition 2.6, if x ∈ X is a weakly non-dominated solution (FVOP), then there
are no other x in X that can be used in this way.{

fLα(x) < fLα(x̃)
fUα (x) ≤ fUα (x̃) ;∀α ∈ [0, 1]

or
{
fLα(x) ≤ fLα(x̃)
fUα (x) < fUα (x̃) ;∀α ∈ [0, 1]

or
{
fLα(x) < fLα(x̃)
fUα (x) < fUα (x̃) ;∀α ∈ [0, 1]

Remark 4.3. ([28]) It is important to remember that a weakly non-dominated solution (FVOP) is still a
non-dominated solution.

Then, by effectively ordering the intervals f̃α(x) =
[
fLα(x), fUα (x)

]
in order to turns the minimization of a

fuzzy valued function over a feasible set X into a bi-objective optimization problem for each α ∈ [0, 1]. The
family of related non-differentiable bi-objective optimization problems with the constrained optimization
problem (FVOP) having a fuzzy-valued objective function is thus defined as follows for each α ∈ [0, 1].[

fLα(x), fUα (x)
]
→ min (VOPα)

x ∈ X
Now, we describe the (weak) Pareto solution (PS) associated with a vector optimization problem as follows:

Definition 4.4. For some α ∈ [0, 1], if x ∈ X is considered a weak Pareto solution (PSw) of the bi-objective
optimization problem (VOPα) if there does not exist other x ∈ X such that{

fLα(x) < fLα(x̃)
fUα (x) < fUα (x̃)

Definition 4.5. For some α ∈ [0, 1], if x ∈ X is considered a Pareto solution (PS) of the bi-objective optimiza-
tion problem (VOPα) if there does not exist other x ∈ X such that{

fLα(x) < fLα(x̃)
fUα (x) ≤ fUα (x̃) or

{
fLα(x) ≤ fLα(x̃)
fUα (x) < fUα (x̃) or

{
fLα(x) < fLα(x̃)
fUα (x) < fUα (x̃)
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The relationships among the sets of solutions for a given fuzzy optimization problem (FVOP) according
to consideration and the corresponding bi-objective vector optimization problem (VOPα) are presented in
the following results.

Proposition 4.6. For the assumed fuzzy optimization problem (FVOP), let x̃ ∈ X be a (weakly) nondominated
solution. Furthermore, it is also a weak Pareto solution for any α ∈ [0, 1] of the bi-objective optimization problem
(VOPα).

Proposition 4.7. For each α ∈ [0, 1], the Pareto solution (PS) of any bi-objective optimization problem (VOPα) is
x̃ ∈ X, then x̃ is also a non-dominated solution of the assumed fuzzy optimization problem (FVOP).

Proposition 4.8. For some α ∈ [0, 1], Pareto solution (PS) of any bi-objective optimization problem (VOPα) is x̃ ∈ X,
then x̃ is also a weakly non-dominated solution of the assumed fuzzy optimization problem (FVOP).

Let us assume, however, that we apply this methodology to the solution of the considered optimization
problem (FVOP) using a fuzzy-valued objective function. Then, we have to consider the possibility of a
certain amount of uncertainty in its optimal solution. This results from lacking a unique Pareto solution (PS)
for the attributable bi-objective optimization problem (VOPα). Pareto solutions (PS) of the corresponding
bi-objective optimization problem (VOPα) constitute the solution set. All of its Pareto solutions (PS) may
be originate as a minimizer of an extremum problem assembled in such techniques, but there are ways
to tackle such a nonlinear optimization problem. The scalarization method is one of these techniques.
The scalarization method is a well-known way to solve the vector optimization problem (VOPα) [6]. This
method creates the scalarized optimization problem for the non-differentiable bi-objective optimization
problem (VOPα) as follows:

Fα(x, λ) = λ(α)fLα(x) + (1 − λ(α))fUα (x)→ min (Iα(λ))
x ∈ X

where λ(α) ∈ [0, 1].
We now demonstrate the association between the sets of minimizers of the scalarized optimization prob-

lem (Iα(λ)) and the collections of Pareto solutions (PS) of the non-differentiable bi-objective optimization
problem (α).

The first result states that if the functions fLα(.) and fUα (.) are pseudoconvex on X. In turn, a minimizer in the
scalarized optimization problem (Iα(λ)) is also a Pareto solution (PS) of the non-differentiable bi-objective
optimization problem (VOPα) with a fixed α-cut.

Proposition 4.9. The non-differentiable bi-objective optimization problem (VOPα) with fixed α-cut has a (weakly)
Pareto solution, represented by x̃ on X. If there exist λ̃(α̃) ∈ (0, 1), then x̃ is a minimizer of the scalarized optimization
problem (Iα(λ)), provied further that constraint functions satisfy the necessary pseudoconvexity supposition at x̃ and
that the objective functions fLα(.) and fUα (.) for each α ∈ [0, 1] are also pseudoconvex at x̃ on X.

The converse result of Proposition 4.4 is now obtained for any fixed α ∈ [0, 1].

Proposition 4.10. For each α ∈ [0, 1], let the minimizer of the scalarized optimization problem (Iα(λ)) is x̃ ∈ X.

a). A weak Pareto solution (PSw) of the bi-objective nondifferentiable vector optimization problem (VOPα) exists if
λ̃(α̃) ∈ (0,1).

b). Pareto solution (PS) of the bi-objective nondifferentiable vector optimization problem (VOPα) is x̃, if λ̃(α̃) ∈ (0, 1).
c). If x̃ is a unique minimizer of (Iα(λ)) and λ̃(α̃) ∈ (0, 1), then x̃ is a Pareto solution (PS) of the non-differentiable

bi-objective optimization problem (VOPα)

After that, we implement the Karush-Kuhn-Tucker (KKT) method to figure out the optimality environ-
ments for a weakly non-dominated solution of the considered problem (FVOP).
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Theorem 4.11. (Weakly non-dominated solution) Let the constraint functions g j, j = 1, ...,m are pseudoconvex at x̃
on X. Suppose that x̃ is a feasible solution to the non-differentiable fuzzy-valued optimization problem (FVOP) f(x).
Additionally, suppose that for some α̃ ∈ [0, 1], there exist λ̃(α̃) ∈ (0,1) and Lagrange Multiplier µ̃(α̃) ∈ Rm, µ̃(α̃) ≥ 0,
such that the Karush-Kuhn-Tucker (KKT) optimality conditions mentioned next are fulfilled.

0 ∈ ∂
(
λ̃(α̃)fLα̃(x̃) + (1 − λ̃(α̃))fUα̃ (x̃)

)
+

m∑
j=1

µ̃(α̃)∂gi(x̃). (7)

µ̃ j(α̃)gi(x̃) = 0, j ∈ J. (8)

If fLα(.) and fUα (.) are the left-hand and right-hand side functions of the fuzzy objective function f(x) that are
pseudoconvex at x̃ on X, then the concerned fuzzy-valued optimization problem (FVOP) has x̃ as a weakly non-
dominated solution.

Proof. For the non-differentiable fuzzy-valued optimization problem (FVOP) f(x) let x̃ be a feasible solution.
So that, there exists λ̃(α̃) ∈ (0, 1), µ̃(α̃) ≥ 0 , ϑ̃(α̃) ∈ Rr, and µ̃(α̃) ∈ Rm for some α̃ ∈ [0, 1] such that the
optimality conditions 7 and 8 of Karush-Kuhn-Tucker (KKT) are attained. It is assumed that every function
present in the problem (FVOP) is locally Lipschitz (LLp).

Consequently, every function that forms up the corresponding scalarized problem (Iα(λ)) is likewise
locally Lipschitz (LLp). As the outcome, for some α̃ ∈ [0, 1] conditions 7 and 8 indicate that x̃ is a KKT
solution point of the corresponding scalarized optimization problem (Iα(λ)). The objective function f(x) is
pseudoconvex at x̃ on X as left-right-hand side functions fLα(.) and fUα (.) are pseudoconvex x̃ on X for the
corresponding scalarized optimization problem (Iα(λ)).

Therefore, for all x̃ ∈ X〈
ζL, (x − x̃)

〉
≥ 0⇒ fLα(x) ≥ fLα̃(x̃),∀ζL

∈ ∂fLα̃(x̃), (9)〈
ζU, (x − x̃)

〉
≥ 0⇒ fUα (x) ≥ fUα̃ (x̃),∀ζU

∈ ∂fUα̃ (x̃), (10)〈
ξ j, (x − x̃)

〉
≥ 0⇒ 1 j(x) ≥ 1 j(x̃),∀ξ j ∈ ∂g j(x̃), j = 1, . . . ,m (11)

Now, adding the resulting inequalities by multiplying 9 by λ̃(α̃) and 10 by 1− λ̃(α̃), respectively, inequality
11 by µ̃ j(α̃), j ∈ J, we obtain,〈

λ̃(α̃)ζL + (1 − λ̃(α̃))ζU +

m∑
j=1

µ̃ j(α̃)ξ j, (x − x̃)
〉
≥ 0

⇒

λ̃(α̃)fLα̃(x) + (1 − λ̃(α̃))fUα̃ (x) +
m∑

j=1

µ̃(α̃)∂gi(x)

 ≥
λ̃(α̃)fLα̃(x̃) + (1 − λ̃(α̃))fUα̃ (x̃) +

m∑
j=1

µ̃(α̃)∂gi(x̃)


for all x ∈ D. According to the Karush-Kuhn-Tucker (KKT) optimality condition 7 and 8, this previous
relationship shows that the inequality for all x ∈ X and for some α̃ ∈ [0, 1] ;[

λ̃(α̃)fLα̃(x) + (1 − λ̃(α̃))fUα̃ (x)+
]
≥

[
λ̃(α̃)fLα̃(x̃) + (1 − λ̃(α̃))fUα̃ (x̃)+

]
(12)

From 12 it shows that x̃ is a minimizer of the Corresponding scalarized optimization problem (Iα(λ)). This
is because the feasible set is identical to that of the problem (FVOP).

Therefore, As per Proposition 4.5 b) x̃ is a Pareto solution for the non-differentiable bi-objective opti-
mization problem (VOPα) . According to Proposition 4.3, x̃ is weakly non-dominated for the fuzzy valued
optimization problem (FVOP). As a result, this theorem’s proof is accomplished.
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Theorem 4.12. (Non-dominated solution) Let the constraint functions g j, j = 1, ...,m are pseudoconvex at x̃ on
X. Suppose that x̃ is a feasible solution to the non-differentiable fuzzy-valued optimization problem (FVOP) f(x).
Additionally, let us assume that for each α̃ ∈ [0, 1], there exist λ̃(α̃) ∈ (0, 1) and multiplier µ̃(α̃) ∈ Rm, µ̃(α̃) ≥ 0, such
that the Karush-Kuhn-Tucker (KKT) optimality conditions mentioned next are fulfilled.

0 ∈ ∂
(
λ̃(α̃)fLα̃(x̃) + (1 − λ̃(α̃))fUα̃ (x̃)

)
+

m∑
j=1

µ̃(α̃)∂gi(x̃), (13)

µ̃ j(α̃)gi(x̃) = 0, j ∈ J. (14)

If fLα(.) and fUα (.) are the left-hand and right-hand side functions of the fuzzy objective function f(x) that are pseudoconvex
at x̃ on X, then the concerned fuzzy-valued optimization problem (FVOP) has x̃ as a non-dominated solution.

Proof. Similar proof as theorem 4.11.

Now, we prove a feasible solution x̃ of the Karush-Kuhn-Tucker (KKT) necessary optimality conditions
to be a weakly non-dominated solution of the assumed fuzzy-valued optimization problem (FVOP).

Theorem 4.13. Let us assume the fuzzy-valued objective function f(x) is pseudoconvex at x̃ on X as left-hand and
right-hand side functions fLα(.) and fUα (.) respectively are also pseudoconvex at x̃ on X and constraint functions
pseudoconvex at x̃ on X. Further, let us assume that the fuzzy-valued optimization problem (FVOP) has a weakly
non-dominated solution x̃ ∈ X. Moreover, the Slater constraint qualification is satisfied at x̃ for FVOP. Then, satisfy
the Karush-Kuhn-Tucker (KKT) optimality conditions if there exist λ̃(α̃) ∈ (0, 1), µ̃(α̃) ∈ Rm, µ̃(α̃) ≥ 0, and ϑ̃(α̃) ∈ Rr

as a multipliers,

0 ∈ ∂
(
λ̃(α̃)fLα̃(x̃) + (1 − λ̃(α̃))fUα̃ (x̃)

)
+

m∑
j=1

µ̃(α̃)∂gi(x̃), (15)

µ̃ j(α̃)gi(x̃) = 0, j ∈ J. (16)

Proof. By proposition 4.6, let x̃ ∈ X be a weakly non-dominated solution of the assumed fuzzy optimization
problem (FVOP). It is also a weak Pareto solution for any α ∈ [0, 1] of the bi-objective optimization problem
(VOPα). For a fixed α ∈ [0, 1], it implies that x̃ is a minimizer of the scalarized optimization problem (Iα(λ))
by Proposition 4.9.

According to Theorem 6.1.1 Clarke 1983, the Lagrange Multiplier Rule states that there are φ̃(α̃) ∈
R+, µ̃(α̃) ∈ R+m, λ̃(α̃) ∈ (0, 1), and ϑ̃(α̃) ∈ Rr as a Lagrange multipliers which are not all zero, such that

0 ∈ φ̃(α̃)∂
(
λ̃(α̃)fLα̃(x̃) + (1 − λ̃(α̃))fUα̃ (x̃)

)
+

m∑
j=1

µ̃(α̃)∂gi(x̃), (17)

µ̃ j(α̃)gi(x̃) = 0, j ∈ J. (18)

For the problem (FVOP), the Slater constraint qualification is fulfilled at x̃, so the Lagrange multiplier φ̃(α̃)
is possible to configure to 1 in 17. Therefore, (17) denotes (15). This concludes this theorem’s proof.

Lemma 4.14. Assume that all of the assumptions of Theorem 4.13 are true and let a weakly nondominated solution
of the considered fuzzy valued optimization problem (FVOP) be x̃ ∈ X. Then, for α ∈ [0, 1] there exist λ̃(α̃) ∈
(0, 1), µ̃(α̃) ∈ Rm, µ(α̃) ≥ 0 and ϑ̃(α̃) ∈ Rr such that

0 ∈ λ̃(α̃)∂fLα̃(x̃) + (1 − λ̃(α̃))∂fUα̃ (x̃) +
m∑

j=1

µ̃(α̃)∂gi(x̃). (19)
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Proof. As for Theorem 4.13, all of its presumptions hold true, there exists x̃ ∈ X. Then, there exist λ̃(α̃) ∈
(0, 1), µ̃(α̃) ∈ Rm, µ(α̃) ≥ 0 and ϑ̃(α̃) ∈ Rr not all zero, such that the Karush-Kuhn-Tucker necessary optimality
conditions 15 - 16 are fulfilled. Afterward, the Karush-Kuhn-Tucker necessary optimality condition 15
inferred the Karush-Kuhn-Tucker necessary optimality condition 19 as supported by Corollary 3.4. This
completes the proof.

An example of a non-differentiable optimization problem with a fuzzy-valued objective function is
established to demonstrate the optimality results.

5. Numerical illustrations

Example 5.1. Assume that we have non-differential fuzzy-valued objective function F̃ : R → F̃ (R) as
follows:

Min F̃ (x) = 3̃ln((|x| + x2).e)Θ2̃ (FVOP1)

1(x) = x2
− 6x ≤ 0

Here, the continuous triangular fuzzy numbers are 2̃ = (0, 2, 4), 3̃ = (1, 3, 4) defined as triples. Now, by [3]
2̃ = [2α, 4 − 2α], 3̃ = [1 + 2α, 4 − α] are the triangular fuzzy numbers at α-level sets of fuzzy numbers 2̃ and
3̃ respectively.
Observe that all feasible solutions for (FVOP1) are in the set D = x : x2

− 6x ≤ 0 = [0, 6] , and a feasible
solution of this problem (FOP1) is x̃ = 0.
Using [2.2], we also have the α-level cut of the given objective function, which is fuzzy-valued.

F̃ (x) = [(1 + 2α)ln((|x| + x2).e), (4 − α)ln((|x| + x2).e) − (4 − 2α)],∀α ∈ [0, 1].

Now, the left-hand and right-hand side given objective functions at α = 0, α = 0.5, and α = 1 are as follows.
at α = 0;

F̃ (x) = [ln((|x| + x2).e), 4ln((|x| + x2).e) − 4]

at α = 0.5;

F̃ (x) = [2ln((|x| + x2).e) − 1, 3.5ln((|x| + x2).e) − 3]

at α = 1;

F̃ (x) = [3ln((|x| + x2).e) − 2, 3ln((|x| + x2).e) − 2]

As can be seen from Figs. 5.1, 5.2, 5.3, and 5.4 the fuzzy valued function f is not level-wise differentiable
at the point x = 0 because of the left-hand function fLα(.) and right-hand functions fUα (.) are not differentiable
at this point (Wu, 2007). In addition, the functions fLα(.) and fUα (.) are not convex which means f is also not
convex.

Based on these validations, using Karush-Kuhn-Tucker optimality conditions, we could not solve the
non-differentiable fuzzy optimization problem (FVOP1) for a (weakly) non-dominated solution.

Nonetheless, we demonstrate that the non-differentiable fuzzy optimization problem (FVOP1) can be
solved using the Karush-Kuhn-Tucker optimality conditions established in this paper.

It should also be noted that all functions forming up (FVOP) are locally Lipschitz, meaning that a locally
Lipschitz fuzzy function represents the objective function. Furthermore, by Theorem 4.12, we illustrate the
pseudoconvexity for functions forming the non-differentiable fuzzy optimization problem (FVOP1). Also,
considered fuzzy valued objective function f(x) and constraint functions g are pseudoconvex at x on X using
definition 3.5. Moreover, Theorem 4.13 implies that point x = 0 is the non-dominated solution of the given
problem (FVOP1).
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Fig. 5.1: Objective function at different α-level Fig. 5.2: Surface of F̃ (x) at α = 0

Fig. 5.3: Surface of F̃ (x) at α = 0.5 Fig. 5.4: Surface of F̃ (x) at α = 1

Example 5.2. Additionally, take another non-differential fuzzy valued objective function F̃ : R → F̃ (R) as
follows:

Min F̃ (x) = 2̃(|x| +
√
|x|)Θ3̃ (FVOP2)

1(x) = x2
− 4x ≤ 0

where 2̃ = (0, 2, 4), 3̃ = (1, 3, 4) are continuous triangular fuzzy numbers that are defined as triples.
Now, by [3] the fuzzy triangular numbers at α-level sets of fuzzy numbers 2̃ and 3̃ : 2̃ = [2α, 4 − 2α], 3̃ =
[1 + 2α, 4 − α]. Observe that all feasible solutions for (FVOP1) are in the set = x : x2

− 4x ≤ 0 = [0, 4]and a
feasible solution of this problem (FVOP1) is x̃ = 0. Additionally, using 3 we have the different α-level cut
of the fuzzy objective function are

F̃ (x) = [−1, 4(|x| +
√
|x|) − 4]

F̃ (x) = [(|x| +
√
|x|) − 2, 3(|x| +

√
|x|) − 3.5]

F̃ (x) = [2(|x| +
√
|x|) − 3, 2(|x| +

√
|x|) − 2]

At α = 0, 0.5, and 1 respectively. As in example 5.1, we can easily demonstrate that point x̃ = 0, which is the
non-dominated solution to the problem (FVOP2).
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Fig. 5.5: Objective function at different α-level Fig. 5.6: Surface of F̃ (x) at α = 0

Fig. 5.7: Surface of F̃ (x) at α = 0.5 Fig. 5.8: Surface of F̃ (x) at α = 1

Plots of the left-hand and right-hand sides of the objective function are shown in Figs. 5.5, 5.6, 5.7, and
5.8 at different alpha-levels.

6. Open application and future direction

Fuzzy Interval-Based Multi-Crop Planning-Pseudoconvexity for non-differentiable fuzzy interval-valued
functions helps crop production by minimizing natural ambiguity and uncertainty in agricultural decision-
making. Traditional non-linear programming methods failed to produce reliable crop allocation strategies
because of imprecise weather forecasts, the diversity of soil, fluctuating input costs, and market price
uncertainty. We can solve these globally optimal optimization issues by employing fuzzy intervals with
non-differential structure.

7. Conclusions

A crisp optimization framework can be extended to a fuzzy setting to enhance decision-maker flexibility
and make the problem more realistic. The fuzzy optimization problem is resolved by reformulating it as the
interval optimization problem for a fixedα-level cut. This paper provides a new concept of pseudoconvexity
for a non-differentiable fuzzy mapping by incorporating both concepts of the Clarke generalized derivative
and the Clarke generalized gradient of a nonsmooth fuzzy-valued function. The bi-objective optimization
problem associated with the provided non-differentiable fuzzy optimization problem forms the basis of the
result established in this paper. Consequently, this problem is solved using the scalarization technique for
the multiobjective optimization problem. It has been shown that there is a relationship between this vector
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optimization problem’s Pareto solutions and the given non-differentiable fuzzy optimization problem’s
(weakly) non-dominated solutions. In addition, under the pseudoconvexity assumptions, the results of
the sufficient optimality conditions of the considered non-differentiable optimization problem with having
fuzzy-valued objective function have been verified.
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