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Abstract. In this paper the Sturm-type boundary value problem for the heat conduction equation with
a discontinuous coefficient and with a general conjugation condition is solved using the Fourier method.
The considered problem may arise when solving problems describing the process of particle diffusion in
turbulent plasma, as well as when modeling the process of heat propagation of the temperature field in a
thin rod of finite length, consisting of two sections with different thermophysical characteristics. In addition
to the boundary conditions, general conjugation conditions are specified at the contact boundary of two
media with different thermophysical characteristics. The existence and uniqueness of the classical solution
to the studied problem is proved.

1. Problem statement

We consider an initial boundary value problem for the heat equation with a piecewise constant coefficient

du  ,du

3 = 5 R

in the domain Q = UQ;, Q1 = {(x,t) : lp <x <L, 0<t < T}, Qo ={(x,t): 1 <x<h,0<t<T} (i=12),
with an initial condition

M(.X, 0) = (P(x)r ZO <x=< l2/ (2)

boundary conditions of the form

aruy(lo, t) + Brulo, t) =0,
axuiy(lo, t) + Bou(lp, t) = 0,

0<t<T 3)
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and with conjugation conditions
{kluxal = 0,8) = h(Ou(ls +0,8) - u(ly = 0,)), W

kiue(ly = 0,t) = kouy(ly + 0, 1),

where aiz = %, (i=1,2), h > 0, 0 > 0, k; is a thermal conductivity coefficient, c; is the specific heat capacity, p;
is the density, aiz is a thermal diffusivity coefficient, | a; | + | fi [> 0, (i=1,2).

Parabolic equations with discontinuous coefficients have been studied by many authors. In these works,
the correctness of various initial-boundary value problems for parabolic equations with discontinuous
coefficients is proved by the Green’s function and thermal potentials method. In the case without a
discontinuity, the spectral theory arising from solving such problems is constructed almost completely.

However, in the case of one or more discontinuity points, the situation is quite different. In the case of a
discontinuous coefficient, the spectral theory of such problems is considered in [6, 12, 8, 9]. The solutions by
the Fourier method of initial-boundary value problems for the heat equation with discontinuous coefficients
are reduced to the corresponding spectral Sturm-Liouville eigenvalue problem. Such eigenvalue problems
do not belong to the usual type of Sturm-Liouville problems because of the discontinuity of the heat
conductivity coefficients. Moreover, the non-self-adjointness of the corresponding spectral problem also
complicates the solution of the problem. In this case, the system of eigenfunctions does not form a basis,
they are not even orthogonal. It is shown that the system of eigenfunctions of the problem forms a Riesz
basis (thereby the solution can be expanded in a series of eigenfunctions). The theorem on the existence
and uniqueness of the classical solution is proved.

We will separately note the works devoted to the solution of multilayer diffusion problems. Mathe-
matical models of diffusion in layered materials arise in many industrial, ecological, biological, medical
applications and the theory of thermal conductivity of composite materials [2, 11, 4, 5, 3, 10, 13, 1, 7].

2. Solution method

Let W denote the linear variety of functions from the class u(x,t) € C(Q) N C>'(Q;) N C*1(Q,) which
satisfy all conditions (2)-(4). We will call a function u(x, t) from the class u(x,t) € W a classical solution to
problem (1)-(4), if 1) it is continuous in the domain Q; 2) has in the domain continuous derivatives of the
first order with respect to ¢ and continuous derivatives of the second order with respect to x; 3) satisfies
equation (1) and all conditions (2)-(4) in the usual, continuous sense.

To solve problem (1)-(4), we will apply the Fourier method: u(x,t) = X(x) - T(t) # 0. Substituting into
equation (1) and conditions (2)-(4), and separating the variables, we obtain the following spectral problem

LX() = {iiﬁﬁﬁg;; pors ﬁ;} = AX(), ©)

a1X'(lo) + p1X(lo) = 0, ©)
a2 X' () + p2X(I) = 0,

le’(ll - O) = h(@X(l1 + 0) - X(Zl - 0)), (7)
le’(ll -0) = kzX/(ll +0).

The function T(t) is a solution to the equation
T'(f) + AT(t) = 0.

Let us find the eigenvalues and eigenfunctions of problem (5)-(7). The general solution to equation (5)
has the form

X(x)=c1 cos(;/—?(x - lo)) +c sin(u—\lﬁ(x - lo)), lp<x<l,
0 o (V ®)
X(x) =3 COS(E(ZZ - x)) +cy sm(;(lz - x)), L <x<l
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Substituting the general solution (8) into the boundary conditions (6) and the conjugation conditions
(7), we obtain

VA
ﬁ1c1 + 0(1”1 ¢ =0,

a VA
Pacs — == =0,

(h cos g — kla;a sin yl) 1+ (h sin yg + klﬂYX cos yl) cp — hOc3 cos up — c4hBsinpy =0,

1 : k1 2 : ko _
Ecl sy + ECQ cos Uy + a—ZC3 s Uy — a—ZC4 COS Up = 0,

where ; = (1 - 1), (i = 1,2).
The characteristic determinant of system (9) has the form:

A(A) = a1a2k1k2)t% sin g sin pp — axanky (k2B + axhO)A sin g cos iy

+aya2ky (k1 p1 — arh)A cos pg sin pp + h(ai‘azkzﬁl - a%oquBth) VA sin 1 sin pip
+ﬂ1ﬂ2(0[1ﬁ2k2h + azﬁlkth - klkZ,Bl,BZ) \/KCOS U1 COS U2
+haya,B1B2(a2k:1 0 cos iy sin po — kpag sin piq cos ) = 0. (10)

The roots of equation (10) will be the eigenvalues of problem (5)-(7). It is not possible to find the
eigenvalues explicitly, but it is possible to construct an asymptotics. Let us introduce the notation g(A) =

alazklkz/\% sin pq sin uy,
f(A) = apanki(kofn + a2hO)A sin g cos po + aranka(kif1 — arh)A cos g sin pio

+h(ﬂ%0{2kzﬁl — a%oqklﬁzhe) \/Ksin 251 sin 2
+a1az(an Bokoh + azfikihO — kikof152) VA cos L1 COS Lp
+hayazB1B2(azk:1 0 cos g sin po — kpay sin piq cos pp).

According to Rouché’s theorem, if inequality |g()t)| > |¢(A)| is satisfied, then functions g(1) and
g(A) + P(A) have the same number of zeros for large A . It is known that the roots of equation g(1) =

- 2
araskiko A3 sin pising, =0  have the form: A, = (,21"_’1) , (i = 1,2). Then it is not difficult to show that

Ay = (7\,, + 6)2, where A, are roots of equation (10), 6, = O (%) .

If A = 0, then the spectral problem (5)-(7) has only a zero solution under the condition
B1P2 (kikz + koh(ly = ly) + kihO(l2 — 11)) + h(azf1k10 — a1f2kz) # 0.

Eigenfunctions have the form:

kp Dy (A, ), Iy <x<h,
Xu(x) = Cy o, 2210 1=0) g (11)

13— Da(Ay, X), h<x<l,

where
_ VA, m . (VA
Dy(Ay,x) =m COS(T(X —l)|-p Nrw sin o (x=1h)|, (12)
VA, ) a (\/A_n )

Dy(A,,x) = agcos| —— (I, —x) | + sin I —x)], 13
2(An, X) = a2 ( . (I —x) ,32\//\_” . (I —x) (13)

A, are roots of equation (10).
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It can be shown that the eigenfunctions (11) satisfy equation (5), boundary conditions (6) and conjugation
conditions (7).

Next, we find the conjugate problem to problem (5)-(7).

Given the formula —X" (x)Y(x) = (Y (x)X(x) = Y(0)X'(x))" = Y (x)X(x) we get

I Iy b
f Y(x)LX(x)dx = — f Y(x)ai X" (x)dx — f Y(x)a; X" (x)dx = a2X(l=0)Y’ (11—0)—a3 X(lo) Y’ (l)—a3 X' (1, —0) Y (I —0)
Io Iy kL
I
+a2 X' (10)Y(lo) + a3 X (L)Y’ (L) — a3 X (I + 0)Y' (11 +0) — a3 X' (l) Y (o) + a3 X’ (11 + 0) Y(I1 +0) + f X(x)L*Y (x)dx.
lo

Taking into account the formula | &; | + | B; |> 0, (i=1,2), it can be assumed that ; # 0,(i=1,2).
Let us rewrite the boundary conditions (6) and the second formula from the conjugation condition (7)
in the following form:

X(lo) = —%X/(lo),
X(h) = —%X/(lz),

X(lh = 0)=0X(l; +0) — %X’(ll -0).
Then, we get
)

f Y(x)LX(x)dx =a3Y’(l; — 0) (GX(h +0) - %X’(ll - 0)) —a3X'(h —0)Y(l, — 0)
lo

~2Y'(ly) (—%X%m) + 22X (lo)Y (o) + a2Y' (L) (—%X%m)
1 2

1)
—aZ2X(l; + 0)Y'(I +0) — a3 X' (L)Y () + a3 X' (I + 0)Y(l1 +0) + f X(X)LY(x)dx, =
lo

L 2 2

fY(X)LX(X)dX =—- le’(ll - 0)% (Y(ll -0)+ %Y/(ll - 0)) + kzX/(ll + O)I;—ZY(ll + 0)
1 2

Iy
+a1 X’ (lo) (Y(lo) + %Y'(lo)) - a3X' () (Y(lz) + g—zY'(lz))
1 2

I
+X(h +0) (a10Y' (1 — 0) — a3Y'(1 + 0)) + f X(x)L*Y (x)dx.
Iy

From the last equality it follows that the adjoint problem has the following form:

YAV
vve = {0 LSS = @
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a1Y'(lo) + p1Y(l) = 0, (15)
Y (o) + B2Y(l2) = 0,
a2Y'(lh—0)=h (gyal +0) - Z—fY(ll - 0)), (16)

0a2Y'(l, - 0) = a2Y"(l; +0).

It follows that problem (5)-(7) is not self-adjoint.

Therefore, it cannot be asserted that the eigenfunctions X, (x) form a basis in L, .

In a similar way, one can find the eigenvalues and construct the eigenfunctions of the adjoint problem
(14)-(16). It can be shown by direct calculation that the eigenvalues of spectral problems (5)—(7) and (14)-(16)
coincide. The eigenfunctions of problem (14)-(16) have the form:

9D (A, 11+0)
Y, () = {a%—z LA D (A, X), Iy <x <1y, -

0a2 220, (7, ), h<x<h,
where A, are roots of equation (10), functions ®;(A,, x), ®2(A,, x), are determined by formulas (12)-(13).
Since the eigenvalues of spectral problems (5)-(7) and (14)-(16) coincide, then
I I I
f Y, (x)LX,, (x)dx — f X (LY, (x)dx = (A, — Ay) f X ()Y, (x)dx .

l() l(] l()

I
Then, we get (Xz- , Yj) = f Xi(x)Yj(x)dx = 6; , where 6;. is a Kronecker delta, i.e., system of eigenfunctions
I
X,(x), Yyu(x) is biorthogonal on the interval (ly, ).
Now let us construct a self-adjoint problem.
Lemma 2.1. The following spectral problem is self-adjoint

LZ<x>={ ey ﬁjjijﬁ}ﬂzm, (18)

a1 Z (lo) + p1Z(lp) = 0, (19)
7' () + p2Z(l2) = 0,
m VRZ (1 - 0) = 1 (%270 + 0) - 47 - 0)), 20

ay v6k1Z’(11 - 0) =dap \/E ,(11 + 0)

The proof is carried out by direct calculation. Further, in a similar way, we can calculate the eigenvalues
of problem (18)-(20), they will be the roots of equation (10), i.e., coincide with the eigenvalues of problems
(5)-(7) and (14)-(16).

Eigenfunctions have the form:

ay Vg 222ty (7, x), Iy <x <1y,
Zn(x) =

21
\/—8(1)1(/\,1 J1— 0)(1)2(/\’1,3() Zl <x< 12' ( )

Lemma 2.2. The system of eigenfunctions (21) forms an orthonormal system.

The proof follows from the general theory of self-adjoint problems.
C,, can be found from the normalization condition

2 b 2 b
C, = a%kz(W) f DA, X+ @w(%) f (A, N)dx| . (22)

lo ll

[NIE
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Lemma 2.3. The eigenfunctions X, (x) of the spectral problem (5)-(7), defined by (11), forms a Riesz basis.

Proof. The system of eigenfunctions Z,(x) is known to form an orthonormal basis in L,(ly, I). From formulas
(11) and (21) it can be seen that the eigenfunctions of problem (5)-(7) and (18)-(20) are related by the following
equality:

‘727, lo <x < ll,
Zy(x) = a(x)X,,(x), where a(x)= PR ]
‘/» , 1 X < lp.

AX(x) = a(x)X(x), A:La(lo, ) = La(lp, o) is a bounded operator and there exists A™1, also bounded.
Therefore, from the definition of the Riesz basis it follows that the system of eigenfunctions X,,(x) forms a
Riesz basis. O

The following theorem holds.

Theorem 2.4. Let ¢(x) be a twice continuously differentiable function satisfying boundary conditions and conjuga-
tion conditions

a1¢'(lo) + p1p(lo) =0, ¢’ () + Bop(l2) = 0, (23)
kip'(lh = 0) = h(Bp(l +0) — @l = 0)), kig'(li = 0) = kag’(I1 +0). (24)

Then the function
U, h = Y puXa(@e ™, (25)

n=1

where
I

on = f PO, (), 26)

lo

is a unique classical solution to problem (1)-(4).

Proof. First, we prove that the solution (25) exists. It is known that X, (x) is an eigenfunction and A, is
an eigenvalue of problem (5)-(7). It follows that the function satisfies equation (1), the initial condition
(2), the boundary conditions (3) and the conjugation conditions (4). Let us consider the function u,(x,t) =
qoan(x)eiA”t'

Let us show that when t > ¢ > 0 (¢ is any positive number) the series ), u,(x,t), a;;, , Z ‘39;’2” , converges
n=0 n=0

Mzﬂ%(ll - lo), lp<x <k,

. Taking int t the last
Mzﬂ%Q(lz—h), L <x<ly aking into account the las

uniformly. Obviously |(p(x)) < M;j, then ‘(pn| < {

estimate, we get
2
e, D1 < Mae ™, {2 | 52} < Mo,

where constants M;, (i = 1,2, 3, 4) are positive and do not depend on n. Thus

{z: ntr 01, £ %], }< 5 BiAee,

n=1

iy

—_—
Q)|
~

Puy
o2

where constant M = max {M3, My} . Since the series Z MA,e=¢ is an absolutely convergent series, therefore,
n=1

axz } converges uniformly for

according to the Weierstrass criterion, the series {Z [t (x, 1), Z |‘9””
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2
t > ¢ and are continuous for ¢ > ¢ functions u(x, t), a”(g’:’t), 2 gg’t)

. Now we will show that the series (25)
converges uniformly everywhere in Q.

From formula (25) we obtain Z U, = Z |(an et | < Z |(pn)
=1 n=
Integrating by parts the 1ntegral in formula (26), we obtam

I
azaz 9Dy (Ay, 11 + 0)
On = /\ \/k_z @" (x)az \/_T‘Dl(/\n,x)dx

12
_ma; \/_ . 59P1(An, 11 = 0)
n \/_ Q" (x)a1 Vky Tq)z(/\n,x)dx.

In this case, we have used the characteristic equation and conditions (23)-(24).
From here, taking into account formula (21), we obtain the following estimate }(pn| < M5|f\—”’", where
I
a, = f @"(x)Z,(x)dx, are Fourier coefficients of functions ¢”(x) over a system of functions Z,(x) which is

lo

/11[[ \@ ﬂluz
"R )

(a + %) Taking into account Bessel’s inequality

orthonormal on the segment [ly,[,]. Ms=m

Using inequality ab < 3 (a2 + bz), we have |(p,,)

(o)
L < o
n=

Ms
= 2

’’

2, we get oi |(pn‘ <K, (K>0).
n=1

Thus, the majorizing series }. |(p,,| converges absolutely, which means that the series (25) converges
n=1

uniformly in Q and defines the function u(x, ) that is continuous in Q. Thus, the existence of the solution
is proven.

Now let us prove the uniqueness. Let us assume there are two solutions #(x, t), #(x,t). Then for function
w(x,t) = ii(x, t) — fi(x, t) we have the following problem:

dw ,%w
E - 1 & .07 (27)
w(x,0)=0, l[h<x<D, (28)
awy(lo, t) + prw(lo, t) = 0,
0<t<T 29
{(szx(lz, t) + pow(lp, t) = 0, T @)
‘9“’(11—;0’” = h(@w( +0,t) — w(l; — 0, 1)),
20 =00 dh 0,0 (30)

ox ox

The solution to this problem (27)-(30) can be represented as an expansion in terms of the basis X, (x):

w(x, f) = i (DX (x). 31)
n=0

The coefficients wy(t) are easy to find if we multiply both parts of equality (31) by the functions Y, (x),
respectively, and integrate the resulting ratio from Jj to /; and take into account the biorthogonality of these
sequences X, (x) and Y,,(x). Then, we get

I
wn(t) = f w(x, )Y, (x)dx. (32)

lo
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Differentiating equality (32) with respect to ¢ , we obtain

I

W) = f 3w§’:’t)yn(x)dx
lo

1 I
0Dy (A,, 11+ 0
a%Cnfwxx(x,t)ag%cbl(/\n,x)dx+a§Cnfa)xx(x,t)9a%

lo 11

dD(Ay, 1 - 0)
ox

Dy (A, x)dx.

Integrating by parts twice and using the boundary conditions (29) and the conjugation conditions (30),
Iy
we have o’ (t) = -7, fcu(x, 1Y, (x)dx = —A,w,(t). Hence w,(t) = c,e™f, (n=1,2,..).
Iy
Substituting the found wy,(t) into formula (32), we obtain

I

f w(x, )Y, (x)dx = c,e™ . (33)

lo

b
Passing to the limit in equality (33) at t — 0, we have ltirrol f w(x, )Y, (x)dx = 0 = w,(0) = ¢, hence
— io

¢, =0, (n=1,2,..).
Then from formula (31) we obtain w(x,t) = 0 from which it follows that di(x, t) = #i(x, t). Thus, we have

proven the existence and uniqueness of the classical solution to problem (1)-(4).
From the general interface condition (4),

M(ll -0, t) = Gu(h +0, t),

here 0 i titi
Kott(ly — 0, ) = kytty (i +0, ), where 0 is a partition

a) at h — oo we obtain the partition condition : {

coefficient,

k(i = 0,8) =h(u(l; +0,t) —u(l; = 0,1),
b) for 0 =1, we obtain jump condition: 1h(h )= +0,0 ~ulh )
kiux(ly = 0,t) = kauy(ly + 0, ),
l - O,t = l Olt 7
c) forh — o0, 0 =1, we obtain perfect contact condition: u(h ) =uth +0.)
klux(ll -0, i’) = k2ux(ll +0, i’).

O

3. Conclusion

Analytical solutions to such problems are very useful as they provide a higher level of understanding
of the behavior of the solution and can be used for solutions by the numerical method. This method can
also be applied in the case of several discontinuity points.
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