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Solution of initial-boundary value problem for heat equation with a
discontinuous coefficient and general conjugation condition
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Abstract. In this paper the Sturm-type boundary value problem for the heat conduction equation with
a discontinuous coefficient and with a general conjugation condition is solved using the Fourier method.
The considered problem may arise when solving problems describing the process of particle diffusion in
turbulent plasma, as well as when modeling the process of heat propagation of the temperature field in a
thin rod of finite length, consisting of two sections with different thermophysical characteristics. In addition
to the boundary conditions, general conjugation conditions are specified at the contact boundary of two
media with different thermophysical characteristics. The existence and uniqueness of the classical solution
to the studied problem is proved.

1. Problem statement

We consider an initial boundary value problem for the heat equation with a piecewise constant coefficient

∂u
∂t
= a2

i
∂2u
∂x2 , (1)

in the domain Ω = ∪Ωi, Ω1 = {(x, t) : l0 < x < l1, 0 < t < T}, Ω2 = {(x, t) : l1 < x < l2, 0 < t < T}, (i=1,2),
with an initial condition

u(x, 0) = φ(x), l0 ≤ x ≤ l2, (2)

boundary conditions of the formα1ux(l0, t) + β1u(l0, t) = 0,
α2ux(l2, t) + β2u(l2, t) = 0,

0 ≤ t ≤ T (3)
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and with conjugation conditionsk1ux(l1 − 0, t) = h(θu(l1 + 0, t) − u(l1 − 0, t)),
k1ux(l1 − 0, t) = k2ux(l1 + 0, t),

(4)

where a2
i =

ki
cipi
, (i=1,2), h > 0, θ > 0, ki is a thermal conductivity coefficient, ci is the specific heat capacity, ρi

is the density, a2
i is a thermal diffusivity coefficient, | αi | + | βi |> 0, (i=1,2).

Parabolic equations with discontinuous coefficients have been studied by many authors. In these works,
the correctness of various initial-boundary value problems for parabolic equations with discontinuous
coefficients is proved by the Green’s function and thermal potentials method. In the case without a
discontinuity, the spectral theory arising from solving such problems is constructed almost completely.

However, in the case of one or more discontinuity points, the situation is quite different. In the case of a
discontinuous coefficient, the spectral theory of such problems is considered in [6, 12, 8, 9]. The solutions by
the Fourier method of initial-boundary value problems for the heat equation with discontinuous coefficients
are reduced to the corresponding spectral Sturm-Liouville eigenvalue problem. Such eigenvalue problems
do not belong to the usual type of Sturm-Liouville problems because of the discontinuity of the heat
conductivity coefficients. Moreover, the non-self-adjointness of the corresponding spectral problem also
complicates the solution of the problem. In this case, the system of eigenfunctions does not form a basis,
they are not even orthogonal. It is shown that the system of eigenfunctions of the problem forms a Riesz
basis (thereby the solution can be expanded in a series of eigenfunctions). The theorem on the existence
and uniqueness of the classical solution is proved.

We will separately note the works devoted to the solution of multilayer diffusion problems. Mathe-
matical models of diffusion in layered materials arise in many industrial, ecological, biological, medical
applications and the theory of thermal conductivity of composite materials [2, 11, 4, 5, 3, 10, 13, 1, 7].

2. Solution method

Let W denote the linear variety of functions from the class u(x, t) ∈ C(Ω) ∩ C2,1(Ω1) ∩ C2,1(Ω2) which
satisfy all conditions (2)-(4). We will call a function u(x, t) from the class u(x, t) ∈ W a classical solution to
problem (1)-(4), if 1) it is continuous in the domain Ω; 2) has in the domain continuous derivatives of the
first order with respect to t and continuous derivatives of the second order with respect to x; 3) satisfies
equation (1) and all conditions (2)-(4) in the usual, continuous sense.

To solve problem (1)-(4), we will apply the Fourier method: u(x, t) = X(x) · T(t) , 0. Substituting into
equation (1) and conditions (2)-(4), and separating the variables, we obtain the following spectral problem

LX(x) =
{
−X′′(x), l0 < x < l1
−X′′(x), l1 < x < l2

}
= λX(x), (5)α1X′(l0) + β1X(l0) = 0,

α2X′(l2) + β2X(l2) = 0,
(6)k1X′(l1 − 0) = h(θX(l1 + 0) − X(l1 − 0)),

k1X′(l1 − 0) = k2X′(l1 + 0).
(7)

The function T(t) is a solution to the equation

T′(t) + λT(t) = 0.

Let us find the eigenvalues and eigenfunctions of problem (5)-(7). The general solution to equation (5)
has the form X(x) = c1 cos

( √
λ

a1
(x − l0)

)
+ c2 sin

( √
λ

a1
(x − l0)

)
, l0 < x < l1,

X(x) = c3 cos
( √

λ
a2

(l2 − x)
)
+ c4 sin

( √
λ

a2
(l2 − x)

)
, l1 < x < l2.

(8)
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Substituting the general solution (8) into the boundary conditions (6) and the conjugation conditions
(7), we obtain

β1c1 +
α1
√
λ

a1
c2 = 0,

β2c3 −
α2
√
λ

a2
c4 = 0,(

h cosµ1 −
k1
√
λ

a1
sinµ1

)
c1 +

(
h sinµ1 +

k1
√
λ

a1
cosµ1

)
c2 − hθc3 cosµ2 − c4hθ sinµ2 = 0,

k1
a1

c1 sinµ1 +
k1
a1

c2 cosµ1 +
k2
a2

c3 sinµ2 −
k2
a2

c4 cosµ2 = 0,

(9)

where µi =
√
λ

ai
(li − li−1), (i = 1, 2).

The characteristic determinant of system (9) has the form:

∆(λ) = α1α2k1k2λ
3
2 sinµ1 sinµ2 − a2α1k1(k2β2 + α2hθ)λ sinµ1 cosµ2

+a1α2k2(k1β1 − α1h)λ cosµ1 sinµ2 + h(a2
1α2k2β1 − a2

2α1k1β2hθ)
√

λ sinµ1 sinµ2

+a1a2(α1β2k2h + α2β1k1hθ − k1k2β1β2)
√

λ cosµ1 cosµ2

+ha1a2β1β2(a2k1θ cosµ1 sinµ2 − k2a1 sinµ1 cosµ2) = 0. (10)

The roots of equation (10) will be the eigenvalues of problem (5)-(7). It is not possible to find the
eigenvalues explicitly, but it is possible to construct an asymptotics. Let us introduce the notation 1(λ) =
α1α2k1k2λ

3
2 sinµ1 sinµ2,

f (λ) = a2α1k1(k2β2 + α2hθ)λ sinµ1 cosµ2 + a1α2k2(k1β1 − α1h)λ cosµ1 sinµ2

+h(a2
1α2k2β1 − a2

2α1k1β2hθ)
√

λ sinµ1 sinµ2

+a1a2(α1β2k2h + α2β1k1hθ − k1k2β1β2)
√

λ cosµ1 cosµ2

+ha1a2β1β2(a2k1θ cosµ1 sinµ2 − k2a1 sinµ1 cosµ2).

According to Rouché’s theorem, if inequality
∣∣∣1(λ)

∣∣∣ > ∣∣∣ψ(λ)
∣∣∣ is satisfied, then functions 1(λ) and

1(λ) + ψ(λ) have the same number of zeros for large λ . It is known that the roots of equation 1(λ) =

α1α2k1k2λ
3
2 sinµ1 sinµ2 = 0 have the form: λ̃n =

(
πnai

li−li−1

)2
, (i = 1, 2). Then it is not difficult to show that

λn =
(
λ̃n + δ

)2
, where λn are roots of equation (10), δn = O

(
1
n

)
.

If λ = 0 , then the spectral problem (5)-(7) has only a zero solution under the condition

β1β2 (k1k2 + k2h(l1 − l0) + k1hθ(l2 − l1)) + h(α2β1k1θ − α1β2k2) , 0.

Eigenfunctions have the form:

Xn(x) = Cn

k2
∂Φ2(λn,l1+0)

∂x Φ1(λn, x), l0 < x < l1,
k1
∂Φ1(λn,l1−0)

∂x Φ2(λn, x), l1 < x < l2,
(11)

where

Φ1(λn, x) = α1 cos
( √

λn

a1
(x − l0)

)
− β1

a1
√
λn

sin
( √

λn

a1
(x − l0)

)
, (12)

Φ2(λn, x) = α2 cos
( √

λn

a2
(l2 − x)

)
+ β2

a2
√
λn

sin
( √

λn

a2
(l2 − x)

)
, (13)

λn are roots of equation (10).
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It can be shown that the eigenfunctions (11) satisfy equation (5), boundary conditions (6) and conjugation
conditions (7).

Next, we find the conjugate problem to problem (5)-(7).
Given the formula −X′′(x)Y(x) = (Y′(x)X(x) − Y(x)X′(x))′ − Y′′(x)X(x) we get

l2∫
l0

Y(x)LX(x)dx = −

l1∫
l0

Y(x)a2
1X′′(x)dx −

l2∫
l1

Y(x)a2
2X′′(x)dx = a2

1X(l1−0)Y′(l1−0)−a2
1X(l0)Y′(l0)−a2

1X′(l1−0)Y(l1−0)

+a2
1X′(l0)Y(l0)+ a2

2X(l2)Y′(l2)− a2
2X(l1 + 0)Y′(l1 + 0)− a2

2X′(l2)Y(l2)+ a2
2X′(l1 + 0)Y(l1 + 0)+

l2∫
l0

X(x)L∗Y(x)dx.

Taking into account the formula | αi | + | βi |> 0, (i=1,2), it can be assumed that βi , 0,(i=1,2).
Let us rewrite the boundary conditions (6) and the second formula from the conjugation condition (7)

in the following form:

X(l0) = −
α1

β1
X′(l0),

X(l2) = −
α2

β2
X′(l2),

X(l1 − 0) = θX(l1 + 0) −
k1

h
X′(l1 − 0).

Then, we get

l2∫
l0

Y(x)LX(x)dx =a2
1Y′(l1 − 0)

(
θX(l1 + 0) −

k1

h
X′(l1 − 0)

)
− a2

1X′(l1 − 0)Y(l1 − 0)

−a2
1Y′(l0)

(
−
α1

β1
X′(l0)

)
+ a2

1X′(l0)Y(l0) + a2
2Y′(l2)

(
−
α2

β2
X′(l2)

)

−a2
2X(l1 + 0)Y′(l1 + 0) − a2

2X′(l2)Y(l2) + a2
2X′(l1 + 0)Y(l1 + 0) +

l2∫
l0

X(x)L∗Y(x)dx, ⇒

l2∫
l0

Y(x)LX(x)dx = − k1X′(l1 − 0)
a2

1

k1

(
Y(l1 − 0) +

k1

h
Y′(l1 − 0)

)
+ k2X′(l1 + 0)

a2
2

k2
Y(l1 + 0)

+a2
1X′(l0)

(
Y(l0) +

α1

β1
Y′(l0)

)
− a2

2X′(l2)
(
Y(l2) +

α2

β2
Y′(l2)

)

+X(l1 + 0)
(
a2

1θY′(l1 − 0) − a2
2Y′(l1 + 0)

)
+

l2∫
l0

X(x)L∗Y(x)dx.

From the last equality it follows that the adjoint problem has the following form:

L∗Y(x) =
{
−a2

1Y′′(x), l0 < x < l1
−a2

2Y′′(x), l1 < x < l2

}
= λY(x), (14)
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α2Y′(l2) + β2Y(l2) = 0,

(15)a2
1Y′(l1 − 0) = h

(
a2

2
k2

Y(l1 + 0) −
a2

1
k1

Y(l1 − 0)
)
,

θa2
1Y′(l1 − 0) = a2

2Y′(l1 + 0).
(16)

It follows that problem (5)-(7) is not self-adjoint.
Therefore, it cannot be asserted that the eigenfunctions Xn(x) form a basis in L2 .
In a similar way, one can find the eigenvalues and construct the eigenfunctions of the adjoint problem

(14)-(16). It can be shown by direct calculation that the eigenvalues of spectral problems (5)–(7) and (14)–(16)
coincide. The eigenfunctions of problem (14)-(16) have the form:

Yn(x) = Cn

a2
2
∂Φ2(λn,l1+0)

∂x Φ1(λn, x), l0 < x < l1,
θa2

1
∂Φ1(λn,l1−0)

∂x Φ2(λn, x), l1 < x < l2,
(17)

where λn are roots of equation (10), functions Φ1(λn, x), Φ2(λn, x), are determined by formulas (12)-(13).
Since the eigenvalues of spectral problems (5)-(7) and (14)-(16) coincide, then

l2∫
l0

Yn(x)LXm(x)dx −

l2∫
l0

Xm(x)L∗Yn(x)dx = (λm − λn)

l2∫
l0

Xm(x)Yn(x)dx .

Then, we get
(
Xi ,Y j

)
=

l2∫
l0

Xi(x)Y j(x)dx = δi
j ,where δi

j is a Kronecker delta, i.e., system of eigenfunctions

Xn(x),Yn(x) is biorthogonal on the interval (l0, l2).
Now let us construct a self-adjoint problem.

Lemma 2.1. The following spectral problem is self-adjoint

LZ(x) =
{
−a2

1Z′′(x), l0 < x < l1
−a2

2Z′′(x), l1 < x < l2

}
= λZ(x), (18)α1Z′(l0) + β1Z(l0) = 0,

α2Z′(l2) + β2Z(l2) = 0,
(19)a1

√
k1Z′(l1 − 0) = h

(
a2
√
θ

√
k2

Z(l1 + 0) − a1
√

k1
Z(l1 − 0)

)
,

a1
√
θk1Z′(l1 − 0) = a2

√
k2Z′(l1 + 0).

(20)

The proof is carried out by direct calculation. Further, in a similar way, we can calculate the eigenvalues
of problem (18)-(20), they will be the roots of equation (10), i.e., coincide with the eigenvalues of problems
(5)-(7) and (14)-(16).

Eigenfunctions have the form:

Zn(x) = Cn

a2
√

k2
∂Φ2(λn,l1+0)

∂x Φ1(λn, x), l0 < x < l1,
a1
√

k1θ
∂Φ1(λn,l1−0)

∂x Φ2(λn, x), l1 < x < l2.
(21)

Lemma 2.2. The system of eigenfunctions (21) forms an orthonormal system.

The proof follows from the general theory of self-adjoint problems.
Cn can be found from the normalization condition

Cn =

a2
2k2

(
∂Φ2(λn, l1 + 0)

∂x

)2 l1∫
l0

Φ2
1(λn, x)dx+ a2

1k1θ

(
∂Φ1(λn, l1 − 0)

∂x

)2 l2∫
l1

Φ2
2(λn, x)dx


−

1
2

. (22)
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Lemma 2.3. The eigenfunctions Xn(x) of the spectral problem (5)-(7), defined by (11), forms a Riesz basis.

Proof. The system of eigenfunctions Zn(x) is known to form an orthonormal basis in L2(l0, l2). From formulas
(11) and (21) it can be seen that the eigenfunctions of problem (5)-(7) and (18)-(20) are related by the following
equality:

Zn(x) = α(x)Xn(x), where α(x) =


a2
√

k2
, l0 < x < l1,

a1
√
θ

√
k1
, l1 < x < l2.

AX(x) = α(x)X(x), A : L2(l0, l2)→ L2(l0, l2) is a bounded operator and there exists A−1, also bounded.
Therefore, from the definition of the Riesz basis it follows that the system of eigenfunctions Xn(x) forms a
Riesz basis.

The following theorem holds.

Theorem 2.4. Let φ(x) be a twice continuously differentiable function satisfying boundary conditions and conjuga-
tion conditions

α1φ
′(l0) + β1φ(l0) = 0, α2φ

′(l2) + β2φ(l2) = 0, (23)

k1φ
′(l1 − 0) = h

(
θφ(l1 + 0) − φ(l1 − 0)

)
, k1φ

′(l1 − 0) = k2φ
′(l1 + 0). (24)

Then the function

u(x, t) =
∞∑

n=1

φnXn(x)e−λnt, (25)

where

φn =

l2∫
l0

φ(x)Yn(x)dx, (26)

is a unique classical solution to problem (1)-(4).

Proof. First, we prove that the solution (25) exists. It is known that Xn(x) is an eigenfunction and λn is
an eigenvalue of problem (5)-(7). It follows that the function satisfies equation (1), the initial condition
(2), the boundary conditions (3) and the conjugation conditions (4). Let us consider the function un(x, t) =
φnXn(x)e−λnt.

Let us show that when t ≥ ε > 0 (ε is any positive number) the series
∞∑

n=0
un(x, t),

∞∑
n=0

∂un
∂t ,

∞∑
n=0

∂2un
∂x2 , converges

uniformly. Obviously
∣∣∣φ(x)

∣∣∣ ≤ M1, then
∣∣∣φn

∣∣∣ ≤  M2a2
2(l1 − l0), l0 < x < l1,

M2a2
1θ(l2 − l1), l1 < x < l2.

. Taking into account the last

estimate, we get

|un(x, t)| ≤M3e−λnε,
{∣∣∣ ∂un

∂t

∣∣∣ , ∣∣∣∣ ∂2un
∂x2

∣∣∣∣} ≤M4λne−λnε,

where constants Mi, (i = 1, 2, 3, 4) are positive and do not depend on n. Thus{
∞∑

n=1
|un(x, t)| ,

∞∑
n=1

∣∣∣ ∂un
∂t

∣∣∣ , ∞∑
n=1

∣∣∣∣ ∂2un
∂x2

∣∣∣∣} ≤ ∞∑
n=1

M̃λne−λnε,

where constant M̃ = max {M3,M4} . Since the series
∞∑

n=1
M̃λne−λnε is an absolutely convergent series, therefore,

according to the Weierstrass criterion, the series
{
∞∑

n=1
|un(x, t)| ,

∞∑
n=1

∣∣∣ ∂un
∂t

∣∣∣ , ∞∑
n=1

∣∣∣∣ ∂2un
∂x2

∣∣∣∣} converges uniformly for
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t ≥ ε and are continuous for t ≥ ε functions u(x, t), ∂u(x,t)
∂t , ∂2u(x,t)

∂x2 . Now we will show that the series (25)
converges uniformly everywhere in Ω.

From formula (25) we obtain
∞∑

n=1
un =

∞∑
n=1

∣∣∣φnXne−λnt
∣∣∣ ≤ ∞∑

n=1

∣∣∣φn

∣∣∣.
Integrating by parts the integral in formula (26), we obtain

φn = −
a2

1a2

λn
√

k2
Cn

l1∫
l0

φ′′(x)a2

√
k2
∂Φ2(λn, l1 + 0)

∂x
Φ1(λn, x)dx

−
a1a2

2

√
θ

λn
√

k1
Cn

l2∫
l1

φ′′(x)a1

√
k1θ

∂Φ1(λn, l1 − 0)
∂x

Φ2(λn, x)dx.

In this case, we have used the characteristic equation and conditions (23)-(24).
From here, taking into account formula (21), we obtain the following estimate

∣∣∣φn

∣∣∣ ≤ M5
|an |

λn
, where

an =
l2∫

l0

φ′′(x)Zn(x)dx, are Fourier coefficients of functions φ”(x) over a system of functions Zn(x) which is

orthonormal on the segment [l0, l2]. M5 = max
(

a1a2
2

√
θ

√
k1
,

a2
1a2
√

k2

)
.

Using inequality ab ≤ 1
2

(
a2 + b2

)
, we have

∣∣∣φn

∣∣∣ ≤ M5
2

(
a2

n +
1
λ2

n

)
. Taking into account Bessel’s inequality

∞∑
n=1

a2
n ≤

∥∥∥φ′′∥∥∥2
, we get

∞∑
n=1

∣∣∣φn

∣∣∣ ≤ K, (K > 0).

Thus, the majorizing series
∞∑

n=1

∣∣∣φn

∣∣∣ converges absolutely, which means that the series (25) converges

uniformly in Ω and defines the function u(x, t) that is continuous in Ω. Thus, the existence of the solution
is proven.

Now let us prove the uniqueness. Let us assume there are two solutions ũ(x, t), û(x, t). Then for function
ω(x, t) = ũ(x, t) − û(x, t) we have the following problem:

∂ω
∂t
= a2

i
∂2ω

∂x2 , (27)

ω(x, 0) = 0, l0 ≤ x ≤ l2, (28)α1ωx(l0, t) + β1ω(l0, t) = 0,
α2ωx(l2, t) + β2ω(l2, t) = 0,

0 ≤ t ≤ T (29)
k1
∂ω(l1 − 0, t)

∂x
= h(θω(l1 + 0, t) − ω(l1 − 0, t)),

k1
∂ω(l1 − 0, t)

∂x
= k2

∂ω(l1 + 0, t)
∂x

.
(30)

The solution to this problem (27)-(30) can be represented as an expansion in terms of the basis Xn(x):

ω(x, t) =
∞∑

n=0

ωn(t)Xn(x). (31)

The coefficients ωn(t) are easy to find if we multiply both parts of equality (31) by the functions Yn(x),
respectively, and integrate the resulting ratio from l0 to l2 and take into account the biorthogonality of these
sequences Xn(x) and Yn(x). Then, we get

ωn(t) =

l2∫
l0

ω(x, t)Yn(x)dx. (32)
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Differentiating equality (32) with respect to t , we obtain

ω′n(t) =

l2∫
l0

∂ω(x, t)
∂t

Yn(x)dx

= a2
1Cn

l1∫
l0

ωxx(x, t)a2
2
∂Φ2(λn, l1 + 0)

∂x
Φ1(λn, x)dx + a2

2Cn

l2∫
l1

ωxx(x, t)θa2
1
∂Φ1(λn, l1 − 0)

∂x
Φ2(λn, x)dx.

Integrating by parts twice and using the boundary conditions (29) and the conjugation conditions (30),

we have ω′n(t) = −λn

l2∫
l0

ω(x, t)Yn(x)dx = −λnωn(t). Hence ωn(t) = cne−λnt, (n = 1, 2, ... ).

Substituting the found ωn(t) into formula (32), we obtain

l2∫
l0

ω(x, t)Yn(x)dx = cne−λnt. (33)

Passing to the limit in equality (33) at t → 0, we have lim
t→0

l2∫
l0

ω(x, t)Yn(x)dx = 0 = ωn(0) = cn, hence

cn = 0, (n = 1, 2, ... ).
Then from formula (31) we obtain ω(x, t) = 0 from which it follows that ũ(x, t) = û(x, t). Thus, we have

proven the existence and uniqueness of the classical solution to problem (1)-(4).
From the general interface condition (4),

a) at h → ∞ we obtain the partition condition :

u(l1 − 0, t) = θu(l1 + 0, t),
k1ux(l1 − 0, t) = k2ux(l1 + 0, t),

where θ is a partition

coefficient,

b) for θ = 1, we obtain jump condition:

k1ux(l1 − 0, t) = h (u(l1 + 0, t) − u(l1 − 0, t)) ,
k1ux(l1 − 0, t) = k2ux(l1 + 0, t),

c) for h→∞, θ = 1 , we obtain perfect contact condition:

u(l1 − 0, t) = u(l1 + 0, t),
k1ux(l1 − 0, t) = k2ux(l1 + 0, t).

3. Conclusion

Analytical solutions to such problems are very useful as they provide a higher level of understanding
of the behavior of the solution and can be used for solutions by the numerical method. This method can
also be applied in the case of several discontinuity points.
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