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Abstract. We present and explore the notion of local units within a groupoid, and further extend this
concept to e-groupoids, e-semigroupoids, and e-groups. We provide various examples and examine the
properties associated with these structures. Furthermore, we propose two innovative definitions of an
e-group and employ them to establish the notion of local units within a groupoid. Moreover, we introduce
the concepts of pseudoideals and pseudofilters within an e-group, and demonstrate that the poset of local
unit-sets in a groupoid forms a semilattice.

1. Introduction

It is known that group theory has many applications in other areas of mathematics, especially to several
algebraic structures. M. R. Molaei [10] introduced generalized groups. M. R Ahmadi Zand et al. [1]
investigated some properties of paratopological generalized groups. In a group (S; ·, e ), (where S is a
non-empty set, · a binary operation in S and e an identity element) we can consider the set {e} as a subset or
sub-algebra or sub-group of S. There is a question now, what happens if we substitute a non-empty sub-set
A of S instead of {e}? With this idea a new generalization of groups is introduced [4]. Another question
arise, under what suitable conditions the quotient of this generalization becomes a group. This motivate
us to define local units and investigate further results. Also, is there a relationship between induced classes
from congruence relation and the local unit-sets? Besides, it seems that we can construct a new algebraic
structure related to the local set of units. In this paper, we give two new alternative definitions for an
e-group and define local units in a groupoid. The notions of local units, pseudoideals and pseudofilters in
an e-group is introduced and we prove that the poset of local unit-sets of a groupoid is a semilattice.

2. Local units and e-groupoids

In this section, we introduce the notion of local units (also see, [3], [5] and [11]) in a groupoid and
investigate some of their properties. Further, as a generalization of groupoids, e-groupoids are defined and
got several properties of these algebras.
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Definition 2.1. Let (S; · ) be a groupoid and let x ∈ S. An element e ∈ S such that R(e), which also satisfies
x · e = e · x = x is said to be a local unit of x (we may also say that x is a local zero for e).

Define binary relation ◁ on S by:

x ◁ y if and only if y is a local unit of x. (2.1)

Observe that the relation ◁ is defined the same way as the natural order for semigroups (see e.g., [9]).
Therefor, we have the following properties analogous to properties of the natural order.

Consider the groupoid given by the following Cayley table:

· a b
a b a
b b a

We can see that a · a = b. Then arise a question, what is a3? If define a3 = a · a2, then a3 = (a · a) · a = b · a = b.
If define a3 = a2

· a, then a3 = a · (a · a) = a · b = a. This example shows that we can have two definition of x3,
and for n > 3, for all x ∈ S.

We define:

x1 = x and x(n+1) = xn.x (or possibly x.xn).

Definition 2.1. Groupoid (S; · ) is called power associative (is a weak form of associativity) if the following property
is satisfied ([2]):

(PA) for all n > 0 all well defined products of n x′s are equal to xn.

Every associative algebra is power associative, but so are all other alternative algebra (like the octonions,
which are non-associative) are even some non alternative algebras like the sedenions and Okubo algebras.
Any algebra whose elements are idempotent is also power associative ([2]).

Power associativity, associativity and commutativity (i.e., x · y = y · x, for all x, y ∈ S) are independent
of each other.

In 1993, Hentzel et al. ([7]) have been proved that for a groupoid (S; · ) satisfying the identity:

(I) (x · y) · z = y · (z · x).

Now, let a ∈ S. Then we have
a3 = a2

· a = (a · a) · a = a · (a · a) = a · a2,
a4 = a · a3 = a · (a2

· a) = (a · a) · a2 = a2
· a2,

a4 = a3
· a = (a · a2) · a = a2

· (a · a) = a2
· a2.

The products in S involving at least five elements, all factors commute and associate. It is shown that
a groupoid satisfying (I) is k-nice for all k ⩾ 5 (see [7, Th. 1]), where we say a groupoid is k-nice if the
product of any k elements is the same, regardless of their association or order. Hence commutativity is then
equivalent to being 2-nice. Also, a groupoid is commutative and associative if and only if it is both 2-nice
and 3-nice.

Proposition 2.1. Let (S; · ) be a commutative semigroup and x ◁ y, and let m,n ∈N. Then
(i) x · ym = ym

· x = x,
(ii) xn

· y = y · xn = xn,
(iii) xn

· ym = ym
· xn = xn,

(iv) (yn
· x) · ym = x,

(v) (y · xn) · y = xn,
(vi) (ym

· xn) · ym = xn.

Corollary 2.1. Let (S; · ) be a commutative semigroup and x ◁ y, and let m,n ∈N. Then
(i) x ◁ ym,
(ii) xn ◁ y,
(iii) xn ◁ ym.
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Notice that Proposition 2.1(i) may be not true for power associativity. To show this, let us consider a
groupoid (M = {0, a, b}; · ) with a commutative product defined by the following Cayley table:

· 0 a b
0 0 0 0
a 0 a a
b 0 a 0

Then M is power-associative. However, a · b2 = a · 0 = 0 , a.

Remark 2.1. Notice that:

(i) assuming a groupoid (S; · ) satisfying (I), then it is k-nice for k ⩾ 5 and so Proposition 2.1 and Corollary 2.1
hold,

(ii) if a groupoid (S; · ) is commutative and associative, then Proposition 2.1 and Corollary 2.1 hold.

Proposition 2.2. The following holds for the relation ◁ over a groupoid (S; · ).
(i) ◁ is antisymmetric.
(ii) ◁ is reflexive if and only if (S; · ) is idempotent.
(iii) Reflexivity and transitivity of ◁ are independent of each other.

The last statement (iii) follows from the next two Examples:

Example 2.2. The relation ◁ is reflexive but not transitive:

· a b c
a a a a
b b b c
c a c c

(a ◁ c, c ◁ b, but a ⋪ b).

Example 2.3. The relation ◁ is transitive but not reflexive:

· a b c
a a a a
b a b c
c a c a

(a ◁ c, c ◁ b and a ◁ b, but c ⋪ c).

We also see that in a band (= idempotent semigroup) including a semilattice (= commutative band), ◁ is
an order relation.

In a groupoid (S; · ) which is not a band, we can always use the smallest band congruence (say ∼) to turn
◁/ ∼ into the natural order relation of (S; · )/ ∼. But the question is whether ∼ is the smallest equivalence
relation with such property. From the following Example, we see that the answer is negative.

Example 2.4. The operation · is not associative, but despite this, the relation ◁ is an order relation.

· 0 a b c d
0 0 0 0 0 0
a 0 a d 0 0
b 0 0 b 0 0
c 0 0 0 c 0
d 0 0 0 d d
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(For example, the triple (a,b,c) is not associative).
There are several possibilities concerning local units for a given element x ∈ S, depending on properties

of the operation ·.

• There are no local units for x (see Example 2.5).

• There is a single local unit for x (see Example 2.7).

• Every element of S is local unit for x (see Example 2.8).

• There are at least two local units for x, but not all elements from S are local units for x (see Example
2.9).

• Element x is its own local unit (see Example 2.10).

• Element x is not its own local unit (see Example 2.10).

Example 2.5. Let (N; + ) be the additive monoid of natural numbers. Define new operation on N by:
x ◦ y = x + y + 1. Element x from the groupoid (N; ◦ ) has no local units as x ◦ y = x + y + 1 > x.

Example 2.6. Let R be the real numbers, and let define the binary operation ◦ on R by x ◦ y = x2, for all
x, y ∈ R. Then 0 is local unit for 0, and 1 is local unit for 1. Element x ∈ R ∖ {0, 1} has no local units as
x ◦ y = x2 , x.

Example 2.7. Let (S; · ) be a nontrivial group with unit 1. Then every element from (S; · ) has unique (local)
unit 1 (including 1 itself). □

Example 2.8. Let S = {0, . . . ,n} for some n ∈ N,n ⩾ 1 and let x · y = 0 for all x, y ∈ S. Then every x ∈ S
(including 0) is a local unit for 0. □

Example 2.9. Let 0, 1 ∈ S and define operation ◦ on S so that

x ◦ y =
{

1, x = y = 0
0, otherwise.

Then every element of S (except 0 itself) is a local unit for 0. □

Example 2.10. Consider the groupoid given by the following Cayley table:

· a b c
a a b b
b c a c
c b c b

Element a is an idempotent and therefore its own local unit. Both elements b and c are not their own local
units. Moreover, b is local unit for c, but c is not a local unit for b. □

Example 2.11. Consider the groupoid given by the following Cayley table:

· a b c
a b a c
b a c b
c c b a

Then a ◁ b ◁ c ◁ a.
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Example 2.12. Let (S; · ) be left (resp. right) zero band, i.e. let x · y = x (resp. x · y = y) for all x, y ∈ S. Then
every element x is local right (resp. left) unit for every y (including the case y = x) but is local left (resp.
right) unit just to itself. □

Definition 2.2. Let (S; · ) be a groupoid and let e(S) := {x ∈ S : ∃y ∈ S s.t. x ◁ y}. If e(S) , ∅, then the triple
(S; ·, e(S) ) is called an e-groupoid.

Example 2.13. (i) Let (G; ·, e ) be a group. Since for every x ∈ G, we have x · e = e · x = x, we get e(G) = G. It
shows that (G; ·, G ) is an e-groupoid.

(ii) Consider the Example 3.2, then (R; ◦, {0, 1} ) is an e-groupoid.
(iii) From the Example 2.11, the triple ({a, b, c}; ·, {a, b, c} ) is an e-groupoid.
(iv) Consider the Example 2.5, for any ∅ , A ⊆N, the triple (N, +, A ) is not an e-groupoid.

The following example shows that e(S) may not be closed set.

Example 2.14. From the Example 2.10, we can see e(S) = {a, b}. Which is not close, since b · a = c < e(S).

Theorem 2.3. Let (S; ·, e(S) ) be commutative and satisfying (I). Then
(i) e(S) is a closed set,
(ii) if a ◁ y and a′ ∈ S, then a · a′ ◁ y.

Proof. (i) Assume a, b ∈ e(S). Then there exist y1, y2 ∈ S such that a · y1 = y1 ·a = a and b · y2 = y2 ·b = b. Using
(I) and commutative law, we get (a · b) · y1 = b · (a · y1) = b · a = a · b and y1 · (a · b) = y1 · (b · a) = (a · y1) · b = a · b.
Thus, a · b ∈ e(S).

(ii) Let a ∈ e(S) and a′ ∈ S∖ e(S). Then there is y ∈ S such that a · y = y · a = a. Using (I) and commutative
law, we get (a · a′) · y = a′ · (a · y) = a′ · a = a · a′ and y · (a · a′) = y · (a′ · a) = (a · y) · a′ = a · a′. Thus, a · a′ ∈ e(S)
and we obtain a · a′ ◁ y.

Remark 2.2. Notice that if e(S) = {x, y}, i.e. |e(S)| = 2, then y not local unit of x nor x local unit of y
simultaneous. Since x ◁ y and y ◁ x, we get x · y = y · x = x and y · x = x · y = y. Hence x = y, which is a
contradiction. Also, if in this case (e(S); · ) is a groupoid, i.e. a closed set, then it is a left or right zero band.
Since x · y, y · x ∈ {x, y}, we get x · y = x or x · y = y. Let x · y = x. Then y · x = x or y · x = y. If y · x = x, then
x · y = y · x = x, and so x ◁ y, which is a contradiction. It shows that y · x = y. Thus, (e(S); · ) is left zero band.
Similarly, if x · y = y, then y · x = x, so (e(S); · ) is right zero band.

Example 2.15. Consider the groupoid given by the following Cayley table:

· a b c
a b b c
b b c b
c c b c

We can see that e(S) = {b, c}. Element c is a local unit for b, but b is not a local unit for c. □

Theorem 2.4. Let (S; ·, e(S) ) be an e-groupoid and let it satisfies one of the following statements: for all
x, y ∈ S

(i) (x · y) · x = x,
(ii) x · (x · y) = y · (y · x),
(iii) x · (y · x) = (y · x) · y,
(iv) x · (x · y) = x · y,
(v) (y · x) · x = y · x.

Then (e(S); · ) is an idempotent groupoid.
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Proof. Assume (S; ·, e(S) ) is an e-groupoid and a ∈ e(S).Then there is b ∈ S such that a◁b, and so a·b = b·a = a.
(i) If we take x := a and y := b, then a2 = a · a = (a · b) · a = a.
(ii) If we take x := a and y := b, then a2 = a · a = a · (a · b) = b · (b · a) = b · a = a.
(iii) If we take x := a and y := b, then a2 = a · a = a · (b · a) = (b · a) · b = a · b = a.
(iv) If we take x := a and y := b, then a2 = a · a = a · (a · b) = a · b = a.
(v) If we take x := a and y := b, then a2 = a · a = (b · a) · a = b · a = a.
Those show that (e(S); · ) is an idempotent groupoid.

Proposition 2.3. Let (S; ·, e(S) ) be an e-groupoid and let x · (y · z) = (x · y) · (x · z), for all x, y, z ∈ S. Then a2 ◁ a,
for all a ∈ e(S).

Proof. Assume (S; ·, e(S) ) is an e-groupoid and a ∈ e(S).Then there is b ∈ S such that a◁b, and so a·b = b·a = a.
Using assumption, if we take x := a, y := b and z := a, then we get a2 = a · a = a · (b · a) = (a · b) · (a · a) = a · a2.
On the other hand, if we take y := a and z := b and, then a2 = a · a = a · (a · b) = (a · a) · (a · b) = a2

· a. Thus
a · a2 = a2

· a = a2, and so a2 ◁ a.

Corollary 2.2. Let (S; ·, e(S) ) be a power associative or commutative e-groupoid and let x·(y·z) = (x·y)·(x·z),
for all x, y, z ∈ S. Then a2k+1 = a and a2k = a2, for all a ∈ e(S) and k ⩾ 1.

Corollary 2.3. Let (S; ·, e(S) ) be a power associative or commutative e-groupoid and let x·(y·z) = (x·y)·(x·z),
for all x, y, z ∈ S. Then a2k ◁ a2k+1, for all a ∈ e(S) and k ⩾ 1.

Proposition 2.4. Let (S; ·, e(S) ) be an e-groupoid and let (x · y) · z = (x · z) · (y · z), for all x, y, z ∈ S. Then a2 ◁ a,
for all a ∈ e(S).

Proof. Similar to the proof of Proposition 2.3.

Corollary 2.4. Let (S; ·, e(S) ) be a power associative or commutative e-groupoid and let (x·y)·z = (x·z)·(y·z),
for all x, y, z ∈ S. Then a2k+1 = a and a2k = a2, for all a ∈ e(S) and k ⩾ 1.

Corollary 2.5. Let (S; ·, e(S) ) be a power associative or commutative e-groupoid and let (x·y)·z = (x·z)·(y·z),
for all x, y, z ∈ S. Then a2k ◁ a2k+1, for all a ∈ e(S) and k ⩾ 1.

Theorem 2.5. Let (S; ·, e(S) ) satisfying (I) and let x · (y · z) = y · (x · z) for all x, y, z ∈ S and a ◁ b. Then
(i) a2 ◁ b,
(ii) an ◁ b for n > 2.

Proof. (i) Assume a◁b. Then a·b = b·a = a for some b ∈ S. By assumption we have a·a = a·(b·a) = b·(a·a) = b·a2.
Also, using (I) we get a2

· b = (a · a) · b = a · (b · a) = a · a = a2. Therefor, a2 ◁ b.
(ii) By induction on n.

3. On e-semigroups

In this section, we define and investigate the concept of e-semigroups, and discuss the identity (x · y) ·z =
y · (z · x) to these algebras. Moreover, we present some examples of e-semigroups.

Definition 3.1. The e-groupoid (S; ·, e(S) ) is called an e-semigroup if the following axiom is satisfied:

(Ass) x · (y · z) = (x · y) · z for all x, y, z ∈ S.

Example 3.1. (i) For every group (G; ◦, e ), the e-groupoid (G; ◦, G ) is an e-semigroup.
(ii) Consider the Example 2.8. Then (S; ·, {0} ) is an e-semigroup.
(iii) From the Example 2.13(iii), the e-groupoid ({a, b, c}; ·, {a, b, c} ) is not an e-semigroup. Since

b · (a · c) = b · c = b , (b · a) · c = a · c = c.
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(iv) The e-groupoid (R; ◦, {0, 1} ) in Example 3.2, is not an e-semigroup. Since

2 ◦ (5 ◦ 3) = 2 ◦ 52 = 22 = 4 , (2 ◦ 5) ◦ 3 = 22
◦ 3 = (22)2 = 24 = 16.

(v) Let {(Gi; ·i, ei )}i∈I be a family of disjoint groups. Then (
⋃
i∈I

Gi; ·,
⋃
i∈I

Gi ) is an e-semigroup, where x · y ={
x ·i y, x, y ∈ Gi, i ∈ I;

x, otherwise.

Proposition 3.1. Let (S; ·, e(S) ) is an e-semigroup. Then
(i) ◁ is transitive,
(ii) if x ◁ y1 and x ◁ y2, then x ◁ y1 · y2,
(iii) if x ◁ y, then x ◁ yn for n > 1.

Proof. (i) Given x, y, z ∈ S, x ◁ y and y ◁ z. Hence x · y = y · x = x and y · z = z · y = y. Using (Ass), we get:
x · z = (x · y) · z = x · (y · z) = x · y = x and z · x = z · (y · x) = (z · y) · x = y · x = x.
It follows that x ◁ z. Therefore, ◁ is transitive.

(ii) Assume x ◁ y1 and x ◁ y2. Then x · y1 = y1 · x = x and x · y2 = y2 · x = x. By (Ass), we get
x · (y1 · y2) = (x · y1) · y2 = x · y2 = x and (y1 · y2) · x = y1 · (y2 · x) = y1 · x = x. This shows that x ◁ y1 · y2.

Corollary 3.1. Let (S; ·, e(S) ) is an e-semigroup and let {yi}i∈{1,··· ,n} be a family of local units of x i.e. x ◁ yi for all
i ∈ {1, · · · ,n}. Then x ◁ yσ(1) · yσ(2) · · · yσ(n) where σ is a permutation on {1, · · · ,n}.

Proposition 3.2. Let (S; ·, e(S) ) be an e-semigroup, x ◁ e and y ◁ e, and let m,n ∈N.
Then
(i) x · y ◁ e,
(ii) xn

· y ◁ e,
(iii) x · ym ◁ e,
(iv) xn

· ym ◁ e.

Proposition 3.3. Let (S; ·, e(S) ) be an e-semigroup satisfying (I). If for all x ∈ e(S), there exists a unique e ∈ S
such that x ◁ e, then (e(S); · ) is commutative.

Proof. Using Proposition 3.2(i), e(S) is a closed set. Let x, y ∈ e(S). Hence x · e = e · x = x and y · e = e · y = y.
Thus, (x · y) · e = e · (x · y) = x · y. Therefor, by (I) we have

x · y = (x · y) · a = y · (a · x) = y · x.

Notice that in Proposition 3.3, if e ∈ e(S), then (e(S); ·, e ) is a commutative monoid. For this, consider
Example 2.15, (e(S); ·, 2 ) is a commutative monoid, where e(S) � Z2.

Theorem 3.2. Let (S; ·, e(S) ) be an commutative e-semigroup, a ∈ e(S) and let b ∈ S. Then b · a, a · b ∈ e(S).

Proof. Suppose a ∈ e(S) and let b ∈ S. Then there exists y ∈ S such that a·y = y·a = a. Using associative law we
obtain (b·a)·y = b·(a·y) = b·a. On the other hand, by commutativity we have y·(b·a) = (b·a)·y = b·(a·y) = b·a.
Hence b · a ◁ y and so b · a ∈ e(S). By commutativity a · b ∈ e(S).

Theorem 3.3. Let (S; ·, e(S) ) be an e-semigroup satisfying (I) and x · (y · z) = y · (x · z) for all x, y, z ∈ S, and
let a ◁ b. Then (⟨a⟩ ∪ {b}; ·, b ) is a monoid, where ⟨a⟩ = {a, a2, a3, · · · }.

Proof. Using Theorem 2.5, the proof is obvious.

Notice that by considering Theorem 3.3, we see that e(S) =
⋃

a∈e(S), a◁b b∈S

(⟨a⟩; ·, b ).
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4. On e-groups

The notion of e-groups was introduced and investigated in 2018 by A. Borumand Saeid et al. [4] as
follows:

Definition 4.1. Let A be a nonempty subset of a set S. The triple (S; ·, A )

(II) For every x ∈ S there exists an element a ∈ A such that x · a = a · x = x
(the existence of an identity element corresponding to every element of S),

(III) For every x ∈ S there exists an element y ∈ S such that x · y, y · x ∈ A .

In [6], J. Caraquil et al. investigated the relationship between Ubat-space, g-groups and e-groups. H. S. Kim
[8] introduced the notion of an idenfunction, which is a generalization of an identity axiom, and applied
this notion to several algebraic structures. However, the system (S; ·, A ) of e-groups is not an algebra in
the sense of formal logic. We consider various alternative definitions of e-groups which can rectify this.

One way is to introduce relation R:

Definition 4.2. Let A be a nonempty subset of a set S. Define the relation R on S by

R(x)⇔ x ∈ A.

Using the relation R to redefine (S; ·, A ) as a (first order) mathematical system (S; ·, R ) we replace axioms
(II) and (III) respectively by (IV) and (V):

Definition 4.3. A system (S; ·, A ) as a (first order) mathematical system (S; ·, R ) where · is a binary operation on
S and R satisfies the property in Definition 4.2, is called an e-group if (Ass) and the following axioms are satisfied:

(IV)

For all x ∈ S there is an y ∈ S such that R(y) and x · y = y · x = x,

(V) For all x ∈ S there is an y ∈ S such that R(x · y) and R(y · x) .

Another alternative definition is as follows:
Let (S; ·, e, s, t ) be an algebra, where · is a binary operation on S and e, s, t : S→ S, satisfy the following

axioms:

(VI) For all x ∈ S we have x · e(x) = e(x) · x = x,

(VII) For all x ∈ S there are y, z ∈ S such that s(x) · x = e(y) and x · t(x) = e(z)
(s(x) ((t(x)) is a left (right) local inverse for x).

Now, if we take A := e(S) , then another alternative definition for e-group is as follows:

Definition 4.4. Let (S; ·, e, s, t ) be an algebra, where · is a binary operation on S and e, s, t : S → S. A system
(S; ·, A ) where · is a binary operation on S and A := e(S), is called an e-group if (Ass), (VI) and (VII) are satisfied.

Example 4.1. ([4]) Let S = {a, b, c, d}, A = {a, b, c} be two sets with the following table:

· a b c d
a a a a a
b a b c d
c a c a a
d a d c d

Then we can easily seen that (S; ·, A ) is an e-group.

Example 4.2. Union of groups (Gi)i∈I with A = {ei|i ∈ I}, where ei is a unit of a group Gi.

Proposition 4.1. If (S; ·,A) is an associative e-groupoid then (S; ·,S) is an e-group.
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5. Pseudoideals and pseudofilters

For a T ⊆ S we define the pseudofilter of local units of T to be the set

F(T) = {e ∈ S|(∃x ∈ T)(x ◁ e)}.

Dually, the set I(T) = {z ∈ S|(∃x ∈ T)(z ◁ x)} is called the pseudoideal of local zeros of T.
Note that F(∅) = I(∅) = ∅.
In particular, when T = {x} we write F(x) for F({x}) (resp. I(x) for I({x})) and call F(x) (resp. I(x)) the

principal pseudofilter (resp. pseudoideal) of local units (resp. local zeros) of the element x.
In the language of pseudofilters we can reformulate conclusions related to Examples 2.5–2.10.

– 2.5: F(x) = ∅

– 2.7: F(x) = {1}

– 2.8: F(0) = S

– 2.9: F(0) = S ∖ {0}

– 2.10: a ∈ F(a), b < F(b), c < F(c), b ∈ F(c), c < F(b).

Proposition 5.1. Let (P; · ) be a groupoid and S,T ⊆ P. Then
(i) F(Sc) = (F(S))c,
(ii) S ⊆ T implies F(S) ⊆ F(T),
(iii) F(S ∩ T) ⊆ F(S) ∩ F(T),
(iv) F(S ∪ T) = F(S) ∪ F(T),
(v) F(T ∖ S) = F(T) ∖ F(S).

The following example shows that the converse of Proposition 2.1(3), may not be true in general.

Example 5.1. Consider the Example 2.8, we have F(a) = S and F(b) = {a}. So,

F({a} ∩ {b}) = F(∅) = ∅ , {a} = F({a}) ∩ F({b}).

Note that if (P; · ) is a group, then F(S ∩ T) = F(S) ∩ F(T).
Note that F(T) (resp. I(T)) is not a closed set, in general. For this, consider the Example 2.10 and put

T = {a, c}, we see that F(T) = {a, b}, which is not closed, since b · a = c < F(T) (resp. if T = {a, b}, we see that
I(T) = {a, c}, which is not closed, since a · c = b < I(T)).

Proposition 5.2. Let (S; · ) be a semigroup and T ⊆ S. Then
(i) F(F(T)) ⊆ F(T),
(ii) If (S; · ) is idempotent, then F(F(T)) = F(T).

Proof. (i) Suppose e ∈ F(F(T)). Then there is x ∈ F(T) such that x ◁ e, and so x · e = e · x = x. Since x ∈ F(T),
it follows that there is t ∈ T such that t ◁ x. Now, using Proposition 2.2(iii), we get t ◁ e. Thus e ∈ F(T).
Therefore, F(F(T)) ⊆ F(T).

(ii) The proof is obvious by (i) and Proposition 2.2(ii).

Let (S1; · ) and (S2; ∗ ) be groupoids. A mapping φ from S1 to S2 is called a homomorphism if φ(r · s) =
φ(r) ∗ φ(s) for all r, s ∈ S.Moreover, we say S1 is isomorphic to S2, if there is an isomorphism from S1 to S2.

Proposition 5.3. Let (S1; · ) and (S2; ∗ ) be groupoids and φ : S1 → S2 be an isomorphism, and let ∅ , T ⊆ S1.
Then φ(F(T)) = F(φ(T)).

Define the binary relation ◁× on S × S by

(x, y) ◁× (z, t) if and only if z is a local unit of x and t is a local unit of y. (5.1)
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Proposition 5.4. Let (S; ·, ) be a groupoid and T1,T2 ⊆ S. Then F(T1 × T2) = F(T1) × F(T2).

Corollary 5.1. If (S; · ) is a commutative semigroup, and T ⊆ S, then F(T) (resp. I(T)) is a closed set (i.e.,
sub-semigroup).

Corollary 5.2. If (S; · ) is a commutative semigroup, then (F(S); ·, F(S) ) is an e-group.

Proof. The proof is immediate.

A groupoid (S; · ) is said to satisfy right (resp. left) cancellation law if y · x = z · x (resp. x · y = x · z)
implies y = z.
Notice that if groupoid (S; · ) satisfy the right (resp. left) cancellation law, then the local unit for a given
element x ∈ S (if it exists), is unique.

Proposition 5.5. Let (S; · ) be a groupoid, satisfying the left (resp. right) cancellation law, and let x ∈ S.
Then F(x) is a singleton set.

Proof. Assume (S; · ) is a groupoid, x ∈ S and e1, e2 ∈ F(x). Then x · e1 = e1 · x = x and x · e2 = e2 · x = x. Using
cancellation lows, we get e1 = e2, and so F(x) is a singleton set.

Theorem 5.1. Let (S; · ) be a semigroup, and let F(S) = {ei : (ei ∈ S)(i ∈ Λ)}. Then (F(S); ·,
⋃
i∈Λ

Ti ) is an

e-group, where Ti = {x ∈ S : x ◁ ei}.

Proof. Assume (S; · ) is a semigroup. Then (E1) holds. Let ei ∈ F(S). Then there exists x ∈ S such that
x · ei = ei · x = x, so x ∈ Ti. Thus (E2) is valid. For (E3), let ei ∈ F(S). Since there exists x ∈ S such that
x · ei = ei · x = x. Hence x · ei = ei · x = x ∈ Ti.

Let (S; · ) be a semigroup and F(S) , ∅, and let |F(x)| = 1 for all x ∈ S. Define the relation ∼F(S) by:

x ∼F(S) y if and only if there is 1 ∈ F(S) where x ◁ 1 and y ◁ 1. (5.2)

Then ∼F(S) is an equivalence relation.

Proposition 5.6. Let (S; · ) be a semigroup, F(S) , ∅, and let |F(x)| = 1 for all x ∈ S. Then ([x]; ·, 1 ) is a
monoid, where F(x) = {1}.

Corollary 5.3. Let (S; · ) be a groupoid, satisfy the left (resp. right) cancellation low, and let x ∈ S. Then
([x]; ·, 1 ) is a monoid, where F(x) = {1}.

Proof. Using Propositions 5.5 and 5.6, the proof is immediate.

6. Sets of local units

Here we deal with groupoids in which local units exist for all elements. For such a groupoid (S; · ) we
investigate subsets E ⊆ S satisfying:

(∀x ∈ S)(∃e ∈ E)(x · e = e · x = x) and (6.1)
(∀e ∈ E)(∃x ∈ S)(x · e = e · x = x). (6.2)
(∀x ∈ S)(F(x) ∩ E , ∅) (6.3)
(∀e ∈ E)(I(e) , ∅). (6.4)

A set E contains (some) local units for all elements in a groupoid. As mentioned, an element may have
several local units, and conversely, an element e may be a local unit for several x ∈ S. Therefore, the set E is
not unique in general.
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Example 6.1. Let (S; · ) be a groupoid given by the following Cayley table.

· a b c x y z
a b c a x y x
b c a b x y y
c a b c z z z
x x x z a b c
y y y x a b c
z y x z a b c

Local units for x and y are a and b; c is a local unit for a, b, c and z. Therefore, the set E may be each of
{a, c}, {b, c} and {a, b, c}. □

Example 6.2. Some cases in which E is unique are as follows.
1. (G; · ) is a group with the unit element e, E = {e}. F(G) = E = {e} = F(e), and dually I(G) = G = I(e).
2. Suppose that (G; · ) is a disjoint union of groups, G =

⋃
(Gi | i ∈ I) such that for i , j and 1i ∈ Gi, 1 j ∈ G j

we have 1i · 1 j = 1 j. Then E = {ei | i ∈ I}, where ei is the unit of Gi. Clearly, E is the unique subset of G
fulfilling (6.1) and (6.2).

3. Let (S; · ) be a left (right) zero band, i.e., let it fulfill identity x · y = x (x · y = y). In this case each
element in S is idempotent, i.e., it is its own and only its own local unit. Hence E = S = F(S) and no proper
subset of S fulfills (6.1). Therefor, E is unique. □

Let

EM := {e ∈ S | e is a local unit for some x ∈ S} = F(S). (6.5)

Recall the definition (2.1) of a binary relation ◁ on S:

x ◁ y if and only if y is a local unit of x. (6.6)

As usual, for a binary relation ρ on a set S, Pr1(ρ) and Pr2(ρM) are the first and the second (respectively)
projection:

Pr1(ρ) := {x ∈ S | (x, y) ∈ ρ for some y ∈ S};
Pr2(ρ) := {y ∈ S | (x, y) ∈ ρ for some x ∈ S}.

For groupoids we investigate here, this relation fulfills the following:

Pr1(◁) = S and Pr2(◁) = EM.

7. Posets of local unit-sets

In a poset (P;⩽), the principal filter generated by p ∈ P is defined by

↑p := {q ∈ P | p ⩽ q}.

Given a groupoid (S; · ), we analyze the poset (ES; ⊆ ), where

ES := {E ⊆ S | E fulfills (6.1) and (6.2)}. (7.1)

We call (ES; ⊆ ) the poset of local unit-sets of a groupoid (S; · ).
For every E ∈ ES we have E = Pr2(ρ), for some subrelation ρ of ◁ fulfilling condition Pr1(ρ) = G, i.e.,

ES = {E | E = Pr2(ρ) for some ρ ⊆ ρM such that Pr1(ρ) = S}. (7.2)

The following is obvious:
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(a) Every E ∈ ES is a subset of EM, therefore EM is the greatest element of EG.
(b) If Ei,E j ∈ ES, then also Ei ∪ E j ∈ ES.
(c) Each set Em ∈ ES such that for any e ∈ Em, (Em ∖ {e}) < ES, is a minimal element of (E; ⊆ ).
Observe that the set-intersection of Ei,E j ∈ ES can, but need not belong to ES.
Therefor, we have the following.

Proposition 7.1. If Em is a minimal set in (ES; ⊆ ), then ↑Em ⊆ EG is a Boolean lattice.

Proof. Indeed, ↑Em ⊆ ES is the interval [Em,EM] in the power set P(S), since every subset of S containing Em
belongs to ES.

The following are straightforward consequences of Proposition 7.1.

Corollary 7.1. (i) The poset (ES; ⊆ ) of local unit-sets of a groupoid (S; · ) is a semilattice, a set-union of
Boolean lattices.

(ii) If ES has a unique minimal set, then (ES; ⊆ ) is a Boolean lattice.

If {e} ∈ ES for an element e ∈ S, then obviously e is the unit of a groupoid (S; · ). For an idempotent
groupoid we prove the following converse.

Corollary 7.2. Let (S; · ) be an idempotent groupoid with the unit e. Then ES is the Boolean lattice ↑{e} in
P(S).

Proof. If an idempotent groupoid possesses the unit e, then e is a local unit for every x ∈ S. In addition, by
idempotency, every x is its own local unit. Therefor, every subset of S containing e consists of local units for
all elements of S, hence it belongs to ES.

Example 7.1. (a) The poset (ES; ⊆ ) for the groupoid in Example 6.1 is a three-element semilattice consisting
of sets EM = {a, b, c}, E1 = {a, c} and E2 = {b, c}.

(b) In Example 6.2, we have: in 1., EM = {e}, in 2., EM = {ei | i ∈ I} and in 3., EM = S.
(c) The groupoid in the following Cayley table has four local units: EM = {a, b, c, d}.

· a b c d x
a a a c b x
b b b d d a
c c b a d x
d a d x b x
x x c x x c

There are three more unit-sets: {a, b, c}, {a, b, d} and {a, b}. Therefore, ES is a four element Boolean lattice. □

Example 7.2. The four-element idempotent groupoid with unit e, given by the following Cayley table
illustrates Corollary 7.2.

· e a b c
e e a b c
a a a b c
b b a b c
c c a b c

Every subset of {e, a, b, c} containing e is a unit-set, hence ES is the Boolean lattice ↑{e} in P({a, b, c, d}). □
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