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Abstract. This study defines the concept of soft 2—normed space. The concepts of Cauchy sequence
and convergent sequence in soft 2—normed spaces have been considered. It is demonstrated that every
convergent sequence is a Cauchy sequence in 2—normed spaces. Furthermore, it is demonstrated that a
convergent sequence possesses a unique limit. Additionally, the concept of soft 2-inner product space is
introduced and examined its important properties. This is followed by the demonstration of the Cauchy-
Schwarz inequality and the Parallelogram law within these spaces and the convergence of sequences in a soft
2— inner product space is analyzed. Finally, the definition of the soft 2-bilinear functional is provided, along
with the definitions of orthogonality and b-best approximation, which are derived from this definition.

1. Introduction

A central theme of modern functional analysis is the idea of normed space. In the recent past, researchers
have explored the potential of applying various mathematical concepts and techniques to a diverse range
of fields. This has involved the investigation of specific applications in order to identify and assess their
unique characteristics. Among these research endeavors is the application of the concept of soft set. A
soft set, introduced by Molodtsov [13] in 1999, is a mathematical tool for modeling uncertainty through
the association of a set with a parameterized family of subsets of the universal set, or a parameterized
family of parameters. Maji et al. [12] provided several illustrative examples of operations on soft sets.
The concept of a “soft norm” in a ”soft linear space”, as proposed by Das et al. [4], is analyzed in terms
of its completeness, the existence of equivalent soft norms, and the properties of convex soft sets within
this context. The concept of a soft point in soft linear spaces over a field K, as introduced in [1, 5], was
employed by Yazar et al.[14] to define a soft norm in soft linear spaces and to elucidate the properties of soft
normed spaces. Das and Samanta [6] constructed the Hilbert space by defining the concept of a soft inner
product on a soft linear space and subsequently studied the concepts of orthogonality and orthonormality
in these spaces, as well as their various properties. Furthermore, the authors extend the study of operators
on soft inner product spaces by introducing normal operators, unitary operators, isometric operators and
square roots of positive operators on soft inner product spaces in [7]. [14] provides the basis for the work
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of Yazar et al. [15] who introduce a soft inner product in soft vector spaces, defining the properties of such
spaces. Additionally, the concept of the soft Hilbert space is defined, with some properties analyzed. The
study of soft Hilbert (abysmal and deductive) algebras, soft subalgebras, soft abysms and soft deductive
systems was conducted by Jun et al.[10]. The concept of soft 2-inner product on soft linear spaces was
introduced by Kadhim [11], and the study also defined soft 2-normed spaces, soft 2-metric spaces, soft 2-
Banach spaces and soft 2-Hilbert spaces. Bulak and Bozkurt [2] defined soft quasilinear functionals on soft
normed quasilinear spaces and investigated the continuity and boundedness properties of soft quasilinear
operators and functionals. In their study, Ferrer [8] and colleagues idenitified the frame operators and
analyzed the bounded, self-adjoint and invertible properties of these operators.

The objective of this paper is to transfer the 2—normed space structure proposed by Gahler [9] in 1965 to
the field of soft set theory. In order to achieve this, we first give the 2—norm and 2—inner product. In Section
2, we present some fundamental preliminary definitions and propositions that will be employed throughout
the remainder of this paper. In Section 3, we define the soft 2—norm and constructed soft 2—normed spaces
with this norm. We define the terms “sequence,” “Cauchy sequence” and ”“convergent sequence” in soft
2-normed spaces and examine the relationship between Cauchy sequences and convergence. Additionally,
we demonstrate the uniqueness of the limit of convergent sequences in soft 2—normed spaces. In the last
section, we delineate the construction of so-called soft 2—inner product spaces, wherein the notion of a
soft 2—inner product is defined. The Parallelogram rule and Polarization identity are proven through the
establishment of the Cauchy-Schwarz inequality within the context of these spaces. Then, we present the
definition of convergence in soft 2—inner product spaces, as well as the characterization of convergence
within the aforementioned framework. Finally, the definition of the soft 2-bilinear functional is provided,
along with the definitions of orthogonality and b-best approximation, which are derived from this definition.

2. Preliminaries

Definition 2.1. ([13]) A pair (F, E) is called a soft set over X, where F is a mapping defined by F : E — P (X).

Definition 2.2. ([12]) A soft set (F, E) over X is defined as an absolute soft set, denoted by }~(, ifforalle € E,
F(e) =X

Definition 2.3. ([12]) A soft set (F, E) over X is defined as a null soft set, denoted byﬁ, ifforalle € E,F(e) = 0.

Definition 2.4. ([1, 3]) Let (F, E) be a soft set over X. The soft set (F, E) is defined as a soft point (element),
denoted by ¥,, if for the element e € E, F(e) = {x} and F (¢/) = @ for all ¢’ € E — {e}.

Definition 2.5. ([1]) Two soft elements X, and .- exist within the same universe X and they are considered
distinct from one another if x # y ore # ¢’

Definition 2.6. ([3]) Let R represent the set of real numbers. The collection of all non-empty bounded
subsets of R is denoted by B (IR). The set of parameters is designated by E,and the mapping F : E — B (R)
is referred to as a soft real set. When a soft real set is a singleton set, it is designated as a soft real number,

written as 7,’s, etc. The soft real numbers are defined as E,T, where a(e) = O,T(e) =1foralle€eE.

Definition 2.7. ([3]) Let «, Ebe two real numbers. Then the following statements hold:
(i) a<B,if a(e) < B(e) foralle € E,
(i) a<p, if a(e) < B (e) foralle € E.

Definition 2.8. ([14]) Let X be a vector space over a field K (K = R) and let the parameter set E be the real
number set R. The soft set (F, E) is defined as a soft vector and is denoted by X, if there exists one e € E,
such that F (¢) = {x} for some x € X and F (¢’) = @, for all ¢’ € E — {e} . The set of all soft vectors over X will be
denoted by SV (5() .
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Proposition 2.9. ([14]) The set SV (5() is a vector space according to the following operations;
1) xe +yeo = (x + y)ew for every X,, Yo € SV(}.() ;
(2) rx, = (rx),, for every x, € SV (52) and for every soft real number 7.

Definition 2.10. ([14]) If 6 € X is a zero vector and ¢ = 0 € R, then 50 is a soft zero vector in SV(}'().

Furthermore, (F—‘;c) , is the inverse of the soft vector x,.

Definition 2.11. ([14]) Let SV()?) be a soft vector space and IR* (E) be a set of all non-negative soft real
numbers. Then a mapping

Il : SV (X) > R* (E)

is said to be a soft norm on SV ()?) , if ||-|| satisfies the following conditions:
(N1) HEHEBfor allx, € SV ()?) and ||x.|| =07, =0

(N2) HE};“ = |E| ||5c;“ forallx, € SV (}.() and for every soft real number «;
(N3) % + 7o || < + ||| for all %, 7 € SV(}?).

The soft vector space SV (5(’) with a soft norm ||-|| on X is said to be a soft normed linear space and is denoted
by (SV/(X), IH1)-

Definition 2.12. ([14]) A setS = {35611 ,3(32, ...,’x‘gn} of soft vectors in SV (}.() is said to be linearly independent if
the following condition

Xe

TIXy + 12X + A X =0 O T =T = .. =7, =0
is satisfied for the soft real numbers7;,1 <i < n.

Definition 2.13. ([14]) Let SV (}.() be a soft vector space. The mapping
() :SV(X)x SV(X) - R (E)

is called a soft inner product on SV ()?) if it satisfies the following conditions, for every X, Yo, zs» € SV (55)
and for every soft real number a;

(1) (%, %) 20 for all %, € SV (X) and (X, %) = 0 © % = Oo;

(12) (e, Yer) = (Yer, Xe) ;

(I3) (%, Je') = (T Vo) = T (o T}

(I4) (. + o Zor) < (o ) + i B

Then, (SV (5(') Re -)) is called a soft inner product space.

3. Soft 2—normed spaces
Let X be defined as a soft R—vector space and E be a nonempty set of parameters.

Definition 3.1. A soft 2-norm on X is defined as a mapping |-, : XxX - R (E) which satisfies the
following conditions:

(1) For all x,, y» € X, we have “Z, %”56 Furthermore ||§g,§e“ =0 if and only if %, and 7 are linearly
dependent in X, B
@) |7, Ve || = [Ver, 7| for all &, T € X,
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3) ||foe, F]ﬁ” = |Zf| ”E,%” for all x,, y» € X and for all scalars o,
@ [+ T 2| < e 2 +

'yi,’sz“ for all X,, Yer, ze» € X.
A soft vector space X with a soft 2—norm on X is designated as a soft 2—normed space and is represented
by the notation (X, |-, -||).

Proposition 3.2. Let (;(, I, ‘||) be a soft 2—normed space, X,, Yo € X and @ be a scalar. Then

e e+ ]| = e 9.
Proof.
e e+ | < [l e+ o | e = [ | M
and
Foell = |77+ 0] = |fe e + a5 -3
< e e + @ + fa [ ] = e e + @] @

From (1) and (2), ||5c;,’y'e + Efx}” = HE, F];e” is obtained. O

Example 3.3. Let X = R%. For each x = (x1,x2), ¥ = (1, 12) € R?, let

i ]k
det|x; x ell.
i oy2 €

Then ()?, Il ~||) is a soft 2—normed space.

e e = |Gt 220, (91, ), | =

Theorem 3.4. Let (}~(, [], -||) be a soft 2—normed space. Then, in accordance with condition (4) in Definition 3.1 and
for the sake of simplicity, we replace the following condition:

e+ Zer B+ 2o | <[ el + (e Zer |+ [ e

Proof.

% +Zer, Yo + 2| < |7 +Zen, G| | + |7 +Zer 2|
< R el + v 2| + |5 2 (3)
Conversely, for each scalar a, we have

e+ Ve, 2| = 7+ Ve ~ 2 — AV + G +aYe), ~aYe + G +ave)|

S |F+Te ~Ze ~age, ~ave|| + |-a7e o + age | + B + e, T+ Ge - % - |
< e+ e -z oy | + [Fer agel| + % + e 2o + |
< (I + v = Zer Bl + e, B ) + e + 9 2o + A7
Also,
% + Ve, Zer + || <|[%e 2o || + |[2er, T || + [&] e, 7 -
Thus,

ot oo 2RI+ T B Tl + (B e + R )

e, Zer || + |[7er, V|| -
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If @ = 0, we obtain the inequality
e + B Zer | < [ Zer | + [ e
|

Definition 3.5. A sequence x { } of soft vectors in a soft 2—normed space (X -, ||) is defined as convergent
to a soft vector ¥, if lim,—co ||x€n — Xe, Yer ” =0 forall 7, Yo € X. This is denoted by X! Xy, = x,. The soft vector ¥, is

then defined as the soft limit of the sequence {}Z} in X.

Definition 3.6. A sequence jx { } of soft vectors in a soft 2—normed space (X [, II) is defined as Cauchy
sequence if there exist Yy and z,» € X such that 7, Ve, ze are linearly independent and limy, 00 ||xe” = X s Yo ” =

0, limn,m—nx) ||xgn - x;’:ﬂ, ZEH” = O
Theorem 3.7. Every convergent sequence in a soft 2—normed space (X, II-, '||) is a Cauchy sequence.

Proof. Let {x } be a sequence of soft elements in a soft 2—normed space (X -, II) and let x, be a soft element

such that {x } converges to x,. Then, for all y, € X,

»m ~mo = M ~m ~ ~ a7
”xe'l = Xeyr ye’” ern — Xe, T Xe = Xe, ye’“

IAL

~h _ = 77 —m _ = 7
e, =% e + [, = e e

Since {x } is convergent, we have

lim ”x —?cg,’y‘e,”:E

n,m—0o0

In a similar way, for all z,» € X,

™ ™ wm v -~
R -z = [ R+ - Tz
s i ~ = i ~ =
AN
Thus, limy, ;-0 ”'x';’;1 - Fx@fz}“ = 0 is obtained. [

Theorem 3.8. Let ()?, II-, -II) be a soft 2—normed space. If a sequence of soft elements in a soft 2—normed space

(5(', -, -||) is convergent, then its soft limit is unique.

Proof. Suppose that { } is a sequence of soft elements in X such that X, and Yo are two distincts limits of

{xgn} . For arbitrary soft element z,,
— o~ - s = = =~
Fe = Ve 2| = - % + 3, -2
7 ¥ v Y
RS
Since the sequence x { } converges to both x, and ./,

||xe — Yo, Zen | =0.

When X, — y» = 00, % — Y and z, are linearly dependent. So the desired result is obtained. [J
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Remark 3.9. Every soft 2—normed space is a topological soft vector space. For a fixed u; € X, Pa, = ||'x'e,'lfb||

is a seminorm and the family P = {pul up € X} of seminorms generates a soft topology on X. Indeed for
each p;, and soft natural number 7, we construct the following set:

—_ o~ 1
Vipa, 1) = (2 : pi (%) < =)
It can be demonstrated that the set defined below is also the base of neighborhood of a soft point 6o.
Vo= [ Vg,

P, €PieN

Where/ P = {pﬂlbl /Pizbz JARR /Pﬂmbm }/ N = {nll N, ..y nk}/ a= {Pl‘qbl /pﬂzbz JARR /Pﬂmbm N1, N2, nk}'

4. Soft 2—inner product spaces

Definition 4.1. Let (X []-, ||) be a soft R—vector space. A soft 2—inner product on Xisa mapping (-, |) :
XxXxX—> R (E) that satisfies the following conditions:

(1) (xe, Xelyer ) >0 for all %, Xe, Yo € X and (e, Xelyer ) = 0o X, and . are linearly dependent in 5(',

2) (%o, %elyer) = (G, Yoo} for all %, 7 € X,

(3) (%o, Yolzer) = (e, Teolzer) for all %o, Yoo, Zor € X,

4) ('&Z,'y} (Zen ) = A (X, Yo lzer) for all X,, Yo, Ze» € X and for all scalars a,

(5) < Xo X2, Yelz [}) = <5c31,% [z}) + <E§2,% [Ze> forall x}, X2, e,z € X.

The soft vector space X with a soft 2—inner product (-, -|-) on X is designated a soft 2—inner product space
and is represented by (}~(, (, ~|->) .

Example 4.2. Let ()?, |-, -||2) be a soft vector space, where X = {,. The inner product is defined on X by

7oy = Y (77 + 060,

i=1

Then the standard soft 2—inner product is defined by

<xe'y6’> G{m%’»'
GGy (o)

Proposition 4.3. Let ()—Z, (, -|-)) be a soft 2—inner product space. Then, for all X,, Yer, Zer, Wer € X and for all scalars

(Ffe‘/ Yer 12 (ve’ > =

a, Ethe following assertions are satisfied:

() (@ + e 2o} = & o Bl + e ZelTr).

(”) <xE/ aYer |2 D/) =a <x61 YerlZ |~e"> .

(i) <xe, aye + ,Bzenlwem> =a (Xe, Yo [Wer ) + B (xe, Zen [Werrr ) -

(ZZ)) <~€”rZe" |xe + ye’> <x61 xeD”) <ye’ ye’ Ze"> +2 <x€/ ye’ r;”> .
(v) (56(3; ?@’ Ee”) = [<xe + }/e’ xe + ye’ |~e”> <xe ye’ xe Yer 12 r:z” >] .
Proof. (i)

(a‘y+5'y"z‘|a> - <a’@,’ze,,|;ue,,,>+<ﬁye,,ze,,|@,,>

A Ry Zer e ) + BTer, Zer |Werr ) -
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(id)
(X, aerzer) = (Ve Xelzer) = A (Yo, Xelzer) = A (e, Yo [2er) -
(ii)
(%o, @Yo + fror o) = (e + foer, Xel@Oor ) = T (Gor, Teler) + B o, XelOom )
= (%, YolWer) + B (Ko, Zer o)
(iv)
(zer zelte £ o) = (et Vo, Xe £ Yolzer)
= (X, Xe x Yolzer) £ (Yo, Xe £ Yolzer)
= (Yo Yo, Xelzer) £ (Xe £ Yo, Yo l2er)
= (X, Xelzer) = (Yo, Xelzer) = (Xe, Yerl2er) = (Yo, Yer [2e)
= (X, Xelzer) £ (Yo, Yo lzer) £2(%e, Yer 2o ) -
(©)
1, - - — - - - 1 - — . .
1 [+ Ve, Xe + Yolzer) = e = Yo Xe = yelze)] = 7 [(Re Xelzer) + 2 (X, Yerlzer) + (Yo, Yo l2er)]
1~ ~ _ _
1 [(Xe, Xelzer) = 2 (e, Yer[zer) + (Yer, Yerlzer)]
= (X, Yelzer).
O

Theorem 4.4. [The Cauchy-Schwarz inequality]
(e, Yo lZer))! < Ry Xelzer) Ger Y [ )

holds in a soft 2—inner product space ()?, (-, -|->)for all Xe, Yer, Zer € X.

Proof. 1f either of X, Yo Or Z,~ is 0o, we can derive the equality. Let us assume that X,, y» and z.~ are not soft
vectors 0y. Then, for each scalar «,

0 2 Gom T - W) = (oo T o) = T T~ W)
= (X —aye, Xlzer) — alxe — aye, yelzer)
o Tlfe) T G oy~ T o Toer) + T T Tl
= (%o Xelzer) = 20 (R, Yo 20 ) + O (Y, Yoo [2e)
If we denote by (Y, Yo [ze) = A, (Xe, Yerlzer) = B and (X, X,[zev) = C, then

Aa? - 20B + C20.
When B2 — AC<0, this inequality is true. Hence,
(s Yo o)) < oy Xel2er) (Yor, Yor o) -
O

Theorem 4.5. Let (i ¢, -|->) be a soft 2—inner product space. We can therefore define the mapping |-, -|| : XxX —
R* (E) by ||3?g,%“ = o, Xelye ) for all X,, Y € X. This is a soft 2—norm on X.
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Proof. Let us verify the soft norm conditions for X,, Y, ze» € X and for all scalars a.

(1) It is evident that ||E,?e H = (X, Xe|Ver Y>0.

“3?6, Yo ” 0o (e, Xelyery = 0. Consequently, X, and y, are linearly dependent in X.
57| = VGome) = e 7o) =

%,EH is satisfied.

2
®)

6% 7| = @ @) = @ @ Tl = [a] @ %) = ][5 7 |

is obtained.

4)

(e + Yo, Xe + Yor[zer)
e, Xe + Yorlzer ) + (Yer, Xe + Yer[Zer)
R, Xelzer Y + 2 (Xe, Yerlzer ) + (Yer, Yer[2er)

o TelEer) + 2\ TelEer) (G GelBer) + (T, o)
2
(V@ 7y + e 7o)

(2| + e 2 1)
It is proven that the following relationship holds:

— ~ ~ 2
||xe + ]/e’rze””

AL

o 5o B 2l + e 2.
O
Theorem 4.6. [Parallelogram law] Let ()~(, (., .|.>) be a soft 2—inner product space. For all X,, Yo, Ze» € )~(, we have
[+ G 2ol + e = B 2ol = 2 e 2+ 2 e 2o
Proof. For all X,, Yo,z € X,
(Xe + Yer, Xe + Yorlzer) + (Xe = Yer, Xe — Yerl2er)
= (Xe, Xelzer) + 2 (Xe, Yo [Zer ) + (Yo, Yer[2e)
+ (X, Xelzer) = 2(%e, Yo 207 ) + (Yo, Yer[2e7)
= 2R RE) + 2 (T, o)

= 2%z | 2| 2

— —_ — 12 — _ - 12
”xe + ye’rze”” + ”xe — Ye, Ze””

The proof can now be considered complete. [J

Theorem 4.7. [Polarization identity] Let (}~(, (, -|-)) be a soft 2—inner product space. For all X,, Yo, Zp» € }~(, we have
— I~ ~ — 12 |~ ~ ~ |12
<x€I Yer [Ze”> = Z [||xe + ye'/ze”“ - ”xe = Yer, Ze"” ] .

Proof. For all X,, Yo, zew € X, we have

<§e +?/1"1E +ye’r£e”> - (fe _?L"/;{e _ge’lze”>
— G TR 2o o) + (e el

= [(Xe, Xelzer) = 2 (xe, Yerlzer) + (Yo, Yerl2er)]
- LE T,

— - — 2 = = — |2
e + T Zer | = [ = e 2|
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O

Theorem 4.8. Let (}~(,<-,-|->) be a soft 2—inner product space. If X, — X, and Y, — Y, then <3?f,'y7’; EZC> -
(Xe, Yo lzer) -

Proof.
(@) = (Tt (B -R) T + (%, - %))
(X, Yerlzer) + (’x‘e’]]; —EEE>

(@ T Ee) - Gl = |(Ro 0 - T} + (R - % el ) + (R, - %o B, - T

= - Tn =~ h =TT ~h = T =~

< |<xe, Yy = Ye [Z;)' + |<xen = Xe, Yo fi:)’ + |<xgn —Xe, Yy — Yo fz"e>|
= S = o Priie ™ ~ = R

< ARzl - e 2| + IR, =% 2| [ 2|

o ~ = ra Prie
+ ern — Xe, Ze//” | ye;’ - ye/,Zeu

Since ||?gn —E,ZZHH — 0 and ”y’; = Yo, Zer|| = 0, then KYZH,% [Ze> — (Xe, Yer [Ze>| — 0. Hence the desired

outcome has been achieved. O

Definition 4.9. Let ()?, (-, -|->) be a soft 2—inner product space and IR be the set of all soft real numbers. A soft
map F : X x X — Ris defined as a bilinear soft 2—functional on X x X, whenever for all x,, X.,, 'ywei, 'y}z eX
and for all scalars a, B, the following 2 properties hold:

() F (%o, +%es, g + Yg) = F (%o 9g) + F (oo, g ) + F (R B ) + F (%o By

(i) F (@%.,, B ) = GBF (%er, Ty

Definition 4.10. A bilinear soft 2—functional F : X x X — R is considered bounded if there exists a non-
negative soft real number M such that for all x,, y» € X

|F (e, )| < M %, 7e |-
The space X%b is defined as the set of all bounded bilinear soft 2—functionals on X x (i1}, where (i1, ) is the
subspace of X generated by ;.
Definition 4.11. Let (}?, (, -|->) be a soft 2—inner product space, u; be a fixed soft point and X,, . € X\{1p).
X, is said to be u,—orthogonal to v, if (X, e [up) = 0, and is denoted by YET%
Definition 4.12. Let Zl,gz be soft subsets of X. We define Zl to be u,—orthogonal to Zz if and only if for all
X, € A},y} € Zz, ET% and is denoted by ;ﬂ ng
Definition 4.13. Let (}~(, (, '|->) be a soft 2—inner product space, X, € }~(, A be a linear subspace of X and

7, € X\%,. The element ]786 € A is the b—best approximation for X, if X, — ?@6 ' A. The set of all b—best
approximations of X, in A is denoted by P}” (%)
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Definition 4.14. Let ()—Z, ¢, -|-)) be a soft 2—inner product space and x, € X, A be a linear subspace of X and
I, € X. A is called b—proximinal if for every %, € X\ (Z + (ﬁh>) there exists y, € A such that Ve, € P} (xe) -

Theorem 4.15. Let ()~(, (, -|->) be a soft 2—inner product space, uy € XandF € }~(;~b.lfthe setA = {5?6 €eX: (%, up) € kerF}

is b—proximinal, then there exists a Y, € X such that
F (’JZE/ ?'[b) = <};l TJE’ |?'[b> 7 v;{e € i
Proof. If F = 0, then Yo = 0o. If F # 0, there exists Xl € X such that F (}gl,%) # 0. Since A is b—proximinal,

-~ — Uy~ - — ~ _ -\ =
there exists ., € A such thatx2 =X} -V, LAand |[%8, = Ve, 1s]| # 0. Therefore, <3c2 yeflub> # 0. We put

e’

72
Xe,

E'/ == —u

R

Then (Ze, Ye, 1) =0and )rieu,ﬁbH =1.Forall %, € X, we set
iae = F@rﬁb)gﬂ’ _F@"rgb)ye-

Then F (@, ) = F (%, ) F Gor, ) — F Zer, ) F (X., ) = 0. It follows that @, € A, therefore (Zu, We[it) = 0.
Now

0 = G, Welily) = (F Rey ) Zer — F (Zer, ) e, Zer i)
= F(};/Hb) @"rZ"lﬁb> _F@”/Hb) <EIFZ;"|-Jb>'
Hence,

@”/Z" |’1/7b>F(-f€1 ab) = F@”/ab) <};IZ”|Eb>r

and
F (xe, up) = (Xe, Yalup)y,

where y; = F (2o, Up) Zer. [
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