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Abstract. Nano-topology is a unique topology induced by rough approximation spaces, which consist of
approximation operators and boundary regions. This study presents an innovative topology derived from
graphs and applies it to generate a novel rough set model. We investigate the primary characteristics of this
model and compare it with previous ones. The paper concludes with an application demonstrating the use
of graph nano-homeomorphism to establish the equivalence of electrical circuits. The results indicate that
the proposed approach enhances classification measurement performance compared to earlier methods,
effectively modeling the inherent complexity of electrical circuits. This improvement suggests that our
method provides a more robust framework for developing mechanisms in electrical circuits, which is vital
for advancing electrical research.

1. Introduction

In recent times, the focus on applying mathematical approaches to real-life challenges has been growing
and starting to have a significant influence. Many information systems used for decision-making encompass
elements that are uncertain, incomplete, ambiguous, and hard to distinguish. Traditional set theory and
analytical techniques often fall short of accurately representing, articulating, and addressing these kinds
of issues, potentially leading to incorrect decisions. Therefore, rough set theory introduces definitions and
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methodologies aimed at offering more detailed and precise representations of information and problem-
solving.

The rough set is a framework designed to study uncertainty and imprecision in data analysis that
was first instituted by Pawlak [44] in the 1980s. In this theory, data is conceptualized as a set of objects
characterized by various attributes or features. The theory provides a way to divide the data into subsets
based on the relationship between these attributes, such that objects within a subset have similar attribute
values, and those in different subsets have significantly different values. This approach is very beneficial
in situations where the available data is insufficient or uncertain. Identifying the essential features of the
data can help simplify and clarify complex problems. Thus, it provides a framework for making decisions
based on incomplete or uncertain information; for instance, see [7, 8, 11, 12, 14, 15, 40].

Since the advent of rough set theory, it has been utilized to solve real-world problems in fields such as
medicine, finance, marketing, and engineering. Rough set theory allows decision-makers to extract useful
knowledge from data that may be incomplete, inconsistent, or imprecise. As a result, it has been widely
used in decision-making, particularly in areas like data mining, machine learning, and artificial intelligence.

The connection between topology and rough set theory was recognized early on by [50], establishing
a topological framework for modeling information systems. In this framework, the lower approximation
corresponds with the topological concept of interior points, while the upper approximation corresponds
to the concept of closure points. This resemblance between the two frameworks has inspired numerous
researchers to explore rough set theory within the context of topological spaces, as evidenced by the studies
in [1, 5, 6, 38, 45]. Various approaches [1, 22, 37] have been employed to examine rough set models through
topological spaces. To enhance the properties of operators and improve accuracy measures, ideals have
been integrated with topological spaces in the study of information systems, as explored in [10, 27, 39, 52].
Moreover, topological generalizations have been utilized to model set theory and provide insights into
real-world problems, as demonstrated in [4, 9, 25, 26, 46].

Motivated by the ideology of rough sets, a new topology was introduced in 2013 by Thivagar [48] which
was termed nano-topology. In the past decade, mathematicians have worked in generalizing the notion
of rough sets and nano-topology using different mathematical structures such as ideals [29, 30, 32–34, 54],
graphs [19, 23, 41], etc. Nano-topology has numerous applications in all fields, especially science and
technology. Similar to the rough set theory, one huge significant utility of nano-topology is in decision-
making [16, 18, 31, 47]. Interestingly, the rough set helps explicate any information system by withdrawing
useful data, referred to as “core”. Similarly, the nano-topology fulfills the objective that makes it a vital tool
for intelligence systems.

It is well-established that graphs are a fundamental tool for modeling and solving complex problems in
different domains. Their ability to capture and analyze the relationships between entities makes them a vital
concept in the areas of computer science, mathematics, and beyond. The development of graph algorithms
and data structures continues to drive innovation and improve decision-making processes in numerous
applications in the real world. Graphs have huge utility. The utilization of graph theory in the methodology
given by Klapka [36] enables the delineation of self-sustaining functional transport zones, with a detailed
exploration of the techniques for quantifying their internal coherence. Also, a structured approach that
leverages gate-level abstractions for the extraction and utilization of pertinent features in a low-dimensional
vector space was introduced by Balakrishnan [20]. This framework facilitates comprehensive predictive
analysis of Single Event Upset (SEU) type soft errors in circuits. In addition, a model-based strategy
for dividing the network into multiple traffic clusters [53]. This approach offers a broad overview for
monitoring traffic conditions and may assist in the implementation of perimeter controls.

The interconnection between digraph theory and nano-topology has been applied to the urinary system
[19]. Additionally, the human heart model is explored by applying nano-topological graphs [41]. The
concept of nano-topology, associated with graph theory, provides means to determine the key graph
metric, the domination number, and to identify all potential dominating sets within a graph [47]. Using
this topology, the unnecessary components of any circuit can be removed by turning it into an information
system [42].

The study of nano-topology and graphs has also helped in studying many biological processes and
concluding remarkable results in medical significance regarding the human heart, fetal circulation [23],
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blood circulation [41], urinary system [19], etc. In addition, this topology has served in predicting diseases
like COVID-19 and lung disease [24]. The interrelation between nano-topology and graph theory opens
up a range of opportunities for dealing with uncertainty, imprecision, and insufficient information in data
analysis, knowledge representation, and various other applications. Researchers continue to explore these
connections to develop more effective methods for solving real-world problems, particularly in the areas
of artificial intelligence, machine learning, and data mining. The covering-based fuzzy set, intuitionistic
fuzzy set, soft set, as well as neutrosophic nano-topology are discussed by several researchers and scholars
[2, 3, 17, 35, 51].

Electric circuits are essential for powering and controlling devices, from simple tools to advanced sys-
tems. They enable communication between components, support energy efficiency, and ensure user safety.
Circuits are central to modern technology, making devices compact, reliable, and eco-friendly. Detect-
ing equivalent circuits simplifies complex networks, aiding system analysis, design improvement, and
performance evaluation. This helps in creating efficient systems, reducing power losses, and integrating
renewable energy. Equivalent circuits are crucial in power systems, analog circuit analysis, and commu-
nication. Mathematics, especially graph theory, plays a vital role in patent cases by providing precise,
evidence-based analysis for technical claims, ensuring fair and accurate legal outcomes.

In this manuscript, K - nano-topological graph is defined in the first section. This approach is proven
to be a better approach than the standard notion. Some results and topological properties are studied.
Examples are discussed. Results on the newly defined approximations are investigated. A comparison
of this approach is done with the basic nano-topological graph. Further, graph nano homeomorphisms
are defined. An algorithm is designed where the similarity of electrical circuits is detected using the
concept of K - graph-homeomorphisms. On the other hand, if graphs representing two circuits are not
K - homeomorphic, that implies that the circuits are different. Also, an approach is discussed to reduce
electric lines using a nano-topological graph structure. The obtained results demonstrate that the proposed
approach enhances classification performance compared to previous methods, effectively modeling the
complexity inherent in electrical circuits. This improvement indicates that our method provides a more
robust framework for developing mechanisms in electrical circuits, which is crucial for advancing electrical
research.

2. Preliminaries

In this section, we introduce fundamental definitions and notations that will be used consistently in this
paper. Throughout this paper, note that specifically for the graph G, G is a pair (GV,GE) where the set of
vertices of G is GV and the set of edges of G is GE.

Definition 2.1. ([44]) Let U be the universal set and N be an equivalence relation. N(k) is the equivalence
class of k ∈ U. The pair (U,N) is said to be an approximation space. For a subset D ⊆ U, we have the
following concepts:

1. LN(D) =
⋃

k∈U

{
N(k) : N(k) ⊆ D

}
.

This is called a lower approximation of Dw.r.t N.
2. UN(D) =

⋃
k∈U

{
N(k) : N(k) ∩D , ∅

}
.

This is known as an upper approximation of Dw.r.t N.
3. BN(D) = UN(D) − LN(D).

This is the boundary of Dw.r.t N.

Proposition 2.2. [48] Let (U,N) be an approximation space andD ⊆ U. Then, τN(D) =
{
U, ∅, LN(D), UN(D), BN(D)

}
forms a topology on U w.r.t D, known as nano-topology.

Definition 2.3. ([48]) Let (U,N) be an approximation space and τN(D) be a nano-topology described in
Proposition 2.2. Then, a pair (U, τN(D)) is called a nano-topological space.

Elements of (U, τN(D)) are known as the nano open sets, and their complements are known as the nano
closed sets.
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Definition 2.4. ([48]) IfM ⊆ U, then the union of all nano open subsets ofM is known as the nano interior
ofM, represented as ηint(M) and the intersection of all nano closed sets containingM is known as nano
closure ofM, represented as ηcl(M).

Definition 2.5. ([19]) A digraph, or directed graph, is a type of graph where the edges point in a particular
direction. Formally, a directed graph is defined as a pair G = (GV,GE), where GV denotes the set of vertices
(also known as nodes or points), and GE represents the set of edges (also referred to as directed edges or
arrows), which are ordered pairs of distinct vertices, that is GE ⊆ {(k, l) | (k, l) ∈ GV

2; k , l}. In this context,
an edge (k, l) indicates a direction from vertex k to vertex l.

Definition 2.6. ([28]) Let G = (GV,GE) be a directed graph. A graph H = (HV,HE) is called a subgraph of G
if:

HV ⊆ GV and HE ⊆ GE,

and each edge in HE is an ordered pair of vertices in HV, i.e.,

HE ⊆ {(k, l) ∈ GE | k ∈ HV, l ∈ HV}.

Definition 2.7. ([28]) Two directed graphs, G and H, are considered isomorphic if there exists an isomor-
phism, 1, mapping between their respective underlying structures that also maintain the orientation of
every edge. Specifically, an edge e that points from vertex u to vertex v in one graph will correspond to an
edge 1(e) in the other graph that points from 1(u) to 1(v), preserving the directionality of the relationship.

Definition 2.8. ([49]) Let G = (GV,GE) be a graph and v ∈ GV. Then, the neighborhood of “v” is defined as
follows :

N(v) = {v} ∪ {u ∈ GV : −→vu ∈ GE}.

Definition 2.9. ([49]) Let G = (GV,GE) be a graph andH = (HV,HE) be a subgraph of G. Also, let v ∈ GV.
If N(v) is the neighborhood of v in G, we define

1. The lower approximation operator as LN : P(GV) −→ P(GV) such that

LN(HV) =
⋃

v∈GV

{
v : N(v) ⊆ HV

}
.

2. The upper approximation operator as follows: UN : P(GV) −→ P(GV) such that

UN(HV) =
{
N(v) : v ∈ HV

}
.

3. The boundary region is defined as

BN(HV) = UN(HV) − LN(HV).

4. The accuracy is defined as

λN(HV) =
|LN(HV)|
|UN(HV)|

.

Definition 2.10. ([49]) Let G be a graph andH be a subgraph of G.
Then τN(HV) =

{
GV, ∅, LN(HV), UN(HV), BN(HV)

}
forms a topology on GV called the nano-topology on

GV w.r.tHV. We call (GV, τN(HV) as the nano-topological space induced by a graph.
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Definition 2.11. ([19]) Let G = (GV,GE) be a graph, Q be a subgraph of G and ei j be an edge directed from
vertex i to vertex j in GV, then the lower, upper approximation operation and boundary are mathematically
written as follows:

LN(QV) =
{
{wi} ∪ {w j} : ei j ∈ QE ; wi,w j ∈ QV

}
.

HN(QV) =
{
{wi,w j} : ei j ∈ QE,wi,w j ∈ QV

}
∪ {wk : wk ∈ (G −Q)V, eik ∈ GE

}
.

BN(QV) = HN(QV) − LN(QV).

Definition 2.12. ([19]) Let G be a graph, Q be a subgraph of G. Then the collection

τN(QV) = {QV, ∅,LN(QV),UN(QV),BN(QV)}

forms a topology known as the nano-topology on GV with respect to QV.

3. K - nano-topological graph and the results on newly defined approximations

In this section, we define aK - nano-topological graph and discuss its essential properties. We also reveal
the relationships, with the help of illustrative examples, among the regions and the accuracy measures of
those generated by the proposed approach and the previous one.

Definition 3.1. Let G = (GV,GE) be any finite directed graph. We define the outer set and the inner set of
the vertex v ∈ GV as vN = {u ∈ GV ; −→vu}

⋃
{v} and Nv = {u ∈ GV; ←−vu}

⋃
{v}, respectively. Here, −→vu means

edge is directed from v to u and←−vu means edge is directed from u to v.

Definition 3.2. Let G = (GV,GE) be a finite directed graph. We define different covers of GV as follows:

1. Kr = {vN : v ∈ GV}.
2. Kl = {Nv : v ∈ GV}.

Note that
⋃

v∈GV
{vN} = GV and

⋃
v∈GV
{Nv} = GV.

Definition 3.3. Let G = (GV,GE) be any finite directed graph, a set < w > N is the intersection of all outer
sets containing ’w’ and N < w > is the intersection of all inner sets containing ’w’ as follows:

< w > N =
⋂

w∈zN

{zN}

N < w >=
⋂

w∈Nz

{Nz}

N < w > N = (< w > N)
⋂

(N < w >).

Definition 3.4. Let G = (GV,GE) be any finite directed graph, and ZV ⊆ GV. Then, the lower and upper
approximations are mathematically expressed as:

LK(ZV) =
{
z ∈ ZV : (N < z > N) ⊆ ZV

}
.

UK(ZV) =
{
z ∈ GV : (N < z > N) ∩ ZV , ∅

}
.
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Definition 3.5. Let G = (GV,GE) be any finite directed graph and ZV ⊆ GV. Then the accuracy measure,
boundary region, positive region and negative region are respectively defined as:

λK(ZV) =
|LK(ZV)|
|UK(ZV)|

.

BK(ZV) =UK(ZV) − LK(ZV)

POSK(ZV) = LK(ZV)

NEGK(ZV) = GV −UK(ZV)

One can easily prove the following proposition.

Proposition 3.6. Let G = (GV,GE) be any finite directed graph, and ZV ⊆ GV. Then, the collection

τK(ZV) =
{
∅, GV, UK(ZV), LK(ZV), BK(ZV)}.

constitutes a topology on GV.

Remark 3.7. (i) We define a topology given in Proposition 3.6 as a K - nano-topological graph, abbreviated
asK .N .T .G. Also, we define this pair (G, τK(ZV)) as aK - nano-topological graph space w.r.t subgraph
Z, abbreviated asK .N .T .G.S.

(ii) We define the elements of this space as K -open sets and their complements as K -closed sets. Comple-
ments of K -open sets, together form the dual K - nano-topological graph (D.K .N .T .G).

(a) GRAPH A (b) GRAPH B

Figure 1: GRAPHS A AND B

Example 3.8. Consider Graph GA in Figure 1a
GAV = {⊕a,⊕c,⊕d,⊕b}.

N⊕a = {⊕d,⊕a}, N⊕b = {⊕b,⊕a}, N⊕c = {⊕c,⊕a,⊕b}, N⊕d = {⊕d,⊕c}.

⊕aN = {⊕c,⊕a,⊕b}, ⊕bN = {⊕c,⊕b}, ⊕cN = {⊕c,⊕d}, ⊕dN = {⊕a,⊕d}.

N < ⊕a >= {⊕a}, N < ⊕b >= {⊕b,⊕a}, N < ⊕c >= {⊕c}, N < ⊕d >= {⊕d}.
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< ⊕a > N = {⊕a}, < ⊕b > N = {⊕c,⊕b}, < ⊕c > N = {⊕c}, < ⊕d > N = {⊕d}.

N < ⊕a > N = {⊕a}, N < ⊕b > N = {⊕b}, N < ⊕c > N = {⊕c}, N < ⊕d > N = {⊕d}.
This graph has 4 vertices and 5 edges. The approximations, boundaries andK - nano-topological graphs for
all possible subgraphs on GA are given in Table 1. A comparison of proposed K - nano-topological graphs
and accuracies with the standard definitions (Definition 2.10 and Definition 2.9) [49] are shown in Table 2
and 3.

HV ⊆ GAV LK(HV) UK(HV) BK(HV) τK(HV)
∅ ∅ ∅ ∅ {∅,GAV}

{⊕a} {⊕a} {⊕a} ∅ {∅, {⊕a},GAV}

{⊕b} {⊕b} {⊕b} ∅ {∅, {⊕b},GAV}

{⊕c} {⊕c} {⊕c} ∅ {∅, {⊕c},GAV}

{⊕d} {⊕d} {⊕d} ∅ {∅, {⊕d},GAV}

{⊕b,⊕a} {⊕b,⊕a} {⊕b,⊕a} ∅ {∅, {⊕b,⊕a},GAV}

{⊕c,⊕a} {⊕c,⊕a} {⊕c,⊕a} ∅ {∅, {⊕c,⊕a},GAV}

{⊕d,⊕a} {⊕d,⊕a} {⊕d,⊕a} ∅ {∅, {⊕d,⊕a}, GAV}

{⊕c,⊕b} {⊕c,⊕b} {⊕c,⊕b} ∅ {∅, {⊕c,⊕b}, GAV}

{⊕d,⊕b} {⊕d,⊕b} {⊕d,⊕b} ∅ {∅, {⊕d,⊕b}, GAV}

{⊕d,⊕c} {⊕d,⊕c} {⊕d,⊕c} ∅ {∅, {⊕d,⊕c}, GAV}

{⊕b,⊕a,⊕c} {⊕a,⊕b,⊕c} {⊕a,⊕b,⊕c} ∅ {∅, {⊕b,⊕a,⊕c},GAV}

{⊕b,⊕d,⊕c} {⊕b,⊕c,⊕d} {⊕b,⊕c,⊕d} ∅ {∅, {⊕b,⊕d,⊕c},GAV}

{⊕a,⊕d,⊕c} {⊕a,⊕c,⊕d} {⊕a,⊕c,⊕d} ∅ {∅, {⊕a,⊕d,⊕c},GAV}

{⊕a,⊕d,⊕b} {⊕a,⊕b,⊕d} {⊕a,⊕b,⊕d} ∅ {∅, {⊕a,⊕d,⊕b},GAV}

GAV GAV GAV ∅ {∅,GAV}

Table 1: The approximations, boundaries and K - nano-topological graphs on GA w.r.t. different subgraphs

HV ⊆ GAV τN(HV) τK(HV)
∅ {∅,GAV} {∅,GAV}

{⊕a} {∅, {⊕a,⊕b,⊕c},GV} {∅, {⊕a},GAV}

{⊕b} {∅, {⊕b,⊕c},GAV} {∅, {⊕b},GAV}

{⊕c} {∅, {⊕c,⊕d},GAV} {∅, {⊕c},GAV}

{⊕d} {∅, {⊕d},GAV} {∅, {⊕d},GAV}

{⊕a,⊕b} {∅, {⊕a,⊕b,⊕c},GAV} {∅, {⊕a,⊕b},GAV}

{⊕a,⊕c} {∅,GAV} {∅, {⊕a,⊕c},GAV}

{⊕a,⊕d} {∅,GAV} {∅, {⊕a,⊕d},GAV}

{⊕b,⊕c} {∅, {⊕b,⊕c,⊕d},GAV} {∅, {⊕b,⊕c},GV}

{⊕b,⊕d} {∅,GAV} {∅, {⊕b,⊕d},GAV}

{⊕c,⊕d} {∅, {⊕a,⊕d}, {⊕c}, {⊕a,⊕c,⊕d},GAV} {∅, {⊕c,⊕d},GAV}

{⊕a,⊕b,⊕c} {∅, {⊕a,⊕b}, {⊕c,⊕d},GAV} {∅, {⊕a,⊕b,⊕c},GAV}

{⊕a,⊕c,⊕d} {∅, {⊕a,⊕b}, {⊕c,⊕d},GAV} {∅, {⊕a,⊕c,⊕d},GAV}

{⊕b,⊕c,⊕d} {∅, {⊕a,⊕d}, {⊕b,⊕c},GAV} {∅, {⊕b,⊕c,⊕d},GAV}

{⊕a,⊕b,⊕d} {∅, {⊕a,⊕d}, {⊕b,⊕c},GAV} {∅, {⊕a,⊕b,⊕d},GAV}

GAV {∅,GAV} {∅,GAV}

Table 2: A comparison of proposed K - nano-topological graphs on GA w.r.t. subgraph H with the nano
topologies defined in Definition 2.10
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HV ⊆ GAV Accuracy λN Accuracy λK
∅ 0 0
{⊕a} 0 1
{⊕b} 0 1
{⊕c} 0 1
{⊕d} 0 1
{⊕a,⊕b} 0 1
{⊕a,⊕c} 0 1
{⊕a,⊕d} 0 1
{⊕b,⊕c} 0 1
{⊕b,⊕d} 0 1
{⊕c,⊕d}

1
3 1

{⊕a,⊕b,⊕c}
1
2 1

{⊕a,⊕c,⊕d}
1
2 1

{⊕b,⊕c,⊕d}
1
2 1

{⊕a,⊕b,⊕d}
1
2 1

GAV 1 1

Table 3: A comparison of the accuracy measures defined in Definition 3.5 with those given in Definition 2.9.

Example 3.9. Consider Graph GB as in Figure 1b:
GBV = {⊕1,⊕2,⊕3,⊕4}.

N⊕1 = {⊕1}, N⊕2 = {⊕1,⊕2,⊕3,⊕4}, N⊕3 = {⊕2,⊕3,⊕4}, N⊕4 = {⊕1,⊕4}.

⊕1N = {⊕1,⊕2,⊕4}, ⊕2N = {⊕2,⊕3}, ⊕3N = {⊕2,⊕3}, ⊕4N = {⊕2,⊕3,⊕4}.

N < ⊕1 >= {⊕1}, N < ⊕2 >= {⊕2,⊕3,⊕4}, N < ⊕3 >= {⊕2,⊕3,⊕4}, N < ⊕4 >= {⊕4}.

< ⊕1 > N = {⊕1,⊕2,⊕4}, < ⊕2 > N = {⊕2}, < ⊕3 > N = {⊕2,⊕3}, < ⊕4 > N = {⊕2,⊕4}.

N < ⊕1 > N = {⊕1}, N < ⊕2 > N = {⊕2}, N < ⊕3 > N = {⊕2,⊕3}, N < ⊕4 > N = {⊕4}.

This graph has 4 vertices and 6 edges. The approximations, boundaries and topologies of K- topological
graphs GB w.r.t. different subgraphs are shown in Table 4. A comparison of proposed K - nano-topological
graphs and accuracies with the standard definitions (Definition 2.10 and Definition 2.9) [49] are shown in
Table 5 and 6.

HV ⊆ GBV LK(HV) UK(HV) BK(HV) τK(HV)
∅ ∅ ∅ ∅ {∅,GBV}

{⊕1} {⊕1} {⊕1} ∅ {∅, {⊕1},GBV}

{⊕2} {⊕2} {⊕2,⊕3} {⊕3} {∅, {⊕2}, {⊕3}{⊕2,⊕3},GBV}

{⊕3} ∅ {⊕3} {⊕3} {∅, {⊕3},GBV}

{⊕4} {⊕4} {⊕4} ∅ {∅, {⊕4},GBV}

{⊕1,⊕2} {⊕1,⊕2} {⊕1,⊕2,⊕3} {⊕3} {∅, {⊕1,⊕2}, {⊕3}, {⊕1,⊕2,⊕3},GBV}

{⊕1,⊕3} {⊕1} {⊕1,⊕3} {⊕3} {∅, {⊕1}, {⊕3}, {⊕1,⊕3},GBV}

{⊕1,⊕4} {⊕1,⊕4} {⊕1,⊕4} ∅ {∅, {⊕1,⊕4}, GBV}

{⊕2,⊕3} {⊕2,⊕3} {⊕2,⊕3} ∅ {∅, {⊕2,⊕3}, GBV}

{⊕2,⊕4} {⊕2,⊕4} {⊕2,⊕3,⊕4} {⊕3} {∅, {⊕3}, {⊕2,⊕4}, {⊕2,⊕3,⊕4}, GBV}

{⊕3,⊕4} {⊕4} {⊕3,⊕4} {⊕3} {∅, {⊕3}, {⊕4}, {⊕3,⊕4}, G̃BV}

{⊕1,⊕2,⊕3} {⊕1,⊕2,⊕3} {⊕1,⊕2,⊕3} ∅ {∅, {⊕1,⊕2,⊕3},GBV}

{⊕2,⊕3,⊕4} {⊕2,⊕3,⊕4} {⊕2,⊕3,⊕4} ∅ {∅, {⊕2,⊕3,⊕4},GBV}

{⊕1,⊕3,⊕4} {⊕1,⊕4} {⊕1,⊕3,⊕4} {⊕3} {∅, {⊕1,⊕4}, {⊕1,⊕3,⊕4}, {⊕3},GBV}

{⊕1,⊕2,⊕4} {⊕1,⊕2,⊕4} GBV {⊕3} {∅, {⊕1,⊕2,⊕4}, {⊕3},GBV}

GBV GBV GBV ∅ {∅,GBV}

Table 4: The approximations, boundaries and topologies of K- topological graphs on GB w.r.t. different
subgraphs
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HV ⊆ GBV τN(HV) τK(HV)
∅ {∅,GBV} {∅,GBV}

{⊕1} {∅, {⊕1,⊕2,⊕4},GBV} {∅, {⊕1},GBV}

{⊕2} {∅, {⊕2,⊕3},GBV} {∅, {⊕2,⊕3}, {⊕2}, {⊕3},GBV}

{⊕3} {∅, {⊕2,⊕3},GBV} {∅, {⊕3},GBV}

{⊕4} {∅, {⊕2,⊕3,⊕4},GBV} {∅, {⊕4},GBV}

{⊕1,⊕2} {∅,GBV} {∅, {⊕1,⊕2}, {⊕3}, {⊕1,⊕2,⊕3},GBV}

{⊕1,⊕3} {∅,GBV} {∅, {⊕1}, {⊕3}, {⊕1,⊕3},GBV}

{⊕1,⊕4} {∅,GBV} {∅, {⊕1,⊕4},GBV}

{⊕2,⊕3} {∅, {⊕2,⊕3},GBV} {∅, {⊕2,⊕3},GBV}

{⊕2,⊕4} {∅, {⊕2,⊕3,⊕4},GBV} {∅, {⊕4}, {⊕2,⊕3}, {⊕2,⊕3,⊕4},GBV}

{⊕3,⊕4} {∅, {⊕2,⊕3,⊕4},GBV} {∅, {⊕3}, {⊕4}, {⊕3,⊕4},GBV}

{⊕1,⊕2,⊕3} {∅, {⊕1,⊕4}, {⊕2,⊕3}GBV} {∅, {⊕1,⊕2,⊕3},GBV}

{⊕1,⊕2,⊕4} {∅, {⊕1}, {⊕2,⊕3,⊕4},GBV} {∅, {⊕1,⊕2,⊕4}, {⊕3},GBV}

{⊕2,⊕3,⊕4} {∅, {⊕2,⊕3,⊕4},GBV} {∅, {⊕2,⊕3,⊕4},GBV}

{⊕1,⊕3,⊕4} {∅,GBV} {∅, {⊕1,⊕4}, {⊕3}, {⊕1,⊕3,⊕4},GBV}

GBV {∅,GBV} {∅,GBV}

Table 5: A comparison of proposed K - nano-topological graphs on GB w.r.t. subgraph H with the nano
topologies defined in Definition 2.10

HV ⊆ GBV Accuracy λN Accuracy λK
∅ 0 0
{⊕1} 0 1
{⊕2} 0 1

2
{⊕3} 0 0
{⊕4} 0 1
{⊕1,⊕2} 0 2

3
{⊕1,⊕3} 0 1

2
{⊕1,⊕4} 0 1
{⊕2,⊕3} 1 1
{⊕2,⊕4} 0 2

3
{⊕3,⊕4} 0 1

2
{⊕1,⊕2,⊕3}

1
2 1

{⊕1,⊕2,⊕4}
1
4

3
4

{⊕2,⊕3,⊕4} 1 1
{⊕1,⊕3,⊕4} 0 2

3
GBV 1 1

Table 6: A comparison of the accuracy measures defined in Definition 3.5 with those given in Definition 2.9.

Proposition 3.10. Let (G, τK(HV)) be aK .N .T .G.S induced on GV w.r.t HV, where H is a subgraph of G. If
X and Y are also subgraphs of G, then the following properties hold for the newly defined approximations
unless mentioned otherwise:

1. LK(XV) ⊆ XV ⊆ UK(XV).
2. LK(GV) =UK(GV) = GV.
3. LK(∅)) =UK(∅) = ∅.
4. If XV ⊆ YV, then LK(XV) ⊆ LK(YV) andUK(XV) ⊆ UK(YV).
5. LK(XV) = GV − (UK(GV − XV)).
6. UK(XV) = GV − (LK(GV − XV)).

Proof. (1), (2), and (3) can be proved from the Definition 3.4 .

(4) Let XV ⊆ YV. Let w ∈ LK(XV).
Case I: If w ∈ XV, then w ∈ XV ⊆ YV =⇒ w ∈ LK(YV).
Case II: If w < XV, then (N < (w) > N) ⊆ XV.
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So (N < (w) > N) ⊆ YV as XV ⊆ YV. So, w ∈ LK(YV).
Thus, LK(XV) ⊆ LK(YV).
Similarly, Case I: If w ∈ XV, then, w ∈ YV =⇒ w ∈ UK(YV) Therefore, w ∈ UK(YV).
Case II: If w < XV, then w ∈ UK(XV) =⇒ (N < (w) > N) ∩ XV , ∅.
As XV ⊆ YV, (N < (w) > N) ∩ YV , ∅. Thus, w ∈ UK(YV).

(5) Let w ∈ GV − (UK(GV − XV)). ⇐⇒ w < (UK(GV − XV).
⇐⇒ w < GV − XV and

{
w ∈ GV : (N < (w) > N) ∩ (GV − XV) = ∅

}
.

⇐⇒ w ∈ XV and
{
w ∈ GV : (N < (w) > N) ∩ (GV − XV) = ∅

}
.

⇐⇒

{
w ∈ XV : (N < (w) > N) ∩ (GV − XV) = ∅

}
.

⇐⇒

{
w ∈ XV : (N < (w) > N) ⊆ (XV)

}
.

⇐⇒ w ∈ LK(XV).

(6) It is clear from (5).

Proposition 3.11. Let (G, τK(HV)) be a K .N .T .G.S induced on GV w.r.t HV, where H is a subgraph of G.
If X and Y are also subgraphs of G, then the following holds for the newly defined approximations:

1. LK(XV ∩ YV) = LK(XV) ∩ LK(YV).
2. LK(XV) ∪ LK(YV) ⊆ LK(XV ∪ YV).
3. UK(XV ∩ YV) ⊆ UK(XV) ∩UK(YV).
4. UK(XV ∪ YV) =UK(XV) ∪UK(YV).

Proof. (1) Let q ∈ LK(XV ∩ YV).
⇐⇒

{
q ∈ (XV ∩ YV) ; (N < (q) > N) ⊆ (XV ∩ YV)

}
.

⇐⇒

{
q ∈ (XV) ; (N < (q) > N) ⊆ (XV)

}
and
{
q ∈ (YV) ; (N < (q) > N) ⊆ (YV)

}
.

⇐⇒ q ∈ LK(XV) ∩ LK(YV).
So, LK(XV ∩ YV) = LK(XV) ∩ LK(YV).

(2) Let q ∈ LK(XV) ∪ LK(YV).
=⇒

{
q ∈ XV : (N < (q) > N) ⊆ (XV)

}
or
{
q ∈ YV : (N < (q) > N) ⊆ (YV)

}
.

=⇒
{
q ∈ (XV ∪ YV) : (N < (q) > N) ⊆ (XV ∪ YV)

}
.

Therefore, q ∈ LK(XV ∪ YV).
So, LK(XV) ∪ LK(YV) ⊆ LK(XV ∪ YV).

(3) Let q ∈ UK(XV ∩ YV).
Case-I: Let q ∈ (XV ∩ YV).
=⇒ q ∈ XV and q ∈ YV.
=⇒ q ∈ UK(XV) and q ∈ UK(YV).
Case-II: If q < (XV ∩ YV).
=⇒

{
q ∈ (GV ; (N < (q) > N) ∩ (XV ∩ YV) , ∅

}
.

=⇒
{
q ∈ GV ; (N < (q) > N) ∩ (XV) , ∅

}
and
{
q ∈ GV ; (N < (q) > N) ∩ (YV) , ∅

}
.

=⇒ q ∈ UK(XV) ∩UK(YV).
So,UK(XV ∩ YV) ⊆ UK(XV) ∩UK(YV).
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(4) Let q ∈ UK(XV) ∪UK(YV).
Case-I: If q ∈ XV ∪ YV.
⇐⇒ q ∈ UK(XV ∪ YV).
Case-II: If q < XV ∪ YV.
⇐⇒

{
q ∈ GV : (N < (q) > N) ∩ (XV) , ∅

}
or
{
q ∈ GV : (N < (q) > N) ∩ (YV) , ∅

}
.

⇐⇒

{
q ∈ GV : (N < (q) > N) ∩ (XV ∪ YV) , ∅

}
.

Therefore, q ∈ UK(XV ∪ YV).
So,UK(XV ∪ YV) =UK(XV) ∪UK(YV).

Proposition 3.12. Let (G, τK(HV)) be a K .N .T .G.S induced on GV w.r.t HV, where H is a subgraph of G.
If X and Y are also subgraphs of G, then the following holds for the newly defined approximations:

1. LK(XV − YV) ⊆ LK(XV) − LK(YV).
2. UK(XV) −UK(YV) ⊆ UK(XV − YV).

Proof. (1) As XV − YV = XV ∩ (GV − YV)),
then LK((XV − YV)) = LK(XV ∩ (GV − YV)).
= LK(XV) ∩ LK(GV − YV).
= LK(XV) ∩ [GV −UK(YV)]
= LK(XV) −UK(YV).
⊆ LK(XV) − LK(YV).
So, LK(XV − YV) ⊆ LK(XV) − LK(YV).

(2)UK(XV) −UK(YV) =UK(XV) ∩ (GV −UK(YV)).
=UK(XV) ∩ LK(GV − YV).
⊆ UK[(XV) −UK(YV)].
⊆ UK[XV − YV].
So,UK(XV) −UK(YV) ⊆ UK(XV − YV).

Remark 3.13. Let (G, τK(HV)) be aK .N .T .G.S induced on GV w.r.t HV, where H is a subgraph of G. If X
and Y are also subgraphs of G, then the following holds for the newly defined approximations in general:

1. LK(XV) , XV ,UK(XV).
2. LK(XV ∪ YV) , LK(XV) ∪ LK(YV).
3. UK(XV ∩ YV) ,UK(XV) ∩UK(YV).

This remark can be justified by the Example 3.14.

Example 3.14. Consider Graph GB as in Figure 1b: BV = {⊕1,⊕2,⊕3,⊕4}.

1. Let XV = {⊕2}, YV = {⊕3}

LK(YV) = LK({⊕3}) = ∅ , {⊕3}.
UK(XV) =UK({⊕2}) = {⊕2,⊕3} , {⊕2}.
So, LK(XV) , XV ,UK(XV) in general.

2. Let XV = {⊕2}, YV = {⊕3}.
LK({⊕2,⊕3}) = {⊕2,⊕3}

LK({⊕2}) = {⊕2}

LK({⊕3}) = {∅}.
So, LK(XV ∪ YV) , LK(XV) ∪ LK(YV) in general.



K. Kaur et al. / Filomat 39:24 (2025), 8395–8416 8406

3. Let XV = {⊕2}, YV = {⊕3}.
UK({⊕2}) = {⊕2,⊕3}.
UK({⊕3}) = {⊕3}.
UK({⊕2,⊕3}) = {⊕2,⊕3}.
ButUK(∅) = ∅.
Therefore,UK(XV ∩ YV) ,UK(XV) ∩UK(YV) in general.

4. K - topological concepts and K - graph- homeomorphism

Topological concepts like interior, closure, continuity, and homeomorphism play a vital role in circuit
analysis. The interior of a set of connected components helps isolate active sub-circuits that are unaf-
fected by external connections, while the closure includes all directly or indirectly connected elements,
ensuring a thorough understanding of current flow and boundary behavior. These notions are especially
useful in network theory, detecting faults, and simplifying complex circuit layouts without compromising
connectivity.

In this section, we begin with the definitions of K - closure and K - interior. Then, we introduce the
concept of graphical nano homeomorphism, which refers to the topological equivalence between two nano-
topological spaces. We aim to formalize the notion of structural equivalence for graphs and the respective
nano-topologies they generate. If we directly say that QV ⊆ GV, it means Q is a subgraph of G.

Definition 4.1. If QV ⊆ GV, then the union of all K -open subsets of QV is defined as K - interior of QV,
denoted by K int(QV). and the intersection of all K - closed sets containing QV is defined as K -closure of
QV, denoted by K cl(QV).

Note that K int(QV) and K cl(QV) are considered w.r.t τK(HV) where H is subgraph of G and hence
HV ⊆ GV.

Theorem 4.2. Let (G, τK(HV)) be a K .N .T .G.S induced on GV w.r.t HV, where H is a subgraph of G.
Also, let QV ⊆ GV. Then the following results hold:

1. GV − K int(QV)= K cl(GV −QV).
2. GV − K cl(QV)= K int(GV −QV).

Proof. Obvious by the Definition 4.1.

Remark 4.3. If we take complements of L.H.S and R.H.S in the Theorem 4.2,

1. K int(QV) = GV − K cl(GV −QV).
2. K cl(QV) = GV − K int(GV −QV).

Theorem 4.4. Let (G, τK(HV)) be a K .N .T .G.S induced on GV w.r.t HV, where H is a subgraph of G.
Also, let QV ⊆ GV. Then the following results are true:

1. QV ⊆ K cl(QV).
2. QV is K - closed iff K cl(QV) = QV.
3. K cl(∅) = ∅ and K cl(GV) = GV.
4. QV ⊆ HV =⇒ K cl(QV) ⊆ K cl(HV).
5. K cl(QV ∪HV) = K cl(QV) ∪ K cl(HV).
6. K cl(QV ∩HV) ⊆ K cl(QV) ∩ K cl(HV).
7. K cl(K cl(QV)) = K cl(QV).

Proof. Obvious by the Definition 4.1.
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Theorem 4.5. Let (G, τK(HV)) be a K .N .T .G.S induced on GV w.r.t HV, where H is a subgraph of G. Let
QV ⊆ GV. Then the following results are true:

1. K int(QV) ⊆ QV.
2. QV is K - open iff K int(QV) = QV.
3. K int(∅) = ∅ and K int(GV) = GV.
4. QV ⊆ HV =⇒ K int(QV) ⊆ K int(HV).
5. Kint(QV) ∪ K int(HV) ⊆ K int(QV ∪HV).
6. K int(QV ∩HV) = K int(QV) ∩ K int(HV).
7. K int(K int(QV)) = K int(QV).

Proof. Obvious by the Definition 4.1.

Definition 4.6. Let (G1, τK(XV)) and (G2, τK(YV)) be theK .N .T .G.Ss induced on G1V and G2V w.r.t XV and
YV, where X and Y are the subgraphs of G1 and G2, respectively. Then f : (G1, τK(XV)) −→ (G1, τK(YV) is
defined as

(i) K - graph- continous on G1 if the inverse image of every K -open set in G2 is K -open in G1.

(ii) K - graph- open on G1 if the image of every K -open set in G1 is K -open in G2.

Definition 4.7. Let (G1, τK(XV)) and (G2, τK(YV)) be theK .N .T .G.Ss induced on G1V and G2V w.r.t XV and
YV, where X and Y are the subgraphs of G1 and G2, respectively. Then f : (G1, τK(XV)) −→ (G1, τK(YV) is
defined as K - graph- homeomorphism if

(i) f is one-one and onto.

(ii) f is K - graph-continuous

(iii) f is K - graph-open.

5. A comparison to the previous approaches

The significance of accuracy measurement is pivotal in approximation, significantly impacting data
interpretation. λ is the accuracy quotient, that is, the ratio of the cardinality of lower to the cardinality of
upper approximation. If the lower approximation increases and the boundary diminishes, the precision
in data interpretation improves, underscoring its importance in research. The motivation for introducing
a new approach is that this technique reduces the difference between the approximations, which is a
remarkable feature when we do data analysis. The following remarks aim to highlight the differences
between modern ideology and the standard one, as given in the definitions 2.9 and 2.10 [49]:

1. UK(Z) ⊆ UN(Z).

Proof. For any z ∈ UK(Z), z is either in Z or (N < z > N) ∩ Z , ∅.
Case 1: If z ∈ Z, z ∈ UN(Z). Thus,UK(Z) ⊆ UN(Z).
Case 2: If z < Z, (N < z > N)∩Z , ∅, then there exists a vertex in Z that is a neighbor of z, so z ∈ UN(Z).
Thus,UK(Z) ⊆ UN(Z).

2. LN(Z) ⊆ LK(Z).

Proof. Let z ∈ LN(Z), so N(z) ⊆ Z. Since N(z) ⊆ Z and z ∈ GV, for z to be in LK(Z), (N < z > N) must
be within Z. As N(z) is already a part of (N < z > N), we have (N < z > N) ⊆ Z if z ∈ Z. Thus,
LN(Z) ⊆ LK(Z).

3. BK(Z) ⊆ BN(Z).
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Proof. From the first proof, UK(Z) ⊆ UN(Z). Also, from the second proof, LN(Z) ⊆ LK(Z). Therefore,
by subtracting the subsets, we getUK(Z) − LK(Z) ⊆ UN(Z) − LN(Z). Thus, BK(Z) ⊆ BN(Z).

4. λ(Z) ≤ λK(Z).

Proof. SinceUK(Z) ⊆ UN(Z) and LN(Z) ⊆ LK(Z) as proved above, we have

|UK(Z)| ≤ |UN(Z)|, |LN(Z)| ≤ |LK(Z)|.

So,

|LN(Z)|
|UN(Z)|

≤
|LK(Z)|
|UK(Z)|

.

Thus, λN(Z) ≤ λK(Z).

5. τK(Z) ⊈ τN(Z) and τN(Z) ⊈ τK(Z).
Generally, K .N .T .G is incomparable with the Definition 2.10 of nano-topological graph [49]. It can
be clearly observed from Table 2 and Table 5.

6. Also, the proposed topology is incomparable to the nano-topological graph given in Definition 2.12
[19]. Neither is contained in the other.

6. An algorithm to assess the degree of resemblance between electric circuits

Nano-topology and the rough set theory can be applied to the vast amounts of data collected from
sensors and equipment within the power system to identify the most relevant features or attributes that
influence system performance. By distinguishing between essential and non-essential information, it helps
in removing redundant sensors or data sources, thereby streamlining data processing and analysis. In
addition, detecting unlawful exploitation of patents in electric circuits is crucial for safeguarding innovation
and intellectual property rights in the highly competitive electronics industry. It ensures inventors and
companies receive due rewards for their investment in research and development, fostering an environment
that encourages further innovation.

This protection is vital for maintaining fair competition, ensuring only those who invest in genuine
innovation thrive. Moreover, it upholds product safety and reliability, especially in critical applications like
medical devices and automotive safety systems. Ultimately, vigilant enforcement of patents in electrical
circuits drives technological advancement, economic growth, and the development of sustainable, high-
quality electronic products.

Also, the reduction simplifies complex electric circuits, enabling easier analysis, fault detection, cost
efficiency, redundancy removal, design optimization, and structural comparison for patent verification and
improved performance.

6.1. Algorithm to detect patent violation
In this section, we have endeavored to analyze if chips manufactured by different firms show significant

operational resemblances, based on the structural similarity of their graphs and the ensuing nanotopology.
Following is an algorithm to detect similar patents/electric circuits:

• STEP 1: The electric configuration of the chips produced by the companies involves an arrangement of
electrical components, like resistors, capacitors, inductors, voltage sources, and current sources. This
assembly forms an electric network, where the interconnections between these elements represent the
directed edges in a graph. Additionally, directions are assigned to these edges, shaping the directed
graph that mirrors the network structure.

• Step 2: Transform the electrical circuits C1 and C2 into corresponding graphs G1 and G2.
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• Step 3: Verify if G1 and G2 exhibit isomorphism, and determine if their associatedK .N .T .G.Ss are K
- graph- homeomorphic.

• Step 4: If G1 is isomorphic to G2 and (G1, τK(XV)) K - graph- homeomorphic to (G2, τK(YV)), it implies
significant operational similarities in the corresponding circuitries. In such a scenario, company X
may have grounds to make a patent infringement claim.

• Step 5: Alternatively, we can infer that the manufactured chips are entirely distinct.

The flowchart is shown in Fig 2.

6.2. Algorithm for reduction of electric circuits

This section presents an approach to reduce electric lines using a nano topological framework. By
applying nano topology with a suitable algorithm, we identify and eliminate redundant connections,
leading to a more efficient and cost-effective power distribution network.

• STEP 1: Convert the given electric circuit C into a directed graph G = (GV,GE), where components
are represented as nodes and connections as directed edges.

• STEP 2: Simplify the graph G by identifying and removing any redundant or unnecessary connections
between nodes.

• STEP 3: Reduce the number of connections in G by merging or rerouting links while preserving the
circuit’s original functionality. Let the resulting graph be G′.

• STEP 4: Check whether the original graph G and the reduced graph G′ are isomorphic, meaning they
have identical structure.

• STEP 5: Construct K- nano-topological graphs τK(HV) and τ′K(HV) over the graphs G and G′ respec-
tively.

• STEP 6: Verify whether (G, τK(HV)) and (G′, τ′K(HV)) are nano-homeomorphic, indicating they are
topologically equivalent under nano-structural properties.

• STEP 7: If both conditions (isomorphism and K - graph- homeomorphism) are satisfied, original
circuit and the reduced circuit are equivalent.

• STEP 8: Convert the reduced graph G′ back into the corresponding simplified circuit C′. Otherwise,
convert the reduced graph G′ back into the corresponding simplified circuit C′. Repeat the process
from STEP 2.

The flowchart is shown in Fig 3.



K. Kaur et al. / Filomat 39:24 (2025), 8395–8416 8410

Start: Define electric con-
figuration of the chips

Transform circuits C1 and
C2 into graphs G1 and G2

Verify if G1 and G2 are isomorphic and if
their nano topologies are homeomorphic

Are G1 and G2 isomorphic
and homeomorphic?

Patent infringement claim possible

Manufactured chips are distinct

End

Yes

No

1

Figure 2: Flowchart to Detect Patent Infringement
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Start: Define electric configuration of the chips or devices

Step 1: Convert circuit C into directed graph G = (GV , GE)

Step 2: Simplify G by removing redundant/unnecessary connections

Reduced Graph G′

Step 4: Check isomorphism between G and G′

Step 5: Construct nano-topological graphs τK and τ ′K

Step 6: Check if (G, τK) and (G′, τ ′K) are nano-homeomorphic

Both nano-homeomorphic? Step 8: Convert G′ to reduced circuit C ′

Convert G′ to circuit C ′ and repeat from Step 2

End

Yes

No

Figure 3: Flowchart to reduce the electric circuits
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(a) Circuit C1 (b) Circuit C2

Figure 4: Circuits C1 and C2 [49]

(a) Graphs G1 (b) Graphs G2

Figure 5: Graphs G1 and G2, which correspond to circuits C1 and C2 [49]

(a) Circuit C3 (b) Circuit C4

Figure 6: Circuits C3 and C4 [21]
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(a) Graph G3 (b) Graph G4

Figure 7: Graphs G3 and G4, which correspond to circuits C3 and C4 [21]

7. An application of the proposed theory in electrical engineering

Network theory, using graph-based models, offers a powerful method to analyze and compare electrical
circuits. By representing components and connections as nodes and edges, structural similarities can be
identified. This approach motivates our work in detecting patent similarities, where graph isomorphism
helps assess potential design reuses or infringements in circuit layouts. This study is essential in electrical
engineering for analyzing, designing, and optimizing complex electric circuits made up of interconnected
parts to ensure proper functionality and efficiency. This theory uses graphs to represent the circuits when
applied to electric circuits. This approach helps simplify and organize the study of circuits by using the
tools and principles of graph theory. Electric circuits can be represented by graphs, where the components
and connections in the circuit are mapped to nodes (vertices) and edges (links).

1. Nodes (Vertices): Nodes represent the points in the circuit where components meet or where electrical
potential is measured. These are typically junctions or connection points in the circuit. For example,
in a circuit with resistors and a voltage source, a node would be any point where two or more elements
connect, such as the junction between two resistors or the connection point between a resistor and a
voltage source.

2. Edges (Links): Edges represent the circuit elements themselves, like resistors, capacitors, inductors,
or voltage sources. Each edge connects two nodes and corresponds to a component that lies between
those nodes. For example, a resistor that connects two nodes in a circuit would be represented by an
edge between the corresponding two vertices in the graph.

Motivated by the above approach, we integrate the network theory into our proposed topology and use
this technique to identify similar patents. Suppose corporation X creates and sells a computer chip, and
then corporation Y releases a chip that operates in a significantly similar way. If corporation X can show that
Corporation Y’s circuit is fundamentally a readjustment of its design, indicating the circuits are isomorphic,
this could form the foundation for a patent infringement case. The next two examples, Example 7.1 and
Example 7.2, where two electric circuits, each represented by mathematical graphs are analyzed to measure
the structural similarity based on K-graph-homeomorphism.

Example 7.1. Consider two electric circuits C1 and C2 designed by different companies, represented by their
respective graphs G1 and G2 as depicted in Figures 4a, 4b, 5a and 5b. Let f : (G1, τK(XV)) −→ (G1, τK(YV) be
a function defined as : f (⊕1) = ⊕b, f (⊕2) = ⊕a, f (⊕3) = ⊕c, f (⊕4) = ⊕d. Consider the Table 7 :
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HV ⊆ G1V f (HV) ⊆ G2V τK(HV) τK( f (HV))
∅ ∅ ∅ ∅

{⊕1} {⊕b} {∅, {⊕1},G1V} {∅, {⊕b},G2V}

{⊕2} {⊕a} {∅, {⊕2},G1V}} {∅, {⊕a},G2V}

{⊕3} {⊕c} {∅, {⊕3},G1V} {∅, {⊕c},G2V}

{⊕4} {⊕d} {∅, {⊕4},G1V} {∅, {⊕d},G2V}

{⊕1,⊕2} {⊕a,⊕b} {∅, {⊕1,⊕2},G1V} {∅, {⊕a,⊕b},G2V}

{⊕1,⊕3} {⊕b,⊕c} {∅, {⊕1,⊕3},G1V} {∅, {⊕b,⊕c},G2V}

{⊕1,⊕4} {⊕b,⊕d} {∅, {⊕1,⊕4},G1V} {∅, {⊕b,⊕d},G2V}

{⊕2,⊕3} {⊕a,⊕c} {∅, {⊕2,⊕3},G1V} {∅, {⊕a,⊕c},G2V}

{⊕2,⊕4} {⊕a,⊕d} {∅, {⊕2,⊕4},G1V} {∅, {⊕a,⊕d},G2V}

{⊕3,⊕4} {⊕c,⊕d} {∅, {⊕3,⊕4},G1V} {∅, {⊕c,⊕d},G2V}

{⊕1,⊕2,⊕3} {⊕a,⊕b,⊕c} {∅, {⊕1,⊕2,⊕3},G1V} {∅, {⊕a,⊕b,⊕c},G2V}

{⊕1,⊕3,⊕4} {⊕b,⊕c,⊕d} {∅, {⊕1,⊕3,⊕4},G1V} {∅, {⊕b,⊕c,⊕d},G2V}

{⊕2,⊕3,⊕4} {⊕a,⊕c,⊕d} {∅, {⊕2,⊕3,⊕4},G1V} {∅, {⊕a,⊕c,⊕d},G2V}

{⊕1,⊕2,⊕4} {⊕a,⊕b,⊕d} {∅, {⊕1,⊕2,⊕4},G1V} {∅, {⊕a,⊕b,⊕d},G2V}}

G1V G2V {∅,G1V} {∅,G2V}

Table 7: Table of K - nano-topological graphs and their images

Observation: Clearly, G1 is isomorphic to G2.
From Table 7, it can be noted that f : (G1, τK(XV)) −→ (G1, τK(YV) is bijection (injective and surjective).
Also, f : (G1, τK(XV)) −→ (G1, τK(YV) is a K - graph-continuous and K - graph-open ∀ subset HV of G1V.
Hence, f : (G1, τK(XV)) −→ (G1, τK(YV) is a K - graph- homeomorphism because this holds ∀ subset HV
of G1V. Therefore, using the proposed algorithm, the circuits are equivalent. Hence, it is a case of patent
violation because the circuits have quite significant structural similarities.

Example 7.2. Consider two electric circuits C3 and C4 designed by different companies, represented by
their respective graphs G3 and G4 as depicted in Figures 6a, 6b, 7a and 7b. We define the function
1 : (G3, τK(X)) −→ (G4, τK(Y)) as 1(⊕A) = ⊕III, 1(⊕B) = ⊕IV, 1(⊕C) = ⊕I and 1(⊕D) = ⊕II. Consider the Table
8:

HV ⊆ G3V 1(HV) ⊆ G4V τK(HV) τK(1(HV))
∅ {∅} ∅ {∅,G4V}

{⊕A} {⊕III} {∅, {⊕A},G3V} {∅, {⊕III},G4V}

{⊕B} {⊕IV} {∅, {⊕B},G3V} {∅, {⊕IV},G4V}

{⊕C} {⊕I} {∅, {⊕C},G3V} {∅, {⊕I},G4V}

{⊕D} {⊕II} {∅, {⊕D},G3V} {∅, {⊕II}, {⊕II,⊕III}, {⊕III},G4V}

{⊕A,⊕B} {⊕III,⊕IV} {∅, {⊕A,⊕B},G3V} {∅, {⊕III}, {⊕IV}, {⊕III,⊕IV},G4V}

{⊕A,⊕C} {⊕I,⊕III} {∅, {⊕A,⊕C},G3V} {∅, {⊕I}, {⊕III}, {⊕I,⊕III},G4V}

{⊕A,⊕D} {⊕II,⊕III} {∅, {⊕A,⊕D},G3V} {∅, {⊕II,⊕III},G4V}

{⊕C,⊕D} {⊕I,⊕II} {∅, {⊕C,⊕D},G3V} {∅, {⊕I,⊕II}, {⊕III}, {⊕I,⊕II,⊕III},G4V}

{⊕B,⊕D} {⊕II,⊕IV} {∅, {⊕B,⊕D},G3V} {∅, {⊕III}, {⊕II,⊕IV}, {⊕II,⊕III,⊕IV},G4V}

{⊕B,⊕C} {⊕I,⊕IV} {∅, {⊕B,⊕C},G3V} {∅, {⊕I,⊕IV},G4V}

{⊕A,⊕B,⊕C} {⊕I,⊕III,⊕IV} {∅, {⊕A,⊕B,⊕C},G3V} {∅, {⊕I,⊕IV}, {⊕III}{⊕I,⊕III,⊕IV},G4V}

{⊕A,⊕B,⊕D} {⊕II,⊕III,⊕IV} {∅, {⊕A,⊕B,⊕D},G3V} {∅, {⊕II,⊕III,⊕IV},G4V}

{⊕A,⊕C,⊕D} {⊕I,⊕II,⊕III} {∅, {⊕A,⊕C,⊕D},G3V} {∅, {⊕I,⊕II,⊕III},G4V}

{⊕B,⊕C,⊕D} {⊕I,⊕II,⊕IV} {∅, {⊕B,⊕C,⊕D},G3V} {∅, {⊕I,⊕II,⊕IV}, {⊕III},G4V}

G3V G4V {∅, {⊕A,⊕B,⊕C,⊕D},G3V} {∅,G4V}

Table 8: Table of K -topological graphs and their image set

Observation: From Table 8, it can be observed that 1 : (G3, τK(XV)) −→ (G4, τK(YV)) is bijective but it
is not a K - graph- homeomorphism because this does not hold ∀ subgroup HV of G3V. Clearly, {⊕III} is K
-open in τK({⊕I,⊕III}).
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In other words, {⊕III} is K -open in τK(1({⊕A,⊕C})).
But 1−1

{⊕III} = {⊕A} is not K -open in τK({⊕A,⊕C}).
As the inverse image of every K -open set in (G4, τK(1(HV))) is not necessarily K -open in (G3, τK(HV)). So, 1
is not a K - graph- continuous function.
Hence, 1 is not K - graph- homeomorphism.
Using the proposed algorithm, we may conclude that the circuits are not equivalent. Therefore, there is no
patent violation, as the circuits are structurally quite different.

8. Future Scope and Conclusion

The objective of the proposed theory was to initiate the application of nano-topology in electrical
circuits to detect resemblance via graphs. It has potential in attribute reduction, feature selection, decision
making, reduction, image processing, and simplification of complex systems. This is a better technique
as it is based on a more accurate approximation. The collaboration of nano-topology with graphs can
serve as an important base for enhancing the process of data extraction. Work on its applications is in
progress. The future scope of nano-topology is vibrant, with its potential expanding into fields like data
mining, machine learning, and beyond. Integration of nano-topology with other computational methods
promises advancements in hybrid intelligent systems, enhancing decision-making, and problem-solving
capabilities. Applications in bioinformatics, healthcare, and technology are particularly promising, where
nano-topology can improve analysis from imprecise data, driving innovations in personalized medicine,
smart technologies, and data-driven decision support systems.

In the future, nano-topology combined with graphs can help design smarter and more efficient electrical
circuits. It can also be used to detect faults early, simplify complex circuit systems, and support the
development of intelligent, self-improving electronic devices. Moreover, the fusion of graph theory and
fuzzy sets addresses a critical gap in modeling systems with complexity and information imprecision. This
hybrid framework, initiated by extending classical graph constructs to incorporate membership degrees,
supports more nuanced analyses in decision-making problems; see [13]. Therefore, the integration of the
proposed approach with multiple forms of fuzziness to develop sophisticated methodologies capable of
addressing complex problems characterized by uncertainty and imperfect knowledge.
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