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On certain symmetries of R® with a diagonal metric

Adara M. Blaga?

*Department of Mathematics, Faculty of Mathematics and Computer Science, West University of Timisoara, Timisoara, Romania

Abstract. We determine Killing vector fields on the 3-dimensional space R® endowed with a special
diagonal metric.

1. Preliminaries

The aim of the paper is to determine Killing vector fields on the 3-dimensional space R* endowed with
some special diagonal metrics, extending the results for the 2-dimensional case treated in [1]. Due to the
fact that determining the Killing vector fields for a general diagonal metric is an extended study, we begin
it here and we continue it, for other types of Lamé coefficients, in a different work.

Let g be a Riemannian metric on R® given by

1.4 1, 1.5 >, 1.5 3
g=—dx ®@dx + —dx" @dx" + —dx’ ®dx’,
i 3 f3

where f1, f» and f3 are smooth functions nowhere zero on R3, and x!, x%, x® stand for the standard coordinates
in R3. Let

J 0 0
Ei=fi=—, E2:= o=, E3:=f—
{ 1:=f i B fzaxz, 3 f38x3}
be a local orthonormal frame. We will denote as follows:

5 dfy dfi 1 dfs
%'8_3{’-:](12' %'a—;:fml %'a—;:fﬂf
Lok A f O

£ oxd = fa f; ol =S £ ox2 = f
The Levi-Civita connection V of g is given by (see [2]):
VEE1 = fioEx + f13E3, VEEx = fo1E1 + fasEs, ViEs = f31E1 + fEo,
Vi Ex = —fi2E1, ViEs = —fnEs, Vg,E1 = —f31E;3,
Vi, Es = —fi3E1, VE,E» = —fnE3, Vg,Ei =—fnE;.

In the rest of the paper, whenever a function f depends only on some of its variables, we will write in
its argument only that variables in order to emphasize this fact, for example, f(x'), f(x', x7).
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2. Killing vector fields w.r.t. these metrics

We recall that a vector field V on (R3, g) is called a Killing vector field [3] if the Lie derivative £ of the
metric g in the direction of V vanishes, i.e.,

(Evg)(X,Y) = V(g(X, Y) = g([V, X], ) = (X, [V, Y]) = O

for any smooth vector fields X and Y on R®.

In certain particular cases, we shall determine the Killing vector fields, as well as the relation between
two Killing vector fields for the metric g.

LetV = Zizl VKE,, with VX, k € {1,2, 3}, smooth functions on IR?. Then

(Evg)(Ei, Ej) = 9(VEV,E)) + g(E;, VE,V)

3
= E(V) + E(V') + ) VMg(VEEx, Ej) + g(E;, Ve, E))
k=1

for any i, j € {1,2, 3}, which is equivalent to

(Evg)(E1, E1) = 2{E1(VY) = fiaV? = fi3V°)
(Evg)(Ez, E2) = 2{E2(V?) = fn V' = fo3V°)
(Evg)(Es, Es) = 2{E(V°) = f V' = f2V?)
(Evg)(E1, E2) = Ey(V?) + Ex(VY) + fo V! + V2’
(Evg)(Ez, E3) = Eo(V°) + E3(V?) + fo3V* + foV°
(Evg)(Es, E1) = Es(V) + Ex(V°) + fa1 V° + fi3V!

and we can state:

Proposition 2.1. The vector field V = ):,le VXEy is a Killing vector field if and only if

f%-?—j%'%Vl—%-%vzzo o
fli—‘:+f2a8—‘£+%~%vl %S%VZ:O
f2§—§+f3§—‘;+%-%vz %-%W:o
f3%+f1&&—‘:+%-%v3+%%vl_o

A natural question is: For which functions f1, f, and f3, the basis vector fields E1, E, and Ej are Killing vector
fields w.r.t. g? And we can state:

Proposition 2.2. E; is a Killing vector field on (R, g) if and only if
fi = Al
fr= H220) .
fs = f3(0,x%)
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Proof. Replacing V! =1, V2 = V3 =0in (1), we get

% _,
ox!

% _,
ax!

a 7
ox

°h _,
a3

hence, we get the conclusion. [J
Example 2.3. The vector field E; = e*' % is a Killing vector field on
(]R3, g=e il @dx' + e AP @d? + Vi’ ® dx3) :
Similarly, for the other two vector fields E, and E3, we have:
Corollary 2.4. (i) E; is a Killing vector field on (R?, g) if and only if

fl = fl(x1/x3)
fr = fo®?)
f3 = f3(x1/x3)

(ii) Es is a Killing vector field on (R®, g) if and only if

fl = fl(xllxz)
f2 = f2(x11x2)

fs = ()
Lemma 2.5. If f; = fi(x") for any i € {1,2,3}, then V = Y3 _, VEy is a Killing vector field if and only if
1
v,
ox!
&V2
p2% - silvi-
av3
52 flf’
&V2 av1 f2
+
h— axl f flf
a 2
fz— + fs— =0
av1 8V3 fi
hog thor flf3 =

Proof. It follows immediately from (1). O

8419
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Theorem 2.6. If fi = fi(x"), fo = fa(x"), fs = ks € R\ {0}, then V = ¥}_, V¥Ey is a Killing vector field if and only
if one of the following assertions hold:

vi=0

() V(") = J%, aeR

V3:C2, o eER

Vl(xZ,x3) =ax®+cx+c;, 1,060,035 €R
(i) {VA(xY, %) = —c1koF(xY) — cakox® + ¢5, c4,c5 €R

V3(x!, x%) = —coksF(xY) + caksx® + o, co € R

1
where F' = — and f, = ky (is constant);
1

Vi) =ax?* + ¢, c1,00 € R

Fo(x!) +
(iii) V2(x1,x2)—( —) 1)[C1 (2 + x4+ ¢3 +%, G, €R

V3 =C3
ith ﬁ h + ( 2/)/ = 0and f, nonconstant, where F, = —f—22'
i L \f ' oA’

V(x?) = ¢; cos( \/I;xZ) + ¢p sin( \/%x2), c1,00 €R
C3kF0(x1) + Cq

(iv) {VA(x!, %) = (f fz) )[ Vi [¢1 sin( \/Exz) — ¢; cos( Vix? N +c W, 3,040 €ER

fZ
V3=
AT [T Em—

k2 Y )
Vl(xz)zcle”x + e ‘Fk", c1,02 €R

() {V2(xt,x?) = (f J]:Z)(x )[ \/_k( e VR _ em _kxz)+C3] + %, c3,ci €R
2

V3=C3

(5[5 o emns
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Proof. In this case, we have

> =0
fag—‘;—flfiVl =0
2 =0
e
kgi‘;; +f1(;—:13 =0

From the first and the third equations of (3), we get that
V= VI3 %), VO = VA, ),

thus, from the last equation, we deduce that

V! 1
- _—-__F
ox® ky
Vv 1 ’
- _F

oaxl  f 2

where F, = F»(x?), which, by integration, give

3
V2, 2%) = —%Fz(xz) +G1(x?)

V3(x!, x%) = Fo(x®)F(x!) + G3(x?)

1
where F/ = JT, Gy = Gl(xz), Gs = G3(x2). Then
1

f(xl) (xt, 2%, 3 :—fz(xl)[——F’z(xz)+G’(x2)] (f?)(xl)vz(x x%,x%),

k a—VZ(x1 2,2%) = = () [F)F5 () + Gy ()]
o T ?

By differentiating the above equations with respect to x?, we get

filx 1) lox z(xlfxz %) = —fox )[ —F (%) +G"(x2)] (f ?2)( )—(x 2,5,
2
32V2 ’’ ’’
koo om0 ) = Y [FENEy ) + GY ()]
Replacing V! in the second equation of (3), we find
V> 5

ﬁ(xl/xz, x%) = (f 7 )(x )[——Fz(xz) + Gi(x )]

8421
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which, replaced in (7) and (8), gives

and

infer

7\ 2 3
(] i o s s
f j{z ] (" )F2(x?) = F(x")F; (%) + G5 (). (11)
2
/ 2
Let us denote h = {(1 ( fi= 7 ) ( fi=5 = ) . By differentiating (10) with respect to x> and x!, we successively
2 2
h(x")F2(x?) = =F; (x*) (12)

and

I (x)F2(x?) = 0,

which is equivalent to

h=ki €R or F, =0. (13)

Let us denote I = f; ( f=5 b ) Two times differentiating (11) with respect to x!, we get

and

£

I(x)F2(x?) = Fy (x?)

I'(x")F2(x?) = 0,

which is equivalent to

l=kzelRorF2=0. (14)

From (13) and (14), we conclude that

F, =0 or

?@i) @éyzhdf

(A) Let F; = 0. Then (4) implies that

Also:

{thcmﬁ

V() = Go?) | 1
%%ﬁffﬁ=6ﬂwm%)(%%wwwfmﬁ
2
%%wff>ﬁﬁymw>
2
2
a&%(xlle,xS) — _fl(< )Gé( 2)
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By integrating the last equation, we get

fz( x)

V2!, 2%, x%) = G5(xH)x® + H(x', x%), (16)

where H = H(x!, x?), which, by differentiating with respect to x! and x? respectively, and considering the
first two equations of the previous system, give

f2 G;( ) = (%)(xl)Gi(f) (j})(xl)H(l ) - 2L, ) a7
and
f““G"( ) =(f]]:)(x )G1(0?) ~ 2, ). )
2

By differentiating (17) and (18) with respect to x3, we find

fEHGs () =0
and

Gy =0,
which is equivalent to

fo=co e R\ {0} or Gs=c3€R (19)
and

G3(x2) =mx*>+by, a1, € R. (20)
From (19) and (20), we conclude that

{szCzelR\{O}

or Gz =c3 €R
G3(X2) :a1x2+b1, al,bl eR ’ ’

(A1) Let
{fz =0 € R\ {0}

G3(x2) =mx>+by, a,b R’
Then

Vi) = Gi(x?)

V2(x!, 2%, x%) = a;{; x>+ H(xbx?) |

Vi) =mx? + by

From (17) and (18), we get

—(xl, xZ) - _

Co )
fl(xl)Gl(x) _
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From the second equation we deduce that H = H(x!), and from the first one, we deduce that

’ 1
LGHNE) oy
(%]

must be constant, let’s say, ¢y € IR, and we obtain
H(xl) = —coczF(xl) +c4, 4 €R
and
G1(x*) = cox*> +¢5, ¢5 € R.
Therefore,
V(x?) = cox* + c5
V2(x!, %) = —%xS’ —cocoF(x!) + ¢y .
V3(x2) =mx® + by
(A.2) Let G3 = c3 € R. Then (15) and (16) imply that
Vi) = Gi(¥?)
V2(x!, x%) = H(xY, x%) .
V3=
From (17) and (18), we get
) == (2) whmet ) - (2 ey
) = (flf—i) ()Gi(2)

2

(21)

The first equation of the previous system is equivalent to

7

0
3 (RHC) (@) = - ( 7

) ()G (%),
which, by integration, gives

@
f

1
fa(xt)

H(x', %) = ( ) ("G (%) + K(x?),

2
where F| = ~22 and K = K(x?). Differentiating it with respect to x*> and taking into account the second
1

equation of (21), we find
Fo(x")Gy (%) + K'(x?) = ( f %) ()Gi(x?),

which, by differentiating with respect to x!, implies

G/(x?) = - (%)(xl) (fljé) (1G1(x?) = =h(x")G1(x?),
2
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Gl ) -G 52 (]

which further, by differentiating with respect to x!, implies
W (HGi(x?) =0,

where

which is equivalent to
h=k1€]R or Gi;=0

(A.2.1) Let h = k; € R. We have the following cases:
(A.2.1.1) k; = 0; in this case, G1(x?) = c1x*> + ¢3, c1,02 € R;
(A.2.1.2) k; > 0; in this case, G (x?) = ¢; cos( Vk1x?) + co sin(Vk1x2), ¢1,02 € R;
(A.2.1.3) k; < 0; in this case, G1(x2) = c;eVF* + cpeVF¥ ¢ ¢, € R.
By integrating the second equation of (21), we get

H(, x?) = (ﬁ]{/

)(x )Go(x?) + L(x"),
2

where G = G; and L = L(x"). Differentiating it with respect to x* and taking into account the first equation

of (21), we find
(flj; ) (X Go(x2) + L’(x ) = (:;2 )( )[(f 2)(3{1)60(3(-2) + L(xl)] _ (%) (xl)GE)'(xz)’

which is equivalent to

f
fz
which must be a constant, let’s say, k € R, and we obtain
kFo(xl) + ko

f)
where ky € R, and

Gy (6 + k1Go(x?) = k.

Gy (%) + kiGo(x?) = — ( (L) )(xl),

L(xY) =

Therefore,
(A21.1)ifk =0:

Gl(xz) =% +¢c, ¢1,00€R
1
Go(x?) = E(xz)2 +0x° 403, c3€R .
k= C1
In this case,

Vi) = ax® + o

1
V2!, x%) = (fljj::‘) [ L(x2)2 + cpn® + c3] + —ClF(}(:Zx)l; ko ,
V3 =C3
2
where F} = —=%;

-5
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(A2.12)ifk; > 0:

G1(3®) = ¢1 cos(Vkix®) + e sin(Vhkix?), ¢1,c, € R

Go(x?) = —=[y sin( Vi) = ¢ cos(Vikid) +c3, e €R .
Vi1

k= C3k1

In this case,

V(a2 = o1 cos(Vkix2) + ¢ sin( Vkix2)

Vz(xl,xz)z(fj{j)(x )[\/_ c1sin(vkix2) — ¢; cos(Vkix2)] + 3 % ,
V3 =C3
2
where Fjj = —é;

1
(A2.13)ifk; < 0:

A= 2 A= 2
G1(x?) = c1e VY 4 0" VY 1,00 € R

Go(x?) =

1
(cle‘/‘Tl"2 —cpe” ‘klxz) +c3, c3€R .
vV=k;
k= C3k1
In this case,

et 2 A/ I 2
VI(x?) = c1e VY 4 cpe™ Vhx

VA, 2?) = (ﬁ/{_j;)( )[

2 2 k1 Fo(xh) + Kk
(C PRV —C2€_ﬁx)+C3:|+ c3 1fo((xl))+ 0
20X

V-ki
V3 =C3

2

where Fé = —Jl.

1

(A.2.2) Let G; = 0. Then

Vi=0

e = - (2w )
ol 7 I .
%(xl,xz) 0

From the last equation we deduce that H = H(x!), and from the second one, that
( f ZH)/ = 0/
that is,

H(xY) =

Co
)’
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where ¢y € R. Therefore,
vi=0
Vi) =

Co
L) -
V3 =C3

(B) Let
fi ( 2 4%
f1 fl = k1 eR
A i3
f1 [fl f—é] = k2 eR
f
By straightforward computations, we obtain

(ff) N

therefore, f1 25 f 2Z must be constant, let’s say, ko € R, and we get
2

ki =—ky, = kg.
We have
fr ko

g2 R

8427

1
which, by integration, gives fo(x!) = ———————— on an open interval I ¢ R, where ¢y € R such that

koF(x!) = co
£0 ¢ F(I). Also, h = k2 and from (12), we get
ko 0 g

k5Fa(x%) = —Fy (x%).

The associated characteristic equation is y* + k2 = 0, and we have the following cases.
(B.1) If ko = 0 (equivalent to f; = 0, i.e., fo = c2 € R\ {0}), then

Fz(xz) =mx*+ay, 41,03 € R.
Then (4)—(6) and (9) imply that

(a1x% + ap)x°

Vi, %) = - 5 +G1(x?)
V3(x!, x%) = (1% + a)F(xY) + G3(x?)
(9V2 X _ @ a1x3 ,
g TS fl(x1>[ R )]-

(Z—sz(xl,xz,xS) =0

X

2

O ) = - 2l + G
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It follows that V2 = V2(x!,x%), and since ¢, # 0, from the third and the last equations, we get
Gi=di€R, Gs=d; €R,
and the previous system becomes

B (alx2 + az)x3

Vi, %) = +dq
ks

V3(x!, x%) = (1% + a)F(xY) + ds

2

all(xl,xa) = a1621 x°

Jx ks f1(x")

(9V2 1 .3 a1 1

%(X ,X7) = —EF(X )

By integrating the last equation, we get

V2(xl, %) = —”;cﬁf(xl)x3 + K@),
3

where K = K(x!). By differentiating this relation with respect to x! and using the third equation of the
previous system, we find

2a1cy 3.
ksfitxh)

therefore, a; = 0, hence,

K@) =

3
Vl(xs) = —k— +d1
3

V3(x!) = apF(x') + ds

2
%(xl,x% -0

2
%(xl,f) =0

Thus, V2 must be constant.
(B.2) If kg # 0, then

Fz(xz) =m COS(koxz) + ap sin(koxz), ai,a; € R.
From (10) and (11), we get

KGi(:2) = -G} (%)

Gg’(xz):[ ’(‘0 +k§F(x1)]Pz(x2),

JAED)
which is equivalent to

G1(x?) = by cos(kox?) + by sin(kox?), b1, b, € R

F,=0 (22)
Gs(x?) = azx* + a4, a3,a, € R
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or

G1(x?) = by cos(kox?) + by sin(kox?), b1, b, € R

k
ﬁé5+%ﬂf):keR , (23)
Gy () = kEa(?)

(B.2.1) If (22) holds true, then (5), (9), and (6) imply:

22,0 == (2 e - (2) v 2,0

?VZ (x X2 x3) = koGl(xz) ) (24)
1

‘Z_‘;(xlllex3) _ _f2](:3‘ )G’3(x2)

By integrating the third equation of (24), we get
VAL, ) = — 2 f(c + HE, ), (25)
3

where H = H(x!, x?). Differentiating (25) with respect to x* and replacing it in the second equation of (24),

we find
JoH
ﬁ(xlle) = koGi(x?), (26)

and by differentiating (25) with respect to x' and replacing it in the first equation of (24), we find

X1 !
ka )G,S( ) %(xlle)z_(%)(xl)Gi(XZ) ka )G/( 2) 3
(27)
_ L’z/ 1 1,2
(fz)(x JH(x', x%)
From (27) and (26), we have
OH 1 o 2. 1 3_2)1/2_(13)
B (', x%) = k3f2(x Jazx (fl ()G (x%) 7 (xhH(x', x%) | o8

oH
ﬁ(xllf) = koG1(x?)

From the first equation of (28), we deduce that a; = 0 since f, # 0 at every point. By integrating the last
equation of the same system, we get

H(x!, x?) = by sin(kox?) — by cos(kox?) + K(x1),
where K = K(x!), which, by differentiating with respect to x! and replaced in the first one, gives
(2K) =

and we obtain

Kb = f;(:agcl)' ¢ € R.
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In this case,

V1(x?) = by cos(kox?) + by sin(kox?)

20,1 .2y _ : 2y _p T 9
V2(x*, x°) = by sin(kgx”) — by cos( Ox)+f2(x1)'

V3 = a4

(B.2.2) If (23) holds true, then from the last two equations of (23), we get fo(x!) = ko _

an open interval I C R such that % ¢ F(I), and
0

Gs(x?) = 2 [a1 cos(kox?) + ap sin(kox?)] + azx® + a4, a3, a4 € R.
0

Also, (5), (9), and (6) imply:

8_‘/2 12,3 = (;2) 1)[——1—"’2(9( )+G’(x2)] (?) VA, 2, x%)
(Z—‘;(xl,xz,xS) =ko [—%Fz(xz) + Gl(xz)] : (29)

1
(Z_‘;(xl,xz,f) = _ﬁl(c—j)[ (x)F5(x )+G’(x2)]

By integrating the third equation of (29), we get
1
V2, a2, %) = —]% [FCHE () + Gy(x)] * + H(x', 2), (30)

where H = H(x!, x?). Differentiating (30) with respect to x> and replacing it in the second equation of (29),
we find

1 3
_f_z;;‘ ) [FGNF; (2) + Gy ()] + %(xl,xz) =k [—%Fz(x2) - Gl(xz)], (31)

and by differentiating (30) with respect to x! and replacing it in the first equation of (29), we find

fz

1
[F(x JF5(2) + G3(x)] 2 - fjéxz B + 31 o)
: (32)
L R

From (32) and (31), we have

%(xlle) k3 I:(:]f;z)(xl)F (x +f2(x1) [F(Xl)F (x )+ G/ (xz)]]

(ﬁ)( G () — (;2)@ JH(x', x?)

1 3
%(xl,xz) = le(c—j) [FGHFS () + GH ()] 2 + Ko [— ’2—31?2(38) + Gl(xz)]
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and we deduce that
F(x?) + ko fo(x') [F")Fy(x?) + G| = 0

oH f: , 3
T =~ (Fj) ("G} () - (72

Al [FONFY () + G5 (6)] - koFa(x?) = 0

) (HH!, x%)
. (33)

oH
ﬁ(xlfxz) = koG1(x%)
Taking into account that

Fy(x?) = a1 cos(kox?) + az sin(kox?)

G1(x?) = by cos(kox?) + by sin(kox?)

G3(x?) = _kkz[al cos(kox?) + ap sin(kox?)] + azx® + au
0

from the first equation of (33), we obtain

[a1 sin(kox?) — a3 cos(kox?)][ko + kg (2F)(x") = kfa(x')] = koas fo(x"),
which implies that a; = a, = 0, hence, a3 = 0, and

{Fz =0

Gy=may

By integrating the last equation of (33), we get

H(x!, x?) = by sin(kox?) — by cos(kox?) + K(x1),
where K = K(x!), which, by differentiating with respect to x' and replaced in the second one, imply that

(2K =0,

and we obtain
Co

o)’

K(xb) = “ co € R and H(x!,x%) = by sin(kox?) — b, cos(kox?) +

foxh)’
In this case,
V1(x?) = by cos(kox?) + by sin(kox?)

V2(x!,x2) = by sin(kox?) — by cos(kox?) + —

fld) -

V3 =y

Finally, let us notice that for f, constant (let’s say, k; € R\ {0}), we have obtained at (A.1) and (B.1) the
expressions of the component functions V1, V2 and V3, therefore, a linear combination of the two solutions
is a solution, too:

Vl(xz,x3) =mx® +ax® + a3, ay,a0,03 € R
Vz(xz,x3) = —aleF(xl) —ckox®+ay, c1,a1 €R .

V3(x!, x%) = —apksF(x') + c1ksx® + a5, a5 € R

By a direct computation, we notice that the converse implication holds true, too, i.e., since the component
functions V!, V2 and V? of a vector field V satisfy (3), then V is a Killing vector field. [
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Corollary 2.7. If fi = fi(x'), fo = ko € R\ {0}, f3 = k3 € R\ {0}, then V = Y.7_, V¥E, is a Killing vector field if
and only if

VI, %) = + oox® 4¢3
V2(x!, %) = —ciko F(x!) - Ii—4x3 +cs5
3
V3(x!, x%) = —coksF(x!) + Ii—4x2 + ¢
2
1
where F’ = ]T and C1,C2,C3,C4,C5,Cq € R.
1
Proof. It follows from Theorem 2.6. [

Corollary 2.8. If f; = k1 € R\ {0}, fo = fa(x}), f5 = ks € R\ {0}, then V = Zizl VKEr is a Killing vector field if
and only if one of the following assertions hold:

vi=0

() V(") = aeR

C1
falx)’

V3=C2, o eR

Vl(xz,x3) =2+ +c;, ¢1,0,03€R

2.1 .3 cky 4 3
(ii) Velx', x°) = —k—x —cgkox® +¢5, 4,05 €R
1 7
Cok3
V3!, x?) = —k—x1 + Caksx® + ¢, g € R
1

1 .
where F' = — and f, = ky (is constant);

1

Vi) =caxl + 0, a,0€R
4
5

c1Fo(x!) + ¢4

fa(xt)

(iii) A V2,2 = kl( )(xl) [%1(98)2 +o 4 c3] + e €R

V3:C3

2
where F) = —k—2 and fr(x!) = a1e™% 4y, 0, € R\ {0};
1

Vi(x?) = c1 cos( \/I_cxz) + ¢ sin( \/%xZ), 1,02 €R

(iv) {V2(t, ) =Ky (ﬁ)(xl) [i[c1 sin( Vkx?) — ¢ cos( Vixd)] + c3 | + M, i €R

£ Vk St
V3 =C3

k2 !
withk == -+ - —2) € (0, +0), where F,, = —
fzz (fZ ( ) 0

5,
ky’
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Vi?) = cle\/jk"2 + cpe” _k"z, ¢, €R
(@) V2, x%) =k (%)(xl)[ \/1__]{ (cle‘/jk"2 - cze_ﬂxz) + C3] + %, 3, €ER
V3= c3
% ’\! fz
with k := fz (]7) € (—0,0), where F, = e

Proof. It follows from Theorem 2.6. [

Corollary 2.9. If f; = k; € R\ {0} for any i € {1,2,3}, then V = ¥.}_, VXE, is a Killing vector field if and only if

V2, x%) = - x+ x+b1
ks

201 _’1_1 1_‘1_33

V(x,x)—klx k3x +b |

3,1 2 a2 32

V(x', x%) = kx+k2 + b3

where a1,a,a3,b1,by,b3 € R.

Proof. It follows from Corollary 2.7. [

Example 2.10. The vector field V = k3(—ksx* + k2x3) -+ k5 (kax' k1x3) 5 + k5 (—kox! + klxz) J 5 is a Killing
vector field on

R, g= ldel ®dx! + lzdx2 Qdx? + lde3 ®dx®
k2 k; k3

Proposition 2.11. If f; = fi(x") and Vi = Vi(x") for any i € {1,2,3}, then V = Y3, VXEy is a Killing vector field if
and only if one of the following assertions hold:

(i) Vi=c; e R\ {0}, V2 = cz, V3 = c3, with ¢y, c3 € R, and fa, f3 are constant;

(i) V! =0, V2 = 53 V= f3 with ¢, c3 € R.

Proof. In this case, (2) becomes

(vl =0
Vif;=0
Vifi=0
2\/ 2f2’
(V2 = Vf2
3y _ 3-L3/
(V°) = Vf3

from where we immediately get the conclusion. [

2t (;93 is a Killing vector field on

(]RS, g= Fdxl @dx! + e d @dxat + e dd ® dx3) .

Example 2.12. The vector field V =
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Remark 2.13. If fi = f, =: f(t), condition (B) from the proof of Theorem 2.6 becomes

(G- -nex _[f-ue

f/ ’ = f// f/ 2 :
f(?) =k eR 7—2(7) =k eR
% k1 —ky
Then 0 < (J%) = klz;kz and we obtain ky > ky and f(t) = koe\/;t, ko € R\ {0}.

Example 2.14. Any nowhere zero smooth function fi together with the function fy = c1ef, where c; € R\ {0},
¢ eER,and F = 1 satisfy the condition:

f
FarlE)

from (iv) of Theorem 2.6.
Example 2.15. Functions fi and f, for which

[E 12 (2]

is constant are
fl(t) = 1116 ' and fz(t) = 112(:‘ ai,ap € ]R\ {0},b e R.
Example 2.16. On the other hand, functions fi and f, for which

(F 5+ )]
L) LA fz f
is nonconstant are
f(t) = a1 and fo(t) = aze®, ay,ap e R\ {0},b € R.
Lemma 2.17. If f; = fi(x') for any i € {1,2,3}, then V = Y>_, V¥Ey is a Killing vector field if and only if

v _
ox?!
v _
ox?
ov?
ox°
V2 oVt '
otz =0
av3 oVv?

f f3 5 =0
avl aV3

f f1 =0

Proof. It follows 1mmediately from (1). O

=0
(34)
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Theorem 2.18. If f; = fi(x'), fo = o(x?), f = ks € R\ (0}, then V = ¥}_, V¥Ey is a Killing vector field if and only
if

V2, x%) = —cFo(x®) + a2 + an
Vz(xl,x3) = cFl(xl) + b3+ by ,

V3!, x%) = —arksFi(x') — biksFa(x*) + bs

1 1
where F{ = —, F}, = —,and ay,a3,b1,by,b3,c € R.

f f2
Proof. In this case, we have
1
v
ox
2
v,
ox
3
X
oV? ov! ) (39)
o * g =0
V3 oV?
— 4+ k3— =0
f2 x> 38x3
A% ov3
ks—+ fi— =0
Yo f ox!

From the first three equations of (35), we get that
V=V, ), V= VAo, VO = VR, 0,

thus, from the fourth equation, we deduce that

V! 1
- __F
ox? f 2
aV?: 1 ’
- _F

oxt  h 12

where Fi, = F1»(x%), which, by integration, give
V(a2 2%) = =F(x)F2(x?) + Gy (x°)
V2(x!, %) = Fp(@®)Fy (x") + Go(x)

1 1
where F/ = —, F, = —, Gy = G1(x®) and G, = G,(x%). Then
1= T

1 8V3 1 .2 7 3 2 7 (N3
fl(x )8x1 (x X ) = k3F12(X )FZ(x )_k3G1(x )
2 8V3 1 .2 ’ 3 1 ) .
fZ(x ) (X s X ) = _k3F12(x )Fl(x )—k3G2(X )
ox?

By differentiating the above equations with respect to x>, we get

Fh()Fo(x?) = G ()
—F(P)Fi(x) = Gy ()
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and we conclude that F’, = 0, hence, G/’ =0 = G}. Then

Flg(x3) = C1x3 + Cy, C1,C € R
Gl(x3) =mx> +ay, m,m R,

Gz(x3) = b1x3 + bz, b1,b2 eR

and we obtain

8_V3’ 1 .2\ _ k3C1 2y k3a1
o = R RO R
8_‘/3 1.2y _ ksci 1y ksbq ’
W (', x%) = fz(xz)Fl(x ) Hed)

which, by integration, give

V3(x!, x%) = ke1 F1(x))Fo(x?) — ksar Fr(x") + L1 (x?)
V3(x!,x2) = —kse1 Fi(x')Fa(x?) — kabi Fa () + Lo(x?)

where L; = L1(x?) and L, = Ly(x'). Equating the above expressions and consequently differentiating the
relation with respect to x! and x?, we get

2k3C1 2\ k3111 1
ey =y TR
2kscr 1y _ | ksba N
ey 1= [ he e )]

therefore, c; = 0, and further, we get
L1(x?) + kb1 Fa(x*) = Lo(x") + ksar F1 (x'),
which must be constant, let’s say, by, and we obtain
V2, x%) = —Fo(6%) + ayx® + ay
V2(x!, 2%) = o F1(x!) + b1x® + by
V3(x!, %) = —ksay F1(x') = kb1 Fo(x%) + bo
By a direct computation, we notice that the converse implication holds true, too, i.e., since the component

functions V!, V2 and V? of a vector field V satisfy (35), then V is a Killing vector field. [

Example 2.19. The vector field V = e (a3 — exz)% +e° o3+ e"l)% - (e"1 + e"Z)% is a Killing vector field on

(]RS, g= e A @dx! + e A @d +d ® dx3) .

Proposition 2.20. If f; = fi(x') and V! = VI(x') for any i € {1,2,3}, then V = Y.i_; V¥E is a Killing vector field if
andonly if V' = c; e R fori € {1,2,3}.

Proof. In this case, (34) becomes

(V' =0
(V3 =0,
(V%) =0

from where we immediately get the conclusion. [
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Example 2.21. The vector field V = ¢*' At gate ’ % is a Killing vector field on

(]RS, g= el @dx! + e A @d + e Fd ® dx3) .
According to the previous results, we can state:

Proposition 2.22. Let Vi =Y., ViE;and Vo = Y. VIE..
W) If fi = fi(x") and V; = V(x") for any i € {1,2,3} and k € {1,2}, and V1 and V are Killing vector fields, then

57" (i eR,ie{2,3),6eR,ie(l,?23).
i

(ii) I fi = fi(x") and V; = Vi(x') for any i € {1,2,3} and k € {1,2}, and V1 and V are Killing vector fields, then

Vi=Vi+ea, Vi=Vi+é+

Vi = Vl2 + ¢; (Cl' eR,ie {11213})

Proof. The assertions follow from Propositions 2.11 and 2.20. O
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