

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On certain symmetries of \mathbb{R}^3 with a diagonal metric

Adara M. Blagaa

^aDepartment of Mathematics, Faculty of Mathematics and Computer Science, West University of Timişoara, Timişoara, Romania

Abstract. We determine Killing vector fields on the 3-dimensional space \mathbb{R}^3 endowed with a special diagonal metric.

1. Preliminaries

The aim of the paper is to determine Killing vector fields on the 3-dimensional space \mathbb{R}^3 endowed with some special diagonal metrics, extending the results for the 2-dimensional case treated in [1]. Due to the fact that determining the Killing vector fields for a general diagonal metric is an extended study, we begin it here and we continue it, for other types of Lamé coefficients, in a different work.

Let g be a Riemannian metric on \mathbb{R}^3 given by

$$g = \frac{1}{f_1^2} dx^1 \otimes dx^1 + \frac{1}{f_2^2} dx^2 \otimes dx^2 + \frac{1}{f_3^2} dx^3 \otimes dx^3,$$

where f_1 , f_2 and f_3 are smooth functions nowhere zero on \mathbb{R}^3 , and x^1 , x^2 , x^3 stand for the standard coordinates in \mathbb{R}^3 . Let

$$\left\{E_1:=f_1\frac{\partial}{\partial x^1},\ E_2:=f_2\frac{\partial}{\partial x^2},\ E_3:=f_3\frac{\partial}{\partial x^3}\right\}$$

be a local orthonormal frame. We will denote as follows:

$$\frac{f_2}{f_1} \cdot \frac{\partial f_1}{\partial x^2} =: f_{12}, \quad \frac{f_3}{f_1} \cdot \frac{\partial f_1}{\partial x^3} =: f_{13}, \quad \frac{f_1}{f_2} \cdot \frac{\partial f_2}{\partial x^1} =: f_{21},$$

$$\frac{f_3}{f_2} \cdot \frac{\partial f_2}{\partial x^3} =: f_{23}, \quad \frac{f_1}{f_3} \cdot \frac{\partial f_3}{\partial x^1} =: f_{31}, \quad \frac{f_2}{f_3} \cdot \frac{\partial f_3}{\partial x^2} =: f_{32}.$$

The Levi-Civita connection ∇ of g is given by (see [2]):

$$\nabla_{E_1}E_1 = f_{12}E_2 + f_{13}E_3, \ \nabla_{E_2}E_2 = f_{21}E_1 + f_{23}E_3, \ \nabla_{E_3}E_3 = f_{31}E_1 + f_{32}E_2,$$

$$\nabla_{E_1}E_2 = -f_{12}E_1, \ \nabla_{E_2}E_3 = -f_{23}E_2, \ \nabla_{E_3}E_1 = -f_{31}E_3,$$

$$\nabla_{E_1}E_3 = -f_{13}E_1, \ \nabla_{E_3}E_2 = -f_{32}E_3, \ \nabla_{E_2}E_1 = -f_{21}E_2.$$

In the rest of the paper, whenever a function f depends only on some of its variables, we will write in its argument only that variables in order to emphasize this fact, for example, $f(x^i)$, $f(x^i, x^j)$.

2020 Mathematics Subject Classification. Primary 53B25; Secondary 53B50.

Keywords. Diagonal metric; Killing vector field. Received: 16 April 2025; Accepted: 31 May 2025

Communicated by Mića Stanković

Email address: adarablaga@yahoo.com (Adara M. Blaga)

ORCID iD: https://orcid.org/0000-0003-0237-3866 (Adara M. Blaga)

2. Killing vector fields w.r.t. these metrics

We recall that a vector field V on (\mathbb{R}^3, g) is called a *Killing vector field* [3] if the Lie derivative £ of the metric g in the direction of V vanishes, i.e.,

$$(\pounds_V g)(X, Y) := V(g(X, Y)) - g([V, X], Y) - g(X, [V, Y]) = 0$$

for any smooth vector fields X and Y on \mathbb{R}^3 .

In certain particular cases, we shall determine the Killing vector fields, as well as the relation between two Killing vector fields for the metric g.

Let $V = \sum_{k=1}^{3} V^k E_k$, with V^k , $k \in \{1, 2, 3\}$, smooth functions on \mathbb{R}^3 . Then

$$\begin{split} (\pounds_{V}g)(E_{i},E_{j}) &= g(\nabla_{E_{i}}V,E_{j}) + g(E_{i},\nabla_{E_{j}}V) \\ &= E_{i}(V^{j}) + E_{j}(V^{i}) + \sum_{k=1}^{3} V^{k} \{g(\nabla_{E_{i}}E_{k},E_{j}) + g(E_{i},\nabla_{E_{j}}E_{k})\} \end{split}$$

for any $i, j \in \{1, 2, 3\}$, which is equivalent to

$$\begin{cases} (\pounds_V g)(E_1, E_1) = 2\{E_1(V^1) - f_{12}V^2 - f_{13}V^3\} \\ (\pounds_V g)(E_2, E_2) = 2\{E_2(V^2) - f_{21}V^1 - f_{23}V^3\} \\ (\pounds_V g)(E_3, E_3) = 2\{E_3(V^3) - f_{31}V^1 - f_{32}V^2\} \\ (\pounds_V g)(E_1, E_2) = E_1(V^2) + E_2(V^1) + f_{12}V^1 + f_{21}V^2 \\ (\pounds_V g)(E_2, E_3) = E_2(V^3) + E_3(V^2) + f_{23}V^2 + f_{32}V^3 \\ (\pounds_V g)(E_3, E_1) = E_3(V^1) + E_1(V^3) + f_{31}V^3 + f_{13}V^1 \end{cases}$$

and we can state:

Proposition 2.1. The vector field $V = \sum_{k=1}^{3} V^{k} E_{k}$ is a Killing vector field if and only if

$$\begin{cases}
f_1 \frac{\partial V^1}{\partial x^1} - \frac{f_2}{f_1} \cdot \frac{\partial f_1}{\partial x^2} V^2 - \frac{f_3}{f_1} \cdot \frac{\partial f_1}{\partial x^3} V^3 = 0 \\
f_2 \frac{\partial V^2}{\partial x^2} - \frac{f_1}{f_2} \cdot \frac{\partial f_2}{\partial x^1} V^1 - \frac{f_3}{f_2} \cdot \frac{\partial f_2}{\partial x^3} V^3 = 0 \\
f_3 \frac{\partial V^3}{\partial x^3} - \frac{f_1}{f_3} \cdot \frac{\partial f_3}{\partial x^1} V^1 - \frac{f_2}{f_3} \cdot \frac{\partial f_3}{\partial x^2} V^2 = 0 \\
f_1 \frac{\partial V^2}{\partial x^1} + f_2 \frac{\partial V^1}{\partial x^2} + \frac{f_2}{f_1} \cdot \frac{\partial f_1}{\partial x^2} V^1 + \frac{f_1}{f_2} \cdot \frac{\partial f_2}{\partial x^1} V^2 = 0 \\
f_2 \frac{\partial V^3}{\partial x^2} + f_3 \frac{\partial V^2}{\partial x^3} + \frac{f_3}{f_2} \cdot \frac{\partial f_2}{\partial x^3} V^2 + \frac{f_2}{f_3} \cdot \frac{\partial f_3}{\partial x^2} V^3 = 0 \\
f_3 \frac{\partial V^1}{\partial x^3} + f_1 \frac{\partial V^3}{\partial x^1} + \frac{f_1}{f_3} \cdot \frac{\partial f_3}{\partial x^1} V^3 + \frac{f_3}{f_1} \cdot \frac{\partial f_1}{\partial x^3} V^1 = 0
\end{cases}$$

A natural question is: For which functions f_1 , f_2 and f_3 , the basis vector fields E_1 , E_2 and E_3 are Killing vector fields w.r.t. g? And we can state:

Proposition 2.2. E_1 is a Killing vector field on (\mathbb{R}^3, q) if and only if

$$\begin{cases} f_1 = f_1(x^1) \\ f_2 = f_2(x^2, x^3) \\ f_3 = f_3(x^2, x^3) \end{cases}.$$

Proof. Replacing $V^1 = 1$, $V^2 = V^3 = 0$ in (1), we get

$$\begin{cases} \frac{\partial f_2}{\partial x^1} = 0\\ \frac{\partial f_3}{\partial x^1} = 0\\ \frac{\partial f_1}{\partial x^2} = 0\\ \frac{\partial f_1}{\partial x^3} = 0 \end{cases}$$

hence, we get the conclusion. \Box

Example 2.3. The vector field $E_1 = e^{x^1} \frac{\partial}{\partial x^1}$ is a Killing vector field on

$$\left(\mathbb{R}^3, \ g = e^{-2x^1} dx^1 \otimes dx^1 + e^{x^2 + x^3} dx^2 \otimes dx^2 + e^{x^2 x^3} dx^3 \otimes dx^3\right).$$

Similarly, for the other two vector fields E_2 and E_3 , we have:

Corollary 2.4. (i) E_2 is a Killing vector field on (\mathbb{R}^3, g) if and only if

$$\begin{cases} f_1 = f_1(x^1, x^3) \\ f_2 = f_2(x^2) \\ f_3 = f_3(x^1, x^3) \end{cases}$$

(ii) E_3 is a Killing vector field on (\mathbb{R}^3, g) if and only if

$$\begin{cases} f_1 = f_1(x^1, x^2) \\ f_2 = f_2(x^1, x^2) \\ f_3 = f_3(x^3) \end{cases}$$

Lemma 2.5. If $f_i = f_i(x^1)$ for any $i \in \{1, 2, 3\}$, then $V = \sum_{k=1}^3 V^k E_k$ is a Killing vector field if and only if

$$\begin{cases} \frac{\partial V^{1}}{\partial x^{1}} = 0 \\ f_{2} \frac{\partial V^{2}}{\partial x^{2}} - f_{1} \frac{f_{2}'}{f_{2}} V^{1} = 0 \\ f_{3} \frac{\partial V^{3}}{\partial x^{3}} - f_{1} \frac{f_{3}'}{f_{3}} V^{1} = 0 \\ f_{1} \frac{\partial V^{2}}{\partial x^{1}} + f_{2} \frac{\partial V^{1}}{\partial x^{2}} + f_{1} \frac{f_{2}'}{f_{2}} V^{2} = 0 \\ f_{2} \frac{\partial V^{3}}{\partial x^{2}} + f_{3} \frac{\partial V^{2}}{\partial x^{3}} = 0 \\ f_{3} \frac{\partial V^{1}}{\partial x^{3}} + f_{1} \frac{\partial V^{3}}{\partial x^{1}} + f_{1} \frac{f_{3}'}{f_{3}} V^{3} = 0 \end{cases}$$

$$(2)$$

Proof. It follows immediately from (1). \Box

Theorem 2.6. If $f_1 = f_1(x^1)$, $f_2 = f_2(x^1)$, $f_3 = k_3 \in \mathbb{R} \setminus \{0\}$, then $V = \sum_{k=1}^3 V^k E_k$ is a Killing vector field if and only if one of the following assertions hold:

(i)
$$\begin{cases} V^{1} = 0 \\ V^{2}(x^{1}) = \frac{c_{1}}{f_{2}(x^{1})}, c_{1} \in \mathbb{R} \end{cases};$$
$$V^{3} = c_{2}, c_{2} \in \mathbb{R}$$

(ii)
$$\begin{cases} V^{1}(x^{2}, x^{3}) = c_{1}x^{2} + c_{2}x^{3} + c_{3}, \ c_{1}, c_{2}, c_{3} \in \mathbb{R} \\ V^{2}(x^{1}, x^{3}) = -c_{1}k_{2}F(x^{1}) - c_{4}k_{2}x^{3} + c_{5}, \ c_{4}, c_{5} \in \mathbb{R} \end{cases},$$

$$V^{3}(x^{1}, x^{2}) = -c_{2}k_{3}F(x^{1}) + c_{4}k_{3}x^{2} + c_{6}, \ c_{6} \in \mathbb{R}$$

where $F' = \frac{1}{f_1}$ and $f_2 = k_2$ (is constant);

$$(iii) \begin{cases} V^1(x^2) = c_1 x^2 + c_2, & c_1, c_2 \in \mathbb{R} \\ V^2(x^1, x^2) = \left(f_1 \frac{f_2'}{f_2^2} \right) (x^1) \left[\frac{c_1}{2} (x^2)^2 + c_2 x^2 + c_3 \right] + \frac{c_1 F_0(x^1) + c_4}{f_2(x^1)}, & c_3, c_4 \in \mathbb{R} \end{cases},$$

with
$$\frac{f_1'}{f_1} \cdot \frac{f_2'}{f_2} + \left(\frac{f_2'}{f_2}\right)' = 0$$
 and f_2 nonconstant, where $F_0' = -\frac{f_2^2}{f_1}$;

$$\begin{cases} V^{1}(x^{2}) = c_{1}\cos(\sqrt{k}x^{2}) + c_{2}\sin(\sqrt{k}x^{2}), & c_{1}, c_{2} \in \mathbb{R} \\ V^{2}(x^{1}, x^{2}) = \left(f_{1}\frac{f_{2}'}{f_{2}^{2}}\right)(x^{1})\left[\frac{1}{\sqrt{k}}[c_{1}\sin(\sqrt{k}x^{2}) - c_{2}\cos(\sqrt{k}x^{2})] + c_{3}\right] + \frac{c_{3}kF_{0}(x^{1}) + c_{4}}{f_{2}(x^{1})}, & c_{3}, c_{4} \in \mathbb{R} \end{cases},$$

$$V^{3} = c_{3}$$

with
$$k := \left(\frac{f_1}{f_2}\right)^2 \left[\frac{f_1'}{f_1} \cdot \frac{f_2'}{f_2} + \left(\frac{f_2'}{f_2}\right)'\right] \in (0, +\infty)$$
, where $F_0' = -\frac{f_2^2}{f_1}$;

$$\begin{cases} V^{1}(x^{2}) = c_{1}e^{\sqrt{-k}x^{2}} + c_{2}e^{-\sqrt{-k}x^{2}}, & c_{1}, c_{2} \in \mathbb{R} \\ V^{2}(x^{1}, x^{2}) = \left(f_{1}\frac{f_{2}'}{f_{2}^{2}}\right)(x^{1})\left[\frac{1}{\sqrt{-k}}\left(c_{1}e^{\sqrt{-k}x^{2}} - c_{2}e^{-\sqrt{-k}x^{2}}\right) + c_{3}\right] + \frac{c_{3}kF_{0}(x^{1}) + c_{4}}{f_{2}(x^{1})}, & c_{3}, c_{4} \in \mathbb{R} \end{cases},$$

$$V^{3} = c_{3}$$

with
$$k := \left(\frac{f_1}{f_2}\right)^2 \left[\frac{f_1'}{f_1} \cdot \frac{f_2'}{f_2} + \left(\frac{f_2'}{f_2}\right)'\right] \in (-\infty, 0)$$
, where $F_0' = -\frac{f_2^2}{f_1}$.

Proof. In this case, we have

$$\begin{cases} \frac{\partial V^1}{\partial x^1} = 0 \\ f_2 \frac{\partial V^2}{\partial x^2} - f_1 \frac{f_2'}{f_2} V^1 = 0 \\ \frac{\partial V^3}{\partial x^3} = 0 \\ f_1 \frac{\partial V^2}{\partial x^1} + f_2 \frac{\partial V^1}{\partial x^2} + f_1 \frac{f_2'}{f_2} V^2 = 0 \\ f_2 \frac{\partial V^3}{\partial x^2} + k_3 \frac{\partial V^2}{\partial x^3} = 0 \\ k_3 \frac{\partial V^1}{\partial x^3} + f_1 \frac{\partial V^3}{\partial x^1} = 0 \end{cases}$$

$$(3)$$

From the first and the third equations of (3), we get that

$$V^1 = V^1(x^2, x^3), V^3 = V^3(x^1, x^2),$$

thus, from the last equation, we deduce that

$$\begin{cases} \frac{\partial V^1}{\partial x^3} = -\frac{1}{k_3} F_2 \\ \frac{\partial V^3}{\partial x^1} = \frac{1}{f_1} F_2 \end{cases}$$

where $F_2 = F_2(x^2)$, which, by integration, give

$$\begin{cases} V^{1}(x^{2}, x^{3}) = -\frac{x^{3}}{k_{3}} F_{2}(x^{2}) + G_{1}(x^{2}) \\ V^{3}(x^{1}, x^{2}) = F_{2}(x^{2}) F(x^{1}) + G_{3}(x^{2}) \end{cases}$$
(4)

where $F' = \frac{1}{f_1}$, $G_1 = G_1(x^2)$, $G_3 = G_3(x^2)$. Then

$$f_1(x^1)\frac{\partial V^2}{\partial x^1}(x^1, x^2, x^3) = -f_2(x^1)\left[-\frac{x^3}{k_3}F_2'(x^2) + G_1'(x^2)\right] - \left(f_1\frac{f_2'}{f_2}\right)(x^1)V^2(x^1, x^2, x^3),\tag{5}$$

$$k_3 \frac{\partial V^2}{\partial x^3}(x^1, x^2, x^3) = -f_2(x^1) \left[F(x^1) F_2'(x^2) + G_3'(x^2) \right]. \tag{6}$$

By differentiating the above equations with respect to x^2 , we get

$$f_1(x^1) \frac{\partial^2 V^2}{\partial x^1 \partial x^2} (x^1, x^2, x^3) = -f_2(x^1) \left[-\frac{x^3}{k_3} F_2''(x^2) + G_1''(x^2) \right] - \left(f_1 \frac{f_2'}{f_2} \right) (x^1) \frac{\partial V^2}{\partial x^2} (x^1, x^2, x^3), \tag{7}$$

$$k_3 \frac{\partial^2 V^2}{\partial x^3 \partial x^2} (x^1, x^2, x^3) = -f_2(x^1) \left[F(x^1) F_2''(x^2) + G_3''(x^2) \right]. \tag{8}$$

Replacing V^1 in the second equation of (3), we find

$$\frac{\partial V^2}{\partial x^2}(x^1, x^2, x^3) = \left(f_1 \frac{f_2'}{f_2^2}\right)(x^1) \left[-\frac{x^3}{k_3} F_2(x^2) + G_1(x^2) \right],\tag{9}$$

which, replaced in (7) and (8), gives

$$\left(\frac{f_1}{f_2}\left(f_1\frac{f_2'}{f_2^2}\right)' + \left(f_1\frac{f_2'}{f_2^2}\right)^2\right)(x^1)\left[-\frac{x^3}{k_3}F_2(x^2) + G_1(x^2)\right] = -\left[-\frac{x^3}{k_3}F_2''(x^2) + G_1''(x^2)\right]$$
(10)

and

$$\left(f_1 \frac{f_2'}{f_2^3}\right)(x^1) F_2(x^2) = F(x^1) F_2''(x^2) + G_3''(x^2).$$
(11)

Let us denote $h = \frac{f_1}{f_2} \left(f_1 \frac{f_2'}{f_2^2} \right)' + \left(f_1 \frac{f_2'}{f_2^2} \right)^2$. By differentiating (10) with respect to x^3 and x^1 , we successively infer

$$h(x^1)F_2(x^2) = -F_2''(x^2) \tag{12}$$

and

$$h'(x^1)F_2(x^2) = 0,$$

which is equivalent to

$$h = k_1 \in \mathbb{R} \text{ or } F_2 = 0. \tag{13}$$

Let us denote $l = f_1 \left(f_1 \frac{f_2'}{f_2^3} \right)'$. Two times differentiating (11) with respect to x^1 , we get

$$l(x^1)F_2(x^2) = F_2''(x^2)$$

and

$$l'(x^1)F_2(x^2) = 0,$$

which is equivalent to

$$l = k_2 \in \mathbb{R} \text{ or } F_2 = 0. \tag{14}$$

From (13) and (14), we conclude that

$$F_2 = 0 \text{ or } \begin{cases} \frac{f_1}{f_2} \left(f_1 \frac{f_2'}{f_2^2} \right)' + \left(f_1 \frac{f_2'}{f_2^2} \right)^2 = k_1 \in \mathbb{R} \\ f_1 \left(f_1 \frac{f_2'}{f_2^3} \right)' = k_2 \in \mathbb{R} \end{cases}.$$

(A) Let $F_2 = 0$. Then (4) implies that

$$\begin{cases} V^{1}(x^{2}) = G_{1}(x^{2}) \\ V^{3}(x^{2}) = G_{3}(x^{2}) \end{cases}$$
 (15)

Also:

$$\begin{cases} \frac{\partial V^2}{\partial x^1}(x^1, x^2, x^3) = -\left(\frac{f_2}{f_1}\right)(x^1)G_1'(x^2) - \left(\frac{f_2'}{f_2}\right)(x^1)V^2(x^1, x^2, x^3) \\ \frac{\partial V^2}{\partial x^2}(x^1, x^2, x^3) = \left(f_1\frac{f_2'}{f_2^2}\right)(x^1)G_1(x^2) \\ \frac{\partial V^2}{\partial x^3}(x^1, x^2, x^3) = -\frac{f_2(x^1)}{k_3}G_3'(x^2) \end{cases}.$$

By integrating the last equation, we get

$$V^{2}(x^{1}, x^{2}, x^{3}) = -\frac{f_{2}(x^{1})}{k_{3}}G'_{3}(x^{2})x^{3} + H(x^{1}, x^{2}),$$
(16)

where $H = H(x^1, x^2)$, which, by differentiating with respect to x^1 and x^2 respectively, and considering the first two equations of the previous system, give

$$-2\frac{f_2'(x^1)}{k_3}G_3'(x^2)x^3 = -\left(\frac{f_2}{f_1}\right)(x^1)G_1'(x^2) - \left(\frac{f_2'}{f_2}\right)(x^1)H(x^1, x^2) - \frac{\partial H}{\partial x^1}(x^1, x^2)$$
(17)

and

$$-\frac{f_2(x^1)}{k_3}G_3''(x^2)x^3 = \left(f_1\frac{f_2'}{f_2^2}\right)(x^1)G_1(x^2) - \frac{\partial H}{\partial x^2}(x^1, x^2). \tag{18}$$

By differentiating (17) and (18) with respect to x^3 , we find

$$f_2'(x^1)G_3'(x^2) = 0$$

and

$$G_3^{"}=0$$
,

which is equivalent to

$$f_2 = c_2 \in \mathbb{R} \setminus \{0\} \text{ or } G_3 = c_3 \in \mathbb{R}$$

and

$$G_3(x^2) = a_1 x^2 + b_1, \ a_1, b_1 \in \mathbb{R}.$$
 (20)

From (19) and (20), we conclude that

$$\begin{cases} f_2 = c_2 \in \mathbb{R} \setminus \{0\} \\ G_3(x^2) = a_1 x^2 + b_1, \ a_1, b_1 \in \mathbb{R} \end{cases} \text{ or } G_3 = c_3 \in \mathbb{R}.$$
(A.1) Let
$$\begin{cases} f_2 = c_2 \in \mathbb{R} \setminus \{0\} \\ G_3(x^2) = a_1 x^2 + b_1, \ a_1, b_1 \in \mathbb{R} \end{cases}.$$

Then

$$\begin{cases} V^{1}(x^{2}) = G_{1}(x^{2}) \\ V^{2}(x^{1}, x^{2}, x^{3}) = -\frac{a_{1}c_{2}}{k_{3}}x^{3} + H(x^{1}, x^{2}) \\ V^{3}(x^{2}) = a_{1}x^{2} + b_{1} \end{cases}.$$

From (17) and (18), we get

$$\begin{cases} \frac{\partial H}{\partial x^1}(x^1, x^2) = -\frac{c_2}{f_1(x^1)}G_1'(x^2) \\ \frac{\partial H}{\partial x^2}(x^1, x^2) = 0 \end{cases}.$$

From the second equation we deduce that $H = H(x^1)$, and from the first one, we deduce that

$$-\frac{(f_1H')(x^1)}{c_2} = G_1'(x^2)$$

must be constant, let's say, $c_0 \in \mathbb{R}$, and we obtain

$$H(x^1) = -c_0c_2F(x^1) + c_4, \ c_4 \in \mathbb{R}$$

and

$$G_1(x^2) = c_0 x^2 + c_5, \ c_5 \in \mathbb{R}$$

Therefore,

$$\begin{cases} V^{1}(x^{2}) = c_{0}x^{2} + c_{5} \\ V^{2}(x^{1}, x^{3}) = -\frac{a_{1}c_{2}}{k_{3}}x^{3} - c_{0}c_{2}F(x^{1}) + c_{4} \\ V^{3}(x^{2}) = a_{1}x^{2} + b_{1} \end{cases}$$

(A.2) Let $G_3 = c_3 \in \mathbb{R}$. Then (15) and (16) imply that

$$\begin{cases} V^{1}(x^{2}) = G_{1}(x^{2}) \\ V^{2}(x^{1}, x^{2}) = H(x^{1}, x^{2}) \\ V^{3} = c_{3} \end{cases}.$$

From (17) and (18), we get

$$\begin{cases} \frac{\partial H}{\partial x^{1}}(x^{1}, x^{2}) = -\left(\frac{f_{2}'}{f_{2}}\right)(x^{1})H(x^{1}, x^{2}) - \left(\frac{f_{2}}{f_{1}}\right)(x^{1})G_{1}'(x^{2}) \\ \frac{\partial H}{\partial x^{2}}(x^{1}, x^{2}) = \left(f_{1}\frac{f_{2}'}{f_{2}^{2}}\right)(x^{1})G_{1}(x^{2}) \end{cases}$$
(21)

The first equation of the previous system is equivalent to

$$\frac{\partial}{\partial x^1} \left(f_2 H(\cdot, x^2) \right) (x^1) = -\left(\frac{f_2^2}{f_1} \right) (x^1) G_1'(x^2),$$

which, by integration, gives

$$H(x^{1}, x^{2}) = \left(\frac{F_{0}}{f_{2}}\right)(x^{1})G'_{1}(x^{2}) + \frac{1}{f_{2}(x^{1})}K(x^{2}),$$

where $F'_0 = -\frac{f_2^2}{f_1}$ and $K = K(x^2)$. Differentiating it with respect to x^2 and taking into account the second equation of (21), we find

$$F_0(x^1)G_1''(x^2) + K'(x^2) = \left(f_1 \frac{f_2'}{f_2}\right)(x^1)G_1(x^2),$$

which, by differentiating with respect to x^1 , implies

$$G_1''(x^2) = -\left(\frac{f_1}{f_2^2}\right)(x^1)\left(f_1\frac{f_2'}{f_2}\right)'(x^1)G_1(x^2) = -h(x^1)G_1(x^2),$$

where

$$h = \frac{f_1}{f_2} \left(f_1 \frac{f_2'}{f_2^2} \right)' + \left(f_1 \frac{f_2'}{f_2^2} \right)^2 = \left(\frac{f_1}{f_2} \right)^2 \left[\frac{f_1'}{f_1} \cdot \frac{f_2'}{f_2} + \left(\frac{f_2'}{f_2} \right)' \right],$$

which further, by differentiating with respect to x^1 , implies

$$h'(x^1)G_1(x^2) = 0,$$

which is equivalent to

$$h = k_1 \in \mathbb{R}$$
 or $G_1 = 0$.

(A.2.1) Let
$$h = k_1 \in \mathbb{R}$$
. We have the following cases:
 (A.2.1.1) $k_1 = 0$; in this case, $G_1(x^2) = c_1x^2 + c_2$, $c_1, c_2 \in \mathbb{R}$;
 (A.2.1.2) $k_1 > 0$; in this case, $G_1(x^2) = c_1\cos(\sqrt{k_1}x^2) + c_2\sin(\sqrt{k_1}x^2)$, $c_1, c_2 \in \mathbb{R}$;
 (A.2.1.3) $k_1 < 0$; in this case, $G_1(x^2) = c_1e^{\sqrt{-k_1}x^2} + c_2e^{-\sqrt{-k_1}x^2}$, $c_1, c_2 \in \mathbb{R}$.

By integrating the second equation of (21), we get

$$H(x^1, x^2) = \left(f_1 \frac{f_2'}{f_2^2}\right)(x^1)G_0(x^2) + L(x^1),$$

where $G'_0 = G_1$ and $L = L(x^1)$. Differentiating it with respect to x^1 and taking into account the first equation of (21), we find

$$\left(f_1\frac{f_2'}{f_2^2}\right)'(x^1)G_0(x^2) + L'(x^1) = -\left(\frac{f_2'}{f_2}\right)(x^1)\left[\left(f_1\frac{f_2'}{f_2^2}\right)(x^1)G_0(x^2) + L(x^1)\right] - \left(\frac{f_2}{f_1}\right)(x^1)G_0''(x^2),$$

which is equivalent to

$$G_0^{\prime\prime}(x^2) + k_1 G_0(x^2) = -\left(\frac{f_1}{f_2^2}(f_2 L)^{\prime}\right)(x^1),$$

which must be a constant, let's say, $k \in \mathbb{R}$, and we obtain

$$L(x^{1}) = \frac{kF_{0}(x^{1}) + k_{0}}{f_{2}(x^{1})},$$

where $k_0 \in \mathbb{R}$, and

$$G_0''(x^2) + k_1 G_0(x^2) = k.$$

Therefore,

(A.2.1.1) if
$$k_1 = 0$$
:

$$\begin{cases} G_1(x^2) = c_1 x^2 + c_2, & c_1, c_2 \in \mathbb{R} \\ G_0(x^2) = \frac{c_1}{2} (x^2)^2 + c_2 x^2 + c_3, & c_3 \in \mathbb{R} \\ k = c_1 \end{cases}$$

In this case,

$$\begin{cases} V^{1}(x^{2}) = c_{1}x^{2} + c_{2} \\ V^{2}(x^{1}, x^{2}) = \left(f_{1}\frac{f_{2}'}{f_{2}^{2}}\right)(x^{1})\left[\frac{c_{1}}{2}(x^{2})^{2} + c_{2}x^{2} + c_{3}\right] + \frac{c_{1}F_{0}(x^{1}) + k_{0}}{f_{2}(x^{1})} , \\ V^{3} = c_{3} \end{cases}$$

where
$$F'_0 = -\frac{f_2^2}{f_1}$$
;

(A.2.1.2) if
$$k_1 > 0$$
:

$$\begin{cases} G_1(x^2) = c_1 \cos(\sqrt{k_1}x^2) + c_2 \sin(\sqrt{k_1}x^2), & c_1, c_2 \in \mathbb{R} \\ G_0(x^2) = \frac{1}{\sqrt{k_1}} [c_1 \sin(\sqrt{k_1}x^2) - c_2 \cos(\sqrt{k_1}x^2)] + c_3, & c_3 \in \mathbb{R} \\ k = c_3 k_1 \end{cases}$$

In this case,

$$\begin{cases} V^{1}(x^{2}) = c_{1}\cos(\sqrt{k_{1}}x^{2}) + c_{2}\sin(\sqrt{k_{1}}x^{2}) \\ V^{2}(x^{1}, x^{2}) = \left(f_{1}\frac{f_{2}'}{f_{2}'}\right)(x^{1}) \left[\frac{1}{\sqrt{k_{1}}}[c_{1}\sin(\sqrt{k_{1}}x^{2}) - c_{2}\cos(\sqrt{k_{1}}x^{2})] + c_{3}\right] + \frac{c_{3}k_{1}F_{0}(x^{1}) + k_{0}}{f_{2}(x^{1})} \end{cases},$$

$$V^{3} = c_{3}$$

where
$$F'_0 = -\frac{f_2^2}{f_1}$$
; (A.2.1.3) if $k_1 < 0$:

$$\begin{cases} G_1(x^2) = c_1 e^{\sqrt{-k_1}x^2} + c_2 e^{-\sqrt{-k_1}x^2}, & c_1, c_2 \in \mathbb{R} \\ G_0(x^2) = \frac{1}{\sqrt{-k_1}} \left(c_1 e^{\sqrt{-k_1}x^2} - c_2 e^{-\sqrt{-k_1}x^2} \right) + c_3, & c_3 \in \mathbb{R} \\ k = c_3 k_1 \end{cases}$$

In this case,

$$\begin{cases} V^{1}(x^{2}) = c_{1}e^{\sqrt{-k_{1}}x^{2}} + c_{2}e^{-\sqrt{-k_{1}}x^{2}} \\ V^{2}(x^{1}, x^{2}) = \left(f_{1}\frac{f_{2}'}{f_{2}^{2}}\right)(x^{1})\left[\frac{1}{\sqrt{-k_{1}}}\left(c_{1}e^{\sqrt{-k_{1}}x^{2}} - c_{2}e^{-\sqrt{-k_{1}}x^{2}}\right) + c_{3}\right] + \frac{c_{3}k_{1}F_{0}(x^{1}) + k_{0}}{f_{2}(x^{1})} , \\ V^{3} = c_{3} \end{cases}$$

where
$$F_0' = -\frac{f_2^2}{f_1}$$
.
(A.2.2) Let $G_1 = 0$. Then

$$\begin{cases} V^1 = 0 \\ \frac{\partial H}{\partial x^1}(x^1, x^2) = -\left(\frac{f_2'}{f_2}\right)(x^1)H(x^1, x^2) \\ \frac{\partial H}{\partial x^2}(x^1, x^2) = 0 \end{cases}.$$

From the last equation we deduce that $H = H(x^1)$, and from the second one, that

$$(f_2H)'=0,$$

that is,

$$H(x^1) = \frac{c_0}{f_2(x^1)},$$

where $c_0 \in \mathbb{R}$. Therefore,

$$\begin{cases} V^{1} = 0 \\ V^{2}(x^{1}) = \frac{c_{0}}{f_{2}(x^{1})} \end{cases}$$

$$V^{3} = c_{3}$$

(B) Let

$$\begin{cases} \frac{f_1}{f_2} \left(f_1 \frac{f_2'}{f_2^2} \right)' + \left(f_1 \frac{f_2'}{f_2^2} \right)^2 = k_1 \in \mathbb{R} \\ f_1 \left(f_1 \frac{f_2'}{f_2^3} \right)' = k_2 \in \mathbb{R} \end{cases}$$

By straightforward computations, we obtain

$$\left(f_1 \frac{f_2'}{f_2^2}\right)^2 = \frac{k_1 - k_2}{2};$$

therefore, $f_1 \frac{f_2'}{f_2^2}$ must be constant, let's say, $k_0 \in \mathbb{R}$, and we get

$$k_1 = -k_2 = k_0^2$$
.

We have

$$\frac{f_2'}{f_2^2} = \frac{k_0}{f_1},$$

which, by integration, gives $f_2(x^1) = -\frac{1}{k_0 F(x^1) - c_0}$ on an open interval $I \subset \mathbb{R}$, where $c_0 \in \mathbb{R}$ such that $\frac{c_0}{k_0} \notin F(I)$. Also, $h = k_0^2$ and from (12), we get

$$k_0^2 F_2(x^2) = -F_2^{\prime\prime}(x^2).$$

The associated characteristic equation is $y^2 + k_0^2 = 0$, and we have the following cases. (B.1) If $k_0 = 0$ (equivalent to $f_2' = 0$, i.e., $f_2 = c_2 \in \mathbb{R} \setminus \{0\}$), then

$$F_2(x^2) = a_1 x^2 + a_2, \ a_1, a_2 \in \mathbb{R}$$

Then (4)–(6) and (9) imply that

$$\begin{cases} V^{1}(x^{2}, x^{3}) = -\frac{(a_{1}x^{2} + a_{2})x^{3}}{k_{3}} + G_{1}(x^{2}) \\ V^{3}(x^{1}, x^{2}) = (a_{1}x^{2} + a_{2})F(x^{1}) + G_{3}(x^{2}) \\ \frac{\partial V^{2}}{\partial x^{1}}(x^{1}, x^{2}, x^{3}) = -\frac{c_{2}}{f_{1}(x^{1})} \left[-\frac{a_{1}x^{3}}{k_{3}} + G'_{1}(x^{2}) \right] \\ \frac{\partial V^{2}}{\partial x^{2}}(x^{1}, x^{2}, x^{3}) = 0 \\ \frac{\partial V^{2}}{\partial x^{3}}(x^{1}, x^{2}, x^{3}) = -\frac{c_{2}}{k_{3}} [a_{1}F(x^{1}) + G'_{3}(x^{2})] \end{cases}$$

It follows that $V^2 = V^2(x^1, x^3)$, and since $c_2 \neq 0$, from the third and the last equations, we get

$$G_1 = d_1 \in \mathbb{R}$$
, $G_3 = d_3 \in \mathbb{R}$,

and the previous system becomes

$$\begin{cases} V^{1}(x^{2}, x^{3}) = -\frac{(a_{1}x^{2} + a_{2})x^{3}}{k_{3}} + d_{1} \\ V^{3}(x^{1}, x^{2}) = (a_{1}x^{2} + a_{2})F(x^{1}) + d_{3} \\ \frac{\partial V^{2}}{\partial x^{1}}(x^{1}, x^{3}) = \frac{a_{1}c_{2}}{k_{3}f_{1}(x^{1})}x^{3} \\ \frac{\partial V^{2}}{\partial x^{3}}(x^{1}, x^{3}) = -\frac{a_{1}c_{2}}{k_{3}}F(x^{1}) \end{cases}$$

By integrating the last equation, we get

$$V^{2}(x^{1}, x^{3}) = -\frac{a_{1}c_{2}}{k_{3}}F(x^{1})x^{3} + K(x^{1}),$$

where $K = K(x^1)$. By differentiating this relation with respect to x^1 and using the third equation of the previous system, we find

$$K'(x^1) = \frac{2a_1c_2}{k_3f_1(x^1)}x^3;$$

therefore, $a_1 = 0$, hence,

$$\begin{cases} V^{1}(x^{3}) = -\frac{a_{2}x^{3}}{k_{3}} + d_{1} \\ V^{3}(x^{1}) = a_{2}F(x^{1}) + d_{3} \\ \frac{\partial V^{2}}{\partial x^{1}}(x^{1}, x^{3}) = 0 \\ \frac{\partial V^{2}}{\partial x^{3}}(x^{1}, x^{3}) = 0 \end{cases}.$$

Thus, V^2 must be constant.

(B.2) If
$$k_0 \neq 0$$
, then

$$F_2(x^2) = a_1 \cos(k_0 x^2) + a_2 \sin(k_0 x^2), \ a_1, a_2 \in \mathbb{R}.$$

From (10) and (11), we get

$$\begin{cases} k_0^2 G_1(x^2) = -G_1''(x^2) \\ G_3''(x^2) = \left[\frac{k_0}{f_2(x^1)} + k_0^2 F(x^1) \right] F_2(x^2), \end{cases}$$

which is equivalent to

$$\begin{cases}
G_1(x^2) = b_1 \cos(k_0 x^2) + b_2 \sin(k_0 x^2), & b_1, b_2 \in \mathbb{R} \\
F_2 = 0 \\
G_3(x^2) = a_3 x^2 + a_4, & a_3, a_4 \in \mathbb{R}
\end{cases} \tag{22}$$

or

$$\begin{cases} G_1(x^2) = b_1 \cos(k_0 x^2) + b_2 \sin(k_0 x^2), & b_1, b_2 \in \mathbb{R} \\ \frac{k_0}{f_2(x^1)} + k_0^2 F(x^1) = k \in \mathbb{R} \\ G_3''(x^2) = k F_2(x^2) \end{cases}$$
(23)

(B.2.1) If (22) holds true, then (5), (9), and (6) imply:

$$\begin{cases} \frac{\partial V^2}{\partial x^1}(x^1, x^2, x^3) = -\left(\frac{f_2}{f_1}\right)(x^1)G_1'(x^2) - \left(\frac{f_2'}{f_2}\right)(x^1)V^2(x^1, x^2, x^3) \\ \frac{\partial V^2}{\partial x^2}(x^1, x^2, x^3) = k_0G_1(x^2) \\ \frac{\partial V^2}{\partial x^3}(x^1, x^2, x^3) = -\frac{f_2(x^1)}{k_3}G_3'(x^2) \end{cases}$$
(24)

By integrating the third equation of (24), we get

$$V^{2}(x^{1}, x^{2}, x^{3}) = -\frac{a_{3}}{k_{3}} f_{2}(x^{1})x^{3} + H(x^{1}, x^{2}),$$
(25)

where $H = H(x^1, x^2)$. Differentiating (25) with respect to x^2 and replacing it in the second equation of (24), we find

$$\frac{\partial H}{\partial x^2}(x^1, x^2) = k_0 G_1(x^2),\tag{26}$$

and by differentiating (25) with respect to x^1 and replacing it in the first equation of (24), we find

$$-\frac{f_2'(x^1)}{k_3}G_3'(x^2)x^3 + \frac{\partial H}{\partial x^1}(x^1, x^2) = -\left(\frac{f_2}{f_1}\right)(x^1)G_1'(x^2) + \frac{f_2'(x^1)}{k_3}G_3'(x^2)x^3 - \left(\frac{f_2'}{f_2}\right)(x^1)H(x^1, x^2)$$
(27)

From (27) and (26), we have

$$\begin{cases} \frac{\partial H}{\partial x^{1}}(x^{1}, x^{2}) = \frac{2}{k_{3}} f_{2}'(x^{1}) a_{3} x^{3} - \left(\frac{f_{2}}{f_{1}}\right)(x^{1}) G_{1}'(x^{2}) - \left(\frac{f_{2}'}{f_{2}}\right)(x^{1}) H(x^{1}, x^{2}) \\ \frac{\partial H}{\partial x^{2}}(x^{1}, x^{2}) = k_{0} G_{1}(x^{2}) \end{cases}$$
(28)

From the first equation of (28), we deduce that $a_3 = 0$ since $f_2' \neq 0$ at every point. By integrating the last equation of the same system, we get

$$H(x^1, x^2) = b_1 \sin(k_0 x^2) - b_2 \cos(k_0 x^2) + K(x^1),$$

where $K = K(x^1)$, which, by differentiating with respect to x^1 and replaced in the first one, gives

$$(f_2K)'=0,$$

and we obtain

$$K(x^1) = \frac{c_9}{f_2(x^1)}, \ c_9 \in \mathbb{R}.$$

In this case,

$$\begin{cases} V^{1}(x^{2}) = b_{1} \cos(k_{0}x^{2}) + b_{2} \sin(k_{0}x^{2}) \\ V^{2}(x^{1}, x^{2}) = b_{1} \sin(k_{0}x^{2}) - b_{2} \cos(k_{0}x^{2}) + \frac{c_{9}}{f_{2}(x^{1})} \\ V^{3} = a_{4} \end{cases}.$$

(B.2.2) If (23) holds true, then from the last two equations of (23), we get $f_2(x^1) = \frac{k_0}{k - k_0^2 F(x^1)}$ on an open interval $I \subset \mathbb{R}$ such that $\frac{k}{k_0^2} \notin F(I)$, and

$$G_3(x^2) = -\frac{k}{k_0^2} [a_1 \cos(k_0 x^2) + a_2 \sin(k_0 x^2)] + a_3 x^2 + a_4, \ a_3, a_4 \in \mathbb{R}.$$

Also, (5), (9), and (6) imply:

$$\begin{cases}
\frac{\partial V^2}{\partial x^1}(x^1, x^2, x^3) = -\left(\frac{f_2}{f_1}\right)(x^1) \left[-\frac{x^3}{k_3} F_2'(x^2) + G_1'(x^2) \right] - \left(\frac{f_2'}{f_2}\right)(x^1) V^2(x^1, x^2, x^3) \\
\frac{\partial V^2}{\partial x^2}(x^1, x^2, x^3) = k_0 \left[-\frac{x^3}{k_3} F_2(x^2) + G_1(x^2) \right] \\
\frac{\partial V^2}{\partial x^3}(x^1, x^2, x^3) = -\frac{f_2(x^1)}{k_3} \left[F(x^1) F_2'(x^2) + G_3'(x^2) \right]
\end{cases}$$
(29)

By integrating the third equation of (29), we get

$$V^{2}(x^{1}, x^{2}, x^{3}) = -\frac{f_{2}(x^{1})}{k_{3}} \left[F(x^{1})F_{2}'(x^{2}) + G_{3}'(x^{2}) \right] x^{3} + H(x^{1}, x^{2}), \tag{30}$$

where $H = H(x^1, x^2)$. Differentiating (30) with respect to x^2 and replacing it in the second equation of (29), we find

$$-\frac{f_2(x^1)}{k_3} \left[F(x^1) F_2''(x^2) + G_3''(x^2) \right] x^3 + \frac{\partial H}{\partial x^2} (x^1, x^2) = k_0 \left[-\frac{x^3}{k_3} F_2(x^2) + G_1(x^2) \right], \tag{31}$$

and by differentiating (30) with respect to x^1 and replacing it in the first equation of (29), we find

$$-\frac{f_2'(x^1)}{k_3} \left[F(x^1) F_2'(x^2) + G_3'(x^2) \right] x^3 - \frac{f_2(x^1)}{k_3 f_1(x^1)} F_2'(x^2) x^3 + \frac{\partial H}{\partial x^1} (x^1, x^2)$$

$$= \frac{f_2(x^1)}{k_3 f_1(x^1)} F_2'(x^2) x^3 - \left(\frac{f_2}{f_1} \right) (x^1) G_1'(x^2) + \frac{f_2'(x^1)}{k_3} \left[F(x^1) F_2'(x^2) + G_3'(x^2) \right] x^3 - \left(\frac{f_2'}{f_2} \right) (x^1) H(x^1, x^2)$$
(32)

From (32) and (31), we have

$$\begin{cases} \frac{\partial H}{\partial x^{1}}(x^{1}, x^{2}) = \frac{2}{k_{3}} \left[\left(\frac{f_{2}}{f_{1}} \right)(x^{1})F_{2}'(x^{2}) + f_{2}'(x^{1}) \left[F(x^{1})F_{2}'(x^{2}) + G_{3}'(x^{2}) \right] \right] x^{3} \\ - \left(\frac{f_{2}}{f_{1}} \right)(x^{1})G_{1}'(x^{2}) - \left(\frac{f_{2}'}{f_{2}} \right)(x^{1})H(x^{1}, x^{2}) \\ \frac{\partial H}{\partial x^{2}}(x^{1}, x^{2}) = \frac{f_{2}(x^{1})}{k_{3}} \left[F(x^{1})F_{2}''(x^{2}) + G_{3}''(x^{2}) \right] x^{3} + k_{0} \left[-\frac{x^{3}}{k_{3}}F_{2}(x^{2}) + G_{1}(x^{2}) \right] \end{cases}$$

and we deduce that

$$\begin{cases} F_2'(x^2) + k_0 f_2(x^1) \left[F(x^1) F_2'(x^2) + G_3'(x^2) \right] = 0 \\ \frac{\partial H}{\partial x^1} (x^1, x^2) = -\left(\frac{f_2}{f_1} \right) (x^1) G_1'(x^2) - \left(\frac{f_2'}{f_2} \right) (x^1) H(x^1, x^2) \\ f_2(x^1) \left[F(x^1) F_2''(x^2) + G_3''(x^2) \right] - k_0 F_2(x^2) = 0 \end{cases}$$

$$\frac{\partial H}{\partial x^2} (x^1, x^2) = k_0 G_1(x^2)$$
(33)

Taking into account that

$$\begin{cases} F_2(x^2) = a_1 \cos(k_0 x^2) + a_2 \sin(k_0 x^2) \\ G_1(x^2) = b_1 \cos(k_0 x^2) + b_2 \sin(k_0 x^2) \\ G_3(x^2) = -\frac{k}{k_0^2} [a_1 \cos(k_0 x^2) + a_2 \sin(k_0 x^2)] + a_3 x^2 + a_4 \end{cases}$$

from the first equation of (33), we obtain

$$[a_1\sin(k_0x^2) - a_2\cos(k_0x^2)][k_0 + k_0^2(f_2F)(x^1) - k_0f_2(x^1)] = k_0a_3f_2(x^1),$$

which implies that $a_1 = a_2 = 0$, hence, $a_3 = 0$, and

$$\begin{cases} F_2 = 0 \\ G_3 = a_4 \end{cases}.$$

By integrating the last equation of (33), we get

$$H(x^1, x^2) = b_1 \sin(k_0 x^2) - b_2 \cos(k_0 x^2) + K(x^1)$$

where $K = K(x^1)$, which, by differentiating with respect to x^1 and replaced in the second one, imply that

$$(f_2K)'=0,$$

and we obtain

$$K(x^1) = \frac{c_9}{f_2(x^1)}, c_9 \in \mathbb{R} \text{ and } H(x^1, x^2) = b_1 \sin(k_0 x^2) - b_2 \cos(k_0 x^2) + \frac{c_9}{f_2(x^1)}.$$

In this case,

is case,
$$\begin{cases} V^1(x^2) = b_1 \cos(k_0 x^2) + b_2 \sin(k_0 x^2) \\ V^2(x^1, x^2) = b_1 \sin(k_0 x^2) - b_2 \cos(k_0 x^2) + \frac{c_9}{f_2(x^1)} \\ V^3 = a_4 \end{cases}.$$

Finally, let us notice that for f_2 constant (let's say, $k_2 \in \mathbb{R} \setminus \{0\}$), we have obtained at (A.1) and (B.1) the expressions of the component functions V^1 , V^2 and V^3 , therefore, a linear combination of the two solutions

$$\begin{cases} V^{1}(x^{2}, x^{3}) = a_{1}x^{2} + a_{2}x^{3} + a_{3}, & a_{1}, a_{2}, a_{3} \in \mathbb{R} \\ V^{2}(x^{2}, x^{3}) = -a_{1}k_{2}F(x^{1}) - c_{1}k_{2}x^{3} + a_{4}, & c_{1}, a_{4} \in \mathbb{R} \\ V^{3}(x^{1}, x^{2}) = -a_{2}k_{3}F(x^{1}) + c_{1}k_{3}x^{2} + a_{5}, & a_{5} \in \mathbb{R} \end{cases}$$

By a direct computation, we notice that the converse implication holds true, too, i.e., since the component functions V^1 , V^2 and V^3 of a vector field V satisfy (3), then V is a Killing vector field. \square

Corollary 2.7. If $f_1 = f_1(x^1)$, $f_2 = k_2 \in \mathbb{R} \setminus \{0\}$, $f_3 = k_3 \in \mathbb{R} \setminus \{0\}$, then $V = \sum_{k=1}^3 V^k E_k$ is a Killing vector field if and only if

$$\begin{cases} V^{1}(x^{2}, x^{3}) = c_{1}x^{2} + c_{2}x^{3} + c_{3} \\ V^{2}(x^{1}, x^{3}) = -c_{1}k_{2}F(x^{1}) - \frac{c_{4}}{k_{3}}x^{3} + c_{5} \\ V^{3}(x^{1}, x^{2}) = -c_{2}k_{3}F(x^{1}) + \frac{c_{4}}{k_{2}}x^{2} + c_{6} \end{cases},$$

where $F' = \frac{1}{f_1}$ and $c_1, c_2, c_3, c_4, c_5, c_6 \in \mathbb{R}$.

Proof. It follows from Theorem 2.6. \Box

Corollary 2.8. If $f_1 = k_1 \in \mathbb{R} \setminus \{0\}$, $f_2 = f_2(x^1)$, $f_3 = k_3 \in \mathbb{R} \setminus \{0\}$, then $V = \sum_{k=1}^3 V^k E_k$ is a Killing vector field if and only if one of the following assertions hold:

(i)
$$\begin{cases} V^{1} = 0 \\ V^{2}(x^{1}) = \frac{c_{1}}{f_{2}(x^{1})}, c_{1} \in \mathbb{R} \end{cases};$$
$$V^{3} = c_{2}, c_{2} \in \mathbb{R}$$

$$(ii) \begin{cases} V^{1}(x^{2}, x^{3}) = c_{1}x^{2} + c_{2}x^{3} + c_{3}, & c_{1}, c_{2}, c_{3} \in \mathbb{R} \\ V^{2}(x^{1}, x^{3}) = -\frac{c_{1}k_{2}}{k_{1}}x^{1} - c_{4}k_{2}x^{3} + c_{5}, & c_{4}, c_{5} \in \mathbb{R} \\ V^{3}(x^{1}, x^{2}) = -\frac{c_{2}k_{3}}{k_{1}}x^{1} + c_{4}k_{3}x^{2} + c_{6}, & c_{6} \in \mathbb{R} \end{cases}$$

where $F' = \frac{1}{f_1}$ and $f_2 = k_2$ (is constant);

$$(iii) \begin{cases} V^1(x^2) = c_1 x^2 + c_2, \ c_1, c_2 \in \mathbb{R} \\ V^2(x^1, x^2) = k_1 \left(\frac{f_2'}{f_2^2}\right) (x^1) \left[\frac{c_1}{2} (x^2)^2 + c_2 x^2 + c_3\right] + \frac{c_1 F_0(x^1) + c_4}{f_2(x^1)}, \ c_3, c_4 \in \mathbb{R} \end{cases},$$

where $F_0' = -\frac{f_2^2}{k_1}$ and $f_2(x^1) = a_1 e^{a_2 x^1}$, $a_1, a_2 \in \mathbb{R} \setminus \{0\}$;

$$\begin{cases} V^1(x^2) = c_1 \cos(\sqrt{k}x^2) + c_2 \sin(\sqrt{k}x^2), & c_1, c_2 \in \mathbb{R} \\ V^2(x^1, x^2) = k_1 \left(\frac{f_2'}{f_2^2}\right)(x^1) \left[\frac{1}{\sqrt{k}} [c_1 \sin(\sqrt{k}x^2) - c_2 \cos(\sqrt{k}x^2)] + c_3\right] + \frac{c_3 k F_0(x^1) + c_4}{f_2(x^1)}, & c_3, c_4 \in \mathbb{R} \\ V^3 = c_3 \end{cases}$$

with
$$k:=\frac{k_1^2}{f_2^2}\cdot\left(\frac{f_2'}{f_2}\right)'\in(0,+\infty),$$
 where $F_0'=-\frac{f_2^2}{k_1};$

$$(v) \begin{cases} V^{1}(x^{2}) = c_{1}e^{\sqrt{-k}x^{2}} + c_{2}e^{-\sqrt{-k}x^{2}}, & c_{1}, c_{2} \in \mathbb{R} \\ V^{2}(x^{1}, x^{2}) = k_{1}\left(\frac{f_{2}'}{f_{2}^{2}}\right)(x^{1})\left[\frac{1}{\sqrt{-k}}\left(c_{1}e^{\sqrt{-k}x^{2}} - c_{2}e^{-\sqrt{-k}x^{2}}\right) + c_{3}\right] + \frac{c_{3}kF_{0}(x^{1}) + c_{4}}{f_{2}(x^{1})}, & c_{3}, c_{4} \in \mathbb{R} \end{cases},$$

$$V^{3} = c_{3}$$

with
$$k := \frac{k_1^2}{f_2^2} \cdot \left(\frac{f_2'}{f_2}\right)' \in (-\infty, 0)$$
, where $F_0' = -\frac{f_2^2}{k_1}$.

Proof. It follows from Theorem 2.6. □

Corollary 2.9. If $f_i = k_i \in \mathbb{R} \setminus \{0\}$ for any $i \in \{1, 2, 3\}$, then $V = \sum_{k=1}^3 V^k E_k$ is a Killing vector field if and only if

$$\begin{cases} V^1(x^2,x^3) = -\frac{a_1}{k_2}x^2 + \frac{a_2}{k_3}x^3 + b_1 \\ V^2(x^1,x^3) = \frac{a_1}{k_1}x^1 - \frac{a_3}{k_3}x^3 + b_2 \\ V^3(x^1,x^2) = -\frac{a_2}{k_1}x^1 + \frac{a_3}{k_2}x^2 + b_3 \end{cases},$$

where $a_1, a_2, a_3, b_1, b_2, b_3 \in \mathbb{R}$.

Proof. It follows from Corollary 2.7. \Box

Example 2.10. The vector field $V = k_1^2(-k_3x^2 + k_2x^3)\frac{\partial}{\partial x^1} + k_2^2(k_3x^1 - k_1x^3)\frac{\partial}{\partial x^2} + k_3^2(-k_2x^1 + k_1x^2)\frac{\partial}{\partial x^3}$ is a Killing vector field on

$$\left(\mathbb{R}^3, \ g = \frac{1}{k_1^2} dx^1 \otimes dx^1 + \frac{1}{k_2^2} dx^2 \otimes dx^2 + \frac{1}{k_3^2} dx^3 \otimes dx^3\right).$$

Proposition 2.11. If $f_i = f_i(x^1)$ and $V^i = V^i(x^1)$ for any $i \in \{1, 2, 3\}$, then $V = \sum_{k=1}^3 V^k E_k$ is a Killing vector field if and only if one of the following assertions hold:

(i) $V^1 = c_1 \in \mathbb{R} \setminus \{0\}, V^2 = c_2, V^3 = c_3, \text{ with } c_2, c_3 \in \mathbb{R}, \text{ and } f_2, f_3 \text{ are constant;}$ (ii) $V^1 = 0, V^2 = \frac{c_2}{f_2}, V^3 = \frac{c_3}{f_3}, \text{ with } c_2, c_3 \in \mathbb{R}.$

(ii)
$$V^1 = 0$$
, $V^2 = \frac{c_2}{f_2}$, $V^3 = \frac{c_3}{f_3}$, with $c_2, c_3 \in \mathbb{R}$

Proof. In this case, (2) becomes

$$\begin{cases} (V^{1})' = 0 \\ V^{1}f'_{2}' = 0 \\ V^{1}f'_{3}' = 0 \\ (V^{2})' = -V^{2}\frac{f'_{2}}{f_{2}} \\ (V^{3})' = -V^{3}\frac{f'_{3}}{f_{3}} \end{cases}$$

from where we immediately get the conclusion. \Box

Example 2.12. The vector field $V = \frac{\partial}{\partial x^2} + \frac{\partial}{\partial x^3}$ is a Killing vector field on

$$\left(\mathbb{R}^{3}, \ g = e^{x^{1}} dx^{1} \otimes dx^{1} + e^{2x^{1}} dx^{2} \otimes dx^{2} + e^{3x^{1}} dx^{3} \otimes dx^{3}\right).$$

Remark 2.13. If $f_1 = f_2 =: f(t)$, condition (B) from the proof of Theorem 2.6 becomes

$$\begin{cases} \left(\frac{f'}{f}\right)' + \left(\frac{f'}{f}\right)^2 = k_1 \in \mathbb{R} \\ f\left(\frac{f'}{f^2}\right)' = k_2 \in \mathbb{R} \end{cases} \iff \begin{cases} \frac{f''}{f} = k_1 \in \mathbb{R} \\ \frac{f''}{f} - 2\left(\frac{f'}{f}\right)^2 = k_2 \in \mathbb{R} \end{cases}.$$

Then $0 \le \left(\frac{f'}{f}\right)^2 = \frac{k_1 - k_2}{2}$ and we obtain $k_1 \ge k_2$ and $f(t) = k_0 e^{\sqrt{\frac{k_1 - k_2}{2}}t}$, $k_0 \in \mathbb{R} \setminus \{0\}$.

Example 2.14. Any nowhere zero smooth function f_1 together with the function $f_2 = c_1 e^{c_2 F}$, where $c_1 \in \mathbb{R} \setminus \{0\}$, $c_2 \in \mathbb{R}$, and $F' = \frac{1}{f_1}$ satisfy the condition:

$$\frac{f_1'}{f_1} \cdot \frac{f_2'}{f_2} + \left(\frac{f_2'}{f_2}\right)' = 0$$

from (iv) of Theorem 2.6.

Example 2.15. Functions f_1 and f_2 for which

$$\left(\frac{f_1}{f_2}\right)^2 \left[\frac{f_1'}{f_1} \cdot \frac{f_2'}{f_2} + \left(\frac{f_2'}{f_2}\right)'\right]$$

is constant are

$$f_1(t) = a_1 e^{bt}$$
 and $f_2(t) = a_2 e^{bt}$, $a_1, a_2 \in \mathbb{R} \setminus \{0\}, b \in \mathbb{R}$.

Example 2.16. On the other hand, functions f_1 and f_2 for which

$$\left(\frac{f_1}{f_2}\right)^2 \left[\frac{f_1'}{f_1} \cdot \frac{f_2'}{f_2} + \left(\frac{f_2'}{f_2}\right)'\right]$$

is nonconstant are

$$f_1(t) = a_1 e^{2bt}$$
 and $f_2(t) = a_2 e^{bt}$, $a_1, a_2 \in \mathbb{R} \setminus \{0\}, b \in \mathbb{R}$.

Lemma 2.17. If $f_i = f_i(x^i)$ for any $i \in \{1, 2, 3\}$, then $V = \sum_{k=1}^3 V^k E_k$ is a Killing vector field if and only if

$$\begin{cases} \frac{\partial V^{1}}{\partial x^{1}} = 0 \\ \frac{\partial V^{2}}{\partial x^{2}} = 0 \\ \frac{\partial V^{3}}{\partial x^{3}} = 0 \\ f_{1} \frac{\partial V^{2}}{\partial x^{1}} + f_{2} \frac{\partial V^{1}}{\partial x^{2}} = 0 \\ f_{2} \frac{\partial V^{3}}{\partial x^{2}} + f_{3} \frac{\partial V^{2}}{\partial x^{3}} = 0 \\ f_{3} \frac{\partial V^{1}}{\partial x^{3}} + f_{1} \frac{\partial V^{3}}{\partial x^{3}} = 0 \end{cases}$$

$$(34)$$

Proof. It follows immediately from (1). \Box

Theorem 2.18. If $f_1 = f_1(x^1)$, $f_2 = f_2(x^2)$, $f_3 = k_3 \in \mathbb{R} \setminus \{0\}$, then $V = \sum_{k=1}^3 V^k E_k$ is a Killing vector field if and only if

$$\begin{cases} V^1(x^2,x^3) = -cF_2(x^2) + a_1x^3 + a_2 \\ V^2(x^1,x^3) = cF_1(x^1) + b_1x^3 + b_2 \\ V^3(x^1,x^2) = -a_1k_3F_1(x^1) - b_1k_3F_2(x^2) + b_3 \end{cases} ,$$

where
$$F'_1 = \frac{1}{f_1}$$
, $F'_2 = \frac{1}{f_2}$, and $a_1, a_2, b_1, b_2, b_3, c \in \mathbb{R}$.

Proof. In this case, we have

$$\begin{cases} \frac{\partial V^1}{\partial x^1} = 0 \\ \frac{\partial V^2}{\partial x^2} = 0 \\ \frac{\partial V^3}{\partial x^3} = 0 \\ f_1 \frac{\partial V^2}{\partial x^1} + f_2 \frac{\partial V^1}{\partial x^2} = 0 \\ f_2 \frac{\partial V^3}{\partial x^2} + k_3 \frac{\partial V^2}{\partial x^3} = 0 \\ k_3 \frac{\partial V^1}{\partial x^3} + f_1 \frac{\partial V^3}{\partial x^1} = 0 \end{cases}$$
(35)

From the first three equations of (35), we get that

$$V^1 = V^1(x^2, x^3), \ V^2 = V^2(x^1, x^3), \ V^3 = V^3(x^1, x^2),$$

thus, from the fourth equation, we deduce that

$$\begin{cases} \frac{\partial V^1}{\partial x^2} = -\frac{1}{f_2} F_{12} \\ \frac{\partial V^2}{\partial x^1} = \frac{1}{f_1} F_{12} \end{cases}$$

where $F_{12} = F_{12}(x^3)$, which, by integration, give

$$\begin{cases} V^{1}(x^{2}, x^{3}) = -F_{12}(x^{3})F_{2}(x^{2}) + G_{1}(x^{3}) \\ V^{2}(x^{1}, x^{3}) = F_{12}(x^{3})F_{1}(x^{1}) + G_{2}(x^{3}) \end{cases}$$

where $F'_1 = \frac{1}{f_1}$, $F'_2 = \frac{1}{f_2}$, $G_1 = G_1(x^3)$ and $G_2 = G_2(x^3)$. Then

$$\begin{cases} f_1(x^1) \frac{\partial V^3}{\partial x^1}(x^1, x^2) = k_3 F'_{12}(x^3) F_2(x^2) - k_3 G'_1(x^3) \\ f_2(x^2) \frac{\partial V^3}{\partial x^2}(x^1, x^2) = -k_3 F'_{12}(x^3) F_1(x^1) - k_3 G'_2(x^3) \end{cases}.$$

By differentiating the above equations with respect to x^3 , we get

$$\begin{cases} F_{12}''(x^3)F_2(x^2) = G_1''(x^3) \\ -F_{12}''(x^3)F_1(x^1) = G_2''(x^3) \end{cases}$$

and we conclude that $F_{12}^{"}=0$, hence, $G_1^{"}=0=G_2^{"}$. Then

$$\begin{cases} F_{12}(x^3) = c_1 x^3 + c_2, & c_1, c_2 \in \mathbb{R} \\ G_1(x^3) = a_1 x^3 + a_2, & a_1, a_2 \in \mathbb{R} \\ G_2(x^3) = b_1 x^3 + b_2, & b_1, b_2 \in \mathbb{R} \end{cases}$$

and we obtain

$$\begin{cases} \frac{\partial V^3}{\partial x^1}(x^1, x^2) = \frac{k_3 c_1}{f_1(x^1)} F_2(x^2) - \frac{k_3 a_1}{f_1(x^1)} \\ \frac{\partial V^3}{\partial x^2}(x^1, x^2) = -\frac{k_3 c_1}{f_2(x^2)} F_1(x^1) - \frac{k_3 b_1}{f_2(x^2)} \end{cases}$$

which, by integration, give

$$\begin{cases} V^3(x^1, x^2) = k_3 c_1 F_1(x^1) F_2(x^2) - k_3 a_1 F_1(x^1) + L_1(x^2) \\ V^3(x^1, x^2) = -k_3 c_1 F_1(x^1) F_2(x^2) - k_3 b_1 F_2(x^2) + L_2(x^1) \end{cases}$$

where $L_1 = L_1(x^2)$ and $L_2 = L_2(x^1)$. Equating the above expressions and consequently differentiating the relation with respect to x^1 and x^2 , we get

$$\begin{cases} \frac{2k_3c_1}{f_1(x^1)}F_2(x^2) = \frac{k_3a_1}{f_1(x^1)} + L_2'(x^1) \\ \frac{2k_3c_1}{f_2(x^2)}F_1(x^1) = -\left[\frac{k_3b_1}{f_2(x^2)} + L_1'(x^2)\right] \end{cases};$$

therefore, $c_1 = 0$, and further, we get

$$L_1(x^2) + k_3 b_1 F_2(x^2) = L_2(x^1) + k_3 a_1 F_1(x^1),$$

which must be constant, let's say, b_0 , and we obtain

$$\begin{cases} V^{1}(x^{2}, x^{3}) = -c_{2}F_{2}(x^{2}) + a_{1}x^{3} + a_{2} \\ V^{2}(x^{1}, x^{3}) = c_{2}F_{1}(x^{1}) + b_{1}x^{3} + b_{2} \\ V^{3}(x^{1}, x^{2}) = -k_{3}a_{1}F_{1}(x^{1}) - k_{3}b_{1}F_{2}(x^{2}) + b_{0} \end{cases}.$$

By a direct computation, we notice that the converse implication holds true, too, i.e., since the component functions V^1 , V^2 and V^3 of a vector field V satisfy (35), then V is a Killing vector field. \square

Example 2.19. The vector field
$$V = e^{x^1}(x^3 - e^{x^2})\frac{\partial}{\partial x^1} + e^{x^2}(x^3 + e^{x^1})\frac{\partial}{\partial x^2} - (e^{x^1} + e^{x^2})\frac{\partial}{\partial x^3}$$
 is a Killing vector field on $(\mathbb{R}^3, g = e^{-2x^1}dx^1 \otimes dx^1 + e^{-2x^2}dx^2 \otimes dx^2 + dx^3 \otimes dx^3)$.

Proposition 2.20. If $f_i = f_i(x^i)$ and $V^i = V^i(x^i)$ for any $i \in \{1, 2, 3\}$, then $V = \sum_{k=1}^3 V^k E_k$ is a Killing vector field if and only if $V^i = c_i \in \mathbb{R}$ for $i \in \{1, 2, 3\}$.

Proof. In this case, (34) becomes

$$\begin{cases} (V^1)' = 0 \\ (V^2)' = 0 \\ (V^3)' = 0 \end{cases}$$

from where we immediately get the conclusion. \Box

Example 2.21. The vector field $V = e^{x^1} \frac{\partial}{\partial x^1} + e^{x^2} \frac{\partial}{\partial x^2} + e^{x^3} \frac{\partial}{\partial x^3}$ is a Killing vector field on

$$\left(\mathbb{R}^{3},\ g=e^{-2x^{1}}dx^{1}\otimes dx^{1}+e^{-2x^{2}}dx^{2}\otimes dx^{2}+e^{-2x^{3}}dx^{3}\otimes dx^{3}\right).$$

According to the previous results, we can state:

Proposition 2.22. Let
$$V_1 = \sum_{i=1}^{3} V_1^i E_i$$
 and $V_2 = \sum_{i=1}^{3} V_2^i E_i$.

Proposition 2.22. Let
$$V_1 = \sum_{i=1}^{3} V_1^i E_i$$
 and $V_2 = \sum_{i=1}^{3} V_2^i E_i$.
(i) If $f_i = f_i(x^1)$ and $V_k^i = V_k^i(x^1)$ for any $i \in \{1, 2, 3\}$ and $k \in \{1, 2\}$, and V_1 and V_2 are Killing vector fields, then

$$V_1^1 = V_2^1 + \tilde{c_1}, \ \ V_1^i = V_2^i + \tilde{c_i} + \frac{c_i}{f_i} \ \ (c_i \in \mathbb{R}, i \in \{2,3\}, \tilde{c_i} \in \mathbb{R}, i \in \{1,2,3\}).$$

(ii) If
$$f_i = f_i(x^i)$$
 and $V_k^i = V_k^i(x^i)$ for any $i \in \{1, 2, 3\}$ and $k \in \{1, 2\}$, and V_1 and V_2 are Killing vector fields, then $V_1^i = V_2^i + c_i$ $(c_i \in \mathbb{R}, i \in \{1, 2, 3\})$.

Proof. The assertions follow from Propositions 2.11 and 2.20. \Box

References

- [1] A.M. Blaga, Certain symmetries of \mathbb{R}^2 with diagonal metrics, J. Geom. Phys. 214, 105524 (2025). https://doi.org/10.1016/j.geomphys.2025.105524
- A.M. Blaga, D.R. Laţcu, Flat 3-manifolds with diagonal metrics and applications to warped products, arXiv:2502.03064 [math.DG] (2025). https://doi.org/10.48550/arXiv.2502.03064
- [3] W. Killing, Über die Grundlagen der Geometry, Crelle's Journal 109 (1892), 121–186. https://doi.org/10.1515/crll.1892.109.121