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Abstract. Considering the Siklos spacetimes, which are among the most important known spaces in geom-
etry and physics, we study conformal motion and curvature inheritance symmetries on these spacetimes.
Initially, we classify the conformal vector fields on these spacetimes and show that there exists a large
family of proper conformal vector fields on Siklos spacetimes. In particular, we specify these vector fields
on an important family of Siklos spacetimes and show that proper conformal vector fields do not exist on
Defris, Kaigorodov and Ozsvath spacetimes. Then we classify the vector fields that generate the curvature
inheritance symmetry on Siklos spacetimes, which only occur on conformally flat spaces. Furthermore, we
show that when the function H in Siklos spacetimes is a non-constant function of x; (which include signif-
icant and intelligent spacetimes), there are no vector fields that generate the proper curvature inheritance
symmetry.

1. Introduction

Let (M, g) be a pseudo-Riemannian manifold. The symmetry of a tensor T on the manifold (M, g) is
characterized by a one-parameter group of diffeomorphisms that T preserves. For instance, for T = g,
symmetries are isometries and the corresponding vector fields X are Killing. Conformal motions, curvature
collineations, Weyl collineations and Ricci collineations are further examples of symmetries, which have
attracted the attention of many researchers in the fields of mathematical physics and geometry in recent
years (see [6, 9, 14], for instance). In [9], Katzin et al. introduced a particular symmetry called “curvature
collineation” defined by a vector field X satisfying £xR = 0, where R is the Riemann curvature tensor of
a pseudo-Riemannian manifold (M, g) and £x denotes the Lie-derivative along X. Physically, curvature
collineations hold significance because the fundamental Komar [10] identity serves as a vital requirement
for a curvature collineation in M. As any curvature collineation is also a Ricci collineation defined by
£xRic = 0, it is important in the study of dynamics and kinematics of fluid spacetime of general relativity.
Nonetheless, an in-depth analysis of curvature collineation reveals that its connection with conformal
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symmetry is significantly confined to a rare specific instance. For further explanation of this topic, we
consider the conformal motion generated by a conformal Killing vector X such that

£xg = 2pyg, or, £xgij == (Ex9)(di,d}) = 2pgij, p = p(xi),
where 0; := a%. In particular, X is special if
dip#0, pij= o'?f].p —T0p=0. 1)

Other subcases are homothetic if d;p = 0 and Killing if p = 0. Related to above, the following is known.

Theorem A. ([9]) A curvature collineation is also a conformal motion if and only if the conformal
symmetry is special.

Constraints p,;; = 0 and d;p # 0 in special conformal vector fields result in the presence of a covariant
constant hypersurface orthogonal and geodesic vector d;p. Consequently, these spaces must contain either
two null eigenvectors or a duplicate null vector of the energy momentum tensor. In particular, Friedman-
Robertson Walker and perfect fluid models are excluded. Alternatively, the importance of proper conformal
vector fields is highlighted by their wide range of uses in astrophysics and cosmology. Furthermore, proper
conformal vector fields can be found in Friedman-Robertson Walker models as well as in perfect fluids [8].
The presented flaws gave Duggle the idea to modify the concept of curvature collineation proportional
a conformal vector field [8]. So, he introduced a new symmetry called “curvature inheritance” defined
by a vector X satisfying £xR = 2pR, where p is a scalar function. In particular, it reduces to curvature
collineation when p = 0. Otherwise, for p # 0, X defines a proper curvature inheritance. Recently, this
topic has attracted the attention of some researchers. For instance, Sheikh et. al proved that a perfect fluid
spacetime following the Einstein field equations with a cosmological term and admitting the curvature
inheritance symmetry is either a vacuum or satisfies the vacuum-like equation of state [15]. They also
showed that such spacetimes with the energy—-momentum tensor of an electromagnetic field distribution
do not admit any curvature symmetry of general relativity.

Considering the general model of coordinates (x1, x, x3, x4) the following general form is assigned to
Siklos metrics

g= —&(deldxz + H(xa, X3, x4)dx3 + dx3 + dx?), )
3

where H(xy, x3,x4) is an arbitrary smooth function [16]. These metrics are of special importance in math-
ematical physics and geometry, and here we mention a few of them. The analysis of the motion of free
particles in these spacetimes regions demonstrated that they can be viewed as precise gravitational waves
moving through the anti-de Sitter universe [16]. Also, classification of plane-fronted waves in spacetimes
in [13] relied on the sign of the cosmological constant A and a second-order invariant (dependent on the
sign of a constant k) linked to the congruence of null rays. Siklos spacetimes feature in this categorization
as one of the two scenarios with A < 0 and k = 0, matching the subclass (IV)y of Kundt spacetimes (see [6]
for more applications of these metrics).

Siklos also provided a classification of the Killing vector fields of these metrics, which permits to identify
the homogeneous cases. Among them, a particularly relevant class is obtained for H = ex2*, where € = +1
and k is a real constant. Thus, the general form of this one-parameter class of metrics is

g= —%(deldxz + ex%kdxg + dx§ + dxi). )

3

In particular, when €k(2k — 3) > 0, they have positive energy. When k = -1, k = 2 and k = 2 we have some
well-known spacetimes. More precisely, for k = —1 we are endowed with the pure radiation solution of
Petrov type N with a G4 isometry group that first introduced by Defrise [7] (we call it Defrise spacetime
for simplicity of reference in this paper), for k = 3 we have the Kaigorodov spacetime (which is the only
homogeneous type-N solution of the Einstein vacuum field equations with A = 0) and for k = 2, we include
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the homogeneous solution to Einstein-Maxwell equations discovered by Ozsvath [12] (similarly we call it
Ozsvath spacetime).

In recent years, numerous studies have been conducted on Siklos spacetimes, among which we can men-
tion the investigation of homothetic and affine vector fields, Ricci, curvature, Weyl and matter collineations
[6], the study of Ricci Solitons [2-5], generalized Ricci Solitons [17] and Ricci bi-conformal vector fields
[1]. However, the study of (proper) conformal vector fields and curvature inheritance symmetry, which are
fundamental and significant concepts in geometry and mathematical physics, have not been conduced on
these spacetimes. Therefore, in this paper, we aim to study these concepts on Siklos spacetimes.

The paper is structured as follows. In Section 2, we study conformal vector fields on Siklos spacetimes
by discussing the system of PDEs related to them. In particular, in Subsection 2.1, we classify these vector
fields on a special class of Siklos spacetimes (when H is a function only with respect to x3) and we present a
family of proper conformal vector fields on this class. The classes specified in this subsection show us that
on Defris, Kaigorodov and Ozsvéth spacetimes, there are no proper conformal vector fields. The results
of this section show that on Siklos metrics, there are neither special conformal vector fields nor proper
homothetic vector fields (in [6], the authors proved that Siklos metrics do not admit any proper homothetic
vector fields). In Section 3, we examine the vector fields that generate the proper curvature inheritance
symmetry on Siklos metrics. First, we conclude that these vector fields are proper conformal vector fields.
So using Corollary 1 of [8] it follows that proper curvature inheritance symmetry occurs only on conformally
flat Siklos spacetimes. Finally, we show that the famous class of Siklos metrics given by (40) does not admit
proper curvature inheritance symmetry (when H is a non-constant function).

2. Conformal vector fields on Siklos metrics

The study of Killing vector fields on Siklos metrics was conducted by Siklos [16]. Subsequently, Cal-
varuso et al. investigated the homothetic vector fields on these metrics and demonstrated that no proper
homothetic vector fields on Siklos metrics [6]. In this section, we intend to classify the proper conformal
vector fields on these metric.

Let X = X'9;,i =1,2,3,4, be a vector filed on (M, g), where X! are functions of the variables x1, X3, X3, X4.
To obtain conformal vector fields, we use the definition, i.e.,

Lxgj = X'0igi + (0;X))gu + (0 X)gji = 2095, i,jk=1,--- 4. 4)

From (2) and (4), we get the following system of PDEs:

21X? =0, —x33X3 + X +hX?=2p, hXP+0:X>=0, X'+ X*=0, (5)
X?0,H + X303H — %X3 + X*94H + 20, X" + 2Hd, X* = 2pH, (6)
X3+ HB X+ H3X? =0, hX* + 94X + HoX? =0, (7)
—f—j +0:X° =p, X' +d,X> =0, —f—j +d,X* = p. (8)

The derivative of the third equation of (5) with respect to x4, the derivative of the fourth equation of (5)
with respect to x3 and the derivative of the second equation of (8) with respect to x1, yield

o X° +03,X =0, 95 X' +93,X* =0, ©)

A X+ A,X=0. (10)
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Two equations of (9) imply 95, X® — 93 X* = 0. This equation, along with (10) imply d5,X* = 0. So
AXt=0, AX*=0. (11)

By differentiating the first equation of (7) with respect to x4 and the second equation of (7) with respect to
x3, also using (11) we get

X% + 0%, X! + 9,HO,X* = 0,
% X*H + 95, X" + 93HI4X* = 0. (12)

By the difference of the above two relations, we get

%X + d4HI3 X2 — 95,X* — d3HIuX? = 0. (13)
The derivative of the second equation of (8) with respect to x,, yields

92X+, X° = 0. (14)
By summing the above equation and (13), we have

205, X° + d4HI3X* — d3HI4 X* = 0.

So
2 _ 2 2 _ 2
Putting the second equation of (15) in (12), we get
8§4X1 _ _83H84X2 + 34H33X2 '
2
If we subtract the first equation of (8) from the third equation of (8), we obtain
23X° — dsX* = 0. (16)

The second derivative of the above equation with respect to x; and x3 leads to
3 A _ 33 w3 _
073, X" = 97, X° = 0.

Using (11) in the above equation we get d5,,X> = 0, so d3,X? is independent of x3. On the other hand, due

to the second relation in (8) and the first relation in (11), 8%3X3 is independent on x*, too, hence
8%3}(3 = D(xl,xz).

By integrating the above equation with respect to x3, we have
91X = x3D(x1, x2) + E(x1, %),

From the above equation and from the third equation of (5), we get

83X2 = —X3D(x1,x2) - E(xlf x2)'

The above differential equation has the following solution

1
X = —ExéD(xlfxz) — x3E(x1, x2) + F(x1, X2, X1). (17)
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By differentiating the above equation with respect to x; and using d;X? = 0, we get
1
—§x§81(D(x1,x2)) = x301(E(x1, x2)) + d1(F(x1, X2, %4)) = 0.

Since the expression on the left side of the above equation is a polynomial in terms of x3, its being equal to
zero implies that all its coefficients must be zero, that is

d1(D(x1,x2)) = d1(E(x1,x2)) = d1(F(x1,x2,%4)) = 0

The above equations indicate that D(x1, x2), E(x1,x2) and F(x1, x, x4) are independent of x1, i.e., D(x1, x2) =
D(x7), E(x1,x2) = E(x2) and F(x1, x2, x4) = F(x2, x4). Therefore, (17) reduces to the following

1
X2 = —ExéD(xz) — x3E(x2) + F(x2, x4). (18)
From the above relation and the fourth equation of (5), we obtain
1
Xt = -9, X% = —84(—§x§D(x2) — x3E(x2) + F(x2,x4)) = —d4F(x2, X4).

The above differential equation has the following solution
X* = —x194F(x2, x4) + G(x2, X3, Xa). (19)

The third equation of (5) and (18) imply
81X3 + 83(—%X§D(x2) - X3E(X2) + F(Xz, X4)) =0.
Then 01 X3 = x3D(x2) + E(x2), which gives

X3 = x1x3D(x2) + x1E(x2) + J(x2, X3, X1). (20)

Using the above equation and the first equation of (8), we get

-X 1
p= x—;E(xz) - x_3](x2/x3rx4) + 93] (x2, X3, X4). (21)
Setting (19) and (20) in (16), we have
x1D(x2) + 93] (x2, X3, x4) + x195F (x2, x4) — 4G (x2, X3, %4) = 0. (22)

The above equation implies 8ZF (2, x4) = —D(x2), which gives us

2
Fla 1) = = 2-D(x2) + xiK(w2) + L(xa).

Setting the above equation in (18) and (19), we get

2 1, X
X = —Eng(Xz) - x3E(x2) - 3D(xz) + x4K(x2) + L(x2), (23)

and

X* = x1x4D(x2) — 11K(x2) + G(x2, X3, Xa). (24)
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Now by putting (20) and (23) in the second equation of (5), it follows

x2 x2
M X' =2x1D(xp) + 733213(9(2) + x302E(x2) + fazD(xz) — x402K(x2) = d2L(x2) + 23] (x2, X3, X4).

Integrating the above equation with respect to x;, we obtain

1_.2 X1 X1,
X' =x1D(x2) + TazD(xz) +x1x302E(x2) + TazD(xz) — x1%402K(x2) — x192L(x2) (25)
+2x103](x2, X3, X4) + M(x2, X3, X4).
Putting (20), (23) and (25) in the first equation of (7), we get
2.JC1X332D(3€2) + ZX182E(3C2) + 32](9{2, X3, X4) + 2x18§](x2, X3, .X4)
+ d3M(x2, X3, x4) — H(x2, X3, x4)x3D(x2) — H(x2, X3, X4)E(x2) = 0.
The derivative of the above equation with respect to x; yields
x302D(x2) + 2E(x2) + 93] (x2, X3, X4) = 0. (26)

The above equation gives
x3 x2
J(x2, x3,%3) = =-232D(x2) = 51 2E(x2) + Alxa, X4)x3 + Blx2, ). 27)

From the second equation of (7), we have
2x1%402D(x2) — 2x192K(x2) + 92G(x2, X3, X4) + 2x104A(X2, X4) + dsM(x2, X3, X4) (28)
— x4H(x, x3, x4)D(x2) + H(x2, x3, x4)K(x2) = 0.

By differentiating the above equation with respect to x;, we get
x402D(x2) = 02K(x2) + d4A(x2, x4) = 0, (29)

and so
2

x
A(xg, %) = =—02D(x2) + 210:K(x2) + N(x2).
Setting the above equation in (27), we have
3 2 2

X3 X2 x2x3
J(x2,x3,%4) = —€82D(x2) - EazE(xz) - Ta’zD(xz) + x4x30,K(x2) + x3N(x2) + B(x2, X4). (30)

From the second equation of (8) and the above equation, we have
93G(x2, X3, X4) = X4x392D(x2) — x302K(x2) — daB(x2, x4).

Integrating the above equation with respect to x3, we have
Xux2 2
X3 *3
Gl x3,%4) = —=02D(x2) = 02K (x2) = x394B(x2, x4) + P(x2, xs)- 31)
From (21), we get

_ x2 1
p =~ E@) = 30:D(2) = 5 BE(w2) — -Blaa, ). (32)
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Setting (20), (23), (24), (25), (27), (31) and (32) in (6), we obtain
1 X3
- Eng(Xz)azH(xz,xs,M) — x3E(x2)d2H(x2, X3, X4) — iD(xz)azH(xz,x&sz)

+ X4K(X2)82H(X2, X3, X4) + L(XQ)BQH(JQ, X3, X4) + X1X3D(X2)33H(X2, X3, JC4)
x3 x2
+ X1 E(X2)83H(X2, X3, X4) - EsazD(XQ)aﬂ‘I(XQ, X3,X4) - f&’zE(xz)&gH(xz, X3, JC4)

X2x3
- 4732D(X2)93H(X2, X3, X4) + X4x302K(x2)d3H(x2, x3, X4) + X3N(x2)d3H(x2, x3, X4)

+ B(x, x4)d3H(x2, x3, x4) — 2H(x2, X3, x4)x1D(x2) — 2H(x2, X3, X4)N(x2)
2
X4X
+ x1%4D(x2)d4H(x, x3, x4) — x1K(x2)dsH (x2, X3, x4) + 7382D(x2)84H(x2, X3,X4)

2
x
- 3382K(x2)84H(x2,x3, x4) — x304B(x2, X4)94H(x2, X3, X4) + P(x2, x4)4H(x2, x3, x4) + 279> D(x>)

- xpcé&%D(xz) - 2x1x38§E(x2) - xlxﬁaéD(xz) + 2x1x48§K(x2) - 2x18§L(x2) + 4x19,N(x7)
+ 282M(x2, X3, X4) + ZH(XQ, X3, X4)82L(XQ) =0.
By differentiating the above equation with respect to x;, we have
x3D(x2)d3H(x2, x3, x4) + E(x2)d3H(x2, X3, X4) — 2H(x2, X3, X4)D(x2) + x4D(x2)d4H (x2, X3, X4) (33)
- K(X2)84H(XZ, X3, JC4) + 4x182D(x2) - x%&%D(xz) = 2x38§E(x2) - xi&%D(xz) + 2X485K(XZ)
—20%L(x2) + 492N(x2) = 0,
and consequently

1 X3
— 53D (x2)92H (x2, X3, x3) — x3E(2)92H (x2, ¥, %) = §D<xz>azH<x2,x3,x4)

3
X
+ x4 K(x2)d2H(x2, X3, X4) + L(x2)d2H(x2, X3, X4) — gazD(xzng(xz, X3, X4)

X2 x2x3
- 3382E(x2)83H(x2, X3, X4) = 4782D(x2)83H(x2,x3,x4) + x4X302K(x2)d3H(x2, X3, X4)

+ x3N(x2)d3H(x2, X3, X4) + B(x2, x4)d3H(x2, x3, x4) — 2H(x2, X3, X4)N(x2)
X423 X2
+ TazD(x2)84H(x2,x3,x4) - TBZK(x2)84H(x2,x3,x4) — x304B(x2, X4)9d4H(x2, X3, X4)

+ P(x2, x4)d4H(x2, X3, X4) + 202M(x2, X3, X4) + 2H(x2, X3, X4)d2L(x2) = 0.

From (33) we derive that d,D(x;) = 0, and so D(x;) = D, where D is a constant. From the first equation of
(7), we have

—%‘%3%]5(962) + x4x305K(x2) + x302N(x2) + 02B(x2, X4) + I3 M(x2, X3, X4)
—Dx3H(x2, x3,x4) — H(x2, x3, x4)E(x2) = 0.

From the third equation of (8), we have
X382E(X2) - X482K(XQ) - N(XQ) - x;:,BiB(xz, X4) + 84P(JC2, X4) = 0,
which gives

HE(x2) — 95B(x2,x4) =0, —x402K(x2) — N(x2) + d4P(x2, x4) = 0.
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So

2 2
By 1) = S 9RE(e) + 14S(0) + T(), Pla, 1) = 2 0:K() + xiN(es) + Q)

Then (30) and (31) reduce to the following

x2 x2
J(x2,x3,%4) = —5392]5(352) + x4x30,K(x2) + 23N (x2) + 34(925(352) + x45(x2) + T(x2),

x2 x2
G(x2, %3, x1) = —— 92K (x2) — X3%492E(%2) — x35(%2) + =92 K(x2) + xaN(%2) + Q(x2).
2 2

According to the above explanations we conclude the following

Theorem 2.1. For the Siklos metric given by (2), all conformal vector fields X = X101 + X?0, + X305 + X*04 with
their conformal factor are as follows:

x2 x4
p = TLE(x2) = 02E(x2) — 52 02E(x2) — £5(x2) — £ T(x2),
X! = Dx? — %1630, E(x2) + x120402K(x2) — X105 L(x2) + 2x1N(x2) + M(x2, X3, X4),
X2 = ;Dx3 —x3E(x) — %Dx4 + x4K(x2) + L(x2), 2 (34)
X3 = Dx1x3 + xlE(Xz) - 7(2—382E(x2) + X4X382K(X2) + x3N(x2) + x—;&zE(Xz) + X4S(X2) + T(x3),
2 XZ
X* = Dxyxy — 11K(x2) — $0:K(x2) — x3%302E(x2) — x35(x2) + 392K(x2) + 24N(x2) + Q(x2),

satisfying

DX3&3H + E(Xz)&gH —2DH + Dx4&4H - K(X2)&4H - 2X38§E(X2)

120, 2K (x) - 202L(x2) + 40aN(x2) = 0, (35)

-1 2D82H X3E(XZ)82H % DazH + X4K(Xz)(92H + L(XZ)azH 5 azE(xZ)ag,H

+X4X382K(X2)(93H + X3N(X2)(93H + 482E(X2)83H + X4S(X2)83H + T(X2)83H (36)

—ZHN(Xz) 82K(X2)(94H X3X4(92E(XZ)(94H X3S(X2)(94H + 4(92K(X2)84H
+X4N(X2)&4H + Q(x2)84H + 232M(X2, X3, X4) + 2H82L(x2)

—%%E(xz) + x4x3¢9§K(x2) + X3(92N(XQ) + %8%]5(3(2) + X4825(X2) + 82T(x2) (37)
+&3M(X2, X3, X4) — DHx3 — HE(Xz) =0,

x2 x2
—305K(x2) — x3%495E(x2) — x3025(x2) + 35K (x2) + x492N(x2) (38)
+(92Q(X2) + 84M(.XQ, X3, X4) — DHxy + HK(.Xz) =0

Considering p = 0 in the above theorem we get the Killing vector fields of (2), which is obtained by Siklos
in [16].

Theorem 2.2. There are no proper special conformal vector fields on Siklos spacetimes.

Proof. According to (1), the conformal vector fields given by Theorem 2.1 are special if and only if p,; = 0.
To calculate these relations, we need the components of the Levi-Civita connection. The components of the
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Levi-Civita connection of Siklos metrics given by (2) are completely determined by the following possibly
non-vanishing components (up to symmetries):

1 1
3 _13 _ 71 _ 13 _ 14 _ 12 _ 1 _ 14 _
r12 - r44 - _r13 - —F33 - _F34 - —F23 - x_3' r24 - _rzz = 584H,
1 1 1
I, = 5(92H)’ r, = E(2H —x3(03H)), Ty, = Ea3H.

From the formula p in (34) and the above relations, we get

1 x 1 xﬁ X4 1
pa2 = 9h,p —T,d5p = —x—s(x—%E(JQ) + EazE(xz) + EazE(xz) + x_gs(xZ) + x_éT(xZ))' (39)

So, vanishing p.1» implies E(x2) = S(x2) = T(x2) = 0, and consequently p = 0. O

From the formula p in (34) we conclude that p can not be a nonzero constant function. So, we have the
following result, which is consistent with the result obtained in [6].

Corollary 2.3. Siklos metrics do not admit any proper homothetic vector fields.

Remark 2.4. Theorem 2.2 and Corollary 2.3 might create the fear of the nonexistence of proper conformal vector
fields on Siklos spacetimes. We will show that this fear is unfounded. In fact, we will present many classes of proper
conformal vector fields in the following.

2.1. Conformal vector fields of Siklos metrics in special case H(x3)

In this section we focus on Siklos metrics with H(x1, X2, x3) = H(x3). Indeed, we consider the following
class of Siklos metrics

g= _&(deldxz + H(x3)dx3 + doxj + dxj). 0
3

From Theorem 2.1 it follows that for the Siklos metric given by (40), all conformal vector fields are as
X = X191 + X295 + X305 + X*d,4 with conformal factor

2
_ Mgy % M Mgy 1
P E(x2) > d2E(x2) 7 02E(x2) o S(x2) o T(x2). (41)

where
X' =Dx7 — x1x302E(x2) + x1%402K(x2) — x192L(x2) + 2x1N(x2) + M(x2, X3, X4),

1 1
X2 =— 2D - 13E(xy) — 5 Dx; + x4K(x2) + L(x2),

2
x2 x2
X? =Dx1x3 + x1E(x2) — 53925(352) + x4x302K(x2) + x3N(x2) + 34925(952) +x45(x2) + T(x2),
2 2

X X
X* =Dxyxy — x1K(x2) — ;aﬂ«xz) — X32402E(x2) — x3S(x2) + fazquz) + 24N (x2) + Q(x2).

and

Dx3&3H + E(XQ)ag,H —2DH - 2X38§E(X2) + 2X4B§K(XZ) - 2(9§L(x2) + 482N(X2) =0, (42)

_%§32E(XZ)93H + x4%30,K(x2)d3H + 3N (x2)d3H + 12292E(x2)93H +%45(x2)d5 H (43)
+T(x2)83H - 2HN(X2) + ZazM(XZ, X3, X4) + 2H82L(x2) =0,
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—%(9%E(X2) + x4x3¢9§K(x2) + X3(92N(X2) + 3(2—48§E(x2) + X4825(X2) + BZT(xz) (44)
+&3M(X2, X3, X4) — DHx3 — HE(Xz) =0,

393K (x2) ~ 130 BE(v2) ~ 13925(x2) + 3 BK(x2) + x492N(x2) (45)
+82Q(JC2) + 84M(X2, X3, X4) — DHxy + HK(JQ) =0.

(42) implies &%K(xz) = 0, and consequently

K(x2) = Vxa + W, (46)
where V and W are constants. The derivative of (42) with respect to x3, we get

D0sH + Dx393H + E(x2)d5H — 2Dd3H — 295E(x,) = 0.
So

J5H(Dx3 + E(x2)) — Dd3H — 295E(x2) = 0. (47)

We consider four cases on D and E(x;) to solving the above equation.
Case 1. D # 0 and E(x,) # 0. In this case, by differentiating (47) with respect to x3, we get d3H = 0 and so

H
H(xs) = 7195% + Hyxs + Hs, (48)

where H; and H; are constants. Through integrating from (45) with respect to x4, and taking into account
the relations (46) and (48), we obtain

1 1 1 1
M(xz, x3,x4) = ExixaaéE(xz) - ExiazN(xz) — x402Q(X2) + X4x3025(x2) — EHl(—EDxi + Vxoxy (49)
1 1
+ WX4)x§ - Hz(—EDxi + Vixoxy + Way)xs + EDH3xi — (Vxp + W)Hzxy + M1 (x2, X3).

The second derivative of (44) with respect to x4, implies
295E(x2) + DH1x3 + DH, = 0.

So DH; = 0. Therefore H; = 0, and consequently
1
E(xp) = —ZDHzxg + E1xp + Es, (50)

where E; and E, are constants. Substituting equations (46), (48), (49) and (50) into (43), and then taking the
second derivative of the new relation with respect to x4, gives us

1 1
N(x) = —ﬂDngg + ZH2E1x§ + Nix2 + Ny, (51)

where N; and N; are constants. From (42), we deduce

1 1 1
L(x) = —ﬁDng‘zl + ZHzElxg — 1 (8DHs — 4E2H, — 16N1)x3 + L1xa + Lo,

where L; and L, are constants. Substituting equations (46), (48), (49), (50) and (51) into (44), and then taking
the derivative of the new relation with respect to x4, we get

1 1
S(x2) = ZHzx/xg + EHszz +S1,
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where S is a constant. Similarly, the derivative of (45) with respect to x, yields

1 1
4H2x251 H3X2V + Qi1x2 + Qo

where Q; and Q> are constants. From (44), we get

1 1
Q(x2) = —HZV >+ —H2Wx2 +

1 1 1
Ml(xz, X3) ——DH2x2x3 + (DX3 + EleX3 + 2E2x3)H2 + 2DH3X3 leg + Mz(Xz)Xg, + M3(X2).

16 2
Derivative of (43) with respect to x3 gives
H, 5
M;(x2) = 7 ; ( 4DH§ x5 — 10H,Eqx) + 24DH3x5 — 12E,Hpxg — 36N1x5 — 48L1x; + 24Nax,) + My,
where M, is a constant. From (44), we get
1 5 1
T(xy) = — @DHS X+ %HZElxg - ﬁ(3DH2H3 — EoH3 — 3HoNy)x;

1
- Z(—2E1H3 —2HoLq + HoNo)x5 + Tixa + T,

where T; and T, are constants. From (43), we derive that

4 3
Mts) = 2 6 ElHZ + L (C6E HaHs — 2H2Ly + H2N,)3
3223042 192 © g\ P12t T SR T NG,

1
+ Z(zDHg — EyHyHs — Hy Ty — 2H3Np)x5 + (—EHZTZ — (L1 = No)H3)xs + Ms,

—(5DH2H3 E,Hj - 3H3N )X,

8449

where M5 is a constant. Putting the above relations in (42)-(45), we get My = E;H3 — Tq. According to the

above explanation, we have

H(x3) = Hx3 + Hs,

p = o5 (DH3x5 — 10HZEq1x5 + 48H,(DHs — Bl _ Np)x +48((Dxy — Vg — 2Ly + No)Ha
~2E1H3)x2 + 48(((22 + x2)D — 2Wixy)H, — 4x1E1 — 4T))xs +96(~22 — x2)E1 — 192145,
—192x,E; — 192T>),

X' = Dx? — xyx3(—22x, + E1) + 124V — x(- 22 x + 2By 2 _ L(8DH; — 4E,H,
—16N1)2 + Ly) + 2x1(— & DH23 + LB 02 + Ny + N2) - %xim — S(-1DH2¢
+3H>E1x, + Ny) — x4(H . > H W 2 stl xp —H3Vxo + Q1) + x4x3(—x2 + HZW)
—Hz(——x + Vxoxs + WX4)X3 + %xz - (sz + W)Hzxy — Dféz x0x3 + 4((Dx3 + E1x0%3
+2Epx2)Hy) + Bla? — N2 + B3 (2 pH2yd 10H2E1x +24DH3x2 — 12E,Hyx?
~36Ny22 - 48L1x2 +24N30) + E2H3x3 - T1x3 + o = ~ B8+ 2(5DH2H,
“EoH3 — 3HANY) + 2 (~6E1HyHs — 2H2Ly + H2N) + 2 (2DH? — EyHyHs
—H,Ty — 2H3Ny) + (—M (L1 = N2)H3)x2 + M5,

X2 = -2x2 - x3(-1DHox2 + Eyxp + Ep) — 22 + (Vi + W) — 44 Ry
—Z(2DH; — EyHy — 4Ny) + Lixy + Lo,

X® = Dx1x3 + x1(—1DHox3 + E1x2 +Ey) - 3 DHzxz + Eq) + Vxyxs + x3(—; DH3x3

3
+ZH2E1x2 + Nixp + Nz) 4(—DH2 Xy + El) + X4( HQVX + 1H2WX2 + Sl) 1922 5
2 4 3
+ 2858 5 (3DH,Hy — EyH2 — 3HoNy) — 2(=2E,Hs — 2HLy + HyNy) + Trxg + T,
X* = Dxyxg — x1(Vxg + W) — 22 — x4x3(——x2 +E1) —x3(B2 + By, + Sy) + Lo

HEz HV 4 HW3 Ho$1 52 H3V2
T 9 %2 =txs — 5ox5 + Qi + Qr.

D2
+xy(— 5200 +

(52)
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Case 2. E = D = 0. In this case, from (44), we get
1
M(x2,x3,X4) = —§X§92N(X2) — Xx3%4025(x2) — x302T(x2) + M1(x2, X4). (53)
The second derivative of (45) with respect to x3 follows
AH(x3)(Vxp + W) = 0.

So 8§H(x3) =0or Vx, + W = 0 = K(x3). Therefore we consider these two cases.
Case 2.1 K(x,) # 0. In this case, we have d5H(x3) = 0. So

H(x3) = Hix3 + Hp, (54)
where H; and H; are constants. By differentiating (43) with respect to x3 and x4, we get
VH
S(JCQ) = Tlxé + 51x% + Sy, (55)

where S; and S, are constants. The second derivative of (45) with respect to x4 yields
2

M;i(xp,x1) = —%&N(xz) — x292Q(x2) — x4(Vxp + W)Hy + Mp(x2). (56)
By differentiating (43) twice with respect to x4 and using (53)-(56), we get

N(x2) = N1ix2 + Na, (57)
where N; and N, are constants. From (42) and using (53)-(57), we conclude

L(x2) = N1x3 + L1xz + Ly,

where L1 and L, are constants. The derivative of (43) with respect to x4 leads to

Q(XZ) = —HZV 5t —H2WX2 + H1X251 H2x2V + leZ + Qz,

4
where Q; and Q; are constants. The derivative of (43) with respect to x3 yields

1.1 1
T(x2) = EHl(Eleg + (4L - 2N,)x3) + Tixa + T,
where T; and T, are constants. Now from (43), we get

1
—H1T1x§ —

1 1
—HiLix; + ﬂHfz\fzxg -1

12
— (L1 = No)Hoxz + M3,

1 1
—H1T2X2 - §H2N1x§

1
Mz(Xz) = —EH%leg 3

where Mj; is a constant. According to the above explanation, we have

H(x3) = Hyx3 + Ha,
( H1N1X - Hl(VX4 + 2L1 Nz)xz + ( 2H1WX4 - 4T1)X2 —4S1x4 — 4T2),

4‘(3

X =x1x4V — X1(2N1XQ + Ll) + 2x1(N1x2 + Nz) - —x - X3X4(—XQ + le
NG AL AE S S ) T xa(FHHVG + §HW
+5 H1x251 HzJCzV + Ql) X4(VX2 + W)H2 H Nl X% leLl x3 + Hzi\fz Xg

58
Hle X2 H12T2 Xy — Hle 2 (Ll Nz)HzXz + M3, ( )

2
X2 = X4(VXZ + W) + le + Lixo + Ly,
X3 = Vxyxs + X3(N1X2 + Nl) + x4(@x2 + lexz + 51) + =] (Nl .'X'3 + AL 2N, ZNZ 2) + Tixo + 1o,
V
X4 = —xl(sz + W) - —x - X (VH1 24 —X2 + 51) + + X4(N1X2 + Nz) + sz

H2W
+a Hlsl x5 - szxz + Q1x2 + Q1.
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Case 2.2 K(x) = 0. In this case, the derivative of (45) with respect to x3 implies S(x;) = S1, where S; is a
constant. By integrating (45) with respect to x4, we get

1
M (x2, x4) = —Exi32N(x2) — x492Q(x2) + My (x2).

By differentiating (43) twice with respect to x4, we have N(x;) = N1x, + N, where N; and N, are constants.
From (42), we get L(x2) = N 1x§ + L1xp + Ly, where L and L; are constants. The second derivative of (43) with
respect to x3 and x4 leads to $103H = 0, which gives S; = 0 or d3H = 0. If S # 0, we have d3H = 0, which
gives H(x3) = Hix3 + Hy, where H; and H, are constants. This case is the same as Case 2.1, if we consider
V =W =0and 5(xp) = S; (indeed in this case we don’t get a new solution). Now we suppose that S; = 0.
In this case, we get

x2 x2
M(xz, %3, 34) = =N15 = 1302T(x2) = N1 = 1392Q(x2) + Ma(x2). (59)

Using the above equation in (43) we obtain

2(92M2(X2) + (T(XZ) + (N1X2 + NQ)X3)33H(X3) + (2N1X2 + 2L1 - 2N2)H(X3) — ZX43§Q(X2) (60)
- 2x395T(x2) = 0.

The above equation implies BéQ(xz) =0,1i.e.,

Qlx2) = Qixz + Qz, (61)
where Q; and Q; are constants. So (60) reduces to the following

d3H(N122x3 + Noxs + T(x2)) + 2HN1x2 — 2HN, — 2x395T(x2) + 292My(x2) + 2HL; = 0. (62)
By differentiating the above equation with respect to x3 we get

((N1x2 + No)x3 + T(x2))d3H + BN1x2 — N + 2L1)d3H = 205T(x2). (63)

The solution of the above equation is dependent to three cases.
Case 2.2.1. 9§H # 0, N1 =0, N # 0. In this case, (63) reduces to the following

(Nax3 + T(x2))03H + (2L1 — N2)dsH = 295T(x2).

Since 8§H # 0, the above ODE is solvable if and only if T(x;) = T, where T is a constant. So, the above
equation reduces to

(Naxs + T)3H + (2L — Np)dsH = 0,
that has the following solutions

H.N. 2(Np—Ly)
2 (Nng, + T) ’%]2 ; + H>, (64)

H(x3) =
if L1 # Np, and
H(X3) = E ln(N2x3 + T) + H,
Na

if L; = Np, where H; and H; are constants. Therefore, we consider the following two cases.
Case 2.2.1.1. L; # N,. In this case, from (43) and (59), (61) and (64), we get

My (x2) = =(L1 — N2)Hoxp + M3,
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where M3 is a constant. So, we have

2Ny-Lp)
H(x3) = 2(N2 L )(N2x3 +T) M +Hy, p= —%,
X! = —xyL; + 251N, — x3Q1 — (L1 — N2)Hoxp + M3, (65)

X2 = Lixy + Lo, X3 = N2x3 +T, Xt = Noxy + leZ + Qz.

Case 2.2.1.2. L; = N,. In this case, from (43), we get
H
Mz(Xz) = —71.9(2 +M3.

where M3 is a constant. So, we have

H(x3) = 2 In(Npxs + T) + Hy, p=-L
Xl = .X'1N2 - X4Q1 — ixz + Mg, }(2 = N2x2 + Lz, (66)
X3 =Noxz+ T, X*=Noxs+ Quxo + Q.

Case 2.2.2. 8§H # 0and N; = N, = 0. In this case, (63) reduces to the following
T(x2)d5H + 2L193H = 293T(x2).

Since 8§H # 0, the above PDE is solvable if and only if T(x;) = T, where T is a constant. So we have

Td5H + 2L103H = 0, which gives H(x3) = Hy + Hze‘z%]x% where H; and H, are constants. From (43), we get
My (x2) = —=HiLix2 + M3, where M3 is a constant. According to the above explanation, we have

H(X3) =H; + Iize_z%lx3 p= -I
’ (67)

Xl =—-HiLixp — Lix1 — Q1X4 + M3, Xz =Lix, + Lo, X3 =T, X4 = Q1X2 + Qz.

Case 2.2.3. 8§H #0,N; # 0and N, # 0. In this case, (63) is well defined if and only if T(xp) = A(N1x2+N>)
and L; = 2N,, where A is a constant. So, (63) gives the following equation

(x3 + A)J3H + 303H = 0, (68)

which has the solution H(x3) = e A2 + Aj, where A; and Aj; are constants. Moreover, (60) implies
Ms(xz) = —Az(%xg + N>x;) + M3, where M3 is a constant. So

2

X X N
M(xz,x3,%4) = =N1 = — AN1x3 — N1 = — Qg — Ap(—=-

> 5 5 x% + NzXz) + Ms;.

According to the above explanation, we have

H(xs) = i + A2, p=—£ AN, + Nz)
X' = —x1(2N1x2 + L1) + 2x1(N1x2 + No) — N1 2 — ANqx3
N1 % - Qixg — Ay(B122 + Noxo) + M3, (69)
= Nix2 + Lixa + Ly, X® = x3(N1x2 + No) + A(N1x2 + No),
X* = x4(N1x2 + No) + Quxz + Qo

Case 2.3. Let 9§H be a non-zero constant function with respect to x3, i.e.,

H,;
H(X3) = x3 + Hox3 + Hj. (70)
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where H; # 0. By differentiating (45) twice with respect to x3, we get V.= W = 0. The derivative of (45)
with respect to x3 implies S(x;) = S and

Mi(x2,x4) = ——X492N (x2) = x492Q(x2) + Ma(x2), (71)

where S, is a constant. By differentiating (43) with respect to x3 and x4, we get S; = 0 and by differentiating
(43) twice with respect to x4, we get N(x2) = Nix; + Np. Also (42) implies L(xp) = leg + L1x + Lp, where L;
and L, are constants. The derivative of (43) with respect to x4 yields Q(x2) = Q1x2 + Q» where Q; and Q, are
constants. By differentiating (43) twice with respect to x3, we get Ny = L; = 0. Moreover, differentiating of
(43) with respect to x3 and applying equations (53), (70) and (71) (taking into account the specified relations
for L, N and Q in Case 2.3) gives us

o, | Nath

\/T
T(Xz) Tie" 7 = + The™

2 . 72
i 72)
From (43), (563), (70), (71) and (72), we obtain
Ma(xy) = —1H2¢ e 4 DHae - 4 HaNg — 222
2(x2) = o Vi 3N2x2 20, 3
where Mj is a constant. Consequently, we have
H(x3) = %xﬁ + Hyx3 + Hj, H1X3( T1H1e \/:XZ Tnge_\/zTT]xz — HyNp),
X! = 20N, — x (Wmﬁ*z B e NN T
14N2 2 41 — 2VH, (73)
N N
-i-—HZT2 Voo 7 + H3Noxy — zxz + M3,

2N . e
A,
X2 = L, X3 = Noxz +Tie 7 2 + T2€ 7 2 4 HZNZ, X4 = Noxg + Qrxo + Qo.

Case 3. Let D = 0 and E(x,) be a non-zero function with respect to x,. In this case from (42), we have

E(x2)93H(x3) — 293E(x2) = 0. (74)
Now we show that 93E(x2) = 0. If 92E(x2) # 0, then from (74) we have d3H(x3) = 2‘25{ (;;2) So
282E(X2)
?H(xs) = Hi, ——— =Hj,
e =t Ty~
i.e.,
H _fH o
H(xs) = 71x§ + Hyxs + Hs, E(xs) = Ere V202 4 Epe 22, (75)
Now by integrating (45) with respect to x4, we get
E1H, - EH LN
Mz 3,0 = e Fhogad o+ Bt - 28O0 00) 4+ 13205512 (76)
(VXZ + W)H1 2

5 X3X4 — Hz(VXz + W)X3X4 — H3Vxoxy — H3Wxy + Ml(xz,x3)

By differentiating (44) twice with respect to x4 and taking into account (75) and (76), we obtain

H H
Hl(Ele_ \/;xz + Eze\/;xz) =0
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So H; = 0 and consequently E(x;) = E; + E, which is a contradiction with 8§E(xz) # 0. So 8§E(x2) =0, 1ie.,
E(xz) = Exxo + Ea, H(xs) = Hixs + Hp, (77)
where Ej, E;, Hy and H, are constants. By integrating (45) with respect to x4, we conclude
M(x2, X3, X4) = X3%4025(x2) — —x4(92N(x2) = 2Q(x2)x4 — (Hix3 + Ha)(Vxa + W)xy + My (x2, x3).

The derivative of (44) with respect to x; yields

VH, WH;
S(xz) = Tx% + 5

X2 +S1,

where S is a constant. Using the above relation and the second derivative of (43) with respect to xy, it
follows

E
N(xz): ! 1x§+N1x2+N2,

where N; and N, are constants. Now integration of (44) with respect to x3 gives

H E,H N
14 1X§X2 + 22 1x§ - 713% - (92T(x2)x3 + HyEq1xox3 + HyEpxs + Mz(Xz).

M (x2,x3) =

The derivative of (43) with respect to x4 implies

HYV , HIW , HiS, VH,
+ Xy —

Qlxp) = 9% X5+ TR 1 7 Xt Qix2 +Qo,

where Q; and Q; are constants. From (42), we get also

HlEl 3

+ Nl)xg + Lixy + Ly,

L(x) = +(

where L; and L, are constants. Now by differentiating (43) with respect to x3, we get

5 1,1 1 1
T(x2) = —H?E1x; + Z(ngEz + HiNp)x3 + E(HZE1 +HL; — EHlNz)xg + Tixo + Ty,

96

where T7 and T are constants. Putting the above equation in (43) and then integrating the new equation
with respect to x, we get

1 1 1 1
My (x;) = —HJEix; + —( H3E2 + H3Ny)x; + =(HiHoEq + —H2Ly — ngNQ)xg

2 96 16 3 2 3
1
+ (H2N1 + EHleEZ + EHlTl)xg + (Hsz - 2H2N2 + 2H2L1)X2} + M3,
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where Mj is a constant. According to the above explanation, we have

H(x3) = Hyx3 + Hy,

p= 96x ( 5H2E1X - SHl(EzH]. + 3N1)x + (( 24V xy — 4811 + 24N2)H1 48E1H2)X§
+(—48H Wiy — 96E 1, — 96T )x, + (—48x2 — 48x2)E; — 9651x4 — 96Ex1 — 96T),

X! = H>E1x0x3 — x4 H1x3W — x4 Ho Vixo + x1x4V — x1x3E1 — HyWxy + HyNoxpy — HoL1xo

H1N2X2 + H1Lixp + %H%Elxg + %HlNlJC% + T1)

—X4(24 3H2V + 1x2H2W + X2H151 HoVax, + Ql) — x4Hix3Vxp — sz + M3

E{Hy

—X% 73262+N1 _ HilTl x% _ H32N1 x% _ H%Ez xé Hléq 3, H Nz x3 + HlEz § H12Tz X (78)
_I_ilgil xg H22Nl x2 + ElHl %xz HleE1 3 HZEZHl 2 xl(ZElHlxz + EzzHl
+2N1xp + Ll) + ZX1(E1H1 2 + Nl.'sz + NZ) + X3X4(—.X'2 + WH])
X? = —X3(E1X2 + Ez) + X4(VX2 + W) + ElH] 3 + (EZH1 + N1)x + L1X2 + Ly,
X3 = xl(Elxz +Ey) - x + Vxgxs + X3(E1Hl 2+ Nix, + No) + & S+ xy (ﬂx2 + WHl
+51) + 1 1x4 + 12(E2H2 + 3H1N1)x + 4(2E1H2 +2H,L; - H1N2)x + T1xp + TQ,
X4 = —xl(sz + W) - —xé —x4x3E71 — .X'3(VH1 2+ WHl X+ S1) + 23( + JC4(E1H1 2+ Nixp
+N,) + 2 x L Wx3 + H82 B2 4 Qs + Qo
Case 4. Let D # 0 and E(x;) = 0. In this case from (42), we have
Dx305H — 2DH — 295L(x2) + 492N(x2) = 0,
which gives
(i)DX3&3H(X3) - 2DH(X3) = C, (ll) - 2&§L(x2) + 482N(X2) = -
where C is a constant. From (i), we have
H(x3) = Hyx? ¢ (79)
3 143 — ZD

where Hj is a constant. By integrating (45) with respect to x4 and using (79), we get

C
M(xz, x3,X4) = = —x482N(x2) x402Q(x2) + X3x4025(x2) + = DH1X4X3 - in
\%4 1%
- VH1x2x§x4 + (Z:—szx4 — WH1x§x4 + ﬁle + Mj(x2, x3).

The second derivation of (44) with respect to x4 leads to H; = 0. By differentiating again (44) with respect
to x4, we get S(x2) = 51, where S, is a constant. Also the second derivative of (43) with respect to x4 implies
N(x2) = N1x, + Ny, where N7 and N, are constants. Now from (42), we get

1
L(XQ) (2N1 + —)xz + Lixy + Lo,
where L; and L, are constants. The derivative of (43) with respect to x4, implies Q(x) = CV 2 + Qo + Qy,
where Q; and Q; are constants. Now from these relations and (43), we get

1

1 1
Ml(xz,x3) = 8—DC 4DN1CJC2 DL1CX2 - ﬁNzch + Mz(x;:,).



M. Karimi et al. / Filomat 39:24 (2025), 8439-8464 8456

Putting the above equation in (44), we get M(x3) = (N1 )x + M3zx3 + My and T(x;) = —M3zx; + Ty,
where M3, My and T are constants. According to the above explanatlon we have
Msxp=S1x4—T
H(w) = —f, p=Mufnd
cv.
X' = D.X +x1x4V — xl((le + C)XZ + Lq) + 2x1(N1xp + Nz) - x - ( =2 4 Q1)xq — %xi
+QXZX4 + CWX4 + 8Dx2 + %xi + ﬁﬁq - %XQ + Nl 7 x2 +M3X3 + My,

2N] +£ 5 2 (80)

X? = —%xé - —X2 + X4(VX2 + W) + + Lixo + Lo,
X3 = Dx1x3 + x4x3V + X3(N1XZ + Nz) + X431 Mszx, + T1,

X4 = Dxqx4 — xl(sz + W) - %x% —x351 + %Xﬁ + X4(N1X2 + Nz) + CVXZ + Q1X2 + Qz

According to the studied cases above, the following conclusion is reached:

Theorem 2.5. All conformal vector fields on Siklos spacetimes given by (40) have the components given in (52), (58),
(65), (66), (67), (69), (73), (78) and (80).

In fact, in Theorem 2.5, we presented a large family of proper conformal vector fields on Siklos spaces times
given by (40).

Since the Siklos metrics given by (3) are special cases of The cases the Siklos metrics given by (3), we can
identify conformal vector fields of (3).

Theorem 2.6. Siklos spacetimes given by (3) admit proper conformal vector fields if and only if k = } and k = 1.
Moreover, conformal vector fields are as (52) (when k = %,Hz =¢,H; =0), (58) (when k = %,Hl =¢,H, =0),(73)
(whenk=1,H; =2¢,H, = 0,H3 = 0) and (78) (when k = %,Hl =¢H, =0).

Corollary 2.7. There are no proper conformal vector fields on Defris, Kaigorodov and Ozsvith spacetimes.

3. Curvature Inheritance Symmetry of Siklos spacetimes

In this section we focus on the curvature inheritance symmetry of Siklos spacetimes and we study the
existence of proper curvature inheritance symmetry of these spacetimes. Since curvature collineation is
a special case of curvature inheritance symmetry and there is no proper curvature collineation on Siklos
spacetimes [6], the study of proper curvature inheritance symmetry of these spacetimes is of particular
importance.

The possibly non-vanishing components (up to symmetries) of the Riemann-Christoffel curvature tensor
R of g are then given by

1
2 _pl _ p4 3 3 1 4 1 3 2 2

Rip = Ryyp = Ryyg = Rypy = Rizp = Ryy3 = Ryyp = Ryyy = Rygy = R§41 Ripy = R3p3 = 2’ (81)

3
1 83H - X382H
Ry =Ry = 2_x2<2H — x305H + xéo%H), Ry = Rygs = 213 —, (82)
3
-H 8§4H
R%zz =2 Rgaz = R§24 = Rgz;z Rzl123 (83)

3 2

Let X = X9;,i = 1,2,3,4, be a vector field that generate curvature inheritance symmetry. Then we have
£xR = 2pR. In the local format we have

£xR ,-klh = X'0;R jklh —(0;X"R jk;' + (0, X)R,," + (9 X)R ].ﬂh + (0, X)R ]-kf’ =2pR ]klh

Using (81), (82), (83) and the above equation we get a system of forty five PDEs. In order to simplify the
above system, we used its simpler equations into the other ones. In this way, we reduced the above system
to the following equivalent system, which contains just twenty three PDEs:

01 X2 =0, ABXP+1X>=0, X>+1X* =0, X +d3X*=0, (84)
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(@:X%)x3 — X° = px3, (9uXM)x3 — X° = px3, X+ 33X + HI3X* =0,
X+ 94X + HOyX? =0, (02X + 1 X )x; —2X° = 2px3,

(2HP, X? + 20, X" + X?9,H + X303H + X*dyH)xz — 2X°H = 2Hpx3,

(—1 XP9%,H + 01 X* 95, H)xs — 91X*9;H = 0,

(1X°93,H)xs — 1 X*9;H = 0,

(—h X*%,H + 01 X°93,H)xs — 91 X°93H = 0,

(1X* 3, H + 01 X293, H)xz — 01 X203H = 0,

(02X H + X295, H + 94X 93, H + ;X' 93, H)x3 — 2 X*d3H — 9, X'93H = 0,

(—h X*%H + 01 X295, H)x5 + (91X d3H)x3 = 0,
(1 X P H + 01 X295, H)x — (91X d3H)xs =0,

204X 0%, H + 9;X*95,H + 0:sX°0%H + 9, X*95,H — )1 X' 3, H
+X?95,,H + X*95,,H + X*d5,,H = 2pd3,H,

(20;X*93,H + 20, X % H + 0, X295, H — I X 0% H + X293, H
+ X255, H + X 95, H)x5 + (01X ' 93H — 293 X°93H — 9,X?03H
- X?93,H — X*95,H — X*93,H)xs + X°93H = 2p(d3,Hx3 — d3Hxs),

(—205X*93,H — 01 X'93,H + 0,X*93 H + 20, X*9;,H + X°93,, H
+X%05,,H + X*93,,H)x3 + (01X 95H — 20,X*9;H — X*93,H - X°93,H
— 02 X?03H — X295, H)x3 + X>03H = 2p(d5,Hx; — 93Hxs),

(—20:X*93,H + X?95,,H + X°d3, H + X*33,,H + 20, X3, H)x}
— (202X%03H + X295,H + X' 93, H + X?03,H)x3 + (40, X*H + 49, X"
+2X%0,H + 3X°0;3H + 2X*94H)x3 — 4X°H = 2p(2Hx3 — d3Hx3 + 95, Hx3),

(203X*93,H + 20, X093 H + X*35,H + X3, H + X* 95, H)x3
— (20:X?03H + X?95,H + X°93,H + X*93,H)x; + (40, X*H + 49, X"
+2X?0,H + 3X°93H + 2X*9;H)x3 — 4X°H = 2p(2Hx3 — d3Hx3 + 93, Hx)),

8457

(85)

(86)

(87)

(88)

(89)

(90)

©1)

(92)

(93)

(94)

(95)

(96)

97)

(98)

(99)
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20,X?95,H + X*93,,H + X*93,, H + X*95,, H = 2pd3,H. (100)

It is known that the first ten equations in the above system are the equations of the system of PDEs of
conformal vector fields given by (5)-(8).

In [14] the authors studied the curvature inheritance symmetry in Ricci flat spacetimes. More precisely
they proved that if a Ricci flat spacetime (which are not of Petrov type), admit curvature inheritance
symmetry, then the only existing symmetries are conformal motions. The similar result on M-projectively
flat spacetimes was obtained by Shaikh et al. [15]. More precisely, they proved that every curvature
inheritance in an M-projectively flat spacetime is a conformal motion. It is known that Siklos spacetimes
are not Ricci flat and M-projectively flat spacetimes, so these spacetimes don’t satisfy in the conditions of
the above results of [14, 15]. But since the system of PDEs of curvature inheritance symmetry includes the
system of PDEs of conformal vector fields, the following identical result can be derived for it.

Theorem 3.1. If Siklos spacetimes admit curvature inheritance symmetry, then the only existing symmetries are
conformal motions.

Here we intend to specify the vector fields that generate the curvature inheritance symmetry of Siklos
spacetimes. For this purpose, since previously conformal vector fields were obtained in general and since
all vector fields that generate the curvature inheritance symmetry are conformal, so we start from Theorem
2.1 and consider the rest of the equations for it. First, we refer to some important results about the Siklos
metrics that will help us to the classification of the curvature inheritance symmetry. Duggle proved the
following result:

Theorem B. ([8], theorem 6 and corollary 1) A pseudo-Riemannian manifold (), g), which admits a
proper curvature inheritance and also a proper conformal vector field is necessarily a conformally flat
space.

Also, Calvaruso presented the following:

Theorem C. ([4], Proposition 2) A Siklos metric g, as described in (2), is (locally) conformally flat if and
only if the defining function H = H(xy, x3, x4) satisfies the system of PDEs

8§3H ~P,H=0,
P2,H =0,

that is, when H is explicitly given by

1
H(XZ, X3, X4) = EHl(xZ)(xg + xi) + Hz(Xz)x::, + H3(X2)X4 + H4(X2), (101)
where Hi(x2), Ha(x2), H3(x2) and Hy(xy) are arbitrary smooth functions.
Here, we briefly recall that a pseudo-Riemannian manifold (¥, g) is called (locally) conformally flat if
there exits (at least, locally) some smooth function p, such that g = e”gg, where gy is a flat metric.
According to Theorems 3.1, B and C, we conclude the following result:

Proposition 3.2. If Siklos spacetimes admit proper curvature inheritance symmetry, then H must be in the form of
(101).

According to the above theorem, vector fields that generate curvature inheritance symmetry exist only
on Siklos metrics with H given by (101). Therefore, we will consider H as (101) in the following classification
of these vector fields.

From (88) and (101) (taking into account the specified relations for X> and X* in (34)), we have

Hy(x2)(Dxs — K(x2)) = 0. (102)

Then H,(x;) = 0 or D = 0. So we have three cases:
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Case 1. D = 0 and Hx(xz) # 0. In this case, from (102), we have K(x;) = 0. From (90), we get
E(x2)Hz(x2) = 0, and so E(xz) = 0. The third equation of (85) implies

1
M(x2, x3,x3) = —52302N(x2) — X3%3925(x2) — x392T(x2) + M1 (x2, x4). (103)
2

By differentiating the first equation of (86) with respect to x3 and taking into account (34), (101) and (103),
we have S(x;) = S, where S is a constant. The first equation of (86) leads to

M 29) = =3 50N(2) ~ 2:02Q002) + Malx2) (104)

By differentiating (96) with respect to x4 and using (34), (101), (103) and (104), we have SH>(xz) = 0, then
S = 0. By differentiating (87) with respect to x; and using (34), (101), (103) and (104), we have

NGz = 5(@aL) + N, (105)

where Nj is a constant. From (96), (34), (101), (103), (104) and (105), we have H(x3)T(x;) = 0. So T(x;) = 0.
In this case, we have p = 0, i.e., there is no proper curvature inheritance symmetry.

Case 2. D # 0 and Hx(x;) = 0. In this case from (89), we have (Dx4 — K(x2))H1(x2) = 0. So Hi(x2) = 0. By
differentiating (99) with respect to x1, x3, then x3, we obtain 8§E(x2) =0. So E(x2) = E1x, + E;, where E; and
E, are constants. From the third equation of (85), we get

X2x4 X2
M(x, x5, %) = = = —03K(x2) = ' 02N(x2) ~ 1324025(x2) = 30, T(x2)

D
+ (Ha(x2)xs + H4(x2))(5x§ + E1xox3 + Eoxz) + My (x2, X4).

The second derivative of the first equation of (86) with respect to x3 yields —28§K(x2) + DH3(xy) = 0. So

2
Hs(x,) = w. From the first equation of (86), we have

2
Mi(x2,x4) = = %((ZXEK(JQ) — Dx})95K(x2) — 2D(—%32N(x2) — x40,Q(x2)

D
+ (Exi — x4K(x2))Ha(x2))) + Ma(x2).
By substituting the above relations into equations (84)-(100), we have
(E1x2 + E2)d5K(x2) — DA S(x2) = 0, (106)

and

(=25 — x3)92K(x2)

(L(x2) + x3(E1x2 + E2))x4053K(x2) + ( > + x4x3E1 — x4N(x2) — x35(x2) (107)
(=x2 — x2)32N(x,)
+ 2051 (3% ~ x1K(x2) + QU)K (x2) + D(————o—2—— = 11 BL(x2) — 1a03Q(x2)
(2+x2)D
(—x4K(x2) + L(x2) + 52— + x3(E1xp + E))d2Hy(xp)
_x4x38§S(x2)—x38§T(x2)+ s 2 2 2 5 S 27 A

- X482K(X2)H4(JC2) + 82L(x2)H4(x2) + 82M2(x2) + 2X132N(X2) + (X3E1 —Dxq — N(Xz))H4(X2)) =0
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From (107) and (106), we have

L(x2)x403K(x2) + (%(—xé — x3)92K(x2) — 24N (x2) — x35(x2) + 29> L(x2)x4 — x1K(x2) (108)

+Q(x2))d5K(x2) + D(%(—xi — x3)A5N(x2) — 1195L(x2) — X405Q(x2) — x395T(x2)

d,H. (2 +x2)D
+ %(XZ) 3 Y 4 x3(Erxy + E)) — x402K(x2)Ha(x2)

+ daL(x2)Ha(x2) + d2Ma(x2) + 2x19;N(x2) + (x3E1 — Dxy — N(x2))Ha(x2)) = 0.

(—=x4K(x2) + L(x2) +

We get the following equations from (108):

—92K(x2)K(x2) — D(Hy(x2)D + 3L (x2) — 29,N(x2)) = 0,

D2 0,Hy(x2) — DN (x2) — 92K (x2)92K(x2) = 0,

~S(x2)2K(x2) + (—2T(xp) + ExtBIRI) 4 By, (1:))D = 0, (109)
L(x2)d3K(x2) — (N(x2) — 202L(x2))33K (x2) — D(92Q(x2) + LKD) - 9, K (xy)Hy(x2)) = 0,
Q(x2)95K(x2) + D(w + daL(x2)Hy(x2) + daMa(x2) — N(x2)Hy(x2)) = 0.

Based on the above explanations, in this case, the function H(xp, x3,x4) in Siklos metrics given by (2),
the components of the vector fields that generate curvature inheritance symmetry with their curvature
inheritance symmetry factor are as follows:

H(xz, x3,X4) = 595K (x2)xs + Hy(x2),
2
p="2(Eixa+Ep) - By - B2 - 25(xp) - LT(x2),
X! = Dx% - E1X]X3 + X1X482K(XQ) - x1<92L(xz) + 2X1N(X2)

2 2 —,2— 2 B
5 (2g(~ 2B D By + E2))ORK(02)) + TN 1,900 (02)

242)D
—X3x4025(x2) — x302T(x2) + (—x4K(x2) + (x3+2x4) + x3(E1x2 + E2))Ha(x2) + Ma(x2),
X2 = —%Dx% - X3(E1X2 + Ez) - %Dxi + X4K(X2) + L(xz),
X3 = Dxqx3 + xl(Elxz + Ez) - ’52—1x§ + X4X382K(XZ) + X3N(X2) + %xi + X4S(X2) + T(XQ),

X* = Dy — 11K(x2) — 202K(x2) — Exxaxs — x38(62) + 202K (x2) + 1aN(x2) + Q(x2),

(110)

where the functions used in the above satisfy (106) and (109).
Case 3. D = Hy(x;) = 0. In this case from (87), we get E(x2) = E1x2 + E;, where E; and E; are constants.
From (89), we have

K(x2)H1(x2) = 0. (111)

So, we have the following cases:
Case 3.1. Hi(x2) = 0. In this case from the third equation of (85), we get

x2xy 5 x2
M(xp,X3,%4) = — TazK(xz) - ?921\7(362) — x3%4025(x2) — x302T(x2)

+ (H3(x2)x4 + Hy(x2))(E1x2x3 + Ex3) + Mi(x2, X4).

The second derivative of the first equation of (86) with respect to x3 implies K(xz) = Vx, + W, where V and
W are constants. From the first equation of (86), we have

X3 1% w
Mi(x2,x4) = —74921\](9(2) = x402Q(x2) - (Exﬁxz + ?xi)Hs(xz) — x4(Vxa + W)H4(x2) + Ma(x2).
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By substituting the above relations into equations (84)-(100), we have
—20:5(x2) + Ha(x2)(E1x2 + E2) = 0, (112)
and

(x§ + xi)&%N(xz) + 2x18§L(x2) + 2x43§Q(xz) + ZX3x48§S(xz) + 2x3c9§T(x2) + (—L(xp)
+ x4(Vxy + W) = (Eq1x2 + E2)x3)0d2Ha(x2) — x4(L(x2) + x3(E1x2 + E3))d2H3(x2)
— 2(H3(x2)x4 + Hy(x2))d2L(x2) — 202Mp(x2) — 4x192N(x2) + (=Q(x2) — x4x3E1 + Vx1x2

\% \%
+ Exi + Exé + X3S(X2) + JC4N(X2) + le)Hg(XQ) + Z(X4V — X3E1 + N(XQ))H4(JC2) =0.

The above equation gives the following;:

205L(x2) — 402N (x2) + (Vxz + W)Hz(x2) = 0,
202N(x2) + VHs(x) = 0,
203T(x2) — (E1xz + E2)d2Ha(xa) + H3(x2)S(x2) — 2E1Hy(x2) = 0,
295Q(x2) — L(x2)d2H3(x2) + (Vo + W) Ha(x2) — 2H3(x2)d2L(x2) + H3(x2)N(x2) + 2VHy(x2) = 0,
L(x2)d2Ha(x2) + 2Hy(x2)d2L(x2) + 202M>(x2) + Q(x2)H3(x2) — 2N(x2)Hy(x2) = 0.
(113)
Based on the above explanations, in this case, the function H(xy, x3,x4) in Siklos metrics given by (2),

the components of the vector fields that generate curvature inheritance symmetry with their curvature
inheritance symmetry factor are as follows:

H(xz, x3,x4) = H3(x2)x4 + Hy(x2),
p= E(Exs +En) - By — BE - B5() - 1T(xy),
x102L(x2) — x492Q(x2) — X3x4925(x2) — X392 T (x2)
— B0 (3, (Vixy + W) — 2x3(E1xz + E2)) + ((—Vxa = W)y + x3(E1xz + E2))Ha(x2)
+x1x4V — x1x3E1 + 2x1N(x2) + Ma(x2),
X2 = —x3(E1xs + E2) + x4(Vxy + W) + L(xy),
X3 = 13N(12) + 148(x2) + T(x) + o8ty

4 4 2V
X* = =Vxixo — Wx; — -5 = x4x3E1 — x35(x) + -5+ X4N(x2) + Q(x2),

1 _ (=3-2])0:N(x2)
x1 = Sl

(114)

+ X4X3V + E>x,

where the functions used in the above satisfy (112) and (113).
Case 3.2. Hi(x2) # 0. In this case, (111) gives K(x2) = 0. From the third equation of (85), we get

1 1 X
M(xz, x3,%4) = — ExéazN(xz) — x3x4025(x2) — x30>T(x2) + E(Hl(xz)(§3 +x317) (115)
+ 2H3(x2)x3x4 + 2x3Hy(x2))(E1x2 + E2) + M1(x2, X4).
The second mixed partial derivative of the first equation of (86) with respect to x3 and x4, gives us (E1xz +
E»)Hi(x2) = 0. Since Hi(x2) # 0, we get E; = E; = 0. Now by differentiating the first equation of (86) with

respect to x3, we have d,5(x2) = 0. So S(xz) = S, where S is a constant. Therefore (115) reduces to the
following

1 1 X3
M(xz, x3,x4) = — ExiﬁzN(xz) - x302T(x2) + E(Hl(xz)(g3 + x3%3) + 2H3(x2)x334 + My (x2, x4). (116)

Now from the first equation of (86) and (34), (101) and (116), we get

M, ) = =3 802N (x2) = 1402Q012) + Ma(x2) (117)
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By differentiating (87) with respect to x; and using (34), (101), (116) and (117), we get
1
N(xp) = 5(92L(X2) +N1),

where Nj is a constant. By substituting the above relations into equations (84)-(100), we have

2 2\ 73
w +22,050(x2) + 26305 T(x2) + (=3 — 1) Hi(x2) - w
 Ha()daL(x) - % L(x2)(x2 + x2)9:H1 (x2) — L(x2)d2H3(x2)xs — L(x2)92Ha(x2)

~20,Ma(2) + (13 T(x2) — Qea)a) i (12) + (xS + 241

— Q(x2))H3(x2) + N1Hy(x2) = 0.
The above equation gives us

agL(XQ) - 282L(X2)H1(X2) - L(x2)82H1 (XQ) = 0,

205T(x2) — T(x2)Hi1(x2) + SH3(x2) = 0,

2050(x2) + w = L(x2)d2H3(x2) — Q(x2)H1 (x2) + W =0,
Hy(x2)d2L(x2) + L(x2)d2Hy(x2) + 20:M(x2) + Q(x2)H3(x2) — N1Hy(x2) = 0.

(118)

Based on the above explanations, in this case, the function H(xy, x3,x4) in Siklos metric given by (2),
the components of the vector fields that generate curvature inheritance symmetry with their curvature
inheritance symmetry factor are as follows:

H(xa,x3,%1) = 3H1(x2)(x5 + x3) + H3(x2)xs + Ha(x2), p =-S3 — £T(x2),

_ (=x3-x)IL(x2)

X' = =2 1+ 0N - 1402Q(x2) — %392 T(x2) + Ma(x2),  X* = L(x2), (119)
X® = 1(92L(x2) + N1)xs + Sxg + T(x), X* = =Sx3 + 3(d2L(x2) + N1)xg + Q(x2),

where the functions used in the above satisfy (112) and (113).
Based on the above cases (Cases 1, 2, 3) the following result is obtained.

Theorem 3.3. All vector fields that generate curvature inheritance symmetry on Siklos metric given by (2) have the
components specified in (110), (114) and (119) (of course by considering the certain conditions).

Remark 3.4. In Theorem (3.3), we classified all the generate curvature inheritance symmetry on Siklos metric. To
show that these obtained equations have solutions, we examine one of these cases. For example, we examine the (119)
when Hi(x2) = Hi, Ha(x2) = Hy and H3(x2) = 0. By substituting the above items into equation (118), L(x2), T(x2),
Q(x2) and My(x,) are obtained as follows:

\/2?)( \/ZT.Y
L(.’sz) = Lle‘/ﬁ"z + Lye™ VZHix, + L3, T(Xg) =Tie 21 : + The™ 21 2,

N N HyLeV2Hix2 [, [.e~V2Hi2 [N
Q) =Qie~ 7 +Qe 7, My(xy) = —— 162 — = 262 + 421x2

+M3.
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So (118) is converted to the following relations:

H VTX \/ZTX
I(XHC +Hy, p= Sx4——(T1€ 212+T2€7 212),

H(XZ/ X3, x4)

—5(e” mYz( VZHl(Q2X4+sz3)€ 4 VI (Quxs + Trix)e 7 = +(H1(x +x3)
+H4)L1€mx2 + ( HyNix, —2Nix1 — 2M3)€ V2Hix + (Hl(x3 + x4) + H4)L2)),
X2 = Lie Ve 4 [ye V22 4 [,
3\

2H, x; AIT-. AT AIT-.
X3 = g( 3L 2H1€2 2Hxy _ V2H1Lyx3 + Nix3e 2Hix 4 2T1e™ 7 +2x45e 2H1x
4/2Hq x
+2Te~ 7,
V2H ) 34/2Hxp 24/2H1xy
X4 = _e—\/ZHlxz(_Q2e = _ Qlef _xaly 2H21f-’ + (X3S _ x4§/1 )e\/2H1Xz
2H1L2X4
1 V2L
2

As the vector fields that generate proper curvature inheritance symmetry on Siklos spacetimes given by
(2) are proper conformal vector fields, so using Theorem 6 and Corollary 1 of [8], we conclude the following:

Corollary 3.5. The Siklos spacetimes given by (2) with H(x2, x3, x3) specified in the above theorem, are conformally
flat.

Since we have already obtained and classified the conformal vector field in state H(x3) completely, we want
to see if there is curvature inheritance symmetry in this state or not. According to the forms of H specified in
Theorem 3.3, the Siklos spacetimes have curvature inheritance symmetry if H(x3) is constant. Considering
H(x3) = H in (84)-(100), we get

_%2 +x3x3)03E(x)  DHx3 x2
M(xp,X3,%4) = — 5 ot x3HE(x2) — —82N(x2) x4X3025(x2)
X Dxi
- x30,T(x2) - iazN(xz) - x40,Q(x2) — H(_T + Vixoxy + Way)
1 1
+ H(EDng - Eleg — L1xy + Naxa) + M,
(—DH + 2N1)X§
K(Xz) = VJCQ + VV, S(Xz) = S, E(XZ) = E1X2 + EQ, L(XQ) =+ L1XQ + Lz,

2
1
N(x2) = Nixo + Np, T(xp) = Ele2 +Tixx + T2, Qxg) = ——Vsz + Qixz + Q.

Therefore, we have

H(xs)=H, p= 2}@ ((=Hx3 — 2x1x — x5 — x3)E1 — 2x4S1 — 2Eoxy — 2T1xp — 2T)),
X! = ﬁ + H(2x120,D + (2 + x2)D — N1x3 + 2(=Ly + No)xp + 2x3E; — 2Waxy) + Dx?
H(=Eyxs + Vatg — Ly + 2Ny — S — ZTN — Qs — Taxs + M,
X2 = COHENDG | (Cp s b Vi + Loy + S50 s o Wiy + Ly, (120)
X3 = —x% + (Dx1 + N1xp + Vg + No)xz + w + Epxy + T1xo + %451 + T,
Xt = 57 4 (Dxy = E1ts + Nyxs + NoYxg — 22 4+ (=Vary + Qu)a = 35 — Wiy — 1381 + Qo

So, we conclude the following:

Theorem 3.6. The Siklos metrics given by (40) admit proper curvature inheritance symmetry ifand only if H(x3) = H
where H is a constant. Moreover, the vector fields that generate proper curvature inheritance symmetry have the
components given in (120).

Corollary 3.7. The Siklos spacetimes given by (3) have no proper curvature inheritance symmetry. In particular,
there is no proper curvature inheritance symmetry on Defris, Kaigorodov and Ozsvdth spacetimes.
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