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Abstract. In this study, we consider the first eigenvalues associated with the q-Wentzell-Laplace problem on
a compact submanifoldM that possesses a boundary ∂M and we obtain Reilly-type upper bounds for these
eigenvalues. Our findings, in particular scenarios, align with the results presented in [14]. Additionally,
we investigate the upper bounds of these eigenvalues within the context of product manifolds R ×M.

1. Introduction

Let (Mm, 1) represent a Riemannian manifold that possesses a smooth boundary denoted as ∂M. The
Laplacian on the manifoldM is indicated by ∆̄, while the Laplacian on the boundary ∂M is represented by
∆. In local coordinate {yi

} onM, the Laplace operator ∆̄ is defined as follows

∆̄ = 1i j(
∂2

∂yi∂y j − Γ
k
i j
∂

∂yk
),

where Γk
i j are the Christoffel symbols of 1. For any arbitrary function f ∈W2,q

0 (M) with q > 1, the q-Laplacian
is determined by

∆̄q f = div(|∇̄ f |q−2
∇̄ f ),

where ∇̄ represents the gradient operator on the manifold M. Let α be a real number. We consider the
outward normal vector denoted by ν on ∂M which is an unit vector. Our focus is on estimating the
first eigenvalue associated with a quasi-linear boundary value problem that incorporates Wentzell-type
boundary conditions and the q-Laplacian. The problem is formulated as follows:∆̄q f = 0 in M,

−α∆q f + |∇ f |q−2 ∂ f
∂ν = λ| f |

q−2 f on ∂M.
(1)
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See [15]-[19] for more details on problem (1). When q = 2, the problem described in equation (1) simplifies
to the Wentzell-Laplace problem, which can be expressed as follows:∆̄ f = 0 in M,

−α∆ f + ∂ f
∂ν = λ f on ∂M.

(2)

The estimates for eigenvalue of problem (2) has been studied in [8] and [20]. When α = 0, the eigenvalue
problem described in equation (1) simplifies to the q-Steklov problem, which was investigated by Roth,
who examined some bounds for its first eigenvalue [14]. If α is nonnegative, the spectrum associated with
the problem (1) can be described as follows:

0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · ·

with corresponding real orthonormal eigenfunctions f0, f1, f2, · · · . Throughout of this paper, we consider
α ≥ 0. Let ∇ be the gradient operator on ∂M. The first positive eigenvalue associated with the problem
outlined in (1) can be expressed as follows:

λ1(M) = inf
f∈W1,q(M)\{0}


∫
M
|∇̄ f |qdv1 + α

∫
∂M
|∇ f |qdvh∫

∂M
| f |qdvh

:
∫
∂M
| f |q−2udvh = 0.


In this context, dvh represents the measure defined on ∂M.

In the presented paper, we present several bounds for λ1(M) on submanifoldsM within Rm. Asume
that λ1 refers to the first positive eigenvalue of the Laplace operator, whileH represents the mean curvature
(MC) associated with the immersion. In 1977, Reilly [10] established an upper limit for λ1, which can be
expressed as follows:

λ1 ≤
m
V(M)

∫
M

H
2dv1,

where V(M) = Vol(M). Let Hr denote the r-th MC associated with the immersion, where r takes values
from the set {1, 2, . . . ,m}. He also [10] proved

λ1

(∫
M

Hr−1dv1

)2

≤ V(M)
∫
M

H
2
r dv1.

It is important to note that when the codimension exceeds 1, the termHr+1 represents a normal vector field,
while Hr functions as a scalar function. Furthermore, Reilly demonstrated that the condition for equality
to be satisfied in all the aforementioned inequalities is that the manifoldM is immersed within a geodesic

sphere, which is represented as S(
√

m
λ1

). More broadly, when the manifoldMm is isometrically immersed

in RD for dimensions where D is greater than m + 1, he established that for any even integer r within the
range {0, 1, · · · ,m}, the following inequality is satisfied:

λ1

(∫
M

Hrdv1

)2

≤ V(M)
∫
M

|Hr+1|
2dv1,

with equality occurring if and only ifM is minimally immersed (MI) in a geodesic sphere. These findings
have been applied to various spaces and geometric operators, as referenced in works [1]-[6] and [9]-[14].
Additionally, the investigation of the first eigenvalue of the q-Laplacian on Lagrangian submanifolds
embedded in complex space forms was conducted in [3]. LetM be a closed submanifold withinRD and λ1,q
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denote the first eigenvalue of the q-Laplace operator onM. In their research, Du and Mao [7] established
that λ1,q adheres to the inequality

λ1,q ≤
m

q
2

(V(M))q

(∫
M

|H|
q

q−1 dv1

)q−1
D

2−q
2 if 1 < q ≤ 2,

D
q−2

2 if q ≥ 2.

Equality is achieved exclusively when q is equal 2 and the manifoldM is MI in a geodesic hypersphere. In
a similar vein, Roth demonstrated that the first eigenvalue µ1 of the q-Steklov problem on submanifoldsM
of RD adheres to the inequality

µ1 ≤

(∫
M

|v|
q

q−1

)q−1
V(M)

(V(∂M))qm
q
2

D
2−q

2 if 1 < q ≤ 2,
D

q−2
2 if q ≥ 2.

Furthermore, equality is true if and only if q = 2 andM is MI in BD( 1
µ1

) with the condition that ψ(∂M) ⊂
∂BD( 1

µ1
), where ψ represents the isometric immersion and µ1 is a positive constant.

2. Main results and their proofs

In this section, we utilize the Hsiung-Minkowski formula to derive Reilly-type upper bounds for the
first positive eigenvalue associated with the problem outlined in (1). We will assume throughout thatMm

is a connected, compact, and oriented Riemannian manifold with a nonempty boundary ∂M. Additionally,
we considerM to be isometrically immersed in the Euclidean space (RD, ⟨, ⟩can) via the mapping ψ, and we
denote λ1(M) as the eigenvalue corresponding to the q-Wentzell-Laplace problem described in (1), unless
otherwise specified. To begin, we present the following theorem.

Theorem 2.1. LetH represent the mean curvature vector field of ∂M within the space RD. For the range of values
where 1 < q ≤ 2, we have

λ1(M) ≤
D1− q

2 m
q
2V(M) + αD1− q

2 (m − 1)
q
2V(∂M)

(V(∂M))q

(∫
∂M
|H|

q
q−1 dvh

)q−1

,

and for q ≥ 2,

λ1(M) ≤
D

q
2−1m

q
2V(M) + αD

q
2−1(m − 1)

q
2V(∂M)

(V(∂M))q

(∫
∂M
|H|

q
q−1 dvh

)q−1

,

Furthermore, ifH , 0, equality in each of the aforementioned inequalities is achieved if and only if q = 2 andM is
MI in the ball BD( |ν−(m−1)αH|

λ1(M) ), with the condition that ∂M ⊂ ∂BD( |ν−(m−1)αH|
λ1(M) ).

Proof. We represent the components of the function ψ as ψ1, . . . , ψD. Given that ψ : (M, 1)→ (RD, ⟨, ⟩can) is
an isometric immersion, it follows that the equation

D∑
i=1

1(∇̄ψi, ∇̄ψi) =
D∑

i=1

|(∇̄ψi
|
2 = m

holds true. Additionally, we have

D∑
i=1

1(∇ψi,∇ψi) =
D∑

i=1

|(∇ψi
|
2 = m − 1,
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and the Laplacian of ψ can be expressed as ∆ψ = (∆ψ1, . . . ,∆ψD) = (m − 1)H . Consequently, it can be
concluded that

D∑
i=1

(∆ψi)2 = (m − 1)2
|H|

2.

For the coordinate functions ψk, we can modify them as necessary by substituting |ψi
|
q−2ψi with the expres-

sion

|ψi
|
q−2ψi

−

∫
∂M
|ψi
|
q−2ψidvh

V(∂M)
.

This adjustment allows us to assume, without any loss of generality, that the following condition holds:∫
∂M
|ψi
|
q−2ψidvh = 0, ∀i ∈ {1, 2, · · · ,D}.

Consequently, we can utilize ψk as our test functions.

In the scenario where 1 < q ≤ 2, we can derive from the Rayleigh-Ritz formula the following inequality:

λ1(M)
∫
∂M

D∑
i=1

|ψi
|
qdvh ≤

∫
M

D∑
i=1

|∇̄ψi
|
qdv1 + α

∫
∂M

D∑
i=1

|∇ψi
|
qdv1.

Given that q is less than or equal to 2, we can apply the inequality
(∑D

i=1 |ψ
i
|
2
) 1

2
≤

(∑D
i=1 |ψ

i
|
q
) 1

q . This leads us
to the conclusion that

|ψ|q =

 D∑
i=1

|ψi
|
2


q
2

≤

D∑
i=1

|ψi
|
q. (3)

The concave nature of the function ψ→ ψ
q
2 suggests that

D∑
i=1

|∇̄ψi
|
q =

D∑
i=1

(
|∇̄ψi
|
2
) q

2
≤ D1− q

2

 D∑
i=1

|∇̄ψi
|
2


q
2

= D1− q
2 m

q
2 .

Since
∑D

i=1 |∇̄ψ
i
|
2 = m and

∑D
i=1 |∇ψ

i
|
2 = m − 1 (see [12, Lemma 2.1]), we conclude

D∑
i=1

|∇ψi
|
q =

D∑
i=1

(
|∇ψi
|
2
) q

2
≤ D1− q

2

 D∑
i=1

|∇ψi
|
2


q
2

= D1− q
2 (m − 1)

q
2 .

Hence, we obtain

λ1(M)
∫
∂M
|ψ|qdvh ≤ D1− q

2 m
q
2V(M) + αD1− q

2 (m − 1)
q
2V(∂M). (4)

Using Hölder inequality, we infer

∫
∂M
⟨ψ,H⟩dvh ≤

(∫
∂M
|ψ|qdvh

) 1
q
(∫

∂M
|H|

q
q−1 dvh

) q−1
q

.



S. Azami et al. / Filomat 39:24 (2025), 8465–8475 8469

To obtain the desired result, we first multiply both sides of equation (4) by
(∫
∂M
|H|

q
q−1 dvh

)q−1
. Subsequently,

by utilizing the integral Hölder inequality, we can derive

λ1(M)
∣∣∣∣∣∫
∂M
⟨ψ,H⟩dvh

∣∣∣∣∣q
≤

(
D1− q

2 m
q
2V(M) + αD1− q

2 (m − 1)
q
2V(∂M)

) (∫
∂M
|H|

q
q−1 dvh

)q−1

.

Next, the Hsiung-Minkowski formula∫
∂M

(
⟨ψ,H⟩ + 1

)
dvh = 0,

leads to

λ1(M) (V(∂M))q (5)

≤

(
D1− q

2 m
q
2V(M) + αD1− q

2 (m − 1)
q
2V(∂M)

) (∫
∂M
|H|

q
q−1 dvh

)q−1

.

This completes the proof of inequality. Suppose H , 0, and equality is attained in (5). In inequality (3),
equality occurs, which yields q = 2. The rest of the proof is consistent with the proof of [8, Theorem 1.1]
about the Wentzel-Laplace operator.

We will now examine the scenario where q ≥ 2. In this situation, we obtain

D∑
i=1

|∇̄ψi
|
q =

D∑
i=1

(
|∇̄ψi
|
2
) q

2
≤

 D∑
i=1

|∇̄ψi
|
2


q
2

= m
q
2 .

and

D∑
i=1

|∇ψi
|
q =

D∑
i=1

(
|∇ψi
|
2
) q

2
≤

 D∑
i=1

|∇ψi
|
2


q
2

= (m − 1)
q
2 .

The convexity of the function ψ→ ψ
q
2 implies that

D∑
i=1

|ψi
|
q
≥ D1− q

2

 D∑
i=1

|ψi
|
2


q
2

= D1− q
2 |ψ|q.

The last two inequalities and the definition of λ1(M) give

λ1(M)
∫
∂M
|ψ|qdµh ≤ D

q
2−1m

q
2V(M) + αD

q
2−1(m − 1)

q
2V(∂M).

The remainder of the proof is similar to case 1 < q ≤ 2.

Remark 2.2. 1) When α = 0, the Theorem 2.1 becomes Theorem 1.1 in [14].
2) From the standard embedding of a projective space into a Euclidean space [16], for 1 < q ≤ 2 we have

λ1(M) ≤
D1− q

2 m
q
2V(M) + αD1− q

2 (m − 1)
q
2V(∂M)

(V(∂M))q

(∫
∂M

(|H| + C(m))
q

q−1 dvh

)q−1

,



S. Azami et al. / Filomat 39:24 (2025), 8465–8475 8470

and for q ≥ 2 it follows that

λ1(M) ≤
D

q
2−1m

q
2V(M) + αD

q
2−1(m − 1)

q
2V(∂M)

(V(∂M))q

(∫
∂M

(|H| + C(m))
q

q−1 dvh

)q−1

,

where

C(m) =


1 for sphere SD,
2(m+1)

m for real projective space RqD,
2(m+2)

m for complex projective space CqD,
2(m+4)

m for quaternionic projective space QqD.

Let us consider a positive definite, symmetric, and divergence-free (1, 1)-tensor denoted as T on the manifold
M. By selecting an orthonormal basis {e1, · · · , em} that is tangent to the boundary ∂M, we can define the
normal vector fieldHT using the expression

HT =

m∑
i, j=1

⟨Tei, e j⟩B(ei, e j).

Here, B represents the second fundamental form associated with the immersion of the manifoldM into the
Euclidean space RD. Also, the generalization of Hsiung-Minkowski formula [9], [12], [13] is as follows∫

∂M

(
⟨ψ,HT⟩ + tr(T)

)
dvh = 0. (6)

We have now broadened the scope of Theorem 2.1 in the following manner:

Theorem 2.3. Suppose that T is a positive definite, symmetric, and divergence-free (1, 1)-tensor on ∂M. For
1 < q ≤ 2, we get

λ1(M)
∣∣∣∣∣∫
∂M

tr(T)dvh

∣∣∣∣∣q (7)

≤

((
D1− q

2 m
q
2V(M) + αD1− q

2 (m − 1)
q
2V(∂M)

) (
|HT |

q
q−1

)
dvh

)q−1
,

and for q ≥ 2, we acquire

λ1(M)
∣∣∣∣∣∫
∂M

tr(T)dvh

∣∣∣∣∣q (8)

≤

(
D

q
2−1m

q
2V(M) + αD

q
2−1(m − 1)

q
2V(∂M)

) (∫
∂M
|HT |

q
q−1 dvh

)q−1

.

Furthermore, if HT , 0 and m ≥ m + 1, equality in each of the inequalities holds if and only if q = 2 andM is MI
in the ball BD( |ν−(m−1)αH|

λ1(M) ), with the condition thatHT is proportional to ψ and that the boundary ofM is contained

within the boundary of BD( |ν−(m−1)αH|
λ1(M) ). Additionally, whenM is a bounded domain in RD, equality in equations (7)

and (8) is achieved if and only if the trace of T is constant andM takes the form of a ball.

Proof. The demonstration follows a pattern akin to the proof of Theorem 2.1. For 1 ≤ q ≤ 2, multiplying by(∫
∂M
|HT |

q
q−1 dvh

)q−1
on both sides in (4), we have

λ1(M)
∣∣∣∣∣∫
∂M
⟨ψ,HT⟩dvh

∣∣∣∣∣q
≤

(
D1− q

2 m
q
2V(M) + αD1− q

2 (m − 1)
q
2V(∂M)

) (∫
∂M
|HT |

q
q−1 dvh

)q−1

.

Taking the generalization of Hsiung-Minkowski formula (6) in the above inequality we obtain (7). By
similarly method, we can show (8) is true.
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Let B represent the second fundamental form characterized by the coefficients Bi j within an orthonormal
frame denoted as {e1, · · · , em}, accompanied by the dual coframe {e∗1, · · · , e

∗
m}. For a given integer r in the

range {1, · · · ,m}, the expression for Tr is defined as follows: if r is even, it takes the form

Tr =
1
r!

∑
i,i1,...,ir
j, j1,..., jr

δi1...iri
j1... jr j⟨Bi1 j1 ,Bi2 j2⟩ · · · ⟨Bir−1 jr−1 ,Bir jr⟩e

∗

i ⊗ e∗j.

If r is odd, the formulation of Tr is given by

Tr =
1
r!

∑
i,i1,...,ir
j, j1,..., jr

δi1...iri
j1... jr j⟨Bi1 j1 ,Bi2 j2⟩ · · · ⟨Bir−2 jr−2 ,Bir−1 jr−1⟩Bir jr ⊗ e∗i ⊗ e∗j

where δi1...iri
j1... jr j are the generalized Kronecker symbols. For any integer r within the range {0, 1, . . . ,m− 1}, the

mean curvature of order r is defined such thatH0 = 0 andHr =
1

(m−r)( r
m) tr(Tr). When r is even,Hr represents

a function, whereas it denotes a vector field when r is odd. Notably, H1 corresponds to H , which is the
mean curvature vector field. Furthermore, for any even integer r in the set {0, 1, . . . ,m} and for D > m + 1,
the generalized Hsiung-Minkowski formula is as follows [14]∫

∂M

(
⟨ψ,Hr+1⟩ +Hr

)
dvh = 0

and for any r ∈ {0, 1, · · · ,m} and D = m + 1, the following equation holds true:∫
∂M

(
⟨ψ, ν⟩Hr+1 +Hr

)
dvh = 0.

Here, ν denotes the unit normal vector field defined on ∂M.
Next, we give the following corollary from Theorem 2.3.

Corollary 2.4. We have

(1) For values of D greater than m + 1 and for any even integer r within the range of {0, · · · ,m − 1}, we obtain

(a) If 1 < q ≤ 2 then

λ1(M)
∣∣∣∣∣∫
∂M
Hrdvh

∣∣∣∣∣q
≤

(
D1− q

2 m
q
2V(M) + αD1− q

2 (m − 1)
q
2V(∂M)

) (∫
∂M
|Hr+1|

q
q−1 dvh

)q−1

.

(b) If q ≥ 2 then

λ1(M)
∣∣∣∣∣∫
∂M
Hrdvh

∣∣∣∣∣q
≤

(
D

q
2−1m

q
2V(M) + αD

q
2−1(m − 1)

q
2V(∂M)

) (∫
∂M
|Hr+1|

q
q−1 dµh

)q−1

V(M).

urthermore, if it is the case that Hr , 0, then the conditions for equality to hold in each of the inequalities
are satisfied if and only if q = 2 and the manifold M is MI in the ball BD( |ν−(m−1)αH|

λ1(M) ) such that ∂M ⊂

∂BD( |ν−(m−1)αH|
λ1(M) ).

(2) For m = m + 1 and for any even r within the range of {0, . . . ,m − 1}, we obtain
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(a) If 1 < q ≤ 2 then

λ1(M)
∣∣∣∣∣∫
∂M
Hrdµh

∣∣∣∣∣q
≤

(
D1− q

2 m
q
2V(M) + αD1− q

2 (m − 1)
q
2V(∂M)

) (∫
∂M
|Hr+1|

q
q−1 dvh

)q−1

.

(b) If q ≥ 2 then

λ1(M)
∣∣∣∣∣∫
∂M
Hrdµh

∣∣∣∣∣q
≤

(
D

q
2−1m

q
2V(M) + αD

q
2−1(m − 1)

q
2V(∂M)

) (∫
∂M
|Hr+1|

q
q−1 dvh

)q−1

.

Furthermore, when f is constant, Hr+1 , 0, equality is achieved in all inequalities if and only if q = 2 and
ψ(M) = BD( |ν−(m−1)αH|

λ1(M) ).

Theorem 2.5. Let us consider that a manifold (Mm, 1) is isometrically immersed into a sphere (Sm, ⟨, ⟩can) through
the mapping ψ.

(1) For m > m + 1 and any even r within the range of ∈ {0, · · · ,m − 1}, it follows that

(a) If q ∈ (1, 2], then

λ1(M)
∣∣∣∣∣∫
∂M
Hrdvh

∣∣∣∣∣q ≤ K1

(∫
∂M

(
|Hr+1|

q
q−1 + |Hr|

q
q−1

)
dvh

)q−1

.

(b) If q ∈ [2,+∞), then

λ1(M)
∣∣∣∣∣∫
∂M
Hrdvh

∣∣∣∣∣q ≤ K2

(∫
∂M

(
|Hr+1|

q
q−1 + |Hr|

q
q−1

)
dvh

)q−1

V(M).

Here

K1 = m1− q
2 m

q
2V(M) + αm1− q

2 (m − 1)
q
2V(∂M),

and

K2 = m
q
2−1m

q
2V(M) + αm

q
2−1(m − 1)

q
2V(∂M).

Moreover, equality never occur in both inequality unlessHr+1 = Hr = 0.

(2) For m = m + 1 and arbitrary integer r from {0, · · · ,m − 1}, we get

(a) If q ∈ (1, 2], then

λ1(M)
∣∣∣∣∣∫
∂M
Hrdvh

∣∣∣∣∣q ≤ K1

(∫
∂M

(
|Hr+1|

q
q−1 + |Hr|

q
q−1

)
dvh

)q−1

.

(b) If q ∈ [2,+∞) then

λ1(M)
∣∣∣∣∣∫
∂M
Hrdvh

∣∣∣∣∣q ≤ K2

(∫
∂M

(
|Hr+1|

q
q−1 + |Hr|

q
q−1

)
dvh

)q−1

.

Moreover, equality never occur in both inequality unlessHr+1 = Hr = 0.
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Proof. We represent the second fundamental form of the mapping ψ and the standard embedding Sm−1

within the Euclidean space RD asH and j, respectively. Additionally, we denote the second fundamental
form associated with the composition j ◦ ψ asH ′. Within an orthonormal basis {ei}

m
i=1 at the point q ∈ ∂M,

we define

H
′

Tr
(q) =

m∑
i, j=1

Tr(ei, e j)B′(ei, e j),

whereH ′Tr
is the normal vector field. Since B′ = B − 1 ⊗ ψ, we haveH ′Tr

= HTr − tr(Tr)ψ, which yields

|H
′

Tr
|
2 = |tr(Tr)|2 + |HTr |

2.

On the other hand, from [9, Lemma 2.2] we have

|HTr | = kr|Hr+1|, tr(Tr) = kr|Hr|. (9)

Hence, we get

|H
′

Tr
|
2 = k2r2

(
|Hr|

2 + |Hr+1|
2
)
. (10)

TakingH ′Tr
in inequalities obtained in Corollary 2.4, we conclude:

for D > m + 1 and even r from {0, · · · ,m − 1}, we get
if q ∈ (1, 2], then

λ1(M)
∣∣∣∣∣∫
∂M

tr(T)dvh

∣∣∣∣∣q ≤ K1

(∫
∂M
|H
′

Tr
|

q
q−1 dvh

)q−1

,

and if q ∈ [2,+∞) then

λ1(M)
∣∣∣∣∣∫
∂M

tr(T)dvh

∣∣∣∣∣q ≤ K2

(∫
∂M
|H
′

Tr
|

q
q−1 dvh

)q−1

.

Using (9) and (10) we deduce:
if q ∈ (1, 2], then

λ1(M)
∣∣∣∣∣∫
∂M
Hrdvh

∣∣∣∣∣q ≤ K1

(∫
∂M

(
|Hr|

2 + |Hr+1|
2
) q

2(q−1) dvh

)q−1

and if q ∈ [2,+∞) then

λ1(M)
∣∣∣∣∣∫
∂M
Hrdvh

∣∣∣∣∣q ≤ K2

(∫
∂M

(
|Hr|

2 + |Hr+1|
2
) q

2(q−1) dvh

)q−1

.

If either Hr , 0 or Hr+1 , 0, it follows that H ′Tr
, 0. Should the quality condition be satisfied in the

aforementioned inequalities, then the mapping j ◦ ψ results in a minimal immersion of the manifold M
within RD. This situation leads to a contradiction, thereby concluding the proof of part (1) of the theorem.
The approach taken to prove part (2) mirrors that of part (1).

Subsequently, we consider M as a complete Riemannian manifold and investigate the first eigenvalue
associated with the q-Wentzell-Laplace problem on the product space R ×M.

Theorem 2.6. Consider a complete Riemannian manifold denoted as (Mm, 1̄) and a closed oriented Riemannian
manifold (Qm, 1) that is isometrically immersed in the product space (R ×M, 1̄ = dt2

⊕ 1̄). Furthermore, let Q be
mean-convex and serve as the boundary of a domainΩ withinR×M. Define κ+ as the largest principal curvature of
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Q at a point x ∈ M, and let κ+(Q) represent the maximum value of κ+(x) for all points x inM. Regarding the first
eigenvalue λ1(Ω) associated with the q-Wentzell-Laplace problem on the domain Ω, we have

λ1(Ω) ≤

κ+(Q)|H|∞
inf
Q

H


q
2

(
V(Ω)1− q

2 + αm
q
2 |H|

q
2
∞V(Q)1− q

2

)
(V(Q))1− q

2

.

Proof. In a manner analogous to [14], we define t as a test function, with v = ⟨ν, ∂t⟩ = ⟨ν, ∇̄t⟩. Consequently,
we derive the equation ∆t = −mvH and∫

Q

|∇t|2dv1 =
∫
Q

mvtH dv1.

We know ∇v = −S∇t, then∫
Q

⟨S∇t,∇t⟩dv1 =
∫
Q

mHv2 dv1.

Thus, we arrive at

m inf
Q

(H)
∫
Q

v2dv1 ≤
∫
Q

mHv2dv1 ≤
∫
Q

⟨S∇t,∇t⟩dv1 ≤ κ+(Q)
∫
Q

|∇t|2dv1,

≤ κ+(Q)
∫
Q

mHvt dv1 ≤ mκ+(Q)|H|∞

∫
Q

vt dv1,

≤ mκ+(Q)|H|∞

(∫
Q

|t|q dv1

) 1
q
(∫
Q

|v|
q

q−1 dv1

) q−1
q

.

By applying the Hölder inequality, we can derive the following result

inf
Q

(H)
(∫
Q

|v|
q

q−1 dv1

) 2(q−1)
q

Vµ1 (Q)
2−q

q

≤ inf
Q

(H)
∫
Q

v2dv1

≤ κ+(Q)|H|∞

(∫
Q

|t|q dv1

) 1
q
(∫
Q

|v|
q

q−1 dv1

) q−1
q

,

therefore,(∫
Q
|v|

q
q−1 dv1

) q−1
q(∫

Q
|t|q dv1

) 1
q

≤
κ+(Q)|H|∞

inf
Q

(H)
V(Q)

q−2
q . (11)

By definition of λ1(Ω), we conclude

λ1(Ω)
∫
Q

|t|qdv1 ≤
∫
Ω

|∇̄t|qdv1̄ + α
∫
Q

|∇t|qdv1.

Equations |∇̄t| = 1 and ∆̄t = 0 yield∫
Ω

|∇̄t|qdv1̄ =Vv1̄ (Ω) =
(∫
Ω

|∇̄t|2dv1̄

) q
2

Vv1̄ (Ω)1− q
2
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and ∫
Ω

|∇̄t|2dv1̄ =
∫
Q

⟨t∇̃t, ν⟩dv1 =
∫
Q

tvdv1.

The Hölder inequality gives

∫
Ω

|∇̄t|2dv1̄ ≤
(∫
Q

|t|q dv1

) 1
q
(∫
Q

|v|
q

q−1 dv1

) q−1
q

,

and ∫
Q

|∇t|2dv1 ≤ m
q
2 |H|

q
2
∞

(∫
Q

|t|q dv1

) 1
2
(∫
Q

|v|
q

q−1 dv1

) q−1
2

.

Consequently, we arrive at

λ1(Ω) ≤

(∫
Q
|v|

q
q−1 dv1

) q−1
2(∫

Q
|t|q dv1

) 1
2

(
V(Ω)1− q

2 + αm
q
2 |H|

q
2
∞V(Q)1− q

2

)
. (12)

By inserting (11) in (12), the proof of theorem will be completed.
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