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Estimates on the first eigenvalues of q-Wentzell-Laplace problem
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Abstract. In this study, we consider the first eigenvalues associated with the g-Wentzell-Laplace problem on
a compact submanifold M that possesses a boundary d M and we obtain Reilly-type upper bounds for these
eigenvalues. Our findings, in particular scenarios, align with the results presented in [14]. Additionally,
we investigate the upper bounds of these eigenvalues within the context of product manifolds R x M.

1. Introduction

Let (M™, g) represent a Riemannian manifold that possesses a smooth boundary denoted as dM. The

Laplacian on the manifold M is indicated by A, while the Laplacian on the boundary d M is represented by
A. In local coordinate {y'} on M, the Laplace operator A is defined as follows

2
a. - r’f.i),
dyidyl U oyk

A=g'(

where l"i,‘], are the Christoffel symbols of g. For any arbitrary function f € Wg’q (M) with g > 1, the g-Laplacian
is determined by

Aqf = div(IVfII2V ),

where V represents the gradient operator on the manifold M. Let a be a real number. We consider the
outward normal vector denoted by v on d M which is an unit vector. Our focus is on estimating the

first eigenvalue associated with a quasi-linear boundary value problem that incorporates Wentzell-type
boundary conditions and the g-Laplacian. The problem is formulated as follows:

Af=0 in M, )
—al,f +IVAT2L = Af2F on IM.
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See [15]-[19] for more details on problem (1). When g = 2, the problem described in equation (1) simplifies
to the Wentzell-Laplace problem, which can be expressed as follows:

{Af=0 in M, @)

—alAf + ‘;—’: =Af on dM.

The estimates for eigenvalue of problem (2) has been studied in [8] and [20]. When a = 0, the eigenvalue
problem described in equation (1) simplifies to the g-Steklov problem, which was investigated by Roth,
who examined some bounds for its first eigenvalue [14]. If a is nonnegative, the spectrum associated with
the problem (1) can be described as follows:

0=AgS M <A< <A<
with corresponding real orthonormal eigenfunctions fy, fi, f2,---. Throughout of this paper, we consider

a > 0. Let V be the gradient operator on d M. The first positive eigenvalue associated with the problem
outlined in (1) can be expressed as follows:

[V flido, + |V flido
AM) = inf {fM fldv, “LM / h: f |f|q‘2udvh=0.}
oM

FEWLIM)\(0} o 1 F10d0

In this context, dvj, represents the measure defined on d M.

In the presented paper, we present several bounds for A;(M) on submanifolds M within R™. Asume
that A; refers to the first positive eigenvalue of the Laplace operator, while H represents the mean curvature
(MC) associated with the immersion. In 1977, Reilly [10] established an upper limit for A, which can be
expressed as follows:

m 2
A< —(V(M) f/;(ﬂ dvg,

where V(M) = Vol(M). Let ‘H, denote the r-th MC associated with the immersion, where r takes values
from the set {1,2,...,m}. He also [10] proved

2
M ( f 7—{r_1dvg) < VM) f Hdv,.
M M

It is important to note that when the codimension exceeds 1, the term H,.1 represents a normal vector field,
while H, functions as a scalar function. Furthermore, Reilly demonstrated that the condition for equality
to be satisfied in all the aforementioned inequalities is that the manifold M is immersed within a geodesic

sphere, which is represented as S( /4+). More broadly, when the manifold M" is isometrically immersed

in RP for dimensions where D is greater than m + 1, he established that for any even integer r within the
range {0, 1, -- -, m}, the following inequality is satisfied:

2
M ( f W,dvg) < VM) f |H,1[*do,,
M M

with equality occurring if and only if M is minimally immersed (MI) in a geodesic sphere. These findings
have been applied to various spaces and geometric operators, as referenced in works [1]-[6] and [9]-[14].
Additionally, the investigation of the first eigenvalue of the g-Laplacian on Lagrangian submanifolds
embedded in complex space forms was conducted in [3]. Let M be a closed submanifold within R” and A4 ,
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denote the first eigenvalue of the g-Laplace operator on M. In their research, Du and Mao [7] established
that A, adheres to the inequality

a q-1 2= .
m? a4 D7 if 1<g<2,
Mg S e H|dy o
s g, 1 o) {Dz if 922

Equality is achieved exclusively when g is equal 2 and the manifold M is MI in a geodesic hypersphere. In
a similar vein, Roth demonstrated that the first eigenvalue y; of the g-Steklov problem on submanifolds M
of RP adheres to the inequality

() D¥ if1<q<2,
B=UUn VOEMym: |DF i g>2.

Furthermore, equality is true if and only if ¢ = 2 and M is MI in B (yil) with the condition that (d M) C

oBP (Hll), where 1) represents the isometric immersion and y; is a positive constant.

2. Main results and their proofs

In this section, we utilize the Hsiung-Minkowski formula to derive Reilly-type upper bounds for the
first positive eigenvalue associated with the problem outlined in (1). We will assume throughout that M™
is a connected, compact, and oriented Riemannian manifold with a nonempty boundary d M. Additionally,
we consider M to be isometrically immersed in the Euclidean space (RP, {, Yean) via the mapping ¥, and we
denote A;(M) as the eigenvalue corresponding to the g-Wentzell-Laplace problem described in (1), unless
otherwise specified. To begin, we present the following theorem.

Theorem 2.1. Let H represent the mean curvature vector field of d M within the space RP. For the range of values
where 1 < g < 2, we have

1-1 1 -2 — 1)} .\
Al(M)SD miV(M) + aD'" 3 (m — 1) V(&M)( f mwm) ,
oM

(VEM))!
and for q > 2,

AM) <

11y 1 - 1)} o\
Dimd V(M) + aDE g — 1) (V@M)( f mwdvh) ,
(VOM)) oM

Furthermore, if H # 0, equality in each of the aforementioned inequalities is achieved if and only if g = 2 and M is

MI in the ball BP(“0=0M) ity the condition that IM c 9BP (=Dl

Proof. We represent the components of the function ¢ as ¢!, ..., ¢¥P. Given that ¥ : (M, g) — (RP,(, dean) is
an isometric immersion, it follows that the equation

D D
Y g, V) = Y (VP =m
i=1 i=1
holds true. Additionally, we have

D D
Y g, vy = Y (VYR =m -1,
i=1 i=1
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and the Laplacian of i can be expressed as Ay = (Ay?, ..., AYP) = (m — 1)H. Consequently, it can be
concluded that

D
Y (AP = (m - DHHP.
i=1

For the coordinate functions y¥, we can modify them as necessary by substituting [|1-2)! with the expres-
sion
i1g-2,)i
iy~ P
VM)

This adjustment allows us to assume, without any loss of generality, that the following condition holds:

f [/ "2yYido, =0, Vie{1,2,---,D)}.
oM

Consequently, we can utilize 1 as our test functions.

In the scenario where 1 < g4 < 2, we can derive from the Rayleigh-Ritz formula the following inequality:

D D D
A (M)f [Wi|7do sf [Vyiido +af [Vuiido,.
' aMi_le h MZ Y')ido, aM; Ylido,

Given that g is less than or equal to 2, we can apply the inequality (Z?:l |1’bi|2)i < (Zg 1 |1’bi|'1)5. This leads us
to the conclusion that

D % D
[l =(2 w] <Y . 3)
i=1 i=1

The concave nature of the function i — gb% suggests that

D D .
YWy = Y (I9yR)* < D' ZW 2

i=1 i=1
Since Y2, [V = mand Y2, Vi[> = m — 1 (see [12, Lemma 2.1]), we conclude

D
wa = Z Vi) Y vy
i=1

Hence, we obtain

1
2

q q
=D"zm2.

1
q 2
2

<D} = D5 (m - 1)%.

(M) j; y [Yl'do, < D" 2mi V(M) +aD' 3 (m — 1):V(@OM). (4)

Using Holder inequality, we infer

f (W, Hydo, < ( f |¢|‘fdvh)q( f mw—qldvh)
oM oM oM
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L -1
To obtain the desired result, we first multiply both sides of equation (4) by ( fa | H = dvh)q . Subsequently,

by utilizing the integral Holder inequality, we can derive

q
LM ‘ fa G, Hodo,

q q71
< (D" EmE V(M) + aD'" (m - 1): V(OM)) ( f mwdvh) .
oM

Next, the Hsiung-Minkowski formula

f (Y, H) +1)dv, =0,
IM

leads to

M (M) (V(OM))!
q-1
5(Dl‘zmg(V(M)+aD1‘Z(m—1)3(V(3M))( f mmdvh) .
oM

This completes the proof of inequality. Suppose H # 0, and equality is attained in (5). In inequality (3),
equality occurs, which yields g = 2. The rest of the proof is consistent with the proof of [8, Theorem 1.1]

about the Wentzel-Laplace operator.

We will now examine the scenario where g > 2. In this situation, we obtain

iv =iIV¢I ’ [wa] — b,

i=1 i=1

&

and

wa—Z,wwi [wa] = (m - 1)1,

The convexity of the function i — 1;;% implies that

D D 1

i 1-1 2
Y Wi =D Y I
i=1 i=1

The last two inequalities and the definition of A1(M) give

= D3|,

(M) f [W'duy, < DI 'mE V(M) + aD ™ (m — 1)2V(@OM).
M

The remainder of the proof is similar tocase 1 < g <2. [

Remark 2.2. 1) When « = 0, the Theorem 2.1 becomes Theorem 1.1 in [14].
2) From the standard embedding of a projective space into a Euclidean space [16], for 1 < q < 2 we have

q-1

-1, 1-3 1
D' im: V(M) +aD'"s (m = 1)} VM) ( fa | (H+ Com) day|

MM < VM)
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and for q > 2 it follows that

D md VM) + aD¥ - (m - 1) VM) o\
MM < T ([ rtrcomaa)

where

1 for sphere SP,

cm) @ for real projective space RqP,
M) = 9 2(m+2) L. D
m for complex projective space Cq~,
m+ . . . . D
=——  for quaternionic projective space Qq".

Let us consider a positive definite, symmetric, and divergence-free (1, 1)-tensor denoted as T on the manifold
M. By selecting an orthonormal basis {ej, - - - , ¢} that is tangent to the boundary d M, we can define the
normal vector field Hr using the expression

m

Hr = Z(Tei, ej>B(ei, e]-).

ij=1

Here, B represents the second fundamental form associated with the immersion of the manifold M into the
Euclidean space RP. Also, the generalization of Hsiung-Minkowski formula [9], [12], [13] is as follows

f (Y, Hry + tr(T)) dvy, = 0. (6)
M

We have now broadened the scope of Theorem 2.1 in the following manner:

Theorem 2.3. Suppose that T is a positive definite, symmetric, and divergence-free (1,1)-tensor on dM. For
1<q<2, weget
AM(M) ‘f tr(T)doy,
IM

q

(7)

< (D" 2m> V(M) + aD'™2 (m - 1): V(M) (|7{T|Jf’1) dvh)q’l ,

and for q > 2, we acquire

q
f tr(T)dvy,
M

< (D 'mE VM) + aD? 7 (m = 1) V(M) (f |7{T|n"1dvh)
oM

AM(M)

q-1

Furthermore, if Hr # 0 and m > m + 1, equality in each of the inequalities holds if and only if ¢ = 2 and M is MI
in the ball BP (%), with the condition that Hr is proportional to 1 and that the boundary of M is contained

within the boundary of B? (%},‘);{HI). Additionally, when M is a bounded domain in RP, equality in equations (7)

and (8) is achieved if and only if the trace of T is constant and M takes the form of a ball.

Proof. The demonstration follows a pattern akin to the proof of Theorem 2.1. For 1 < g < 2, multiplying by
-1

( fa M |Hr| q-ildvh)q on both sides in (4), we have

9

M) ‘ fa (@ Hdo

q q_l
< (D EmE VM) +aD'" (m = 1) V(M) ( f |71(T|u’1dvh) .
oM

Taking the generalization of Hsiung-Minkowski formula (6) in the above inequality we obtain (7). By
similarly method, we can show (8) is true. [
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Let B represent the second fundamental form characterized by the coefficients B;; within an orthonormal
frame denoted as {ey, -+, e,}, accompanied by the dual coframe {e],---,¢},}. For a given integer r in the
range {1, --- ,m}, the expression for T, is defined as follows: if r is even, it takes the form

1 iy e
T, = I Z 5].11'.'.'_}”(31‘1]'1,31'2]'2)"'<Bi,,1j,,1,Bi,j,>€i ®e;.
"

JoJ1serjr

If r is odd, the formulation of T, is given by
1 R ..
n:Fi2:5ﬁﬁx&m3mﬁ“%&ﬂnyﬂﬂp0&m®%®%

Ll1yeesly

Jof1reerjr

where 6;11'."‘.1']?1']. are the generalized Kronecker symbols. For any integer » within the range {0,1,...,m — 1}, the

mean curvature of order r is defined such that Hy = 0 and ‘H, = ﬁtr(ﬂ). When r is even, H, represents

)
a function, whereas it denotes a vector field when r is odd. Notably, H; corresponds to H, which is the
mean curvature vector field. Furthermore, for any even integer r in the set {0,1,...,m} and for D > m + 1,

the generalized Hsiung-Minkowski formula is as follows [14]

f ((ll)/ 7—{7-%—1) + 7’{r) dvh =0
IM

and forany r € {0,1, .- ,m} and D = m + 1, the following equation holds true:

| €t + o, =0
oM
Here, v denotes the unit normal vector field defined on M.
Next, we give the following corollary from Theorem 2.3.
Corollary 2.4. We have
(1) For values of D greater than m + 1 and for any even integer r within the range of {0, --- ,m — 1}, we obtain

(a) If1 <q <2then

q
AM(M) ‘ f H,doy,
oM

q-1

< (DEmE VM) +aD'" (m — 1) V(M) ( f |er+1|a—"1dvh)
oM
(b) If g > 2 then

q
AM(M) ‘ f H,doy,
oM

q L]—l
< (D 'mE V(M) + aD* 7 (m - 1)> V(M) ( f I7~(r+1|ﬂ-1dyh) VM.
oM

urthermore, if it is the case that H, # 0, then the conditions for equality to hold in each of the inequalities
are satisfied if and only if q = 2 and the manifold M is MI in the ball BP(“=4"8H) such that IM c

—(m=1)aH
oBP (),

(2) For m = m + 1 and for any even r within the range of {0, ..., m — 1}, we obtain
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(a) If 1 < q <2 then

q
n| [ At
oM

q-1
s(Dl-ﬁmiv(M)le-Z(m—1)3(V(3M))( f |er+1|ai’1dvh) .
oM

(b) If g = 2 then

g
AM(M)

Hrdyh
M

q-1
s(Dg‘lmZ(V(M)+aDZ‘1(m—1)3(V((9M))( f I‘Hmlq-qldvh) .
oM

Furthermore, when f is constant, H,.1 # 0, equality is achieved in all inequalities if and only if g = 2 and
v—(m—1)aH
P = BP= .
Theorem 2.5. Let us consider that a manifold (M™, g) is isometrically immersed into a sphere (8™, , Yean) through
the mapping 1.

(1) For m > m + 1 and any even r within the range of € {0,--- ,m — 1}, it follows that
(a) If g € (1,2], then

ﬂ q q q_l
MM | Hdo, sKl( f (mﬁuwmw—l)dvh) :
oM oM

(b) If q € [2,+00), then

q 1 q-1
A1(M) f H.doy| <Ko (f (|7‘(r+1|"%1 + |7‘(r|"71)d0h) VM.
oM oM
Here
Ki = mimi VM) + am' 2 (m — 1)2V(OM),
and
K> = m 'mi VM) + am? " (m — 1)2V(OM).

Moreover, equality never occur in both inequality unless Hy.1 = H, = 0.
(2) Form = m + 1and arbitrary integer v from {0,--- ,m — 1}, we get

(@) Ifq € (1,2], then

f Wrdvh
M

(b) If g € [2, +c0) then

q 1 -1
f Hiddoy us( f (|%+1|v’1+|%|a“)dvh) .
IM IM

Moreover, equality never occur in both inequality unless Hy.q = H, = 0.

AM(M)

q s N q-1
skl( f (|%+1|w+|%|w)dvh) :
M

A(M)
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Proof. We represent the second fundamental form of the mapping 1 and the standard embedding S™~!
within the Euclidean space RP as H and j, respectively. Additionally, we denote the second fundamental
form associated with the composition j o i as H’. Within an orthonormal basis {e;}!", at the point g € IM,
we define

Hr,(q) = Z T:(ei,e))B (ei, e;),

i,j=1
where H; is the normal vector field. Since B’ = B — g ® i, we have H}. = Hr, — tr(T;)y, which yields
[Hz, I = 1tr(T)P + [ Hr, |2

On the other hand, from [9, Lemma 2.2] we have

[Hr,| = krlHpial,  tr(Ty) = kriH|. ©)
Hence, we get

[y, 2 = 2P (1H P + [ Hya ). (10)
Taking H;. in inequalities obtained in Corollary 2.4, we conclude:

for D > m+1and evenr from {0,--- ,m — 1}, we get
if g € (1,2], then

q . -1
A(M) f tr(T)dvy,| < K (f |'7'{%r|‘71dvh) ,
oM oM

and if g € [2, +00) then

q . -1
A1(M) f tr(T)dv,| < Kp (f Iﬂ}rlqldvh) .
M M

Using (9) and (10) we deduce:
if g € (1,2], then

q-1
dvh)

q q q-1
<K ( f (12 + 1H, )7 dvh) :
M

If either H, # 0 or Hrq # 0, it follows that Hj # 0. Should the quality condition be satisfied in the
aforementioned inequalities, then the mapping j o Y results in a minimal immersion of the manifold M
within RP. This situation leads to a contradiction, thereby concluding the proof of part (1) of the theorem.
The approach taken to prove part (2) mirrors that of part (1). [

M) \ f Hdo,
oM

I 2 2\ T
<K (f (162 + 1) ™
oM

and if g € [2, +00) then

A (M) ‘f H,.dvy,
M

Subsequently, we consider M as a complete Riemannian manifold and investigate the first eigenvalue
associated with the g-Wentzell-Laplace problem on the product space R x M.

Theorem 2.6. Consider a complete Riemannian manifold denoted as (M™, §) and a closed oriented Riemannian
manifold (Q™, g) that is isometrically immersed in the product space (R x M, § = dt* & §). Furthermore, let Q be
mean-convex and serve as the boundary of a domain Q within R X M. Define «. as the largest principal curvature of
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Q at a point x € M, and let k., (Q) represent the maximum value of k. (x) for all points x in M. Regarding the first
eigenvalue A1(Q) associated with the g-Wentzell-Laplace problem on the domain Q, we have

: -4 4 am} | HIL Q'
(@I (W(Q) + amHEV@Q )

M@ = infH

(V@)

Proof. In a manner analogous to [14], we define t as a test function, with v = (v, d;) = (v, Vt). Consequently,
we derive the equation At = —mvH and

fthlzdvg:fmvt‘Hdvg.
Q Q

We know Vv = —SVi, then

f(SVt,Vt)dvy = fm‘Hvzdvg.
Q Q

Thus, we arrive at

minf(H) f v’dv, < f mHv*dv, < f (SVt, Vtdo, < k. (Q) f IVH2do,,
Q Q Q Q Q
< K+(Q)fm7—lvtdvgSmm(@)l?-(loofvtdvg,
Q Q
< mry(Q)|H|wo (flthdvg)q (f |ZJ|$1 dvg) q .
Q Q

By applying the Holder inequality, we can derive the following result

2(g-1)

inf(?-()( f |v|fldvg) q Vi (@
Q Q )

< inf(H) f vzdvg
Q Q

< K+(Q)I7{Iw(f [t dvg)q (f ol 7T dvg) q ,
Q Q

therefore,
L] E
71 7 -2
Jalol™ do) < SOl ) an
(It do, )’ inf(H)

By definition of A;(Q)), we conclude

M(Q) f IH1dv, < f Vtlido; + a f VHdo,.
Q Q Q

Equations |Vt| = 1 and At = 0 yield

q
f thqdvg:(VUy(Q):( f |Vt|2dvg) V,, Q)"
Q Q
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fthlzdvg—:f{tVt,v)dvg:ftvdvg.
Q Q Q

The Holder inequality gives

and

q-1
K

1
f thzdvgs( f Ithdvg)q( f ol 7T dvg) ,
Q Q Q
q [ : 4
f \VtPdv, < m?|H|2, ( f |t|‘7dvg) ( f o] dvg)
Q Q Q

-1
)

Consequently, we arrive at

a1
2

(f, Iel 7™ doy)

@< "W (fV(Q)l-% i am%I‘HIi(V(Q)l_%). (12)

(o 7 dvg)*

By inserting (11) in (12), the proof of theorem will be completed. 0O
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