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Modified sampling Kantorovich operators in weighted spaces of
functions

Metin Turgay®”, Tuncer Acar?

TSelcuk University, Faculty of Science, Department of Mathematics, Selcuklu, 42003, Konya, Turkey

Abstract. This paper is devoted to construct a new modification of sampling Kantorovich operators.
We introduce modified sampling Kantorovich operators by considering a special function p that satisfies
certain assumptions. We obtain pointwise and uniform convergence theorems in both continuous functions
space and weighted spaces of continuous functions. We also give the rate of convergence via weighted
modulus of continuity in weighted spaces of continuous functions. In the last section, we present some
examples of p-kernels which satisfy the corresponding assumptions. Finally, we give some graphical

and numerical representations by comparing modified sampling Kantorovich operators and the classical
sampling Kantorovich operators.

1. Introduction

Bernstein polynomials have a crucial role in the approximation theory due to fundamental proof of
the well known Weierstrass approximation theorem (see [22]). To make the convergence faster to target

function and decrease error of approximation, King [38] introduced a way to modify the classical Bernstein
polynomial for f € C([0,1]) by

(Bufyor)@) =) f(%) (’,Z) (rn () (L =7 ()",
k=0

where (r,,) is a sequence of continuous functions defined on [0, 1] with 0 < 7, (x) < 1 for each x € [0,1] and
n € N. In [27], authors proposed a new modification of Bernstein operators for f € C ([0, 1]) by

n

(Be(for™)e =) (for™) (S) (Z) (p () (1= p ()"

k=0

using a special function p : [0,1] — R that satisfies suitable assumptions. Inspired by this idea, many
researchers proposed similar constructions for other sequence of linear positive operators, see [1, 13] etc.
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On the other hand, to present an approximation process over the whole real axis, Butzer and his school
at Aachen introduced generalized sampling operators by

(GLf) (x) ::Zf(%)x(wx—k),xe]R,w>0, 1)

keZ

where x : R — Ris a special function satisfying certain assumptions and f : R — IR is bounded continuous
function on R. Generalized sampling operators and their various forms have been studied in numerous
papers by many researchers, see [3, 5, 12, 23, 24, 33, 48]. In order to approximate not necessarily continuous

functions, L!-version of the sampling type operators introduced by Bardaro et al. [18] by replacing the
(k+1)/w

sample values f (%) with the mean values w fk 1

are given by

f (1) du. The so-called sampling Kantorovich operators

(k+1)/w

(K f) (x) == Zx(wx — k)wf fu)du, xR,

kez kfw

where f is locally integrable function and x is a kernel function. This kind of construction is important
since one can face such an error called “time-jitter” error which appears when we can not have exact
values of 5 samples but its neighborhoods. Sampling Kantorovich operators were studied by many
researchers in various spaces, see [2, 4, 9, 19, 20, 26, 29]. There are also many other form of sampling
type operators besides the Kantorovich form such as exponential sampling operators, sampling Durrmeyer
operators etc., for more details about the recent history of sampling type operators, we refer the readers to
[6-8, 10,11, 14, 3942, 45, 49].
In very recent paper [50], authors have introduced modified generalized sampling series by

(GEF) @) =[Gh (fop™)] (o)
:=Z(fop‘l)(g)x(wp(x)—k),xelR,w>O, 2)

keZ

where x is a suitable kernel function. They studied approximation properties in both continuous and
weighted spaces of functions. They also compared approximation behaviour of classical generalized
sampling operators with newly constructed operators by Voronovskaja type theorem (see Theorem 5), and
showed that under certain assumptions newly constructed operators gives better approximation than the
classical one.

Motivated by the effectiveness of the above mentioned construction and numerous application of
sampling Kantorovich operators such as image processing (see [15, 21, 30-32, 51]), in the present paper, we
introduce modified sampling Kantorovich operators by

(K57 £) @) = [KE (F o p7)] (0 )
(k+1)/w

::Z)((wp(x)—k)wf (fop‘l)(u)du,xe]R,w>O,

kez kjw

where x : R — R is suitable kernel function and f o p™! : R — R is locally integrable function. This paper
is organized as follows: Section 2 is reversed for basic notations and preliminaries, Section 3 is devoted
to the construction of the operators and some basic results. Section 4 consists of a theorem that shows
the pointwise and uniform convergence of the operators in continuous spaces of functions. In Section 5,
we investigate approximation properties of newly constructed operators in weighted spaces of continuous
functions. Finally, in Section 6, we present some graphical and numerical representations to compare
modified sampling Kantorovich operators and the classical one.
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2. Basic Notations and Preliminaries

By N, Z and R, we shall denote the sets of all positive integers, integers and real numbers, respectively.
By R we denote the sets of all real numbers greater than or equal to zero.

By C(R), we will denote the space of all continuous (not necessarily bounded) functions defined on
R, by CB(R) the space of all bounded functions f € C(R) endowed with the norm || f “ = sup,.g | f (x)).
Moreover, by UC (R) and C. (IR), we denote the subspaces of CB (R) comprising of all uniformly continuous
and bounded functions and all functions with compact support. Also, by M (R) and L* (R) we denote the
space of all (Lebesgue) measurable real (or complex) functions and bounded functions in view of essential
supremum defined on RR.

Let p : R — R be a strictly increasing function which satisfies the following conditions:

p1) p € C(R);
p2) p(0)=0, xl_i}’tnoop (x) = +oo.

2.1. Context of Weighted Spaces
A function ¢ : R = R, ¢(x) = 1 + p?(x), we shall consider the following class of functions:

B,(R)=4{f:R— R]| foreveryx € R ‘f(x)|<M
A YEER o =T

Cy (R) = C(R) N By, (R),
f@ .
Uy, (R)=1f€Cy(R)| W is uniformly continuous on R ¢,

where My is a constant depending only on f and the above spaces are normed linear spaces with the norm

@)
Ifllp = SUP )

xeR
The weighted modulus of continuity defined in [36]" is given by

F(t) - f)|

su
x,telnz P(t) + p(x)
lp(h)—p(x)I<6

for each f € C, (R) and for every 6 > 0. We observe that
wy(f;0)=0

for every f € C, (R) and the function w,(f;0) is nonnegative and nondecreasing with respect to 6 for
f € Cy (R) and also

%ii%wqo(f; 6) =0 (4)

we(f;0) =

for every f € U, (R) (for more details, see [36]). We recall the following auxiliary lemma to obtain an
estimate for | fw)—-f (x)|.

Lemma 2.1 ([36]). For every f € C, (R) and 6 > 0,

( —
@) - £ < (@) + () (z + M] @£, 9) ©)

holds for all u,x € R.

DThis modulus of continuity is originally given for x, t > 0, but we can generalize it to x, t € R without any difference.
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Remark 2.2 ([50]). If we consider inequality (5), we obtain for 6 < 1 that

o () - p(X)|3J

If )= f @] <9(1+]p @) @, (f;é)[1+ 5

3. Construction of the operators and some basic results

For any function x : R — R, discrete algebraic moment of order j € IN U {0} associated with p (or simply
p-algebraic moment) is defined by

mf ()= ) x(p) =k (k=p@)y, ueR
kez

For any > 0, absolute moment of order § associated with p (or simply p-absolute moment) is given by

MG 00 = sup ) o 60 = [ [k = p @, we R

uelk rez

Definition 3.1. Throughout the paper, a function x : R — IR is said to be a kernel associated with p (or simply
p-kernel) if it satisfies the following assumptions:

x1) x € L' (R) and is bounded in a neighbourhood of the origin;
X2) forevery u € R, discrete p-algebraic moment of order 0 of x is 1, that is

mh () =) x(p) -k =1;

keZ

X3) for B > 0, p-absolute moment of x is finite, that is

M 00 = sup Y[ (p @) = k) = p @] < e
ueR kez.

By 1), we will denote the class of all functions satisfying the assumptions x1), x2) and x3). Now, we
introduce a new family of Kantorovich type sampling operators so called modified sampling Kantorovich
series by

(K5 £) ) = [KE (F o p7)] (0 )
(k+1)/w 7
:=Z)((wp(x)—k)wfk/ (fop‘l)(u)du,xelR,w>0 @
kez w

for x € ¥ and locally integrable functions f o p~1.
Now, we state a remark which was proved in [18] for classical moments of kernel functions but they can
also be adapted to p-moments of kernel functions:

Remark 3.2. For all functions x belong to 1, we have

i Mg (x) < +o0;
ii. forevery 6 >0

dim Y @@~k =0
|k—wp(x)|2w6

uniformly with respect to x € R.
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We also note that, for v,y > 0 withv <y, Mg()() < +o0 implies MY (x) < +co. When y has compact support,
we immediately have that M’y) (X) < +oo for every y > 0, see [28].

Remark 3.3. The operator (7) is well-defined if, for example, f € L* (R). Indeed,

(K52 F) )] < |17, M3 Go) < +oo. ®)

Remark 3.4. If we consider p function as p (x) = x (it is obvious that the case satisfies pl) and p2)) in (7), the
operators reduce to the classical sampling Kantorovich operators

(k+1)/w

(Kiof) (x) = zx(wx—k)wf £ (u)du.

kez k/w

4. Convergence Results by K’:U’P in C(R)

This section is devoted to pointwise and norm convergence of newly constructed operators K},” in the
spaces of continuous functions.

Theorem 4.1. Let x € ¢ be a p-kernel. If f : R — R is a bounded function, then

lim (K37 f) () = £ (1) ©)

w

holds at each continuity point t € R of f. Moreover, if f o p~t € UC (R), then we have

lim |5 f - f||. = 0.

w—00

Proof. Let us fix a continuity point t € R of f. Since f is continuous at ¢, f o p~! is continuous at p (). Let ¢
be fixed. Then there exists 6 > 0 such that ‘( fop)w - (fop™)(p®)

be fixed in such a way that 1 < £ for every w > @. Then,

< & whenever |u -p (t)l < 0. Letw

(<575) (0 - £ )

<Y o -0l |

kez. k/w

:[ Y 4+ Y ]1x<wp<t>—k>)wf

|k—wp(t)|<wé/2 |k—wp(t)|2wé/2 kfw

(k+1)/w

(o 0™) @) = (£ p7) (o ()] du

(k+1)/w

(Fop™) @~ (£o ™) ()]
=:P; + P,.

Foru e [ﬁ ’ﬂ], if |wp t) - k) < wd/2, for w > w, we have

w’ w

0
=<0
+2<

|u—p(t)‘§ u—£‘+‘£—p(t)'§%

Thus,

(k+1)Jw
P Y x(p®- k)|wf edu < eM! (x)

|k—wp(t)|<wb/2 k/w
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and

po<2ffopll, Y, @p®-R|<e2|fop.

[e=wp(b)|zws/2

by Remark 3.2 (ii). Hence, the assertion (9) follows.
The second part of the proof follows by the same argument as above, taking into account that if
fop?t e UC(R), then we replace 6 > 0 with the corresponding parameter of uniform continuity of

fop_l. O

5. Approximation Results by K’;’p in C,(R)

In this section, we present pointwise convergence, uniform convergence and rate of convergence of the
operators K},”. First of all, we state the well-definiteness of the modified sampling Kantorovich operators
in the weighted spaces of continuous functions.

Theorem 5.1. Let x € U be a p-kernel with (x3) holds for B = 2. Then, for a fixed w > 0, the operator Ki* is a linear
operator from B, (R) — B, (IR) and its operator norm can be estimated by

1 1y M

1 1
P p p
165 -0 < M 0O (1 5+ )+ M0 (35 + )+

Proof. Let us fix w > 0 and x € R. By the definition of the operators K};*, we can write

N (k+1)/w (f o p—l) (u)|
|(wap) (x)' < é |X (wp (x) — k)| w j]:/w m [1 + p2 (p71 (u))] du
(k+1)/w
<JIfll, X lx (wp @) = )] w f [1+0% (o7 )] du
kez kjw
(k+1)/w
= Il Do o= f/ ]
1 Kk
=, T b -l 555+ 45+ 55|
=[Il, Y- Ix Gop (=) - K|
keZ

2
XF+§%+(§—puﬁ+apw%§—puﬂ+p%m+$(g—p@g+ng

<|IAll, Y e wp ) = 0| (1 + 02 )

keZ

1 |k—wp (x)|2 |k—wp (x)| |k—wp (x)| 1
3w? w? - w - w? * w

x[1+—+

M (x)
w2

: 1 1y L, (1 1
Mg(;()(1+—2+5)+Ml(;()(5+ﬁ)+

< Hf”(P (1 +p? (x)) 3

which implies that

(5" @)
A+ )

I, [ 1+ o+ )2+ )

M5 (%)

w? w2
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that HK?{,’P f ” < 400 which means that K., € B, (R).

Finally, if we take supremum over x € R and the supremum with respect to f € B, (R) with ” f ”q) < lin the

last inequality, we obtain the estimate for ”Kif,pH

By (R)—B(IR) ’

O

Next theorem concerns pointwise convergence of the operators K;,” in weighted spaces of functions.

Theorem 5.2. Let x € 1 be a p-kernel with (x3) holds for p = 2 and f € C, (R). Then

(K5 £) (xo) = f (x0)

lim
w—+o0

holds for every xp € R.

Proof. By simple calculation, we have the inequality fo

(Fo ) ) - £ (o)
(o0 w)

(fo

(10)

rall xp € R, k € Z and w > 0 that

P f)

“(pop ) (900™) 0 =@ o) + 9 (x0)

(pop™)u)

¢ (xo)

Using the above inequality and since f € C,, (R), we get

(k+1)/w

(5 ) ) £ )| < Y e op ) = 00 [

keZ Kw

(k+1)/w)

<Y Jx@p (x0) - )| w f

keZ kjw

(For™)@  f(x)

(fop™) @~ f (xo)| du

(for™) )
(pop™)(w)

(90 p™) @) - (o)

du

+¢ (x0)

(pop ) ¢(xo)

<Il, X, b Gwp (xo) = )] w f

keZ

+p(0) Y Jx (wp (x0) = B)|w f

kez
=L +1.

Let us first estimate I;. By direct calculation, we have

(k+1)/w
L < “f”(p Z ‘X (wp (x0) — k)| w f [(u -p (xo))2
kez K
k
<[, T v o -l %[]% o)

113 |k
{5[5‘5‘90‘0)

<|Ifll, Y | wp (o) - ] w

keZ

2

—_—

(k+1)/w
|u2 - p2 (xo)( du

kjw
(k+1)/w,

(for!)®  fx) .
(pop™H)m) @ (xo)

Jw

+21p (xo)| Ju = p (x0)]
, s (k+1)/w
~JE = pwo] | +2lowal [ o po]au
k/w
k 1
t | P 0 +@]
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(k+1)/w (k+1)/w

+2|p (xo)| f(u—%)du+ f 'g—P(xo)du
k/w k/w
wp(x) k—wp(x) 1 k wp (x0)
Mp(x) LM ()
<|IAl, w( 2|p(0)|) 20(3_+|p(x()‘)

Now, let us consider the term I,. Let xyp € R. Since x is a continuity point of f, ( fo p‘l) is continuous at
-1
(e}
p (x0). So, f—l is also continuous at p (xp). Let € > 0 be fixed. Then there exists 6 > 0 such that
pop

(For)w (for)o@a|
(@op™)@) (pop™)(p(x)

whenever
(u - p(x0)| < 0.

Hence, we can write
(k+1)/w,

I = ¢ (x0) ) |x (wp (x0) = )| w

keZ.

—(P(xo){ Y, o+ ) }IX(WP(xo)—k)1

[e=wp(xo)|<wd/w  |k—wp(xo)|zwd/w

(k+1)/w
xw f
kjw

21121 +122.

(for)w (for)lota)|
(pop™) @) (pop™)(po))

(fop)w (for™)(ptw) .
(pop™)w) (pop™)(p(x0)

Let w be fixed such a way that l < b for every w > w. For u € [k/w, (k + 1)/w], if )k wp (x0)| 2 , we have

|u—p(x0)| < |u—k/w|+|k/w—p(xo))§%+g<(Sforw>ﬁ5.

Thus, we get

Ly < e (xo) Mf () -
On the other hand, using Remark 3.2 (ii), we get

ha < 2e (o) ||f]],

for sufficiently large w. Combining the estimates I3, I, ; and I, together, we get

(K57 £) (o) = £ (xo)|

Mp X) M? (x) (w | 0)|) M, (X) (_ + |p(xo)|)] 11)

<[l

+e¢ (xo) (Mg () +2 ”J(Hq,)

and taking the limit of both sides as w — +oo, the assertion (10) follows. [

w
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-1
Theorem 5.3. Let x € ¢ be a p-kernel with (x3) holds for = 2 and for T €Uy (R). Then
pop
. XP g —
Jim [[K57F - £, =0
holds.
fop™

Proof. The proof proceeds using the same reasoning as in Theorem 5.2, with the consideration that g€

U, (R). If we replace the 6 parameter by the corresponding one, and considering the inequality (11) we
have

Mb(x) M (x)
w2 w

(k7)o - 7o _ A,
@ (xo) ~ @(xo)

+e(Mp o +2fl,)

(32l + 2 o)

w

and passing to supremum over x; € R in the above inequality, we get the desired result for w — +co. [J

Now, we state the quantitative estimate result of the operators K},” for functions f € C, (R) in terms of
weighted modulus of continuity.

Theorem 5.4. Let x €  be a p-kernel with (x3) holds for B = 3. Then for f o p~' € C, (R) we get

(K57 £) ) - £ ()| < 45 (1 + [p @) wp (F07) [ME 00 + ME ()] (12)
Moreover, if f € U, (R), then

s~ A, =o. w

Proof. By the definition of the operators and property of weighted modulus of continuity given in (6), we
get

(57 F) () - £ )

(k+1)/w
Sz:h(wp@)—@ﬁujw Kfop4)w)—fuﬂdu
kez k/fw
(k+1)/w _ 3
s9(1++pC@D2w¢(ﬁ6)§:|X(wp(x)—kﬂul[‘ [14-E1—§§9L]du
kez kfw
(k+1)/w 3 3
S9<1 + |p(x)|)2a)¢ (f;é)é |X(wp(x) —k)|wLw (1 + (%(u - g + ‘g - p(x) ))du
2 4 4
=9(1+|p@)]) @, (f; 5)é |x (wp (x) = k)| [1 t ool GoR |k — wp (x)f]

2 4 4
S9<1+|p(x)|) w (3 0) [Mg()()(l‘i' (w6)3)+ WMQJ(X)]

for f € C, (R) and 6 < 1. Now, if we set 6 = w™!,w > 1 we have the assertion (12). Additionally, if we
assume f € U, (R), taking supremum over x € R in the last inequality and using the property (4), we
conclude the assertion (13). O
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6. Examples of p-Kernels and Graphical Representations and Comparisons

6.1. Examples of p-Kernels

In the sampling theory, the choice of p-kernels is important since it is not easy to verify the assumptions
(x1) = (x3). So it is useful to use the special functions. On the other hand, we know that, by the Poisson
summation formula, the assumption (x2) is equivalent to

1, k=0

X 2mk) = {01 kez\0)’ (14)

where
X = f)((u) e dy,veR
R
denotes the Fourier transform of x, see [23, 25]. In this section, we aim to show specific examples of
p-kernels x which satisfy the results proved in this paper. Also, we give some graphical representations

and numerical examples.
In general, the central B-spline of order n € N is defined by:

0 ()= 11)'2( 1)()( +t—])n_1, FER,

where (), denotes the positive part, i.e., (f); := max{t,0},t € R, for graph of B-spline kernel see Figure 1. It
is well-known that the Fourier transform of o, (t) is given by

0,(v) = sinc” (%),v € R,

where
sin v cR
sinc(v) :={ ™’ v \0.
1, v=0

The support of ¢, is contained in the compact interval [ = 2] and ¢, is bounded on R for all # € IN. This
implies that the moment condition (x3) holds for every g > 0, that is Mg (0,,) < +co. It can be shown by
using the Poisson summation formula, the singularity assumption (x1) satisfies:

Y ou(wp () -k =1,

keZ

for details, see [23].
For simplicity, in the next examples, we use the 3rd order B-spline kernel:

22() +t-j), teR (15)

Rewriting explicitly the expression in (15), we have

2-1, 1< 3
2
oat) =13(3 1), F<i<},
0, >3

where f € R.
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Figure 1: Graph of Bspline Kernel of order 3

Corollary 6.1. For the modified sampling Kantorovich series upon B-spline kernel we have

(k+1)/w

(Kgupf) (x) := Zﬁn (wp (x) - k)wj}:/ (f o p_l) (u)du, x e R,w >0

kez. w
and there holds:
1. for f € Cy, (R) by Theorem 5.2

lim (K57 f) (x) = f (x);

w—+o00
fop™
2. for gop € Uy, (R) and f € U, (R) by Theorems 5.3 and 5.4
. wp —
wllgloo ||KZJ f f”‘P 0.

Here, we state one more p-kernel which is called Fejer kernel and defined by
L. ot
F(t).—251nc (2) (teR),

where the sinc function is given by

sin (7tx)

, x € R\{0}
1, x=0,

sinc (x) :=

see Figure 2.
Fourier transform of Fejer kernel is given by

F(v) = {(1) - ’%

, VST
v>T

8487

(16)

It is not hard to check assumptions of p-kernels satisfying by F function, for details we refer the readers to

[18].
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0.4 4

0.3 4

0.2 4

0.14
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Figure 2: Graph of Fejer Kernel.

6.2. Graphical Representations and Tables

In this subsection, we give examples of graphical representations and numerical tables to compare
the modified sampling Kantorovich operators and the classical sampling Kantorovich operators using the
central B-spline kernel of order 3. Throughout the examples, we consider p : R — R functionas p (f) := >+t
and functions f : R — Ras f(t) = 1j—t2 and g : R\{0} = R as g(t) = sin (}2) One can see easily that p satisfies
the assumptions p1) and p2).

In the Table 1, we present the numerical comparisons of the operators K f and K},” f.

Table 1: Comparison of error of approximations of the classical sampling Kantorovich series and the modified sampling Kantorovich
series by p; for function f at some random samples.

w (K £)(1.05) - f(105)| |(Ky" £)(1.05) — £(1.05)

3 0.064335 0.020428
5 0.041941 0.013003
10 0.022325 0.006827
30 0.007757 0.002353
50 0.004693 0.001422
100 0.002361 0.000714

w (KB A.75) - F075)  [KE? £)(0.75) - £(0.75)

3 0.088185 0.044141
5 0.056561 0.029787
10 0.029554 0.016397
30 0.010118 0.005849
50 0.006101 0.003561
100 0.003061 0.001800
300 0.001023 0.000605

Figure 3 compares the classical sampling Kantorovich operators and newly constructed modified sam-
pling Kantorovich operators using 3rd order central B-spline kernel for w = 20.
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Figure 3: Graph of function g and operators (K;f, g) , (Kfup g) with w = 20 and 3rd order B-spline kernel.
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