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Existence and uniqueness results for a mixed p-Laplacian boundary
value problem involving i)-fractional derivatives and integrals

Ozlem Batit Ozen?, Izel Niizket?, Fatma Serap Topal®*

?Ege University Faculty of Sciences, Mathematics Department, 35100 Bornova, Izmir-Turkey

Abstract. This paper is concerned with a mixed p-Laplacian boundary value problem involving right-sided
and left-sided fractional derivatives and left-sided integral operators with respect to a power function. We
prove the uniqueness of the solutions for the given problem with the cases 1 < p < 2 applying an efficient
novel approach together with the Banach contraction mapping principle. Estimates for Green’s functions
appearing in the solution of the problem at hand are also presented. Also using Brouwer fixed point
theorem, existence result has been achieved for given problem.

1. Introduction

The study of boundary value problems involving differential operators has been a cornerstone of
mathematical research because of their extensive applications in physics, engineering, and other applied
sciences. Among these, the p-Laplacian operator, which generalizes the classical Laplacian, has garnered
significant interest due to its ability to model non-linear phenomena.

Fractional calculus, which extends the concept of integer-order differentiation and integration to non-
integer orders, has seen a surge in interest over recent decades; for instance, see the text [5, 7, 8, 12, 14, 15,
17]. This is largely due to its effectiveness in describing the memory and hereditary properties of various
materials and processes. The introduction of {-fractional derivatives [1-4] adds another layer of complexity
and flexibility, allowing for more nuanced modeling of real-world phenomena.

In this paper, we discuss a specific class of fractional boundary value problems associated with the
yp-Caputo fractional derivative and integral. This provides flexibility to find better solutions to various
problems in different application domains. This paper addresses a mixed p-Laplacian boundary value

problem characterized by the inclusion of i)-fractional derivatives and integrals with respect to a power
function.
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Bai [9] investigated the existence of positive solutions with the aid of the properties of Green’s functions
for the following p-Laplacian problem:

(Pp(Dg. y(x)) + f(x, y(x)) = 0,
y(0) = DL y(0) =0, <DLy (0)= Dl y(1) =

where 0 < f <1, 2 <a <B+2, Dj, and CDﬁ are the Riemann-Liouville fractional derivative and the
Caputo fractional derivative of order aand B respectlvely, ¢y is the p-Laplacian operator with p > 1 and
feC(0,1] x R, R).

Liu et al. [13] applied the method of lower and upper solutions to study the existence of solutions for
the following problem

D2, (Db, y(x))) = f(x, y(x), Db, y(x)),
Dy y(0) = y'(0) =

y) =ny(),  Dyy() =r2 D y(E),
where 1 < a, B < 2, 171,72 2 0, ¢y is the p-Laplacian operator with p > 1, Dg. is the Riemann-Liouville
fractional derivative, CD§+ is the Caputo fractional derivative and f € C([0, 1] X [0, +o0) X (=00, 0], [0, +00)).

Wang and Bai [18] discussed the existence and uniqueness of positive solutions to a mixed p-Laplacian
fractional boundary value problem given by

CDV ((PP(DQ+]/ t))) = g(t/ ]/(t)/ CD8+]/(t))/
y(©) =0,  y(1)=ryw),
D8+ y(l) = 0/ ¢P(Db+ y(o)) = 72¢P(Dé+ y(’]))/

where ¢, is the p-Laplacian operator with p > 1 and ;17 + % =1,0<t<1,1<9p0<£20<uyn<l,
OS71<#,0S7’2<W,

Liouville fractional derivative and g € C([0, 1] x R?, R).

Alsaedi et al.[6] introduced a new class of mixed p-Laplacian fractional boundary value problems
involving right-sided and left-sided fractional derivatives and left-sided integral operators with respect to
a power function and investigated the following problem:

PDE (bp(PDh y(1))) = vif (¢, y(t), PDb.y(8)) +va PIS. gt y(t), PDh. y(t)),
y(0) =0, y(1) = Aiy(u),
Dl y(1)=0,  ¢p(° DL y(0) = A2gpp(°DE, y (1),

where ¢, is the p- Laplacian operator withp > 1,0<t<1,1<a,<2,p>0,C>0,0<pun<1,

‘D’ is the left Caputo fractional derivative and D), is the right Riemann-

0<A < N —,0< A < —,1, PD{ and PD/ respectively denote the left and right fractional derivatives

of orders o and p with respect to a power function p, Ié is the fractional integral operator of order C with
respect to a power function, v1,1, € Rand f, ¢ : [0,1] X R? > R are continuous functions.

Motivated by the aforementioned studies on mixed p-Laplacian y-fractional boundary value problems
involving right-sided and left-sided fractional derivatives and left-sided integral operators with respect to
a power function. We investigate the uniqueness results with the aid of the properties of Green’s functions
for the following a mixed p-Laplacian boundary value problem involving i-fractional derivatives and
integrals with respect to a power function:

DY (p (DL y(1) = vif(t, y(t), DY y(t) + vaLi g(t, (), DEY (1)), (1)

¥(0) = Ay(61), y(1) = A2y(62),
¢p(DW ): /\3¢p(D§1¢V(53))r (PP(Dgfpy(l)) /\4%( 54))
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where ¢, (t) = [Pt such that ; + ¢ =1withp,g>1,0<t<1,1<a,pf<2E>0,4;,6 €R(i=1,234)
such that (1~ 15)(1a((65) = (1)) + (1 = A)($(0) = A39(83)) # 0 and (1) = 1(0) + Aa(p(0) = 1(62)) + A (Y(61) -
Y1) + MA2(P(62) — P(61)) # O, D‘lxiw and Dg’fp respectively denote the left and right fractional derivatives
of orders a and f§ with respect to a power function 1), Ig;lp is the fractional integral operator of order & with
respect to a power function 1, v1,v; € Rand f, g : [0,1] x R? — R are continuous functions.

In Section 2, we give some important definitions, lemmas, theorems that play a key role for our problems.
In Section 3, we establish Green’s functions and this part contains the main results for the given problem.
In this section, using fixed point theorems, we can say existence and uniqueness results for our problem.
Also, in this section, to illustrate the validity and applicability of our findings, we provide a carefully chosen
illustrative example.

2. Preliminaries

In this section, we would like to provide a brief overview of the relevant literature in the field of fractional
differential equations. Therefore, we give some definitions, notations, lemmas and results for -Caputo
fractional derivative which are used throughout this paper.

Definition 2.1. [11] Let a > 0, I = [a, b] be a finite or infinite interval, f : [a,b] — R be an integrable function
defined on [a,b] and ¢ € C'(I, R) an increasing differentiable function with ' (t) # 0 for all t € [a,b]. The a-th order
left-sided and right-sided y-Riemann Liouville fractional integral of a function f is given by

@ 1 t , o
L0 = s f YEW - P& FE)ds

and )
10 = s [ WOwe - por o

where I'(.) is the Gamma function, given by I'(a) = f to=le~tdt, for a > 0.
0

Definition 2.2. [11]Let m —1 < a <m, f :[a,b] = R be an integrable function and 1 be as defined in Definition
2.1. The left-sided and right sided \-Riemann Liouville fractional derivative of order o

DY f(t) = [ ¢'1(t> %] L o)

and

a 1 d " m—a,
Dy f(t) = |— 0 a] L fo,

where m = [a] + 1 and [a] denotes the integer part of the real number a.
Lemma 2.3. [5] Let a > 0 and f,¢ € Cla, b]. Then

1. IZ‘:P(.) is bounded from Cla, b] to Cla, b] and linear,

2. IV f@) = lim I3V () = 0.
Lemma 2.4. [5] Let a, > 0and f : [a,b] = R. Then

LI 0 - @1 = s [v() - @t
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2. VIVt = 1P ().

at “at

Lemma 2.5. [18] The following relations hold for p-Laplace operator:

(i) For 1 <p < 2, |lkill, llk2ll = L1 > O and kq, kp > 0,
llpp (k) = By ()l < (p = DL llkea — Kl

(ii) For p > 2, k1|l lIk2]l < Ly and ki, ko > 0,
llpp(ka) — dpkn)ll < (p — DLE2llka = Kall.

The following fixed point theorems are fundamental and important to the proof of our main results.

Theorem 2.6. (Banach Fixed Point Theorem) [10] Let A be a contraction mapping from a closed subset K of a Banach
space X into K. Then there exists a unique fixed point x in K such that T(x) = x.

Theorem 2.7. (Brouwer Fixed Point Theorem) [16] Let K be a nonempty compact (closed and bounded) convex set
in a Banach space and A : K — K is a continuous self mapping. Then A has (at least) one fixed point in K.

3. Main Results

In this section, we establish Green’s function for the uniqueness of the solutions to the problem (1) — (2).
To that end, we first give the following useful result which gives the solution of the linear form of the
problem.

Lemma 3.1. For any H € C([0, 1], R), the integral representation of the solution for the following nonlocal p-
Laplacian boundary value problem involving right-sided and left-sided fractional derivatives with respect to a power
function:

DY (p (D y(1))) = H(t),
y(0) = Ay(61), ¥(1) = Aay(62), 3)
bp(D5 v(0)) = A3y (DY 9(8)), (D5 y(1)) = Aacpp( D5 y(64))

is given by
1 1
v = [ Gatt o [ Gt ow@H@azas @
where
_ 1 qi1(t,s), s<t,
Giltrs) = AT () {gz(t,s), s>t ©)
and
_ 1 g3(t,s), s<t,
Gotys) = AT(B) {94(t,s), s>t ©)
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gl(t/ S)

g2 (t/ S) =

g3(t/ S)
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((s) = YO Aa(p02) = (1)) = (1= As)(p1) - y1)] 5< 05,

(¥ = O = Aa($(5) — () Aa(p62) - p(1)
~(1-20(p) - v00)] 55 <5 < 64,

((s) - ¢<0>)“'1[A4(¢<64> p(0) - (1 - Aa)(w 1) - (o)

#H{(6) = 909)" | = Ao — wD) + (1 - 1)As(p1) - y0)|
) = 902) " Ma(p 1) = ) = Asa(p1) - p(65)

(1= Ay 0) - o) 52 0y,

(¥ - vO)" [0 - w0) = (1 - 14) (w0 - ¥®)| - M) - p) T, s <8

(¥(s) - p(oy! [A4(¢<64> — (1)) = (1 - Aa)(w(1) - wm)]
A9 = 9e) " [ = (60— w0) - (1 - 1e)(w 1) - (o)
~Ar(wis) - pin) 65 <5< by,

() - )" [A4(¢(64> — (1)) = (1= Aa)(w(1) - ¢<t>)]
#As($6) = 90)) " [ = Aa((60) = wD) + (1 = 24)As(p1) - y0)
#4(66) = p69) (8D - 9() = 230D - 09) - (1= As)(v1) - 910

a=1
~M (i) - (), 52 by,

~ (W) = 90) + Aa(90) - (62) ween) - v)

(1)~ 9O) P ~9©) "+ 1Aa($(0) - Y6962~ v)

0 - p0)[1 - WM -yO) " -1 - WAy - 96)

(1= 260 - @) |- aafv0 - ) s<on,

M) - vO) M) - p©) " + 1o - pE0) (6 - ve)

+Hp® - p0)|[1 - W(pM - yO) " -1 - WAy - 96)

Do - i) 61 <5<,
My w«»)(ﬁ P - 9©) + (9O - pO)1 - A)(p) - y©)

1

—AZ(IP(t) QD(S)) §2> 0o
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and
~1a($D) = () + 2200 - ) (961 - y©)
(61— pO) (D) = Y6+ 1iAa(9(0) - 1) (962 - ¥&))
Hp® - p0)[ 1= (M - yO) " - 1 -1y - y6)
(1 - 26 - ve) | <61,
!]4(t/ S) =
(61 = pO) (M) = p©) + 1Aa(9(0) - p(E2)) (962 - ¥&))
Hp0 - p0)[1- WM -yE) " -1 - WAy -v6) | ass<o
(60 - pO) (M - 9©) + (0O - @)1 - (e - ), 5=
with
Ar = (1= A)Aa((65) — $(D) + (1 = A)R(0) - Asp(63) )
and
Aa = P(1) = P(0) + A2(P(0) = Y(62)) + A ($(61) — Y1) + MAa((02) = Y(61)). ®)

Proof First, we assume that —¢p(D€’f/’ y(t)) := u(t), we decompose the mixed boundary value problem (3) as

DY u(t) = —H(t), ©)
u(0) = Azu(d3), u(1) = A4u(ds)
and
D y(6) = ~a(utt), 10)
¥(0) = y(61), y(1) = Aay(2).

Solving the equation D;Yfpu(t) = —H(t), we get
u(t) = co + 1 (P(1) — () - [V H(E),
1 a,
= o+ ) - ) - f Y)W — O Hs)s,

where ¢y and c; are arbitrary constants.
Now, using the first boundary condition #(0) = Azu(63) in (9), we have

1
6o +ar(9 (D) - Y1) - o fo WS (E) — P(0s)*Hs)ds =

1 1
afen e = 9o = s | VO - o He)
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and so

1
(1= As)co + (1) = P(0) = A3((1) = P(63)))c1 = % f P (S)@(s) - P(0)* Hs)ds

a-1
F(a)f P (8)(W(s) — (03))* H(s)ds.

Similarly, using the second boundary condition u(1) = A4u(64) in (9), we have

o = Ao + (1) = $(6) - ws)(w() Yo H(E)s

T(a)

and so

(1= Ag)eo + Aa((64) = P(1)cr = T f Y E)W(6) — Y(64)* H(s)ds.

Using Cramer rule, we can find the constants ¢y and c;. Firstly, we should find discriminant of the unknown
terms. Let be

T=2A3 9(1) = ¢(0) = A3(¢(1) = ¢(63))
1- A4 Ag(P(04) — (1))

then we get
Ay = (1= A3)(Aap(04) = (1)) + (1 = A)(¥(0) = A31(03)).

Now, we can find ¢, if A; # 0.
Firstly, since the first element in the first row is too long, let’s call it K instead of

= Ay,

1
s [ e -vor- e - 25 [ yowe - oo

I(a)
Thus, we get

o K P(1) = (0) = As(¥(1) — P(53))
T AR [ e - o) His)ds Aal(64) = P(1)]

and
o = Ail(mw«m e

1
D = 9(0) = 1)~ YoM [ O - 00y Hsys),

If we substitute K, hence we have

A %
=5l ], ¢09 - vOE - Oy OHEE

04
+ ) [(P(04) = P R(S) — P0))* " + As(P(1) — P(64))(Yp(s) — (83))* 19’ (s)H(s)dls

1
+ fé [(@(62) = PNE(s) = YO)* ™ + A3((1) = P(8a))((s) = Y(62))* "
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+ (1) = ¥(0) = As(¥(1) = P(03) (¥ (s) = ¢(54))“_1]¢’(S)H(S)d5)-

Similarly, let’s write for ¢4

_ 1 1- A3 K
1= A_l 1- A4 —% j(;i lP'(S)(lp(s) _ 1P(54))“_1H(s)ds
and so
03
“a= Alll“(a)( ; (=(1 = A W(s) = P(0))* "Y' ()H(s)ds

04
+(1- )\4)£ [=(W(s) = YON*" + Aa((s) — (62))* ' 1w (5)H(s)ds
1
+ X [=(1 = A3)Aa(P(s) — P(6))" "

+(1 = A)(=(§(s) = P(O)* ™ + A3(y(s) — ¢(63))“_1)]¢'(S)H(S)d3)-

Now, we replace ¢y and c; in u(t), thus it becomes

A
r

03
(w60 -va) [ w6 - oy eHEds
0

u(t) = A

) [(@(s) = P(0)* ™" = As(p(s) = (63)* 1y’ (5)H(s)ds

[ 100000 - b0 - 90 - 209 - ™

HY() = P(0) = A1) ~ PO — o0 1 OHs)
OOy [T w6 - poryoHes

~a-1y) :[<w<s> = PO = As(1 = AW - ) Y OHES
[ = A6 - vy - - 2100 - v

+H1= AA(() — Y62 19/ OH(E)ds)

1
T, YOWE o e

1
= \fo G1(t, s)Y’(s)H(s)ds,

where G1(t, s) is given in (5).
a4
O+

Applying the integral operator [7," on both side of differential equation in (10), we have

t 1
Yt =~ f P (S)(E) — ()P~ Py f Gt S/ ()H(E)dSs) + do + di (Y1) — 1(0)),
() Jo 0



O. B. Ozen et al. / Filomat 39:24 (2025), 8493-8507

where dy and d; are arbitrary constants. Using the boundary conditions of (10), we get

01
(1= A1)do + A1 ((0) — P(61))dr = —% L V' (5)(W(01) = (s)) ' Cs)ds

and

(1 = A2)do + (P(1) = P(0) + A2(Y(0) = P(62)))d:1 = @) f Y EQ) - (s) T Cs)ds

Ao 02

" T(a)

1
where C(s) := gi)q(f Gl(s,T)l,D'(T)H(T)dT)ds.

If we define

‘1 -M A W(0) — ¢(61))
1= (1) = 9(0) + A((0) — ¥(62))|

and suppose A, # 0, again using the Cramer rule, we have

01
%zgﬁa(‘Mwm—wm+hw@—w®»oIwmwmrw@ww@%
1
#9000 - v0) [ ¥ OW) - v s

02
+RAO) =01 | YO ~ o) Cds)

and

d—l 1)\1’ 1 F-1C(s)d
= 51l (—]xgw@wu—wm (s)ds

02
-(1-M)Az i Y () W(02) = P(s)) T Cls)ds

01
+a~mm01wmwm—wm“am#

Substituting do, d; in y(t), we have

1 o1
y(t) = Azl"(ﬁ)( ~A(®(1) = (0) + A2(¢(0) — Y(62)) ) P (5)(W(01) — Y(s))P ' Cls)ds

1
+A1(Y(61) = ¥(0)) fo YW - Y)Y Cs)ds

02
+A1A2(9(0) — ¢(61) | IP'(S)(IP(f’z)—IP(S))ﬁ_lC(S)dS)

SO 40y

1
ar o a=w [ vemn - periceds

02
—(1=A)A, | P (5)((62) — (5))P ' Cls)ds

V' ($)§(82) = () Cs)ds,

8501
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01
+(1 =AM | ¢’(s)(¢(61)¢(5))ﬁ‘1C(s)ds)

1 t
—_—— ’ _ ﬁ—l
I(a) fo P — )™ Cls)ds.

Thus, y(t) takes the form

1 1 1
v = [ 9w eceds = [ Gatt e [ i 0w @HE)s,
0 0 0
where Gs(t,s) is given in (6). O
Corollary 3.2. It is easy to see that the Green’s functions G1(t,s) and Gy(t, s) are continuous on [0,1] x [0, 1].

Lemma 3.3. Let H € C([0, 1], R). For the functions

1

1
C(s) = oy fo Gi(s, DY (H(t)dt) and y(t) = fo Galt, s)y (s)C(s)ds,
the following results hold;

ICll < MITHITY, iyl < MoMITIHIT,

where
1 1
M, > {)Islfs)ifo |Gi(s, DY (t)dt and M, > 61;;2](} |Ga(t, s)|Y' (s)ds.
Proof Since ¢, is increasing, then

IC(s)l

IA

1 1
qbq(fo IGl(S,T)Il,b’(T)II“I(T)IdT)S%(IIHIIf0 G1(s, DY’ (1)d7)

dq(IHIMy) = MI™ - |HIT,

IN

and so, we have
-1 _
ICIl < M |IH|I7.

Similarly,

1
ol < 1Cl [ 1Gatt 91y e
0
< MITYIHIT My,
and so, we have

Iyl < MoMIIHIP.
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4. Existence and uniqueness results

In this section, we discuss the existence and uniqueness of solutions to the problem (1) —(2). We consider
the Banach space C[0, 1] endowed with norm ||y|| = rrh% ly(t)]. Denote
telo,

= {y e C[0,1]: Dy, Di¥y e Cl0,1]).
For a given number R > 0, let us consider the following set
Dr={tyw:0<t<1, yeX |yll<MM 'R, |w| <M 'R
and denote by I'[O, R] a closed ball in the space of the continuous function C[0, 1].

Theorem 4.1. Assume that 1 < p < 2 and there exist positive constant N1, N, P1, P2, Q1 and Q5 such that
(AD) |f(t,y,w)l < N1, lg(t,y,w)| < Ny for (t,y,w) € Dg;

(A2) |f(t, y2, wa) = f(t, y1,w1)l < P1lya — yal + Palwa — wyl, for (¢, yi,w;) € Dr, i=1,2;

(A3) 1g(t, y2, w2) — g(t, y1, w1)| < Qily2 — ya| + Qalwz — wrl, for (¢, yi,w;) € Dr, i=1,2;

1) — ¥(0))°
(A4)L:=(@g- 1)M1Rq‘2[|v1|(M2P1 + P) + |V2|%(M2Ql +Q)| <1

Then the problem (1) — (2) has a unique solution satisfying the following inequalities:
YOl < MoMT 'R and DY y(t)l < MTT'RIY,

@) - P(0)*
T(E +1)

Proof. Define an operator A : C[0,1] — C[0, 1] by

where R > [v1|N1 + |[v2|N, forall te]0,1].

(AH)(t)

1
nfle f Gatt, ) (5)CEMs, ~Co)] + valy Vo, f Gatt, )y (5)C(E)s, ~C(t)

" f(t, j; 1 Ga(t, $)0' (5)C(s)ds, —C(t))

1 ' ’ &-1 ! ’
e fo YOO - ye)(r fo Galr, )y (5)C(e)s, ~C(r) .

We observe that the continuity G;(s, 1), Ga(t,s), f(t, y, w) and g(t, y, w) leads to that of the operator A. More-
over, if y(t) is a solution to the problem (1) — (2), then

H(t) = DY (@p(Dy y(1)
is the fixed point of the operator A. Conversely, if H(¢) is a fixed point of the operator A, then

1 1
y(t) = fo Galt, S ()eby( fo Gi(s, ) (0)H(x)d)ds

is a solution to the problem (1) — (2).
Next, we need to show that the operator A maps I'(O, R) into itself. Let H € I'(O, R), by Lemma 3.3, we have

IC(H < MIT'RT™ and |y(H)] < MpMTTRI
Consequently, for any ¢t € [0, 1], there is (¢, y(t), w(t)) € Dr. So, from (A1), we have

AHB = if(t, y(), w(t) +vals? g(t, y(0), w(d)l
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IA

t
IV1|-N1+|V2|%[0 V(@@ = P(0)*g(T, y(T, w())lde

IA

t
|v1|-N1+|V2|iNz f V(D)) — P()*dr

< WiNG+ vl r(é)Nz(lP(f) (0))°

re+1) -
Therefore, (AH)(t) € T[O, R]. Thus, the operator A maps I'[O, R] to itself.

Now,we show that the operator A : I'[O, R] — I'[O, R] is a contradiction. From (A2), (A3), (i) of Lemma
2.5 and Lemma 3.3, we get

< INy +|vo| - N2

1
MiR > Ifo Gi(s, DY (t)H(7)d1|.

For each Hy(t), Hy(t) € I'lO,R] and 1 < p < 2, we obtain

(AH)(®) — (AHD@| < Wllf(t, ya(8), wa(t)) — F(E, y1(8), w1 (2))]
+alllg (gt ya(8), wa() = g(t, y1 (), wr (1))
< WwilPrilya(t) — yi(B)] + Palwa(t) — we (1)l
+alllg (g(t, ya(8), wa() = g(t, ya (), wr (1))
< WilPily2(t) — yi ()] + Palwa(t) — wq ()l
vl QY 1y2(t) = ()] + QoL Twa(t) — wi ()]).
From here, we have
1 1
(AH)(t) — (AHy)(8)] < |v1|(P1 f Galt, s (5)] by f Gi(s, 1)y (1)Ha(7)dT)
0 0
1
— G1(s, "(t)H1(7)d7)|d
o[ Gis D @
1 1
P fo Gas, )W (D)) — b fo Gils, O (D (o))
t
] Qlﬁ f W) - )Y Olyalt) — (Bl
s [0 - Y @l - wiowe)
<

IV1I(P1(q — 1)(M;R)2My M, R[[Hz — Hyll + Pa(q — 1)(MyRY2M;RI|H; — H1||)

*'VZ'(r%)“? (M R)">MxMiRIHz ~ Hll f (W) - Y)Y (D)
+%(q 1)(M1R)"2M;R||H> — H1||fO (W) - W(T))g_ll,b'(’c)dr)

- IV1I(P1(q — DRIMM, | Hy — Hyll + Pa(q — DRTM T |H, — H1||)

+|vZ|(r(5Q 5~ DRI MM — Hall () — $(0)f
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(g - DRI M — H(0 - 0

lvil(g = DRI MY |Hy — Hy[|(MaPy + Py)

el - DR M I 0) - y(0) 0,01 + Q2

(9- 1)Rq*1Mﬂ-1(|vl|(M2P1 1 Py)

IA

IA

T = 1)<¢<1> = Y(O) (M2Q1 + Q) JIH: = Hil

L-||Hz = Hill,

which, on taking the norm for [0, 1], yields
I(AH2) — (AH1)|| < LIIH2 — Hal|.

Since L < 1 by (A4), the operator A is a contraction. So, we deduce by Banach’s contraction mapping
principle that H(t) is the unique fixed point of the operator A. Hence, there exists a unique solution to the
mixed boundary value problem (1) — (2) satistying. [J

Theorem 4.2. Let1 < p < 2. Suppose that the condition (A1) is satisfied. Then the problem (1) — (2) has a solution,
¥Q) - p0))*

if there exists an R € R* such that R > |v1|N7 + [v2|N, TE+1)

Proof. For a given number R > 0, let us consider the following set
Dr={tyw:0<t<1, yeX lyll<MM R, |wl<M 'R

and denote by I'[O,R] a closed ball in the space of the continuous function C[0,1]. Clearly, Dy is a
nonempty, compact, convex subset of IR. Let A be an operator as defined in Theorem 4.1. It is clear that A
is a continuous operator. We need to show that the operator A maps I'(O, R) into itself. For any ¢ € [0, 1],
there is (t, y(t), w(t)) € Dg. So, from (A1), as shown in TheOrem 4.1, we have (AH)(t) € I'[O, R]. Thus, the
operator A maps I'[O, R] into itself and A : Dr — Dk. It follows at once by Brouwer fixed point theorem,
there exist a fixed point of A satisfying

YOl < MoMI 'R and DY y(H) < MIT'RIL
O

Example 4.3. Consider the following problem

D" (5L yo) = 2 ft,y(0, DL y®) - 315 a6, 56, DI yo), 1<, a1

¥O) = 352, ¥ = 1u(3),
12)

0305 v0) = 50,03 ¥3)), 63(D3" ¥) = 356,03 ¥(3)

Using the given data, we can easily see that A1 = —0.03 and A, = 0,47. Moreover, for t,s € (0,1), we have

maxf |Ga(s, DY’ (t)dT < 1,06 := My and maxf |Ga(t, $)lY'(s)ds < 1,56 := Mo.
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For illustrating Theorem 4.2, let us take

arcsiny + w?

—t
ft,w) = 2D (15 and gt y,w) = T+ pe

(104 + )}

1

Choosing R := 1, we can easily seen that R > 3N + %sz is satisfied for Ny = 2.107* and N, = 8.1075.
2

Furthermore, on the domain;

Dos = {(t,y,w):0<t<1, yeX, |lyll <04, |[w|]<0.6},

we find that |f(t, y, w)| < 2.107* and |g(t, y, w)| < 8.107°. Since the condition (A1) is satisfied then the problem
(11) = (12) has a solution on Dy 3.

5. Conclusion

In this paper, we have explored the uniqueness of solutions for a class of mixed p-Laplacian boundary
value problems involving i-fractional derivatives and integrals with respect to a power function. By
leveraging advanced analytical techniques, we established conditions under which unique solution can be
guaranteed.

The integration of i-fractional calculus into the framework of p-Laplacian boundary value problems
has proven to be a fruitful approach, allowing for the modeling of more complex and realistic systems. Our
findings highlight the robustness and applicability of these mathematical tools in addressing non-linear
phenomena that arise in various scientific and engineering contexts.

The uniqueness results obtained in this study not only enhance the theoretical understanding of such
boundary value problems but also provide a solid foundation for practical applications where the assurance
of unique solution is paramount. These results ensure that the modeled systems are stable and reliable,
which is crucial for their implementation in real-world scenarios.

In conclusion, this work contributes significantly to the field of fractional differential equations and
paves the way for further advancements in both theoretical research and practical applications. The unique
solution established here offer new insights and tools for scientists and engineers working with complex
systems modeled by mixed p-Laplacian boundary value problems.
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