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Barycenters of Toeplitz matrices and application in clustering
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Abstract. This paper presents two innovative centering notions, the p-barycenter and the L”-center of mass,
for Toeplitz matrices. The p-barycenter employs a distance function that relies on symbol functions, while
the LP-center of mass is based on the Riemannian distance on the manifold of positive definite matrices. Our
proposed methods extend the k-means machine learning algorithm to Toeplitz matrices, thereby enabling
potential applications in various fields, including signal processing. Furthermore, when p = 2, one of the
resulting objects is the geometric mean or Karcher mean, which is also a Toeplitz matrix. These centering
notions have great potential for enhancing the performance of clustering algorithms on Toeplitz matrices
and can be applied in areas such as image processing, audio signal processing, and time series analysis.

1. Introduction

Toeplitz matrices appear in a wide range of applications and admit interesting and deep theoretical and
analytical aspects. There is a great research literature surrounding the Toeplitz matrices [9, 11-13, 16]. In
this paper, we consider two notions of barycenters for Toeplitz matrices as described below. In the first one,
we introduce a distance function as follows

d, (T(@), T(b)) = ”a (¢9) = b(e?)

7

p

where a and b are the symbol functions of a Toeplitz matrices T, (a) and T,(b) respectively; see §2. We show
the existence and uniqueness of this barycenter. In the second one, inspired by what is mentioned in [1]
and using the distance

d(A, B) = ||log (AtBAY)

7

between two positive definite Toeplitz matrices A, B. We demonstrate that the minimizer of the following
problem

1 m
B,(A1,...,Ay) = argmin— @’ (X, A)),
' >§e¢; P;‘
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exists, it is unique, and it belongs to the convex hull of the set Ay, ..., A, where A;, 1 <i < m, are positive
definite Toeplitz matrices. Yann Cabanes [11], explores the generalization of classical machine learning
algorithms to the Riemannian manifold. This approach has been successfully applied to visualize data in
two dimensions and various other subjects. Additionally, the concept of barycenters can be utilized for
clustering datasets that contain Toeplitz matrices; see [11]. Another topic that has recently received a lot of
attention and research is calculating the geometric mean of positive definite matrices [2, 3, 6,7, 14, 15]. In
the case of Toeplitz matrices, the main challenge is whether the geometric mean remains in Toeplitz form or
not, as well as is satisfying in the Ando-Li-Mathias (ALM) axioms [3]. For discerning some investigation
and progress in this regard, see e.g., [7, 12, 18, 19].

The present work is organized as follows. In Section 2, we state some basic definitions. The notion
of p-barycenter and some related results are discussed in Section 3. In Subsection 4.1, the concept of L*
barycenter is presented, and using the geometric mean in Subsection 4.2, we define the geometric mean of
Toeplitz matrices which is a Toeplitz matrix itself. The paper concludes with some numerical experiments
and comparisons between our results and previous and recent results from the relevant literature.

2. Preliminaries

Letn > 1. A Toeplitz matrix is an n X n matrix A = [a;;], where entries along their diagonals are constant,
i.e., a matrix of the form:

ao ap - An-1
a_q ap a1

A_n+1 41 4o

The set of all n x n Toeplitz matrices from a vector space that we denote it by 77,. Let T = {¢'9, 0 € R} be the
unit circle in the complex plane. Corresponding to matrix A, the symbol function a : T — C is defined by:

a(t) = Z att (teT), )
|k|<n
or
n—1
a(e®) = Z ae™® (0 € R). )
k=—n+1

Conversely, for each trigonometric polynomial of degree at most n — 1 akin (1), one can define its
associated Toeplitz matrix in manner. We denote the vector space of all trigonometric polynomials of
degree at most nn — 1 by $,,—1. Hence, there is a one-to-one correspondence between $,,_; and 7:

Pn—l - an (3)
a— Ty(a).

Suppose thata : T — C is a Lebesgue measurable function and for each 1 < p < oo, let

1 270 ) ;7
||a||p=(§f0 Ia(ele)lpde) : (4)

We denote the set of all Lebesgue measurable functions a : T — C with |lallc < o0 by LP(T). It is Know that
LP(T) equipped with norm ||.|| is a Banach space. Define p-norms

T (@lp := llallerry, )

on 7, the space 7, with these p-norms is a Banach space too; see [9].
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Definition 2.1. Let T, (a), T,(b) € T, and 1 < p < oo are given, we define p-distance between T,(a) and T,(b) by
the formula

dp(Ty(a), Ta(b)) = lla(e”) = bEe®)ll,. (6)
Suppose that T,(a1), ..., Tx(a,) belong to 7,,. We denote the convex hull of matrices T, (1), ..., Tx(an) by
S = ConV(TTl(al)/ cecy Tn(am))-

3. p-barycenter

In this section using the norm (5), we define a new notion of center, called p-barycenter. The existence
and uniqueness will be proved.

Definition 3.1. Let m,n > 1and 1 < p < oo. Given Toeplitz matrices T,(a1), ..., Tu(an). Suppose that S is convex
hull of Ty(a1), - .., Tn(am). The p-barycenter of Ty(a1), ..., Tn(am) is:

By (T Ton) 5= angmin. 56,70 ?)

Now, assume that 1 < p < co. It is well-known that the LP-norm function x  ||x||, is strictly convex. Fix
A € T, and let a(e’) be its symbol function. The function

d;(.,A) T - R, (8)
dy(X, A) = (") = a(e)ll;, O €R,
is also strictly convex function; see [10], p.29.

The existence and uniqueness of the optimizer matrix in (7) follows from the following proposition.

Proposition 3.2. ([10],p.71). Let E be a reflexive Banach, and A C E be a nonempty, closed, convex subset of E. Let
also @ : A — (—00, +00] be a convex lower semi-continuous function such that ¢ # oo (i.e. domain(p) # 0) and

lirE(p(x) = +oo (no assumption if A is bounded),
Xe

llx|| — oo.
Then ¢ achieves its minimum on A, i.e. there exists some xy € A such that g(xo) = ming ¢.
Theorem 3.3. With assumptions of Definition (3.1), for 1 < p < oo the problem (7) has a unique solution.
Proof. Put A=E =7, and

¢: 7. —R

PpX) = = Y B T(0)),
i=1

in the Proposition 3.2. Since ¢ is a continues and convex function, the required conditions of the Proposition
3.2 are established. So for 1 < p < oo, ¢ achieves its minimum on 77, i.e. there exists some By € 7 such
that ¢(By) = ming;, ¢. On the other hand, since for 1 < p < oo, d% is a strictly convex function, the problem
(7) has a unique solution. O
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In order to make a method to numerically compute the solution of (3.1), we may confine ourselves to
the case that B belongs to S. Putting

B= tlTn(al) +ee+ tan(ﬂm), (9)
where
ti,...,tn=>0, H+---+t,=1,

are unknown. An assuming

Aok A Am-1)k
L= "% = | 1sksm, (10)
A-m-1k " Aok

we get

1B = Tu(ap)lly = I Y Tu(@e) = Tu(aplly
k=1

m
=1It = DTu@) + Y, HTa(@ly (11)
k=1,k#]
1 27 m P
_ i0 i0
“|5e [ =naE+ Y naer
k=1k#j
we recall the relation in (2) and we rewrite it as follows
aj(eze) — Z aljellel
I=—n+1

where aj;, —n+1 < I < n+1, are entries of T,(2;). Now, we introduce the function g;(0), 1 < j < m, as follows:

9j(f1,~-., tm) = |IB — Tn(”j)”i
1 27 n—-1 m I=n—-1
=5 | 06D Y @l Y on Y ey
0 I=—n+1 k=lk#j I=—(n-1)

In order to calculate the functions g;(t1, ..., t), 1 < j < m, we need an appropriate approximating integration
method. In Section 5, we use the Simpson’s rule with a suitable step size h. Now, the problem (7) reduces
to solve the following problem:

min Z it t)- (12)
i=1

Bttty =1
;>0

This is a constrained optimization problem and can be solved by standard methods. We will solve it with
fmincon function in MATLAB in Section 5.
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4. L7 center of mass of Toeplitz matrices

In this section we are going to define another barycenter for positive Toeplitz matrices.

4.1. Main result

It is known that, there is a Riemannian structure on the set IP; of all positive definite matrices given by
the scalar product g(M, N) = trace(A"?MA~!N) on the tangent space to P} at the given point A.
This structure makes P} as a complete Riemannian manifold with negative curvature [4-6] in which the
distance between two positive matrices A and B is given by

d(A, B) = || log(A:BA™2)], (13)

where ||.||f is the Frobenius norm ||Al|r := (%, Iaijlz)%.
ij

Definition 4.1. Assume that 1 < p < oo, and As,...,An € T,F. Also, let S be the convex hull corresponding to
A1, ..., Ap, and d(.,.) is the distance given (13). We define the Riemannian L¥ barycenter of {A, ..., An} as follows:

B,(Ay,..., Ay) = argmin Z (X, A;) (14)

XeTy =1

Let 7,7 be the set of all Toeplitz positive definite matrices. As a closed subset of IP;, the set 7,7 admits a
smooth structure as a Riemannian manifold, where P is the set of all positive definite matrices of size n.
The problem (14) has a unique solution B € 7, and B belongs to S; see Theorem 3.4 of [1]. In the case p = 2,
the geometric mean of m positive definite matrices Ay, ..., A,, can be defined as their center of mass, that is
the unique minimizer of [6]

fx) = Y BX A, (15)
i=1

This mean is known as Karcher mean and extensively has been investigated; e.g., see D. Bini et al; see [6].
An important point to note is that if Ay, ..., A,, are n X n positive definite Toeplitz matrices, the geometric
mean or center of mass obtained by solving problem (4.3) may not necessarily be a Toeplitz matrix. More-
over, reference [12, Section 10.3] explores generalized locally Toeplitz structures, which include Toeplitz
matrices as a special case. In that work, the symbol function is used to define the geometric mean.
Specifically, Theorem 10.2 in [12] demonstrates that the sequence of geometric means {G(A,, B,)}, forms a
generalized locally Toeplitz sequence, where the symbol is given by the geometric mean of the correspond-
ing symbols. Additionally, Conjecture 10.1 examines a generalization of this theorem, which is extended
to the multilevel block case in [2] and proved in great generality in [14]. Furthermore, references [18] and
[19] have previously investigated the geometric mean of Toeplitz matrices in detail, particularly in relation
to the properties of the ALM, including monotonicity, under a new definition. Unlike the aforementioned
references, this paper focuses on the geometric mean in the context of the distance function (4.1) as one of
its applications. Itis evident that the resulting mean is not necessarily a Toeplitz matrix. However, since the
argmin is chosen from the convex combination of Toeplitz matrices, the final result preserves the Toeplitz
structure. Moreover, in our approach, since B is a linear combination of Toeplitz matrices, the solution
obtained from solving problem (4.2) is guaranteed to be a Toeplitz matrix. But in our approach, as B is
a linear combination Toeplitz matrices the solution that comes from solving the problem(14) is a Toeplitz
matrix too.

Now that we know B € S, we can consider B = t{A; + -+ + t,,A;,, where t; +---+t,, = 1l and t; > 0, for
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1<i<m.
We have

Flta, . t) = (X, A) = I[log(A; * XA )|,

m
1 ~1
= lllog() | A, *AjA;?) + till]
—
(o

Therefore, to solve the problem (14), we must solve

min Y filt . t). (16)
=1

H+..+ty,=1
t>0

The problem constrained optimization (16) can be solved via standard methods [8].

4.2. Geometric mean

Let Ay, ..., Ay be n x n Toeplitz positive definite matrices. As we mentioned above, if p = 2, then the
solution of the problem (16) is the geometric mean of {Aj, ..., Ay}. n order to solve the problem (16) in the
case p = 2, we use the gradient descent method with a projection step. We know [17] that the derivation of
f(t,..., ty) is given by

ofi Spa ) ateat) ataat
S =2t log (4184 ) (47'BAH) A7 A4,
Where B = H1A1 + -+ - + t,, A
SetF(ty, ..., tm) =Yg filt, ..., tw)and H ={(t1, ..., tw) | L+ +tn=1, H,..., t, 20}
We have

af;
s
VF(t,..., tm) =
f
Y

Gradient descent method is a well- know algorithm for finding a local minimum of differentiable
unctions [8]. In general, if the multi-variable function F(x) is differentiable in a neighborhood f a point ¢,
then F(x) decreases fastest if one goes from ¢ in the direction of negative gradient f F at ¢. It follows that if

) — ) _ v, VF (t(”)),

for step size y, > 0, then F (t(”>) >F (t(”+ 1)).

Starting from a point #? for a local minimum F, we find a monotonic sequence F (t(o)) >F (t(l)) > > 0.
Hence, as in any gradient descent algorithm the sequence {F (")} converges to the optimal value F*. In other
side, for every convergent subsequence {t(’”k)} of {t(m)}, we have F* = lim,,_,o F (t(’"k)) =F (limk%o t(’”k)).
Since, ™ c B is bounded and F is strictly convex (so it does not admit more than one distinct optimizer
point), we deduce that the sequence t™ itself converge to the unique optimizer point #; i.e., F () = F*.

For finding geometric mean we look after +* € H. In this regard, we add a projection step to assure that the
sequence {tp} remains in H. We now have a two-step update rule, where we first subtract a gradient from
the current value of t and then project the resulting vector onto H (see [20], p. 193, 194).
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For computing Euclidean projection of a point t = (t1, ..., ;) € R™ on probability simplex, which is defined
via the following problem

.1 5

gelﬂlg;}ilx — (17)
st xT1=1,
x>0,

we use the O(Dlog D) Algorithm 1 presented in [21].

Algorithm 1 Euclidean projection of a vector onto the probability simplex.
Input: t € R”

Sorttintou:uy > uy >+ > u,

Findp:max{lstm:uj+%(1— f=1u1)>0}

Define A = % (1 -xr ui)

Output: xs.t. x; = max{t; + A,0},i=1,...,m.

Therefore we can compute geometric mean by the following algorithm.

Algorithm 2 Geometric mean.
Input: 4,,...,A,,tO
repeat
At = —VE (£, 1))
choose step size y, via exact or backtracking line search
t(n+%) — t(n) + j/”At(n)
t® = argminj Hw — r+3)
weH
until stopping criterion is satisfied.
Output: Bs.t. B=#]A; +---+1 Ay

The stopping criterion can be of the form Ht("“) - t(”)Hz < € where € is a positive small precision.

5. Applications and numerical experiments

Many well-known machine learning algorithms assume that the data being classified is Euclidean in

nature. However, to effectively operate within a Riemannian manifold and respect its unique geometric
structure, machine learning algorithms must rely on operations that are specifically defined within these
manifolds. In [11], it is explored how machine learning algorithms can be adapted to work within the
context of Riemannian manifolds. While some Euclidean based algorithms rely solely on distance as a geo-
metric tool to classify data, adapting these algorithms to work with non-Euclidean Riemannian manifolds
simply requires replacing the Euclidean distance with the appropriate distance function of the manifold.
One such algorithm [11] is a k-means clustering algorithm that utilizes the the Kdhler metric for effective
classification (Algorithm 3). Additionally, our approaches to barycenters, as introduced in Sections 3 and
4, can be used to efficiently cluster datasets of Toeplitz matrices.
For illustrative purposes only, we randomly construct 30 symmetric matrices belonging to 75. For comput-
ing the integral (4), we consider the 20 number of subdivisions of the interval [0, 27t] to use the Simpson’s
rule for the numerical integration. Also, for finding the minimizer of (12), we use the fmincon function in
Matras. In Figure 1 we see clustering withp =2 and p = 3.

As described in Section 4.2, we can use this approach for computing the geometric mean of positive
definite Toeplitz matrices. The cost of computing the geometric mean is based on the method described

in this section is O(pmn4) arithmetic operations, where 7 is the size of the matrices, m is the number of
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Algorithm k-means algorithm for N cluster
Initialization:
Pick randomly N points in the dataset. They now represent the barycenters of each class.
fori =1 to loop number do
Assign each point of the dataset to the closest barycenter.
Compute the new barycenter of each class.
end for
return Each point is labeled according to the closest barycenter.

matrices and p is the number of iterations of this algorithm. In [7] other methods have been used to calculate
the geometric mean of Toeplitz matrices, the structured geometric mean and the Kéhler metric mean. The

cost of these approach in term of arithmetic operations for m matrices is respectively O (pn4 + pmn3) and
0] (mn4) arithmetic operations where 1, m and p are the same as mentioned before. In [18], another method

is introduced based on symbolic function (1), for this method the number of operations equals O(kmnz)
where 7 is the size of the matrices, m is the number of matrices and k is the number of subdivision of
the interval [0, 2r] in order to use Simpson’s rule for numerical integration. We construct randomly three
positive definite matrices 3 X 3 belong to 73. we have assumed that p = 2. Fig.2(a) shows these matrices and
their means with our method, structured geometric mean (SGM), and the Kédhler metric mean (KMM) and
symbol based geometric mean (SBGM) in a 3D diagram, note that each 3 x 3 Toeplitz matrix characterized
by its first row, so corresponds to a point of R®. In order to compare the cost of different methods we let
n =30,m =3 to 10, p = 1 and for SBGM method k = 32. The results are given in Fig.2(b).

= Before clustering & After clustering by p=2 s T - After clustering by p=3
80 S * 8 80 * »* 80 * * G 80 * ¥
# #* #* *#
70 il 701 70 A 70F x
* " 60 ¥ 1 L =
- * * - I 4 * * * *
50 * " § 50 \\ * * = I i 5 ',,./-"""/-/{i *
- B ek FT sk & G FF K & & *k K

40 i * 8 40 ;‘Eé * 40 %e il oer % x
30t * 30 * 1 =0 * * I = e *

3. * * * * * * * o *
20| * * J 20} ¥ Xk 20 *k 2 20 Sk

* * * A X *  Cluster 1

#* Cluster 1 10 * * 10 * %  Cluster2
10 * o= or ¥ % Cluster2 ' X  Centroids
* X Centroids o * a| 0 Border of cluster
0 E o Border of cluster o 20 40 60 80 0 20 40 60 80
o 20 40 60 80 o 20 40 60 a0 x x
x
@p=2 b)yp=3

Figure 1: Clustering of 30 2 X 2 random symmetric Toeplitz matrices

6. Conclusion

In conclusion, our paper has presented two novel concepts of barycenter for Toeplitz matrices and
demonstrated their applicability in clustering datasets, including Toeplitz matrices. We have illustrated
the use of these barycenters in k-means clustering and also shown that the L¥ barycenter can be utilized
to calculate the geometric mean of Toeplitz matrices, which itself is a Toeplitz matrix. Our findings have
been compared with existing methods in the literature, highlighting the effectiveness of our proposed
approach. Overall, this work contributes to the advancement of clustering techniques for Toeplitz matrices
and provides a valuable tool for analyzing and interpreting complex datasets.
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Figure 2: Comparison of the different methods
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